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Entropy principles in the prediction of water quality 
values at discontinued monitoring stations 

A. Kusmulyono and I. Goulter 
Univers i ty  o f  Central  Queens land ,  Rockhampton ,  Queens land  4702, Austral ia  

Abstract: A new methodology for predicting water quality values at discontinued water quality monitoring 
stations is proposed. The method is based upon the Principle of Maximum Entropy (POME) and provides 
unbiased predictions of water quality levels at upstream tributaries and on the mainstem of a river given 
observed changes in the distribution of the same water quality parameter at a downstream location. Changes 
in the wlnes of water quality parameters which are known a priori to have occurred upstream, but which 
are not sufficiently large to account for all the observed change in the same water quality parameter at the 
downstream location are able to be incorporated in the method through the introduction of a new term in the 
basic entropy expression. Application of the procedure to water quality monitoring on the Mackenzie River 
in Queensland, Australia indicates the method has considerable potential for prediction of water quality 
at discontinued stations. The method also has potential for identifying the location of causes of observed 
changes in water quality at a downstream station. 

Key  words: Change, discontinued stations, entropy, networks, optimization, prediction, unbiased, water 
quality. 

1 I n t r o d u c t i o n  

Water quality management  and the co- and pre-requisite requirements for monitoring have been 
become one of the most  pressing problems for t h e  authorities involved in management  of water in 
river systems.  The  complexity of the problems associated with effective water quality monitoring are 
related to a range of factors including (a) the objectives of monitoring, (b) the variables to sample, 
(c) the locations of s tat ions (d) the frequency of sampling,  and (e) how long should a s tat ion be 
operated in relation to the  objectives in (a). 

All these factors are related to the process of designing a network and/or  the monitoring program 
to be undertaken in relation to a new or existing network. However all designs, be they of the 
network itself, or of the monitoring program, as well as being concerned with collection of the  actual 
data,  mus t  also be effective in gathering those data, and cost efficient in obtaining the information 
as it relates to those data.  [This difference between da ta  and information is summarized nicely in 
the  adage o f " d a t a  rich but  information poor", (Ward et al., 1986)]. These two requirements lead to 
a need for a means  for evaluating the 'performance'  of a network. Such an evaluation mus t  include 
some concept of the 'benefits '  of the monitoring in relation to the objectives of tha t  monitoring and 
the cost, both marginal  and average, of obtaining those benefits. 

In many  cases, network and monitoring program design is controlled by the available budget 
and the problem becomes one of obtaining the greatest benefit (most  information) for tha t  level of  
budget.  Not unexpectedly a number  of  studies have been conducted over the years to optimize the 
design of water quality monitoring networks and the monitoring programs to be undertaken with 
networks. 
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Loftis and Ward (1980) attempted to identify 'regions' of frequencies of sampling in water quality 
monitoring. The criterion adopted in their study was based on the width of confidence intervals of 
water quality variables about the annual sample geometric means. The study identified three general 
'regions' within sampling programs, namely: Region 1, which is characterized by high sampling 
frequencies, where the role of serial correlation is dominant; Region 2, which is characterized by 
sampling frequencies between approximately 10 and 30 samples per year and where effects of seasonal 
variation and serial correlation tend to cancel each other out; and Region 3, which is characterized 
by low sampling frequencies and where seasonal variation plays the dominant role. Loftis and 
Ward (1980) noted that in Region 2, seasonal variation and serial correlation should either both be 
considered or both ignored; to consider only seasonal variation will lead to more error than ignoring 
it. 

Palmer and Mackenzie (1985) discussed 'monitoring-effectiveness' and monitoring costs and the 
use of optimization methods (incorporated into an interactive computer program) to select the 
aquatic monitoring design that maximizes cost-effectiveness. These authors developed a new ap- 
proach to cost-effective design of aquatic monitoring networks in which the actual cost minimization 
issue was addressed by maximizing statistical power for a specified financial budget or, conversely, 
minimizing cost for a specified statistical power requirement. Both formulations are based on a 
gradient search algorithm. The results provided by the two models showed that, up to a certain 
threshold, the potential statistical power available from data (information) is strongly affected by 
the budget available. Above the threshold very little additional power is gained even with large 
increases in budget. 

Dunnette (1980) noted that ideally a water quality index should be used to determine sampling 
frequency. In that study the sampling frequencies were actually determined on the basis of observed 
variability in the Oregon Water Quality Index (OWQI). These sampling frequencies indicated the 
number of samples required to meet imposed confidence and error limits. It is also mentioned in 
the paper that the objectives and constraints of the sampling program should be used as the basis 
for the selection of the time intervals in which to distribute water quality samples. 

IIarrnancioglu (1984) introduced the entropy concept to determine the optimal sampling intervals 
in water quality monitoring. The entropy principles in that case were applied to determine the 
information content of stochastic dependent variables in order to identify the optimum sampling 
intervals with respect to time. This work on the application of entropy principles to design of water 
quality monitoring networks was subsequently extended to assessment of network efficiency and cost 
effectiveness (Ilarmancioglu and Alpaslan, 1992). In that study, the entropy principle was used 
to quantify information contained within a set of water quality data from a network. Using the 
quantified information, the efficiency of a network was then analyzed by maximizing the amount of 
information collected from the network. Cost effectiveness, on the other hand, was evaluated by 
comparing the costs of monitoring versus the information gained via monitoring. It was shown by 
Harmancioglu and Atpaslan (1992) that the entropy principle is applicable for network assessment, 
particularly in eases of rationalization of networks. 

All of the stndies cited above were directed at identifying procedures or models which were able 
to identify network designs and/or monitoring programs which give the best information within 
specified budget limits. This study is directed at another aspect of the budget problem within 
water quality monitoring, namely, how to predict water quality changes at some upstream locations 
(tributaries) after the stations at those locations have been discontinued following a period of data 
collection sufficient to establish the base-line distribution of the water quality at each station. This 
type of problem may arise in a number of ways. In one situation the budget available for water 
quality monitoring may be reduced due to external economic factors or the budget may be static 
(in which case inflation causes a real decrease in funding). In both situations it may be necessary 
to reduce either the sampling frequency or the number of stations at which water quality sampling 
is carried out. In the second case of static budgets, or in some situations of slightly rising budgets, 
it may be necessary to transfer an existing water quality monitoring station from one location to 
another in response to a more acute need for data at the new location. 

In this paper, a method to predict the water quality levels at discontinued upstream stations 
with an approach based on entropy/information theory using measured data at a downstream main 
channel station is proposed. Alternately, if it can be shown that the water quality values predicted 
by the method at existing stations are sufficiently accurate, the method also has the capability 
of identifying opportunities for discontinuing a number of stations when budgetary limitations are 
causing a 'rationalization' of the network design. 
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2 His tor ica l  use  of  t he  e n t r o p y  concep t  in wa te r  resources  

The entropy concept has been introduced to water resmtrces relatively recently. Sonuga (1972) 
applied the principle to parameter estimation and derivation of frequency distributions. He also 
applied the concept to dexivation of functional rainfall-runoff relationships (Sonuga, 1976). tIar- 
mancioglu examined use of the entropy principle in the measurement of the information content of 
random process (tIarmaneioglu, 1981); evaluation of information transfer between hydrologic pro- 
cesses (ttarmancioglu and Yevjevich, 1987); and assessment of recharge systems for a river basin 
(iiarmancioglu and Baran, 1989). Amorocho and Espildora (1973) utilized the principle to assess 
the hydrologic model performance while Chiu (1987, 1988, 1989, 199.1) and Chiu and Chiou (1986) 
applied the principle to velocity distributions in open channels. Awumah et al. (1990, 1991) on the 
other hand developed the principle for use in redundancy measures for water distribution network 
design. 

3 P r o b l e m  s t a t e m e n t  

The particular application of entropy examined in this paper embodies the use of the Principle of 
Maximum Entropy (POME) to develop updated probability distributions of water quality levels in 
upstream tributaries and the upstream mainstem of a river where monitoring has been discontinued, 
given 1) an observed change in the distribution of the water quality observed at the downstream 
location and 2) knowing the previous probability distributions of the water quality levels at the 
upstream tributary stations. (Note the method is also able to predict water quality levels in the 
upstream tributaries and upstream mainstem if no changes have been observed doWnstream: flow- 
ever, under such a scenario of no downstream changes, changes are also unlikely to have occurred at 
the upstream locations and there is, therefore, relatively little need to predict water quality values 
at those upstream locations because the distribution of values at the stations can reasonably be 
expected to be the same as that  previously observed). 

A potential additional use of the methodology, beyond the simple prediction of water quality values 
at upstream stations, is in its contribution to the identification of potential locations of causes of 
changes in downstream water quality values. Once the updated probability distributions at each 
upstream location have been identified by the method, the likely location(s) (mainstem and/or one 
or more tributaries) of the cause of the water quality changes observed at the downstream station 
can be identified. Such an identification of likely location(s) of causes of observed downstream 
changes might be based upon the statistical likelihood of the difference between the newly predicted 
distribution of water quality and the 'old' (known) distribution of water quality values. 

In the situation where changes affecting water quality are known to have occurred upstream, but 
where those changes are not sufficiently large to account for all the changes observed downstream, it 
is possible to modify the method to identify the likely location(s) of the cause of observed changes at 
the downstream station which are not able to be accounted for solely by the known upstream changes. 
An important characteristic of the method as it used in this fashion is that, in the absence of actual 
monitoring at upstream locations, it gives unbiased estimates of the likely locations of upstream 
changes in the water quality, and indicates, again in an unbiased manner, the likely magnitude of 
these changes. 

It should be noted that the method is applicable for identification of the likely upstream locations 
of causes of long term changes in water quality at downstream stations rather than for identifying 
the locations of sources of short term or transient variations in water quality. 

The theoretical basis of the procedure and the practical considerations of its application to the 
prediction of the water quality are described in the following sections. 

4 Theore t i ca l  b a c k g r o u n d  

The basic principle of the procedure is the interpretation of entropy as expressed by Shannon's 
measure of information (Shannon, 1948). This entropy expression can be interpreted as a measure 
of uncertainty and can be explained as follows: Let the probabilities of n possible outcomes A1, A2, 
• .., An of an experiment be Pl, p2, .-., pn respectively. Shannon's formulation for entropy can be 
written mathematically in these terms as: 

H = - ~ p i l n p i  (1) 
i=l 
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where: 

~ p~ = 1 (2)  
i=l 

[Equation (2) is needed to ensure development of a complete probability distribution]. 
The important  characteristics of the formulation expressed by Equations (1) and (2) are: 

a. H takes on its maximum when all events have the same probability or uncertainty, i.e, pi = 1/n. 
b. It takes on its minimum value (equal to 0), when there is a certainty among the events. 
c. Any random probabilities wilt give a value of It between these two extremes. 

The character of the entropy function deseribed above also means that the probability distribu- 
tion with the maximum entropy is the most unbiased distribution consistent with the information 
specified by the constraints. This observation in turn means that, without any constraints other 
than Equation 2, the distribution developed by the formulation is the most dispersed, i.e., it is a 
uniform distribution. 

The results obtained from maximizing It [Equation (1)] by assigning values to p~ has been discussed 
extensively in earlier papers, e.g., Sonuga (1972), and Jaynes (1983) and is known as the Principle 
of Maximum Entropy (POME). The underlying principle of this assignment of Pi values is that  
maximizing the value of H in this manner will result in the most unbiased estimate for Pi for any 
condition defined by the constraints on the values of pi- 

One such formulation involving constraints is as follows: 

Max II = - k pi In Pi (3) 
i=.l 

Subject to: 

~ p~ = 1 (4)  
i=Tt 

• pixi = /z (5) 
i=1 

~'~. pixi 2 =- #2 q_ 0.2 (6) 
i--1 

where: 
Pi = probability of event xl 
/~ = mean of the outcomes of events xi for all i 
0. = standard deviation of the outcomes of events xi for all i 

Solving the above formulation for the unknown values of Pi results in a normal distribution with 
a mean of/* and a standard deviation of ~. [Note that  solving the same formulation but with 
the constraints defined in Equations 5 and 6 removed, results in the specification of a uniform 
distribution of xl.] 

Prior information about the distribution of xl can be incorporated into the above formulation by 
use of the Kullback-Leibler's Principle of Minimum Discrimination Information (MDI) by modifying 
Equation (3) to the following form 

Min H = ~ Pi In (Pi/qi) (7) 
i=l 

or M a x I t  = - ~ p i ln  (Pi/qi) (S) 
i=1 
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where: 

qi = prior knowledge of the probability of event xi 

It should be noted that  the 'prior knowledge' of the probability of event xi can be the probability 
of the event xi known from a previous investigation or the probability of xi estimated to be now 
occurring as a result of observed changes in the system. 

This basic principle of maximizing H subject to a range of constraints on the values of Pi, and 
having some basic information on the probability distribution to be estimated, i.e., having some 
prior knowledge of the probabilities, is adopted in the approach to predict water quality levels at 
upstream locations in a river system described in the following sections. 

5 F o r m u l a t i o n  o f  t h e  w a t e r  qua l i ty  e s t i m a t i o n  p r o b l e m  

Consider a river basin in which sufficient water quality data have been gathered to define the 
probability distributions of the water quality on a number of major tributaries and in the upstream 
and downstream reaches of the main channel of the river. For simplicity of explanation at this time 
consider the case of a stream with two tributaries described in Figure 1. Define events as the range 
of the possible values of a water quality parameter at each sampling station on the tributaries and 
the mainstem of the stream. The range of these 'possible' values can be estimated in a nmnber of 
ways, for example, as the values lying within four standard deviations either side of the mean values. 

Assume that  the water quMity at the downstream location a is a function of the water quality at 
the two upstream location b and c, i.e., 

xa = f(xb, Xc) (9) 

This assumption implies that  there are no inputs of pollutants etc. between locations b and c and 
location a which significantly effect the value of the water quality parameter in question. The type 
of function described by f0  in Equation (9) depends on the water quality parameter (pollutant) 
being monitored and the particular physical conditions, i.e., flow, distance between stations for 
the situation being examined, whether the pollutant is conservative, and the time response of the 
pollutant if it is in fact non-conservative. 

Continuing with the same simple problem now consider the case where the water quality level 
at the downstream main channel station a has changed considerably. Such a situation indicates 
that  changes in the values of water quality levels are likely occurring either at upstream location 
b or c or both. The POME [Equations (3)-(6)] is proposed as a means of predicting, without 
bias, the distribution of water quality levels in the upstream tributaries (and upstream mainstem if 
appropriate) which are most likely given the change observed at the downstream location. 

The modified form of the POME for this case is as follows: 

Max tI Z.., pij ln [p i j / (qJm)]  (t0) 
j----1 i=l  

Subject to: 

f i  Pij = 1/m (j = 1, 2 . . . . . .  m) (11) 
i=1 

f i  n P i j X i j / ~  Pij = /~j (j = 1, 2 . . . . . .  m) (12) 
i=1 i=1 

f i  n 
2 P i j X i j / 2  Pij = ]/y -I" O'j 2 (j = 1, 2 . . . . . .  ITl) (13) 

i=l  i=l  
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F igure  I. Schematic of explanatory example 

# ~-- f(//i, //21-.., //m) (14) 

0 _< Pij < 1 for a t l i ,  j (15) 

0 < qij _< 1 for all i ,  j (16) 

#j ~ 0 for all j (17) 

~j > o for all j ( is)  

where,: 
xij = possible water quality level i at s tat ion j 
qij = prior probability of event xij 
#j = mean  of the water quMity le.vel at station j 
~rj = s tandard deviation of water quality level at station j from the prior distribution 
# = observed (changed) mean  of the water quality level at the downstream location 
pij = probability of event xij to be assigned knowing the mean of water quMity level downstream # 
m = number  of the  ups t ream stations. 
n -- number  of intervals (discrete water quality values) at each station. 

This formulation is applied separately for each water quality parameter  of interest. 
Given an observed change in water quality levels at a downstream location, the  above formulation 

assigns probabilities to each of tile possible water quality levels of each of the ups t ream stations.  
These new probabilities are then used to develop new, unbiased, est imates of the mean  values of the 
water quality at the ups t ream stations. 



307 

The qij values in the formulation can be those probabilities which existed prior to the observed 
downstream change in water quality, or, when changes are known to have occurred upstream, (but 
where as noted previously these observed upstream changes cannot account the magnitudes of the 
changes observed downstream), the values of the probabilities which can be associated with (ac- 
counted for by) the new known conditions. 

6 D e m o n s t r a t i o n  o f  t h e  u se  o f  t h e  t e c h n i q u e  

Water quality data from the Fitzroy River basin in Central Queensland, Australia are used in this 
study to demonstrate how the MDI can be used to predict water quality values accurately. The lo- 
cations of the stations in this basin from which the data used to demonstrate the model are obtained 
are shown in Figure 2. 

The value of the 'new observed mean' at the downstream station from which the new distributions 
of water quality are to be estimated at the upstream stations may be annual mean values or, in order 
to reduce the impact of 'one-off' short term trend changes, the mean over a period of years (equivalent 
to a moving average). (Recall that  the method is not for predicting the distribution of values of water 
quality parameters in the face of short temn transient changes in observed water quality values). The 
change in the probability distribution of water quality at the upstream station occurring as a result 
of using either annual mean, two year moving average, three year moving average values etc. of the 
water quality at the downstream stations can be significant depending on the length of record of the 
data. This issue is discussed in detail in Kusmulyono and Goulter (1994). 

In this study the prediction and subsequent comparison of water quality values analysis were 
performed only for a four year moving average of the mean annual value of the water quality. The 
data used in the study were collected fl'om 1971 to 1989 and were mainly available on a quarterly 
basis. The data were divided into two groups: 
(a) the data in the first group was assumed to be the data collected in the earlier period of time and 
constitute the information available to develop the prior probability distribution (qij values) of the 
water quality at each station; 
(b) the data in the second group constitute the value of the water quality to be estimated at each 
tributaries knowing only the mean value of the annual mean at the downstream station for the 
corresponding period of time. 

The specific water quality variables considered in the study are conductivity, dissolved ions, dis- 
solved solids and hardness. Importantly these data, which are shown in Table 1, show significant 
differences between the two groups of data. 

Normality tests were conducted on the data using the Saphiro-Wilk W test, and most of the 
values were found to be normally distributed. Only the Hardness data at station 130106 were found 
to be not normally distributed. However, the W values in this case is still very close to the W 
critical specified in the tables. Therefore, it was assumed that  normal distribution would still be 
an appropriate model for this  parameter. These normality tests were applied to the data because 
the model developed in the formulation shown in Equation (10)-(18) is strictly valid only for normal 
probability distributions. If the data are not, in fact, normally distributed, the model formulation 
has to be modified, or the data transformed into normal distribution, before the principle can be 
applied in the form given by Equations (10)-(18). 

The procedure to develop the relationship between the water quality value at the upstream and 
downstream locations in the functional form described by Equation (14) of the constraint set of the 
entropy formulation is based on the following process. Suppose 10 years of data exist from 1971 to 
1980. The data at every station can be grouped into seven '4-yearly' periods (1971-1974, 1972-1975, 
.... , 1977-1980) and the four year 'moving average' mean of the data for each station calculated. 
These four year moving average values are then used in a regression analysis between the values 
at the downstream station and the summation of the values from the upstream tributaries. The 
values in the upstream tributaries can be weighted by the discharges or the catchment areas of the 
tributaries in order to recognize the proportional contribution of each tributary to the water quality 
at the downstream station. 

Moving average regression analysis was chosen because the proposed method is intended for pre- 
diction of the mean value of the water quality over a period of time rather than for analysis of short 
term variations. The moving average values are considered to be the best estimate for this rela- 
tionship as they damp any short term water quality changes which might occurred in the historical 
record for the upstream and downstream stations. The values of the regression coefficients for the 
four-year moving average approach used in this paper are shown in Table 2. 
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Table 1. Water quality data at MacKenzie River and Isaac River sub-basin. 
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a. STATION 130401 (at Isaac River) 

CALIBRATION 

Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (rag/l) (rag/l) (rag/f) 

71 270.0 196.1 78.0 
72 351.3 265.9 102.8 
73 237.8 173.8 140.8 73.5 
74 471.0 301.0 249.5 136.5 
75 350.0 211.4 176.0 89.0 
76 550.0 359.4 303.0 157.7 
77 311.0 204.3 174.2 86,4 
78 457.5 304.9 263.0 129.0 
79 660.0 4112 343,0 181.0 
80 429.0 269.6 231.8 113.0 
Mean 408.8 269.7 ~35.2 114.7 
Standard 131.0 76.4 68.1 35.9 
Deviation 

VERIFICATION 

Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (rag/l) (mg/l) (mg/l) 

81 425.0 200.8 218.5 106.5 
82 316.7 200.7 173.3 83.3 
83 
84 332.5 219.3 185.0 83.5 
85 283.3 176.7 156.7 72.0 
86 276.7 182.6 150.0 75.7 
Mean 
(81-85) 339.4 199.4 183.4 86.3 
(82-86) 302.3 194.8 166.3 78.0 
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Table 1 (continued) 

b. STATION 130106 (at Mackenzie River) 

CALIBRATION 

Year Conductivity" Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (nag/l) (rag/l) (rng/l) 

71 230.0 199.3 91,0 
72 204.8 167.1 78.6 
73 146,7 135.8 100.3 61.7 
74 168.6 136.1 104.2 61.7 
75 192.2 151.0 117,3 65.7 
76 410.0 347,2 257.0 162.0 
77 240.6 198.6 151.4 85.2 
78 t60.0 127.5 100,5 55,2 
79 340.0 257.6 199.0 101.0 
80 230.3 165.9 135.0 69.3 
Mean 232.3 188.6 145,6 83.1 
Standard 83.2 68.2 56.1 31.3 
Deviation 

VERIFICATION 

Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (mg/1) (rag/l) (rag/l) 

81 199.3 151.0 114.8 58.8 
82 21t,3 t63.3 122.5 72.5 
83 
84 206.7 161,3 123.3 62.0 
85 242.5 166.2 140.0 65.5 
86 185.0 150,2 110,0 61.0 
Mean 
(81-85) 214.9 160.4 125.2 64.7 
(82-86) 211.4 160.3 124.0 65.3 



Table 1 (continued) 

c. STATION 130105 (at Mackenzie River) 

CALIBRATION 
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Year Conductivity Dissolved Dissolved Hardness 
@ 25 C Ions Solids 
(mS/m) (rag/l) (mg/1) (rag/l) 

71 
72 290,0 199.7 148.5 80.5 
73 215.0 159.6 135.8 61.8 
74 3502 233.5 194.0 97.0 
75 235.0 158.4 133.7 63.7 
76 516.7 336.2 274.0 150.3 
77 350.0 248.6 204.0 102.3 
78 367.5 258.2 207.5 110.5 
79 
80 411.7 220.0 220.0 107.7 
Mean 343.2 231.2 189.7 96,7 
Standard 97.6 58.7 48.3 28.8 
Deviation 

VERIFICATION 

Year Conductivity Dissolved Dissolved 
@ 25 C Ions Solids 
(mS/m) (rag/l) (rag/l) 

81 248.0 176.7 139,0 
82 260.0 167.0 150.0 
83 
84 226.3 161.0 130.0 64.0 
85 235.0 161.0 140.0 61.5 
86 255.0 187.9 146.7 80.7 

Hardness 

(mg/1) 
71.0 
63.0 

Mean 
(81-85) 242.3 166.4 139.8 64.9 
(82-86) 244.1 169.2 141.7 67.3 
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Table 2. Values of regression coefficients for various variables. 
CONDUCTIVITY DISSOLVED DISSOLVED 

IONS SOLIDS 
HARDNESS 

Bo 137.72 100.58 50.978 51.357 
B~ 0.5980 0.5914 0.7423 0.5351 

The range of water quality values to be considered in the entropy formulation at the upstream 
station were set at plus and minus four standard deviations either side of the mean of the relevant 
station. This range of values was discretized into 40 intervals. The discretization of the continuous 
variables implicit in the base entropy function and necessary for its use in this and other studies 
involving similar uses of the entropy expression has been identified by ttarmaneioglu (I992) as being 
a critical element in the appropriate use of the function. Examination of the impacts of varying the 
discretization intervals for formulation described in this paper are reported in detail in Kusmutyono 
and Goulter (1994). The results in Kusmulyono and Goulter (1994) indicate that, while the value of 
H and the values of probability assigned vary with the size of discretization intervals, the new mean 
values assigned by the formulation do not change indicating that the model results are effectively 
independent of the size of the discretization interval. 

The following four cases were used in demonstrating the methodology. Firstly, the variances of the 
data at every station were maintained at the values associated with previously determined probability 
distributions. Secondly, the variance of the water levels at the upstream locations were bounded 
only by the requirement that  their sum equal a function of the observed variance of the water quality 
values at the downstream station. In this second case, the variance of the values at the downstream 
station was assumed to be constant at the level of the prior distribution at the downstream station. 
However, in reality any appropriate variance, e.g., a new variance observed at the downstream 
station.can be specified. Note that,  in this second case, the MDI model determines the variances 
of the water quality at each upstream station. In the last two cases, the 'prior' probabilities qij are 
modified to demonstrate how known changes in the environment around the upstream tributaries 
can be accommodated. This incorporation of known changes may be undertaken with the variances 
at the upstream stations constrained to historical or known values (equivalent to Case I) or with the 
variances at the upstream stations unconstrained other than their sum must relate to the observed 
variance at the downstream station (equivalent to Case II) 

The formulation was solved using the nonlinear optimization package program GRG2 (Lasdon and 
Warren, 1986) . Table 3 summaries the values achieved for the four variations of the basic model. 

7 D i scuss ion  

In Table 3, the new mean water quality values for each variable predicted by the model are shown 
in column (4) as the assigned values. 

CASE I [Table 3 (a)]. The results in this table show how well the values predicted J,y the basic 
entropy function match the values derived from observed data. This closeness occurs even though 
there are significant differences between the values used to derive the qij values in the entropy 
function and the values which the entropy function is trying to predict. It can be seen that  the 
greatest percentage error occurs in the predicted value of Hardness at station 130106 (~_15%). 
The high error percentage for Hardness in this case is believed to be due in part to the normal 
approximation being applied to data that  are not actually normally distributed. 

CASE II [Table 3(b)]. Recall that in this case the formulation has been modified such that  the 
variances of the new probability distributions at the upstream stations were also assigned by the 
method. The only requirement on the variances is that  their sum should be equal to the sum of 
the variances from the observed data. The result shows that  the effect of permitting the change on 
the variance is not significant to the assignment of the new mean values. (The new mean values 
assigned by the method are not significantly different from CASE I). 



Table 3(a). Case I. Fixed variance 

Station 130401 
Prior New New 

Variables Mean Value Mean Value Mean Value Entropy 
(Observed) (Observed) (Assigned) (tI) 

(i) (2) (3) (4) (5) 
Conductivity 408.8 (i) 339.4 318.6 -0.131 

(ii) 302.3 320.1 -0,127 
Dissolved Ions 269.7 (i)'199.4 215.9 -0,151 

(ii) 194.8 218.0 -0.139 
Dissolved Solids 235.2 (i) 183.4 171.0 -0.256 

(ii) 166,3 172.8 -0.241 
Hardness 114.7 (i) 86.3 92.3 -0.118 

(ii) 78.6 93.9 -0.102 

Station 130106. 
Prior New New 

Variables Mean Value Mean Value Mean Value Entropy 
(Observed) (Observed) (Assigned) (H) 

(1) (2) (3) (4) (5) 
Conductivity 232~2 (i) 214.9 213.4 -0.131 

(ii) 21t.4 213.7 -0.127 
Dissolved Ions 188.6 (i) t60.4 166.4 -0.151 

(ii) 160.3 167.2 -0,139 
Dissolved Solids 145.6 (i) 125.2 123.5 -0.256 

(ii) 124.0 124.2 -0.241 
Hardness 83.1 (i) 64.7 74.2 -0,118 

(ii) 65,3 74.9 -0,102 
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% Error of 
Predicted Value 

(6) = ~ x 100% average 
-6.12 6.00 
5,89 
-8.30 10,10 
-11.90 
-6.75 5.30 
3.94 
6.91 13.20 
13.47 

% Error of 
Predicted Value 

(6) = 4fLea a x 100% average 
-0.72 0.91 
1.11 
3.71 4.02 
4.34 
-1.33 0,76 
0.16 
14,67 14.73 
14.79 

Table 3(b), Case II. Non fixed variance 

Station 130401 
Prior 

Variables Mean Value 
(Observed) 

(1) (2) 
Conductivity 408.8 

Dissolved Ions 269.7 

Dissolved Solids 235.2 

Hardness 114,7 

New 
Mean Value 
(Observed) 
(3) 
(i) 339.4 
(ii) a02.a 
(i) 199.4 
(ii) 194.8 
(i) 183,4 
(ii) 166.3 
(i) 86.3 
(ii) 78,6 

New 
Mean Value Entropy % Error of 
(Assigned) (H) Predicted Value 
(4) (5) (6) = 4 -lkkvAD x 100% average (a) 
318.6 -0,131 -6.12 6.00 
320,1 -0,127 5,89 
215,9 -0,151 -8.30 10,10 
218.0 -0.139 -11.90 
171.0 -0.256 -6,75 5.30 
172.8 -0.241 3.94 
92.2 -0.118 6.84 13.15 
93.9 -0.102 13,47 
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Table 3(b) (continued) 

Station 130106 
Prior New New 

Variables Mean Value Mean Value Mean Value 
(Observed) (Observed) (Assigned) 

(1) (2) (3) (4) 

Entropy 
(H) 
(5) 

% Error of 
Predicted Value 

(6)=  ~ x  100% average 
Conductivity 232.2 (i) 214.9 213.4 

(ii) 211.4 213,7 
Dissolved Ions 188.6 (i) 160,4 166.4 

(ii) 160.3 167.2 
Dissolved Solids 145.6 (i) 125.2 123.5 

(ii) 124.0 124.2 
Hardness 83.1 (i) 64.7 74.2 

(ii) 65.3 74,9 

-0.131 
-0.127 
-0.151 
-0.139 
-0.256 
-0.241 
-0.118 
-0.102 

-0.72 
1.11 
3.71 
4.34 
-1.33 
0.08 
14.67 
14.79 

0.91 

4,02 

0.72 

14.73 

Table a(e). Case III. Fixed variance and shifted mean 

Station 130401 
Prior New New 

Variables Mean Value Mean Value Mean Value Entropy 
(Observed) (Observed) (Assigned) (H) 

(1) (2) (3) (4) (5) 

% Error of 
Predicted Value 

( 6 ) -  ~ x100% average 
Conductivity 408.8 (i) 339.4 323.3 

(ii) 302.3 324.7 
Dissolved Ions 269.7 (i) 199.4 220.2 

(ii) 194.8 222.3 
Dissolved Solids 235.2 (i) 183.4 175A 

(ii) 166.3 177.2 
Hardness 114.7 (i) 86.3 96.6 

(ii) 78.6 98.2 

-0.118 -4.74 6.08 
-0,114 7.41 
-0.128 10.43 12.27 
-0,117 14.12 
-0.222 -4,36 5.46 
-0.208 6.55 
-0.077 11.94 18.44 
-0.064 24.94 

Station 130106 
Prior New New 

Variables Mean Value Mean Value Mean Value Entropy 
(Observed) (Observed) (Assigned) (H) 

(1) (2) (3) (4) (5) 
Conductivity 232.2 (i) 214.9 204.4 -0.118 

(ii) 211.4 204.8 -0.114 
Dissolved Ions 188.6 (i) 160,4 158.1 -0.128 

(ii) 160.3 159,0 -0.117 
Dissolved Solids 145.6 (i) 125.2 115,0 -0.222 

(ii) 124,0 I15.7 -0,208 
Hardness 83,1 (i) 64,7 65.9 -0.077 

(ii) 65.3 66.6 -0.064 

% Error of 
Predicted Value 

(6) = ~ x 100% average 
-4.89 4.00 
-3.12 
-1.43 1.12 
-0.81 
-8.15 7.42 
-6.69 
1.85 1.92 
1.99 



Table 3(d). Case IV. Non fixed variance and shifted mean 
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Station 130401 
Prior New New 

Variables Mean Value Mean Value Mean Value Entropy % Error of 
(Observed) (Observed) (Assigned) (H) Predicted Value 

4 - 3  (1) (2) (3) (4) (5) (6) --- ~ x 100% average 
Conductivity 408.8 (i) 339.4 323.3 -0.118 -4.74 6.08 

(ii) 302,3 324.7 -0.114 7.41 
Dissolved Ions 269.7 (i) 199,4 220,2 -0.128 10.43 12,27 

(ii) 194.8 222,3 -0.117 14,12 
Dissolved Solids 235.2 (i) 183,4 175.4 -0.222 -4,36 5,46 

(ii) 1.66.3 177.2 -0.208 6.55 
Hardness 114.7 (i) 86.3 96.6 -0.077 11,94 18.44 

(ii) 78.6 98.2 -0.064 24.94 

Station 130106 
Prior New New 

Variables Mean Value Mean Value Mean Value Entropy % Error of 
(Observed) (Observed) (Assigned) (It) Predicted Value 

(1) (2) (3) (4) (5) (6) -- ~ x 100% average 
Conductivity 2.32.2 (i) 214.9 204.4 -0.118 -4.89 4.00 

(ii) 211.4 204.8 -0.114 -3.12 
Dissolved Ions 188.6 (i) 160.4 158.1 -0.128 -1.43 1.12 

(ii) 160.3 159.0 -6.117 -0.81 
Dissolved Solids 145.6 (i) 125,2 115.0 -~,222 -8.15 7,42 

(ii) 124.0 115.7 -0.208 -6.69 
Hardness 83.1 (i) 64.7 65.9 -0.077 1.85 1.92 

(ii) 65.3 66.6 -0.064 1.99 

CASE III [Table 3(c)]. The mean values of the prior distribution at station 130106 were decreased 
by an amount which is estimated from observed changes in the environment of the basin in which 
that  station is located. In this case, the value from every variable was reduced by 10 units. Note 
that  this selection of a value of 10 units was made without reference to the differences between the 
data in the period (1971-1980) used to define the distributions and the data from the period (1981- 
1989) used to validate the model, other than knowing the values of the water quality parameter 
had decreased at the downstream stations and therefore had likely decreased at one or both of the 
upstream stations. The change in the prior distribution, i.e., reduction in the mean value by a 
certain number of units, in this case has resulted in the new mean values assigned for some variables 
being much closer to the observed values and others being further away. Two conclusions may be 
drawn from these results. In the first instance, no change may have occurred~:at station 130106 
and the change in the prior distribution was inappropriate. The other conclusion might be that  the 
basic model (i.e., no change in the historical distribution) is, in fact, the more robust of the two 
formulations and should be used in preference to the other, thereby eliminating the need to assess 
potential changes. However, more work is needed to examine this issue further. 

CASE IV [Table 3(d)] is a combination of CASE II and tlI, in that  both the prior values at station 
130106 were reduced and changes in variances were permitted. The results do not differ significantly 
from CASE III, which suggests that the changes of the prior qij values are the primary mechanism 
for a change (improvement in the results). 

It is apparent, in CASES III and IV in particular, that  the method is both accurate in its predic- 
tions (assignments of probability distributions) and flexible in a sense that  it allows users to make 
a reasonable assumption on the condition of the sub-basin and to use that assumption in the input 
in the model through specification of the 'prior' distribution. When good approximations of the 
prior distributions are available, the model gives, non-unexpectedly, better predictions of the values 
relative to the observed value. The problem is then how to actually estimate the mean value of the 
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'prior' distribution, if it is known in advance that such a change in the environment has occurred in 
the sub basin (i.e., development of a new housing area or a new industrial area). More work is also 
needed in this area. 

The results gained from the method are theoretically (from the fundamental principles behind 
POME) the most unbiased probability distribution, consistent to the information given in the con- 
straints. Inappropriate or erroneous predictions can occur therefore when incorrect information is 
included in', or some information is omitted from, the constraints. Therefore, it is critical in the 
application of this technique to convey the information expressed in the constraints carefully. 

In this study it was also assumed that there is no dependency among the data from the upstream 
stations. This assumption may be to be unrealistic in some, or even in a majority of, cases. An 
important step in further development of the procedure would be to include and observe the effect 
of any sum dependency in the model. 

8 Sum m ary  and conclusion 

A new method for the prediction of water quMity values at discontinued monitoring stations, given 
observed changes at a downstream station is proposed. The method is based upon entropy theory 
and, more specifically, on the Principle of Maximum Entropy and uses observed changes in the 
distribution of water quality values at a downstream station to assign distributions to the water 
quality values at stations on upstream tributaries or on the upstream mainstem of the stream. 

The distributions of water quality provided by the methodology for the upstream points are an 
unbiased prediction of the new conditions at those locations. As such the method has the ability to 
make unbiased predictions of the upstream locations of causes of observed changes of water quality 
value at the downstream station. In tile case where changes in tile distribution of water quality at 
upstream station(s) are known to have occurred but where those changes are not sufficiently large 
to account for all the observed changes at the downstream station, the method can be modified to 
incorporate tile prior information about the system in the assignment of the new probabilities of 
water quality values. 

An evaluation of the method was undertaken by applying the procedure to the prediction of water 
quality values in the Mackenzie River, Queensland, Australia. In this evaluation one set of the 
available data was used to calibrate the procedure by developing the prior distributions of water 
quality at each station. The other set was used to compare the prediction of the entropy model with 
the observed values. It was found that, in spite of the data used for comparison being significantly 
different from those in the calibration step, i.e., both the downstream and upstream water quality 
values were quite different in the two sections of data, the entropy model provided predicted water 
quality values at the upstream station that were remarkably close to the observed values. These 
results indicate the potential of the method for predicting water quality values at discontinued 
stations and for identifying the locations of causes of unaccounted changes in the distribution of 
water quality values observed at downstream stations. 
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