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AN I N V I T E D  PAPER 

We derive exact expressions for the evolution of the second order moment of the 
intensity distribution of an arbitrary beam propagating in a nonlinear Kerr medium with 
a quadratic index profile. The results can be recast in terms of the ABCD matrix 
formalism after introducing a generalized complex radius of curvature, Q(z). Various 
definitions of the beam quality factor are introduced. Numerical simulations reveal the 
interest of this approach. 

1. I n t r o d u c t i o n  
In the past few years the so-called 'beam quality factor' has been introduced in several 
different ways as a standard measure of the propagation and focusing properties of an 
arbitrary beam. We refer to other papers in this special issue for further discussion and 
applications of  this parameter. This beam quality factor compares the divergence of a real 
beam with the divergence of an ideal beam, i.e. a Gaussian beam. 

For  a general comparison, applicable to an arbitrary beam, the divergence is defined here 
in terms of the second order moment of the intensity distribution in the far field. The law 
of propagation of  the second order moment of  an optical beam (and of  an optical pulse) 
has recently been demonstrated by several authors using different ~ipproaches [1-5]. To our 
knowledge, however, Vlasov et al. [6] were the first to show that the second order moment 
obeys a parabolic law of propagation in an homogeneous medium, in a two-transverse- 
dimensions geometry. Their proof  was based on various methods, later used by other 
authors: integration by parts of  the differential equation, the Huyg.e!;4s-Fresnel integral and 
the theory of partial coherence (Wignei ~ transformation). Their result also covers the case 
of a Kerr nonlinearity, showing that, in such a medium, the law iS Still parabolic [6, 7]. For  
a linear homogeneous medium they also demonstrated that the nto~nents of  order n evolve 
according to a polynomial of order z", where z is the propagation distance. 

In this paper we extend the result of Vlasov et al. [6] by deriving the law of propagation 
of the second order moment of an arbitrary beam propagating in a nonlinear medium with 
a quadratic index profile. In Section 2 we first consider an fio~:ol~eneous medium. We 
emphasize an important difference between a one- and a two-transverse-dimensions geo- 
metry, showing that only in the latter case can the parabolic law of  propagation be extended 
to the nonlinear problem. The derivation Ieads us to propose a first definition of the beam 
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quality factor. In particular we stress the influence of the initial wavefront on this factor. 
In Section 3 we show that the results of  Vlasov et al. can be recast in an elegant way by 
introducing the complex radius of  curvature, Q(z). This complex radius of curvature 
represents a further generalization of the complex radius introduced in [8] for a general 
beam, and it involves a more general beam quality factor. 

In Section 4 we discuss briefly the question of self-trapping and the advantage of using 
the theory of moments instead of the approximate model of  'aberrationless approximation'  
to describe the nonlinear focusing of an arbitrary beam. In Section 5, in order to cover any 
paraxial system (i.e. those described by an A B C D  matrix), we consider a lens-like medium 
with a Kerr  nonlinearity. In the linear case the beamwaist of  a Gaussian beam is known to 
evolve in a sinusoidal way as it propagates in such a medium. Here we show that the second 
order moment  of  an arbitrary beam behaves in the same way, even in the presence of a 
nonlinearity. Furthermore, the period of oscillation is found to be independent of  the power 
of  the beam. To our knowledge this has not been shown elsewhere. 

This is followed by a presentation of numerical simulations showing the interest of 
defining an effective radius of  curvature and an effective beamsize. This is particularly 
appropriate for a Gaussian beam where the wavefront remains quasiparabolic below the 
critical power for self-focusing. Super-Gaussian beams are also considered. Finally, we 
conclude by mentioning possible extensions and applications of  this work. 

2. Propagat ion of the second order  m o m e n t  in a nonl inear 
Kerr med ium 

In a lossless and lens-like medium [ n  2 = n02(1 - c t 2 p 2 ) ]  with a Kerr  nonlinearity, the 
propagat ion of  a c.w. monochromatic  beam is described by the paraxial wave equation 

1 ~( ~u) ~u 
y - 1  Op pd 1 fffiP - 2ik-~z - k2c~2P2U + Y [ u ] 2 u  = 0 (1) 

where u(p, z) represents the slowly varying complex amplitude of  the electric field. 
k = 2nn0/2, where 2 is the wavelength in a vacuum. The dimension parameter  d is equal 
to 1 or 2 for a one- or a two-transverse-dimensions geometry, respectively, p is the 
transverse coordinate: x for d = 1, or the radial variable r for a rotationally symmetric 
beam in the circular geometry d = 2 (the extension for an arbitrary two-dimensional 
transverse geometry is discussed in Section 7). 7 is real and proportional  to the nonlinear 
refractive index n2 (7 = k2n2/no if one defines n 2 as n = no + �89 ]u[2). It  will be shown that 
a beam does not propagate in the same way for d = 1 and d = 2. 

Equation 1 has the first invariant 

Io = fs lul2pa ' dp = Const. (2) 

which simply states that the power of  the beam [P = eocmo(2nlo)] is conserved during the 
propagation, as would be expected. The domain of integration, S, extends from - oo to 
+ oo for d = 1 and from 0 to + oo for d = 2. As shown in [8], the complex radius of  
curvature o f a  Gaussian beam, q(z), can be generalized to deal with an arbitrary beam. The 
beam size then refers to an average value corresponding to the second order moment  of  the 
intensity distribution, namely 

W 2 = (4~clio) fs lul2pd+' dp (3) 

The factor 4/d appears in order to have W 2 = w 2 for a Gaussian beam u = exp ( -  p2/w2). 
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In a first step we consider an homogeneous medium. Then, using the paraxial wave 
equation (Equation l) with e = 0 and integrating by parts (assuming a well behaved 
function at the limit p -+ m), the derivatives of W 2 can be evaluated versus z. For the first 
derivative 

8 1 dz - dk~o Im u* ~pp 

(u* represents for the complex conjugate of u) or, in terms of the amplitude and phase 
profiles A and ~b {i.e. u(p, z) = A(p, z) exp [iq~(p, z)]} 

dW2dz dkI o8 (OqS)~p - ;s pdA2 do (4b) 

The next two deriatives are given by 

d2W 2 d z  2 ~ 8  ( ~u 2 d7 ) 
- fs p " - '  - dp  (5a) 

= d-~ofS ~p ----~ A4 + \@/j 

and 

d3W 2 - d z  3 2(2-dk210d)Yddz (fs pa-llu]4 dp) (6) 

This is a generalization of the results of Vlasov et al. [6] written in a compact form for both 
the one- and two-transverse-dimensions geometries. For a linear medium (~ = 0) the third 
order derivative is identically zero and, consequently, all higher order derivatives are also 
zero. We then obtain the known result that, in a linear homogeneous medium, the second 
order moment obeys a parabolic law of propagation, viz. 

W~(z) = W~ + e,z + c2z 2 (7) 

where the coefficients ej = (1/j)(dJW2/dzJ)z_ o ( j  = 1, 2) are given by Equations 4 and 5 
and W0 = W(z = 0). 

For a nonlinear medium (~ r 0) the behaviour depends on the geometry. First, in the 
case of only one transverse dimension (d = l) the law of propagation is no longer parabolic 
because the third derivative in Equation 6 is not zero in general. Equation 1 with d = 1 then 
corresponds to the nonlinear Schr6dinger equation, which describes, for example, the 
propagation of optical pulses in a nonlinear medium such as an optical fibre [9] (as 
mentioned in [9], p. 87, an approximate parabolic law can also be derived for the case d = 1 
for a Gaussian beam of limited intensity). It is well known that this equation has periodic 
solutions, the so-called higher order solitons. Their existence implies the absence of a 
parabolic law of propagation, simply because the second order moment of these solutions 
must be a periodic function of z as well. The third derivative is zero only for the fundamen- 
tal soliton, but this represents a trivial case because the shape of this soliton is preserved 
during the propagation. So, for d = 1 the law of propagation is not parabolic in a nonlinear 
medium. 

Hereafter this paper concentrates on the two-dimensional transverse geometry. The 
range of integration in the following integrals is from 0 to + oo. In such a case, in contrast 
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with the previous situation, it turns out that the third derivative is identically zero and we 
obtain the striking result, first pointed out by Vlasov et al. [6], that the second order moment 
evolves according to the parabolic law (Equation 7), even in a nonlinear medium. From 
Equation 5 this amounts to stating that the integral I2, defined as 

f [ ( O A )  ~ 7A4 A2 / ~(~ ~2 ~ 
6 = ~-r -- 2 + 8 r j j r d r  (8) 

represents a second invariant of the paraxial wave equation (Equation 1): 12 = Const. [7, 10]. 
We now introduce the effective radius of curvature, R, as a generalization of the familiar 

radius of curvature of a Oaussian beam. We then define [11] 

1 1 d W(z) 2 
= (9a) R(z) 2W(z) 2 dz 

2 ~?~b 
- kW2Io I r2A2 g~r dr (9b) 

The physical meaning of this parameter is the following (see also [11]): at an arbitrary plane 
z, consider the fields ul(r) = A(r) exp [i4ffr)] and u2(r) = A(r) exp [-i(krZ/2R2)]. Both 
fields have the same amplitude profile, but the phase of u 2 is parabolic whereas ul has an 
arbitrary wavefront. Using Equation 9 it is easy to show that the growth rate of the second 
order moment, i.e. (1/W)(dW/dz), at this plane is the same for both fields if the radius of 
curvature of the parabolic phase profile is equal to the effective radius R(z) (Equation 9b) 
of ul, i.e. if R 2 = R(z). We refer below to this parabolic wavefront as the 'effective 
wavefront'. 

Combining Equations 5, 8 and 9, the law of propagation can now be written as 

W(Z) 2 = m 2 --}- ( 2 W 2 / R o ) Z  --~ (212/k2Io)z 2 (10) 

In the far field the spot size increases linearly with a divergence 0 = W/z given by 

0 2 = 212/k2Io (11) 

In the case of a Gaussian beam with a beamwaist W0, the divergence is 0oB = 2/~ W0. In 
free space, as is well known, the Gaussian beam represents the optimum profile as regards 
the far field divergence (see, for example [12], and references therein). As suggested by 
various authors (see, for example [13]), it could serve as a standard reference for evaluating 
the 'quality' of other beam profiles. A first definition of the beam quality factor of a beam 
profile would then correspond to the ratio of its far field divergence to the divergence of a 
Gaussian beam of same effective beam size W0, i.e. (M~)I = 0/0GB. From Equations 10 and 
11 this yields 

f l  2 ~ X 4 q  - A 2 ( ~ r ~  (12) (M~) 2 lo~A2~ dr J - 2  

where A0 = A(z = 0) and q~0 = ~b(z = 0). For a given amplitude profile A(r) it is clear, 
from Equation 12, that (M~)~ is optimum (minimum) for a uniform phase profile 
[qS0(r ) = Const.]. In the linear regime (M~)~ ~> 1. We also note that a focusing nonlinearity 
(7 > 0) reduces the divergence (inside the nonlinear medium) and then improves the beam 
quality factor as defined here. The dependence on the nonlinearity is better expressed if the 
'critical power for self-focusing', Per, is introduced [10]. (For a detailed review of theoretical 
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and experimental work on self-focussing and self-trapping, see [14, 15].) At this power the 
nonlinear focusing can balance the natural diffraction of the beam, and the second order 
moment remains unchanged during the propagation. Per is defined for a field with a uniform 
wavefront and, according to Equation 12, is given by [6] 

dr/;  r - 171 f\ dr J r d r ; A X r  dr 

This ratio of integrals is independent of the absolute amplitude and of  the transverse 
scaling; only the beam profile matters. Although this phenomenon is not possible for a 
defocusing medium (7 < 0), Per can still be used as a normalization if 171 is used instead 
of 7. We return below to the notion of  critical power when we discuss self-trapping 
(Section 4). The beam quality factor can now be written as 

• (dA0) 2 

whereq = sgn7 = +1  fo r7  > 0 a n d  - 1  fo r7  < 0. 
The Rayleigh distance of a Gaussian beam, ZR = kWh~2, can also be generalized. Let 

z = 0 correspond to the waist location, i.e. where W is minimum and R 0 = oo. ZR is then 
defined as the distance at which WZ(z = ZR) = 2 W Z ( z  = 0)  = 2 W  2.  From Equations 10 
and 12 it can then be concluded that 

kwg 
ZR - 2(m~), (15) 

For  ~ > 0 (7 < 0) the nonlinearity reduces (increases) the divergence and then increases 
(reduces) the Rayleigh range. It is important to realize that at the waist location the 
wavefront is not necessarily uniform; the condition is that the effective radius be infinite. 

As defined above, the beam quality factor depends on the reference plane through the 
beamsize W0 used for the divergence 0~B of the Gaussian beam. This would not be the case 
if one used instead the minimum beamsize Wmi n (calculated from W0, Ro and 12 using 
Equation 10) i.e. 0c~ = ~,/7CWmin. Moreover, as discussed in the next section, this choice 
presents other advantages. 

3. Genera l  c o m p l e x  radius of  c u r v a t u r e ,  Q(z) 
Having defined the effective radius of curvature and beamsize, R and W, we can now 
generalize the familiar definition of complex radius of  curvature, q(z), usually limited to 
Hermite(Laguerre)-Gauss beams. Recently [8] the more general complex radius Q(z) has 
been introduced as a way of dealing with arbitrary beams. The above results allow the 
definition of Q to be generalized further in order to include the effect of a Kerr  nonlinearity. 
The reader can easily verify that if the general complex radius of curvature Q(z) is defined 
a s  

1 1 2(M~)l, (16) 
Q(z) = R(z) i =W(z)2 

then the law of propagation of R(z) and W2(z) can be summarized as 

Q(z) = Q(z = O) + z (17) 

i.e. Q(z) follows the same law as the conventional q(z) (see, for example [16]). In Equation 
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16 we have introduced a second definition of the beam quality factor, namely 

l (M~)I2 = -8- W(z)2 dzSz 2 ] - 2 dz 

W(Z)2L~\2'o I F (  ~rOU 2 -27[u14) r d r ] - - - l g l  ( Im f ru*SUrdr )  2 ~ r  (18b) 

_ :d o'y  rag]-1 [ rA:( )rdrJ 2,o[( 1 , f a r+  ;Ao  
(18c) 

= (M~)~ - k 2 W4/4R 2 (18d) 

We believe that this definition of the beam quality factor is more general than the first one 
(Equation 12). First, it can be shown that (M~).  is invariant, i.e. its value is independent 
of the reference plane z; this follows directly from the parabolic law (Equation 10) and 
Equation 18a. Furthermore, it is not modified if the beam goes through a lens or is reflected 
by a mirror. Indeed, it can be verified (using Equation 18c) that if the phase q5 is changed 
to r + (Const.)r 2, then (M~)~I remains unchanged. These properties are essential, other- 
wise the general complex radius of curvature Q(z), as defined by Equation 16, would not 
be very useful. (M~)n is minimum for a uniform or a parabolic wavefront, as can be shown 
using the Schwarz inequality. Finally, we stress again the influence of the phase on the beam 
quality factor. People working in the field of partial coherence would not be surprised by 
this conclusion. 

Equation 18d shows how the two definitions of  the beam quality factor are related. It 
turns out that the two factors would be identical if the minimum beainsize Wmin were used 
for the divergence of the reference Gaussian beam. This observation also indicates how to 
evaluate the beam quality factor in the laboratory; through measurement of the effective 
beamsize W(z) at various planes, one can deduce the far-field divergence 0 and the 
beamwaist Wmi n. Then the fundamental beam quality factor is simply given by 

0 
(M~)I, - -  (~lTCWmin)l/2 (18e) 

Some years ago [17] (see also [18]) we also extended the definition of  the complex radius 
of curvature to describe the propagation of a Gaussian beam in a Kerr medium using the 
'aberrationless approximation' (see Section 4). Here the result is exact and applies to any 
beam profile. 

Both definitions of the beam quality factor take the same minimum value for a uniform 
wavefront. This leads to introduce a third definition of beam quality factor, M~0, corre- 
sponding to this minimum value 

(M~o) 2 = ( 1 -  ~ ) f A ~ r 3 d r f ( d A ~  z dr / ( fA~rdr)  2 (19) d r ]  r 

where the subscript Q0 refers to dr = 0, i.e. a uniform wavefront. Equation 19 shows 
clearly the influence of the nonlinearity on the beam quality factor 

M~o = (1 -- qP/Pc~)'/2(M~o)L (20) 

where (M~0)L refers to the linear case. 
The beam quality factor M~0 should be used to compare ideal beams, i.e. beams with a 
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uniform phase at the minimum beamwaist location. More fundamentally, the general beam 
quality factor (M~)I~ (Equation 18) serves to compare real beams and it is the one that must 
be introduced in order to generalize the ABCD matrix formalism. In the linear case, as 
mentioned above, the beam quality factor (for the three definitions) is minimum for a 
Gaussian beam with a uniform wavefront. In the nonlinear case the situation is different, 
and this factor can even be zero for a self-trapped beam. 

4. Self-trapping 
As a result of the focusing effect of the nonlinearity (if 7 > 0), a particular beam profile 
ust(r) exists which preserves its shape in propagating inside the nonlinear medium [10, 14, 
15, 19]. This phenomenon, known as 'self-trapping', represents a spatial solitary wave. True 
self-trapping requires the exact beam shape ust (or the associated higher order solutions 
[20]); for an arbitrary beam one might simply request that the second order moment be 
preserved during the propagation [6]. From Equation 10 this is possible for any beam if the 
following conditions are satisfied: 

Ro = ~ 1 2 = 0  

The second condition gives the required power 

Pst 1 + ~A~ rdr  0 \  rd r  (21) 
Pcr 

and it is minimum (=  Pcr) for a uniform wavefront. It it interesting to realize that self- 
trapping, according to this loose definition, is also possible for a nonuniform wavefront as 
long as R0 = oe. Vlasov et al. [6] also showed that Pcr (Equation 13) is minimum for the 
spatial solitary wave Ao(r) = ust(r), and we refer to this minimum value as Pmin. The exact 
profile Ust(r ) must be determined numerically [19] and the ratio of  integrals in Equation 13 
is then found to be 0.917 (5.7637/2~) [6]. However, as shown elsewhere (see [21, 22] and 
references in [21]), ust can be approximated well by a Gaussian or even better by a hyperbolic 
secant. Indeed, using Equation 13, the critical power for these beam profiles can be 
evaluated. The result is 

pcGBIPmin = 1.090 pse~ n = 1.017 

The self-focusing of a Gaussian beam is frequently considered within the framework of 
the so-called 'aberrationless approximation' [10]. In this approach, in order to obtain 
analytical results, the beam profile is expanded around the axis and an ordinary differential 
equation is obtained which describes the evolution of the beamwaist. The whole beam is 
assumed to remain Gaussian during the propagation. In limiting the analysis too close to 
the axis, this approach overestimates the importance of the nonlinear refraction and yields 
a poor estimate Pc aberr of the critical power for a Gaussian beam: Pc~ berr = 0.25Per [6, 14, 15]. 
The constant-shape approximation is also exploited in another approach based on a 
variational principle [21-23]. This other method is much more accurate than the paraxial 
aberrationless approximation, as it predicts the same value for Per as the theory of moments 
[2l, 24]. The advantage of the latter, however, is its generality; it gives exact results and it 
can be applied to arbitrary beams. In contrast, the variational method is fruitful as long as 
the constant-shape approximation is valid, i.e. for smooth beams such as a Gaussian or a 
hyperbolic secant. 

If  P > Pot a collimated beam (i.e. ~b 0 = Const.) will 'collapse', globally, as its second 
order moment goes to zero. Another definition of the critical power corresponds to the 
threshold above which local collapse occurs, i.e. when a focal point is formed so that the 

$1057 



C. Pard and P.-A. BOlanger 

on-axis intensity increases to infinity [6, 14, 15]. This threshold p2ocal must be determined 
numerically. For a Gaussian beam its value is close to what is expected using the theory of 
moments, i.e. P ,  obtained from Equation 13 (P~r ~ ~ Per [6, 14, 15]). In other words, global 
and local collapse have nearly the same threshold for a Gaussian beam. In Section 6 it will 
be found that this is not general, as we simulate the propagation of super-Gaussian beams. 

It must be mentioned that the self-trapping solution, ust, is actually unstable (see [14, 25] 
and references therein). For example, assume Ao(r ) = (1 + 8 ) u s t ( r ) ;  then, if 6 > 0 the 
input power exceeds Per and global collapse occurs; on the other hand, if ~ < 0 then 
P < P~r, the diffraction will dominate and the beam will spread out. This is in contrast with 
what prevails in one-transverse dimension (d = 1) where the fundamental spatial soliton 
of the nonlinear Schr6dinger equation is known to be robust. 

We also point out that near the on-axis singularity the paraxial wave equation is no 
longer valid and either the Helmholtz equation [26] must be used or other physical 
phenomena such as a saturation of the nonlinearity [14, 25] must be introduced. 

5. Propagat ion in a lens-l ike med ium w i t h  a Kerr  nonl inear i ty  
We now consider the propagation of an arbitrary beam in a nonlinear medium with a 
quadratic index profile, as described by Equation 1 with e r 0. In the linear problem 
(y = 0) with a Gaussian beam, the propagation gives rise to a periodic focusing and 
defocusing. Here we take into account the influence of the nonlinearity. Equation 1 has 
been treated recently in an approximate way using the aberrationless approximation [27] or 
the more reliable variational approach [22, 28]. It was then found that the periodicity is 
preserved, with the surprising property that the period is independent of the power of the 
beam; this was also observed numerically [22]. In the following, because we limit the 
analysis to the second order moment, exact analytical results can be obtained, and these 
confirm the approximate results just mentioned. 

Repeating the analysis of Section 2 with e ~ 0 

d W2dz klo4 ( 3ur2 ) ~ r  - Im f u* dr (22) 

d2W2 4 I f ( O u 2  7 ) 1 
dz 2 - -2e2W2 + ~00 ~r - 2 lul4 r d r  (23) 

d 3 W 2 d W 2 
- -  - -  4 ( X  2 - -  (24) 

dz 3 dz 

Equation 24 implies a periodic behaviour of the form 

W(z) 2 = clsin2~z + c2cos2~z + c3 (25) 

This periodic behaviour is even more surprising if one realizes that the period 7c/e is 
actually independent of the power. The nonlinearity affects only the amplitude of the 
oscillations. The evolution of W(z) and R(z) can again be reformulated in terms of the 
general complex radius of curvature, Q(z), and with the same beam quality factor (M~)u 
as before (Equation 18b; which is still an invariant of the equation, as can be checked using 
Equations 22 to 24 and 18b). 

The independence of (M~)n from e means that the passage of an arbitrary beam in a 
nonlinear medium with a quadratic index profile can be expressed in the usual way, viz. 

Q(z) = [AQ(z = O) + B]/[CQ(z = 0) + D] (26) 
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with the conventional ABCD matrix 

( cosc~z (l/cOsin~z I 

-c~ sin ~z cos az / 

To our knowledge this has not been published previously. On the basis of  this result and 
those of the previous sections [namely, the invariance of  (M~).  upon translation, lens 
transformation and quadratic duct propagation], it can now be concluded that the passage 
of  an arbitrary beam through a nonlinear Kerr medium with ABCD paraxial elements can 
be described with the usual ABCD matrix formalism if the general complex radius of  
curvature Q(z) (Equation 16) is used. 

As an example, consider the case of a collimated Gaussian beam at the input, i.e. 
u(z = 0) = exp ( - r2 /W2).  In propagating, the beam will not remain exactly Gaussian, 
but its effective waist will evolve according to the simple law 

W(z) 2 = W2o + (W~ - W 2) sin2c~z (27) 
where 

W~ = (1 - qP/Pcr) 
c, 2(k w~/2) 2 Wo (28) 

In the limit ~ --* 0 the parabolic law of propagation is recovered, as is easily verified. With 
a quadratic index profile, a distinction must be made between the power necessary for 
global collapse and the power required to preserve the initial effective beamwaist. From 
Equation 27 it can be found that collapse occurs at the same critical power, Pcr, as in an 
homogeneous medium (~ = 0). In contrast, W2(z) can remain constant at a lower power 

t/__ff_P = 1 - ~2(kW~/2) 2 (29) 
Per 

Actually, as is well known [16], and as indicated by Equation 29, W(z) can also remain 
constant in the linear problem (P = 0, in Equation 29) for a particular value of the input 
beamwaist. In the nonlinear case, in contrast with the self-trapped solution Ust discussed in 
Section 4, here the equilibrium is now stable (marginally) due to the converging index 
profile. If the input power is not the ideal one, the beamsize simply oscillates around the 
equilibrium position, as it does in the linear case when the input beamsize is not the correct 
one. This was also pointed out elsewhere [22, 28]. 

Equation 27 remains valid if c~ 2 < 0, i.e. for a diverging index profile. The width of the 
beam then increases as sinh (l~[z) except at a particular power (Equation 29) greater than 
Pcr in order to overcome the divergence imposed by the index profile. This situation is, 
however, unstable. 

6. Numer ica l  s imula t ions  
To demonstrate the interest of defining an effective radius of curvature, with the corre- 
sponding effective parabolic wavefront, we solved numerically the nonlinear paraxial 
wave equation for the homogeneous case (Equation 1, with ~ = 0). Gaussian and super- 
Gaussian beams with a uniform wavefront at the input were considered, i.e. u(r, O) = 
exp [ -  (r/a)"], where m is the order of the super-Gaussian (we use the symbol a instead of W0 
to avoid any possible confusion caused by the fact that W # W 0 for u = exp [-(r/Wo) m] 
with m > 2). The effective radius and beamsize, R(z) and W(z), then evolve according to 

R(z) = z(1 4- Z~/z 2) (30) 
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and 
W(z) 2 = W~(1 + z2/Z~) (31) 

where ZR (Equation 15) can be written explicitly in terms of the gamma function, F(z) 

ZR = {4(`~l'/m)[F(4/m)]l/2/m}(k--~ 2 ) - - -  ~ - -  (32) 

The critical power (Equation 13) can also be evaluated analytically: 

Por/Pmin = 4 ('/m 1)m/0.917 (33) 

The propagation of a Gaussian beam in a nonlinear medium has been extensively 
explored numerically in the past [14]. However, the emphasis was mostly on the determina- 
tion of the critical power for local collapse and on the intensity profile. As far as we know, 
little has been done on the evolution of the wavefront, except a mention of its quasiparabol- 
ic profile below P~r [14]. Here, in contrast, we are interested in precisely this aspect. 

In order to compare the propagation of Gaussian and super-Gaussian beams, we find it 
preferable to normalize the axial distance z to Z0, the Rayleigh range of a Gaussian beam 
in the linear case (Z0 = ka2/2). Similarly, the power is expressed in terms of the minimum 
power for self-trapping, Pmi,, instead of Pcr which depends on the beam profile. Also, since 
the theory of moments does not provide information on the on-axis phase shift, the latter 
is arbitrarily fixed at zero. For the present analysis only the curvature of the wavefront is 
relevant (see [8]). Finally, except when otherwise stated, we assume a focusing nonlinearity 
(~ > 0). 

First we concentrate on the case of a Gaussian beam (for which Pcr= 1.09Pmin). 
Figure 1 illustrates a typical example. At P = 0.15Por (=  0.164P~m), except for a reduced 
spreading, the beam behaves qualitatively as it does in the linear case (Fig. l a). In such 
circumstances, as clearly evidenced by Figs lb to e, the effective wavefront [i.e. a parabolic 
phase profile with a curvature given by R(z), see Section 2] represents an excellent approxi- 
mation to the exact phase profile and for any distance of propagation. Indeed, from the 
intensity profiles (Fig. l a) it can be seen that the small discrepancy between the two 
wavefronts appears mainly in the wings, where the intensity is negligible. 

In Fig. 2 the power is substantially increased to P = 0.5Per (=  0.545Pmin). Figure 2a 
shows that the beam initially focuses on the axis but soon spreads out since the nonlinearity 
is insufficient to collapse the beam. The initial focusing can be explained if it is realized that 
P = 0.5Pcr corresponds to P = 2P0 r (Section 4); so, according to the 'aberrationless 
approximation', we are above the critical power and, hence, a focusing is to be expected. 
However, as clearly demonstrated by this example, the aberrationless approximation is 
valid only close to the axis and for short distances [14]. 

The initial on-axis focusing of the beam is best illustrated by its phase profile (Fig. 2b). 
Near the axis the wavefront is locally converging although globally, the beam diverges. At 
z > 0.5Z0 the on-axis intensity begins to decrease and, as the propagation progresses, the 
phase profile gradually becomes nearly parabolic and is better approximated by the 
effective wavefront (Figs 2c to e). Considering that this example corresponds to a significant 
power, it can be concluded that the effective wavefront can prove very useful when 
developing approximate models of the nonlinear propagation of a Gaussian beam. In 
particular, if P < p-~bCrr (=  0.25Pc~) ' no initial on-axis focusing occurs and the exact phase 
profile is always nearly parabolic, so the effective wavefront represents a good approxi- 
mation at any distance z. 
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Figure 1 (a )  Evolution of the intensity profile of an initially 
Gaussian beam u ( O )  = e x p  [ -  ( r /a)  2 ] with P = 0.15Pot  = 

0.164Pm~ n in a focusing medium. The axial distance z 

is normalized to Z o = ka2/2, the Rayleigh distance of the 
beam in the linear case; (b) comparison between ( ) 

the exact wavefront  and ( - - - )  the effective parabolic 
wavefront  a tz  = 0 .1Zo;  (c )  atz  = 0 .2Zo;  (d )  a t z  = 0 .5Zo;  

(e)  a t z =  1 .0Z  o. 

If we increase the power further (Fig. 3, P = 0 . 8 7 P m i n )  , the conclusions are similar but, 
because the initial on-axis convergence is more important, it is necessary to go to larger 
distances before the wavefront becomes nearly parabolic (Fig. 3d). 

For curiosity we illustrate in Fig. 4 what happens at the critical power for a Gaussian 
beam (P = Pcr = 1.09Pmin). Because Per is slightly above Pc t~ local collapse occurs, i.e. the 
on-axis intensity keeps increasing. Notice, however, that despite the local collapse the 
effective beamsize, W, remains constant during the propagation. Figures 4b and c are 
enlightening; near the axis the wavefront is evidently converging, but in the wings the 
curvature of  the wavefront is changed and a fraction of  the power disperses away. In the 
average, there is no global focusing and W does not change. Again for curiosity, we show 
in Fig. 5 that above P c r  ( P  ~--  2Per = 2.18Pmin) the whole beam collapses and catastrophic 
focusing occurs at a shorter distance. Notice that, in practice, in order to avoid optical 
damage, one operates below the critical power so that the last two examples should not be 
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Figure 2 (a)  Same as Fig. l a, but now the power is 
increased to P = 0.5Pcr = 0.545Prnin; (b )  ( ) exact 
and ( - - - )  effective wavefronts of z = 0 .25Zo ;  (c )  at 
z - 0 .50Zo ;  (d )  at z = 1.0Zo;  (e)  at z - 1 .5Z  o. 

viewed as counterexamples to the practical usefulness o f  the averaged description o f  beam 
propagation. 

As a final example with a Gaussian beam, Figs 6 illustrates the propagation in a 
defocusing nonlinear medium (7 < 0). In such a case the nonlinearity and the diffraction 
act together to widen the beam more rapidly. In the absence of  initial on-axis focusing a 
good correspondence can then be expected between the exact and the effective wavefronts 
even at short distances. This is confirmed in Fig. 6b and c and for a power as high as 0.8Per 
( 0 . 8 7 P m i n ) .  The comparison between Figs 6c and 3b, which correspond to the same power 
and same distance but with opposite nonlinearities, is particularly convincing. In the 
defocusing case the effective wavefront becomes a very good approximation at shorter 
distances in comparison with the focusing case at high power. 

We also simulated the nonlinear propagation o f  super-Gaussian beams o f  order rn = 3 
(P~r = l'30Pmin) and m = 6 (Per = 2.06Pmin). The case m = 3 is considered in Figs 7 to 9. 
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Figure 3 Same as Fig. l a ,  but now the power is increased to P = 0 . 8 P c r  = 0.87Pmin; (b)  ( ) exact and 
( -  - )  effective wavefronts at z - 0.5Zo; (c)  at z = 1.0Zo; (d)  z - 1 .5Z  o. 

First, Fig. 7a depicts the behaviour in free space; in contrast with a Gaussian beam there 
is an initial increase in the on-axis intensity even in the absence of nonlinearity. This 
intrinsic initial focusing enhances the nonlinear lensing (Fig. 7b) and larger distances (in 
comparison with a Gaussian beam of same power, see Fig. 2) must be considered before 
the wavefront looks parabolic, as a comparison between Figs 7c and 2c indicates. At 
z = Z0 the wavefront is parabolic near the axis and is approximated well by the effective 
wavefront (Fig. 7d). The agreement extends further off-axis at longer propagation lengths 
(Fig. 7e). 

At P = Per ( =  1.30Pmin) the beam collapses locally (Fig. 8) although its second order 
moment remains constant. In this case local and global collapses have very different 
thresholds. As a crude approximation, it can be estimated that plgc,~ ~ Pm~n" The exact 
value depends on the details of the evolution of the beam and can only be determined 
numerically. We defer this investigation to future work. 

The propagation of the super-Gaussian in a defocusing medium (?~ < 0) is illustrated in 
Fig. 9. At P = 0.42Per ( =  0.545Pmi,) and for short distances the defocusing nearly balances 
the intrinsic focusing mentioned above and the on-axis intensity remains quasiconstant. As 
for a Gaussian beam, Fig. 9c reveals a good agreement between the exact and the effective 
wavefronts at shorter distances (compare Fig. 7c). 

The propagation of a super-Gaussian of order m = 6 (P~r = 2 . 0 6 P m i n )  is also simulated, 
in Fig. 10, with the same power (0-545Prom) as for the Gaussian beam of Fig. 2 and the 
super-Gaussian of order 3 (Fig. 7). The behaviour of  both super-Gaussian beams is found 
to be similar, as regards the correspondence between the exact and the effective wavefronts. 
After a transient reshaping the beam becomes smoother, the on-axis intensity gradually 
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Figure 4 (a) Evolution of a Gaussian beam at the critical 
power  Per (= 1.09Pmi . ) .  The effective beamwaist remains 
constant but local collapse occurs. (b) ( - - )  exact phase 
profile and ( - - - )  effective wavefront  at z = 1.5Zo; (c) 
normalized ampl i tude profile at z = 1.5Z o. 

decreases and the phase profile is approximately parabolic near the axis. Then, where the 
intensity is significant, the effective wavefront represents a good approximation of the exact 
phase profile. The exact shape of the wavefront is also similar to that observed in the linear 
regime [29]. 

With these numerical simulations, the interest of defining an effective wavefront that 
approximates the exact phase profile of an arbitrary beam propagating in a linear or 
nonlinear medium can be realized. More precisely, the following conclusions can be drawn. 
First, in a defocusing medium the wavefront of Gaussian and super-Gaussian beams 
rapidly becomes nearly parabolic and is approximated well by the effective wavefront, 
particularly when considering long propagation lengths or reasonable powers. For a 
focusing nonlinearity the validity of the approximation depends on the power, on the 
distance of propagation and on the beam profile. In the case of a Gaussian beam the 

2O 

15 

5 

e 

Gaussian 

P = 2 .18  Pmia 

o ~ K'~176 Figure 5 Global collapse of an initially Gaussian beam at 
tw ice the critical power: P = 2Pcr = 2.18Pm~ n . 
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Figure 6 (a) Evolut ion o f  a Gaussian beam in a de focus-  
ing medium (7 < O) at P = 0.8Per = 0.87Pmin; (b) ( ) 
exact and ( - - - )  ef fect ive phase prof i les at z = O.3Z0; 
(c) at z = 0.5Z 0. 

approximation is still very good at a power as high as 0.6Pm~n for z > 0.5Z0. In general the 
agreement begins to be good at shorter distances as we decrease the power. Also, if 
p < ps (=  0.25Pcr) the effective wavefront matches closely the exact wavefront at any 
distance. Similar conclusions should also apply to other smooth beams such as a hyperbolic 
secant, for example. 

The effective beamwaist, W(z), is also a relevant parameter. This can be observed in 
Fig. 11, which shows the normalized intensity profiles depicted in Fig. 10a at various 
positions. No quantitative assessment, such as the encircled energy within r < W(z), has 
been done. Our purpose here is simply to show that in the absence of local collapse this 
averaged description of  the beam size gives a reliable idea of  the evolution of  the beam 
spreading. 

7. Discussion and conclusion 
In dealing with nonlinear beam propagation, it is usually necessary to resort to either 
numerical tools or approximate analytical methods. Indeed, except for a few particular 
cases (see [21, 30-32] and references therein) where, for example, symmetry considerations 
can prove fruitful [22, 30, 31], exact analytical solutions of  the nonlinear paraxial wave 
equation (Equation 1) are not available. Approximate methods, such as the variational 
approach [21-23], are accurate as long as the constant-shape approximation is justified, 
which is certainly not the case for a super-Gaussian, for example. This is why the exact 
results offered by the averaged description of  the theory of moments can be of practical 
importance. 

In including a quadratic index profile, one of  the main results of this paper was to show 
that, thanks to a generalization of  the complex radius of  curvature, the propagation of  an 
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Vertical broken lines are drawn at r = W(z), showing that 
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spreading of the beam: (a)  W = W o = 0 .896a ;  (b )  W = 

0 .91a ;  (c )  W = 1 .09a ;  (d )  W = 1 .54a ;  (e)  W = 2 .08a .  

arbitrary beam in a linear or nonlinear medium can be treated in terms of the familiar 
ABCD ray matrices. Considering the widespread utilization of the latter, this certainly adds 
a pedagogical value to the present results. However, care should be exercised in the 
application of the matrix formalism for the treatment of cascaded optical systems when one 
of the elements is nonlinear. It must be borne in mind that the beam quality factor depends 
on both the power and the beam profile. It is z-invariant in a linear or a nonlinear medium, 
but does not take the same value in the two media. The variation in the beam quality factor 
at the entrance and the exit of the nonlinear medium adds another step to the conventional 
matrix treatment. This represents little work for a Gaussian beam of moderate power. 
Indeed, as noted in Section 6, the beam remains nearly Gaussian during the propagation, 
so the beam quality factor is then closely approximated by ( M ~ ) l l  ~ (1 - rlP/Pcr) ll2 (from 
Equation 18c) in the nonlinear medium and remains close to unity in the linear medium. 
The extended matrix analysis is still advantageous and fruitful. 

Concerning the beam quality factor, the reader will notice how it naturally appears within 
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the present description of beam propagation. It has been shown that the wavefront should 
be considered when comparing various beam profiles. The different definitions introduced 
here all have their own justification, and the use of one or another depends on what is really 
meant by 'beam quality'. For  instance, the fact that the generalized beam quality factor can 
be smaller than unity (for ~/ > 0; see Equation 20, for example) does not imply that the 
nonlinearity 'improves' the 'quality' of  a beam beyond the ideal Gaussian beam limit. This 
comes simply from the generalization of the definition of  the beam quality factor. When the 
beam leaves the nonlinear medium this factor is necessarily increased and greater than 
or equal to unity. The nonlinearity reduces the rate at which the effective beam width 
increases in the nonlinear medium, but does not necessarily improve the coherence of the 
field. The advantage of the generalization is the extension of the ABCD matrix approach 
(Equation 16). Clearly, the latter is invalidated for P > Per, as it implies an imaginary value 
for the beam quality factor and a purely real Q parameter. The evolution (Equation 10), 
however, is still valid and it correctly predicts the focusing eventually leading to an on-axis 
singularity. Near that singularity, however, the paraxial equation is incomplete as men- 
tioned in Section 6. This difficulty is absent below the critical power. 

In this paper, in order to simplify the presentation, we have assumed a cylindrical 
symmetry. However, the generalization is straightforward and terms such as r~u/Or must 
then be interpreted as r �9 Vu, etc. [7]. It was also implicitly assumed in our analysis that the 
beam was aligned. Otherwise, the first order moment represents another interesting and 
physically meaningful parameter to consider, as it describes the trajectory of  the 'centre of  
mass' of  the beam [6]. In a lens-like medium, for example, it would predict a periodic 
crossing of  the z-axis. 

The parabolic law of propagation, as derived in Section 2 for the cylindrical geometry, 
is directly related to the second invariant, 12, of the paraxial wave equation (Equation 1). 
Of course, the absence of a similar law for the one-dimensional case does not contradict the 
existence of  other invariants for the nonlinear Schr6dinger equation [33]. None of these 
invariants, however, corresponds to the second derivative of  the second order moment. 

The numerical simulations presented here confirm the interest in defining an effective 
radius of curvature and an effective beamwaist. In the absence of  local collapse, which is 
the case in practice as one wants to avoid optical damage, these parameters offer a fair 
description of the gross characteristics of  a beam. A detailed comparison between the 
propagation of Gaussian and super-Gaussian beams in a linear or nonlinear medium is now 
in progress and will be reported elsewhere. Application of  the extended ABCD formalism 
to the problem of a nonlinear optical resonator is also presently being investigated. Finally, 
we mention that approximate laws of propagation in an active medium have recently been 
derived [34]. 
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