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The properties of the phase space beam analyser (PSBA), first introduced by Nemes, 
were investigated theoretically and experimentally. This optical system enables one 
to measure far-field divergence and beam radius of a laser beam simultaneously. 
Experiments were performed with a pulsed Nd : YAG laser with stable and unstable res- 
onators and with a HeNe laser in fundamental mode operation. The theoretical descrip- 
tion was based on Fresnel integrals, which were solved numerically using a FFT 
algorithm. The results presented indicate that the PSBA provides a simple means to 
determine beam quality and to investigate the mode properties of optical resonators, if 
diffraction effects are properly compensated. 

1. I n t r o d u c t i o n  
In many areas of laser application where small focus diameter and large Rayleigh ranges 
are required, the beam quality plays an important role. The parameter which specifies the 
beam quality is defined by the beam parameter product dO/4, where d denotes the beam 
waist diameter and 0 is the full angle of divergence (Fig. 1). The beam parameter product 
relates the focal spot area F to the Rayleigh range z0, the distance at which the beam 
cross-section has increased by a factor of 2. For  circular symmetry the relation is 

dO/4 = ~Tz0 (1) 

According to the ISO standard, d and 0 are defined by the 86.5% energy content, which for 
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Figure 1 The beam quality of a laser beam is determined by the beam parameter product dO/4 which relates 
the focal spot size to the Rayleigh range z 0. 
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a Gaussian beam means that these quantities coincide with the values given by the 1/e 2 
intensity decrease. Unfortunately, for non-Gaussian field distributions calculation or 
measurement of d and 0 does not give the beam radius at any distance from the waist, since 
no propagation rules in terms of geometrical optics exist. 

Such a rule can be found if beam radius d/2 and divergence 0/2 are defined by the second 
moments of the corresponding intensity distributions [2, 3]. In one dimension they are given 
by 

= /f I(x) dx ( d 2 / 4 )  4 f~o~ [(x)x2dx ~ (2) 

f IF ((I)) dq5 (3) (02/4) = 4 f~m IF((l))q)2d(I) ~o~ 

with I(x) the intensity distribution in the waist, IF (q)) the far-field intensity distribution, and 
(I) the angle of  divergence. With these definitions of waist diameter and far-field angle the 
beam diameter (d(z)  2 ) at any distance z from waist can be calculated with the generalized 
ABCD law [3]: 

(d(z) 2) = A2(d 2) + B2(02) (4) 

where A and B denote the upper elements of the ray matrix. Unfortunately, no fixed relation 
between this beam diameter and the energy content exists, so that this definition is of 
academic interest only. Furthermore, the second moment does not exist for intensity 
distributions which decrease slower than 1/x 2, like the far-field of a homogeneously illumi- 
nated slit. 

It is for this reason that the definition of diameter by 86.5% energy enclosure is used to 
determine the beam quality. From the theoretical point of  view this means that the field 
distribution E(x, y) in the waist and its Fourier transform F(E(x, y)) must be known. Beam 
radius d/2 and far-field angle 0/2 in one dimension can then be calculated by 

f , , / 2 0 ) j 2  dx 0.865 f~o~ 0)12 dx (5) Ie(x, rE(x, d]2 
fo/2 [F(E(x, 0))[2d@ = 0.865 f~_~ ]F(E(x, 0))12dq 5 (6) 

- 0/2 

In order to get the beam diameter at a distance z from the waist, the field must first be 
propagated by means of  Fresnel integrals before Equation 5 can be applied. 

It is obvious that the experimental determination in general requires two measurements: 
the recording of  the intensity distributions in the near- and far-fields. The common way to 
accomplish this is to produce a waist behind a focusing lens, and after recording the 
intensity distribution the corresponding Fourier transform is measured in the focal plane 
of a second lens. This technique, of course, requires sufficient constancy of the beam 
properties during measurement. Apart from this problem, the procedure is time-consuming 
especially if the dependence of the beam parameter product on the resonator properties - 
like refractive power in solid state lasers - has to be determined. 

Any optical system capable of measuring the beam parameter product  in one step would 
therefore be very advantageous. The phase space beam analyser (PSBA) [1, 6] has this 
ability to determine beam quality with a single measurement, but in one dimension only. 
This is of course no restriction, as long as beams with circular or rectangular symmetry are 
considered. Otherwise two measurements have to be performed. 
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Figure 2 Set-up of the PSBA. A one-dimensional light distribution with respect to size and angle of 
divergence is produced by the two slits. 

2. Geometrical description 
The set-up of the PSBA is shown in Fig. 2. At slit 1 the incident field Et (xl, y~) is reduced 
to a one-dimensional distribution E1 (x I , 0). Without the quadrupole lensf the  image of this 
line source appears in the observation plane, since the lens equation 

l/a + l/b = 1/)c o (7)  

holds for the distances a, b and the focal length f0 of the spherical lens. The quadrupole lens 
consists of two cylindrical lenses with focal lengths f and - f ,  the focal lines of which are 
perpendicular to each other. 

When the quadrupole lens is inserted with its principal axes rotated by 45 ~ with respect 
to the x-direction, the circular symmetry of the PSBA is destroyed and simple prediction 
of the image on plane 4 is not possible. A first understanding can be gained by propagating 
rays through the system by means of geometrical matrix optics. A more detailed discussion 
of this treatment can be found in [1, 4, 6]. In the following only the main results are 
reviewed. 

A ray starting at plane 1 is characterized by a four-dimensional vector 

v,  = (x , ,  y~, x',, y~) 

where x~, Yl are the distances from the optical axis and X'x, yj the slopes. The ray arriving 
in the observation plane is related to the incident ray by a 4 • 4 ray matrix M14 

with 

V 4 =-  M I 4 v  1 ( 8 )  

Ml4  
0 c~ /~ /~0 

lifo 0 1/~ fo 

0 lifo fo/f  1/~J 

S929 



N .  H o d g s o n  e t  a l .  

where Equation l has been used with the scaling factors 

= (b  - f o ) / J o  t~ = ( f o [ f ) ( b  - )Co) (9) 

The ray coordinates on plane 4 are thus given by 

X 4 = - -  ~ X  1 - -  ~ y ;  ( 1 0 )  

Since the first slit is assumed to be infinitesimally small, Yt can be set to zero. The second 
slit, which we choose to be located at the spherical lens, absorbs all rays with slopes larger 
than A/a. In geometrical optics, this slit can be chosen arbitrarily thin, since diffraction 
effects are not taken into account. For small slit widths 2s and 2A, Equations I0 and 11 are 

X 4  = - -  ~ X l  Y4 = --/~X~ (12) 

In the observation plane the phase space representation of the incident line source is 
observed, scaled by the factors ~ and/3. A light source characterized by its size AXl and its 
angle range Ax~ will produce an illuminated area cq3 AXl Ax'~ on plane 4 from which the 
beam parameter product Ax~ Ax; can be determined. 

Figure 3 shows calculated patterns produced by the intersection points of the rays 
arriving in plane 4 for a one-dimensional light source whose number of rays W(x, x') dx dx" 
starting on plane 1 per area dxdx' is given by the Wigner-Wolf  function: 

W(x, x') = coast, x exp 2w ~ ~ -  + x' 
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Figure 3 Intersection points of rays on the observation plane of a PSBA calculated with Equation 12 
(a = 1 4 0 m m ,  b -  3 5 0 m m ,  f0 = 1 0 0 m m ,  f =  2 5 m m ) .  The line source on plane 1 has a Gaussian spatial 
intensity distribution (number of rays per unit length) with beam radius w = 0.2 mm and an angular intensity 
distribution given by the W i g n e r - W o l f  function. In these three pictures the radius of curvature R in this 
geometric Gaussian beam model was changed. (a) R = oo, (b) R = - 2 z  o, (c) R = 2% with z o = ~w~/2 being 
the Rayleigh range. 
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It  is known [4, 5] that this is a very useful approach for describing geometrically the beam 
propagation of a Gaussian beam with beam radius w and radius of  curvature R. The 
rotation of the ellipse in the observation plane with changing radius of  curvature R of  the 
field on plane 1 is in agreement with the experimental observation, as will be shown later. 

In reality the intensity distribution on plane 4 will of  course be affected by diffraction 
from slit 2 and will therefore be superposed by the phase space distribution of  a homogen- 
eously illuminated slit. In order to determine the beam parameter  product of  the incident 
beam correctly, it is necessary to take account of  this. In the following the beam propa- 
gation inside the PSBA is described by means of Fresnel integrals. 

3. D i f f rac t ion  t h e o r y  
The propagation of the incident field distribution El(x1, Yl) to the planes 2, 3 and 4 can 
easily be performed by common two-dimensional Fresnel integrals [7, 8], taking into 
account the phase shift O(x, y) of  the rotated quadrupole lens: 

r y) = -- (2rc/f2)xy (13) 

With the assumption that the second slit is located at the spheical lens (c = 0 in Fig. 2), 
the relations for the field distributions on the three planes are 

= L 3,,) 
• exp [j (,~/~a)(x ~, + x~ + y~ + y~ -- 2(x,x~ + y,y~))]dx, dyl 

• exp [j@/2fo)(X~ + y2 _ 2(XzX3 + yzy3))]dxzdy2 (15) 

(16) 

(14) 

where C~ to C3 are constants. These integral equations were solved numerically using a F F T  
algorithm with 512 x 512 points. Figure 4 shows calculated intensity distributions on the 
four planes for a Gaussian beam with beam radius w0 = 0.4 m m  and planar wavefront. 
Only 64 x 64 of the calculated points are shown in this graph. As already seen in the 
geometrical calculations, a Gaussian field distribution produces an ellipse in the obser- 
vation plane, but now additional side lobes appear  which are caused by diffraction at the 
second slit. The angle (IDA by which the connecting line of  the side lobes is rotated with 
respect to the x-axis depends only on the set-up of the PSBA. The expression for qb A is [6] 

tan ~A = bib (17) 

The direction given by the intensity valleys between these side lobes is in general not 
perpendicular to the direction determined by (I) a. Depending on the set-up and the 
q-parameter ql of  the Gaussian beam on plane 1 they are rotated by an angle (I)B, which is 
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Figure 4 Calculated intensity distr ibut ions on the four  planes of  a PSBA (see Fig. 2) wi th a = 140mm,  
b = 350mm,  c = 0, f0 = 100mm,  f = 50mm, s = 40#m,  & = 0.1 mm, 2 = 0 .6328#m:  (a) in f ront  of  slit I ,  
(b) in f ront  of  slit 2, (c) on the quadrupole  lens, (d) in the observat ion plane. 

given by [6] 

fl o~D/R, Jr- fl2/lql 12 
tan q~B - (18) 

O~ o~b -]- f l 2 / R  1 

with Rl the radius of curvature of the Gaussian beam on plane 1. 
Some calculated examples of  differently rotated intensity patterns in the observation 

plane for a Gaussian mode are shown in Fig. 5 with the angles given by Equations 17 and 
18 indicated as straight lines. Apart from this dependence of  the side lobe structure on the 
beam parameters and the PSBA set-up, an additional rotation of the ellipse can be observed 
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Figure 5 Intensi ty distr ibut ions on the observat ion plane calculated w i th  Equations 14 to 16 for a Gaussian 
beam w i th  beam radius w 0 = 0 . 5 m m  and planar wavef ron t  (a = 140mm,  b = 350mm.  c = O, fo = lOOmm, 
s = 25#m,  A = O.2mm, 2 = 0 .6328#m) .  The angles �9 A (broken line) and @B (solid line) calculated w i th  
Equations 17 and 18 are indictated. (a) f = 50mm,  q)A = 35~ q~ = - 86~  (b) f =  2 0 0 m m ,  �9 A = 70.3 ~ 
q~ = -14 .6~  (c) f = 500mm,  q)A = 81"8~ OB = --0'950, 

which depends on the width 2A of slit 2 and the q-parameter ql of the incident beam. As 
will be shown later, this rotation is very useful in tracking any change of mode structure 
in phase space, because the orientation of the ellipse strongly depends on the phase 
distribution in plane 1. The derivation of the expression for this rotation angle q~c can again 
be found in [6]. 

The same relations still hold if higher-order modes are considered. The orientation of  the 
resulting profile in the observation plane is the same as for a Gaussian mode. This is shown 
in Fig. 6 for Gauss-Laguerre modes of  different radial order P and azimuthal order l = 0. 
The widths of the resulting profile are now enlarged in both directions, according to the 
increased beam radius and divergence of  the incident distributions which are plotted on the 
left-hand side. It is obvious from this figure that a relation between beam radius and 
divergence in planes 1 and 4 of the PSBA exists. First it is of course necessary to define beam 
radius ( d / 2 ) p s a  A and an angle of divergence ( 0 / 2 ) p s a  A in the observation plane. According to 
Equations 5 and 6, a useful definition is given by 

f~(a/2,~ f~-oo [E4(x4, Y4)12dfadx4 = 0.865 f-~oo f~oo [g4(xa, y4)[2dy4dx4 
- -  a ( d / 2 ) P S B  A 

(19) 

ffl(O/2)PSBA B(0/2)pSBA f-~ IE4(x4' Y4)]2dx4dy4 = 0.865 f_~ ~ IE4(x4, y4)12dx4dy4 (20) 

These sizes must be compared with those determined from Equations 5 and 6 for the 
incident field distribution E~ (x~, 0). 
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Figure 6 Calculated intensity distr ibut ions in the observat ion plane ( r ight -hand diagrams) of a PSBA for 
Gauss-Laguerre modes w i th  Gaussian beam radius w 0 = 0.5 mm and dif ferent radial orders (a = 140 mm, 
b = 3 5 0 m m ,  f0 = 100mm,  f = 50ram,  s = 20#m,  /% = 0 .2mm,  2 = 0 .6328#m) .  The le f t -hand diagrams 
represent the corresponding input  intensity distr ibut ions at the entrance slit of the PSBA. The radial order is 
p = 0 at the top, p = 2 in the middle and p = 6 at the bottom. 
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4. Theoret ica l  results 
Two PSBAs were chosen for the theoretical investigation showing different spatial and 
angular resolution. These two PSBAs are denoted in the following as PSBA 1 
(a = 140mm, b = 350ram,f0 = 1 0 0 m m , f  = 50mm, ~ = 2.5, fl = 500ram) and PSBA 
2 (a = 242.8mm, b = 170ram, f0 = 1 0 0 m , f  = 200ram, ct = 0.7, fl = 35ram). In order 
to investigate the dependence of (d/2)PSB A and (0/2)PSB g o n  the incident beam properties, 
Equations 14-16 and Equations 19 and 20 were solved numerically using Gauss-Hermi te  
modes E m (x) as incident fields with 

Era(x) = exp (--xZ/w2)Hm(xf2x/w0) (21) 

with Hm Hermite-polynomial of  order m and w0: beam radius of  fundamental mode Eo(x). 
The results for m = 0 to 4 are presented in Fig. 7 as a function of  the width 2A of  slit 2. 
In these pictures slit 1 was chosen to be s = 25 #m. Changing s to 15 #m or 50 #m, however, 
did not affect the results at all. The broken lines indicate beam radius d/2 and angle of  
divergence 0/2 of  the incident field, calculated using Equations 5 and 6. It  is obvious that 
the values that can be measured with the PSBA are always enlarged by diffraction at slit 
2. In order to get more insight in this behaviour it is advantageous to look at the propa-  
gation of the second moments through the PSBA. A propagation rule similar to Equation 4 
can be found using four-dimensional ray matrices [9]. The final expression is [6] 

2 2 2 4 2 2 (x42) = cr + ( f l /b)(y . , )  + (f~ / f  )(0,>) (22) 

2 2 2 ( y ] )  = fl2((02/4) + (b /fl ) (0 , ) )  (23) 

Although these relations hold only for apodized slits, they indicate that the diffraction 
at slit 2 influences the measured beam radii and angles of  divergences by the second 
moments (y2)  of the slit transmission function and by the second moment  ( 0 f )  of the 
corresponding far field distribution. Unfortunately, these expressions are not valid if the 
86.5% energy content is considered. Nevertheless, it is worth applying Equations 22 and 23 
to the 86.5% energy definition of beam radius and divergence. Using the corresponding 
values y, = 0.865A and 0, = 0.5662/A for the slit, Equations 22 and 23 are transformed 
to 

(d/2)~sag = cr 2 + O.75(flZ/b2)A 2 + O,32(f4Zfz)(2/A) 2) (24) 

(O/2)~,S.A = ,62((0/2) 2 + 0.32(b2/,62)(2/A) 2) (25) 

Figure 8 shows the results if these equations are applied to the two PSBAs using the values 
(d/2) and (0/2) of  the previous figure. A comparison of the two figures indicates that these 
formulae give roughly the correct dependence of (N/2)t,  sB A and (0/2)PSB A o n  the slit width 2A. 
Equations 24 and 25 are thus very useful for optimizing the performance of a PSBA with 
the ratio b/,6 as a key parameter. I f  this ratio is large, the beam radius can be measured 
exactly as Equation 24 indicates, For  a small ratio the additional term in Equation 25 
becomes small compared to (0/2) and a high resolution for the divergence measurement is 
obtained. This is in agreement with the rotation angle ~A given by Equation 17. For  large 
b/,6 (~A ~ 90 ~ the side lobes of  the intensity distributions in plane 4 are located in the 
y-direction and affect the determination of the divergence. Small ratios b/,6 do not rotate 
the intensity distribution and the side lobes will therefore only influence the determination 
of  beam radius. This reveals that without correction either the beam radius or the diver- 
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gence can be measured exactly and both measurements become more exact the larger the 
beam radius and the angle of divergence. 

In general, the relations between (d/2)PSBA, (0/2)PSB A and (d/2), (0/2) are more complicated 
than Equations 24 and 25 predict. We have observed that in addition to the parabolic 
dependence a shift is present. More useful relations which connect the PSBA-values with 
the 'real' ones would therefore read 

(d/2) = X/[(d/2)2SBA -- Z (A)] -- fz(A) (26) 

(0/2) = ~[ (0 /2 )~SB A - -  gl(A)] - gz(A) (27) 

whe re f  and gi depend on the set-up of  the PSBA and on the slit width 2A. There are two 
ways to find these correction functions. They can be determined either by solving the 
Fresnel integrals (14) to (16) for input fields of different radii and divergences or by 
calibrating the PSBA experimentally with laser beams of known radius and divergence. For 
any practical application of the PSBA, the latter method is of course more advantageous, 
since systematic errors induced by the measurement technique and the set-up of the PSBA 
are taken into account. We chose this calibration method and determined the functions f 
and gi with fundamental modes. 

5. Exper iments  
5.1. S e t - u p  
A CCD camera with a sensitive area of  6 x 8mm 2 and 512 • 512 pixels was used in 
connection with an image-processing system to record the intensity distribution in plane 4. 
The set-up of the PSBA and the maximally detectable beam radii (d/2)max and angles of 
d i v e r g e n c e  (0/2)max are primarily fixed by the dimensions of  the CCD chip. For PSBA 1, 
laser beams with radii up to 1 mm and divergences up to 3.5 mrad could be detected. We 
used this set-up for a HeNe laser in TEM00 mode operation with the beam waist of  
w0 = 0.313 mm located 7 cm behind the exit aperture. With PSBA 2, much higher radii and 
divergences could be measured ((d/2)max ~ 4 mm, (0/2)m,x ~ 60 mrad). This system was set 
up to investigate the beam properties of  a pulsed Nd : YAG laser consisting of a 150-mm- 
long rod of 10 mm diameter and different optical resonators. The rod was pumped by two 
krypton flashlamps with 3-ms pulse duration and a maximum input power of 12 kW. The 
refractive power of the rod was determined to be 0.3 m 1 per kW of electrical pumping 
power. 

For an optimum performance of  the PSBA, it is very important to choose entrance slit 
1 as small as possible. Apart from the creation of a line source, this slit must provide a 
one-dimensional intensity distribution across slit 2, with a homogeneous profile in the 
y-direction. This means that the Fraunhofer pattern of the slit must appear on slit 2 with 
a width of the central maximum at least five times larger than the slit width 2A. These 
conditions result in two equations from which s and A can be determined: 

s < x/[0.01(a -- c)2] (28) 

A < (a - c)2/(lOs) (29) 

These expressions indicate that slit 2 should be located as near as possible to the spherical 
lens f0 (c = 0). For the two PSBAs used, Equations 28 and 29 yield 

PSBA 1 (2 = 0.6328#m): s < 30/~m, A < 0.3mm 
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and 

PSBA 2 (2 = 1.064/~m): s < 51#m, A < 0 .51mm 

All results presented in this paper were obtained with slit widths of  2s = 50 #m and 
2A < 1.22 mm. We increased the slit width 2s to 100 #m several times but no effect on the 
results could be observed, which is in agreement with Equations 28 and 29. 

In order to get the beam radius (d/2)PSB A and divergence (0/2)PSBA, the image-processing 
system was programmed with Equations 19 and 20. Before applying the PSBA, the beam 
radius d/2 and the angle of  divergence 0/2 were measured in plane 1 according to Equations 
5 and 6. 

For  both PSBAs the quadrupole lens with focal lens f w a s  formed by a combination of 
a spherical lens with focal lens f~ = f and a cylindrical lens with focal length f~ = - f /2,  
rotated by 45 ~ with respect to the x-axis. It  can easily be verified that these two lenses 
produce the same phase shift ~(x, y) (Equation 13) as two cylindrical lenses with focal 
lengths f and - f  All lenses used in the experiments were made of glass without any 
antireflecting coating. Interference patterns caused by reflections on the lens surfaces could 
not be observed. The fringes which can be seen in some of the following photographs are 
caused by a glass plate glued onto the CCD chip for protection purposes. Their effect on 
the determination of beam radius and divergence was proved to be negligible. 

5.2. Cal ibrat ion 
Both PSBAs were first tested with Gaussian beams of  different waist radii w0 with the waist 
located on slit 1. The width of slit 1 was chosen to be 50#m. The measured beam radii 
(d/2)psB A and divergences (0/2)pSBA versus the slit width 2A of slit 2 are shown in Fig. 9 in 
comparison with the theoretical curves given by Equations 14-16 and 19 and 20. The 
broken lines again indicate beam radius d/2 and 0/2 of the incident field. These figures were 
used to determine the calibration func t ions f  and gi by fitting the experimental data to the 
values given by Equations 26 and 27. For  both PSBAs the measured beam radii agree well 
with the calculated ones. A comparison of  Figs 7 and 8 has already shown that Equation 
24 holds in a very good approximation. This means that quadratic correction is sufficient 
by setting f2(A) to zero in Equation 26. Furthermore,  within the experimental errors no 
correction of  the beam radius is necessary for PSBA 2 if the slit width 2A is chosen larger 
than 0.2 mm. In all experiments with PSBA 2, therefore, we did not correct the beam radius. 

Correction of the divergence is more complicated. To get more information it was 
necessary to measure the divergence (0/2)psB A for a variety of  input divergences 0/2. For  
PSBA 1 this was accomplished by focusing the HeNe beam onto the entrance slit with 
different focusing lenses; for PSBA 2 the Y A G  laser was driven at different pumping 
powers. For  the stable resonator used the varying refractive power is linked to a corre- 
sponding variation of mode order and divergence. In addition, for bgth PSBAs the 'real '  
divergence of  the input field was measured in the focal plane of a lens. The results of  this 
measurement are shown in Fig. 10. For  PSBA 1 the measured curves can be explained very 
well by setting gz(A) = 0 and calculating g~ (A) with the experimental data in Fig. 9. For  
angles of  divergence larger than 1.5 mrad it is even possible to neglect any correction. For  
PSBA 2 the dependence is totally different. It  is apparent that the divergences measured 
with the PSBA are shifted with respect to the real ones. Equation 27 becomes applicable 
if g~ (A) is set to zero. The remaining shift function g2(A) can now b e determined from 
Fig. 10 by interpolation, as indicated by the broken lines, or by using the shifts in the lower 
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Figure 10 Measured angles of  d ivergence (0/2)Ps8 A 

fo r  the  t w o  PSBAs p lo t ted versus the measured 

angles o f  d ive rgence  (0 /2 ) .  For PSBA 1 a HeNe  

Gaussian beam, fo r  PSBA 2 mu l t imode  beams f rom 

a h igh p o w e r  N d : Y A G  laser we re  used. These 

curves can be used to ca l ibrate the PSBA. (a) 

PSBA 1: a = 1 4 0 m m ,  b = 3 5 0 m m ,  fo = 1 0 0 m m ,  

f = 5 0 m m ,  i = 0 . 6 3 2 8 p m ,  s = 25#m.  (b)  PSBA 

2: a = 2 4 2 . 8 m m ,  b = 1 7 0 m m ,  fo = 1 0 0 m m ,  

f = 2 0 0 r a m ,  2 = 1 .064#m,  s = 25/~m. 

right-hand curve of Fig. 9. After both systems were calibrated they were used to investigate 
the beam propagation of different laser beams. 

5 . 3 .  A p p l i c a t i o n  
Before applying the PSBA to specific problems we first checked the applicability of  the 
numerical solutions of  Equations 14 to 16. Figure 11 shows a comparison of the calculated 
and recorded intensity distributions on plane 4 for the HeNe laser beam with its waist 
located on the entrance slit and with radius w0 = 0.362 mm. With increasing width of slit 
2, the ellipse starts rotating into a horizontal position and the same behaviour can be 
observed in the calculations. 

It  is more interesting of course, to track the HeNe beam in optical systems where a 
considerable change of beam parameters is provided. We placed the PSBA at a fixed 
distance of 1.2 m behind the beam waist and shifted a 200-mm lens located between. The 
set-up of the experiment and the results are presented in Fig. 12. The corrected beam radius 
is in good agreement with the theoretical curve obtained by solving the ABCD law for the 
q-parameter. Near  the focal point the measured radius (d /2 )psB  A is in the same order of  
magnitude as the term ~ /~  (A)] (see Equation 26 withfe(A) = 0) and the errors caused by 
the correction are too high for accurate prediction of  the beam radii. Nevertheless, for beam 
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Figure 11 Comparison of measured and photographed intensity distr ibut ions of a Gaussian beam in the 

observat ion plane of PSBA 1 for three dif ferent slit w id ths 2A (a = 140mm,  b = 3 5 0 m m ,  f0 = 100mm,  
f = 50ram,  Z = 0 .6328#m,  s - 2 5 # m ) :  (a) A = 0 .05mm,  (b) A - 0.1 mm, (c) A = 0 .2mm.  
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Figure 12 Measured beam radii (d/2)PsB A 
and angles of divergence (0/2)PSB A for a 
HeNe laser beam in fundamental mode 
operation with a 200-ram lens between 
PSBA 1 and the beam waist. The distance z 
between the lens and the entrance slit of  
the PSBA was varied. The corrected values 
for the radius were obtained with Equation 
26, for the divergence no correction was 
necessary (a = 140mm, b = 350mm, fo = 
100ram, f =  50mm, 2 =  0.6328#m, s =  
25#m, & = 0.11 mm). 

radii not too small the corrected values can be used to determine the caustic of  the beam. 
The measured divergence is correct also, as comparison with the theoretical angle related 
to the minimum spot size indicates. It  was fascinating to look at the intensity profile in 
phase space in the course of  this experiment. Since the radius of  curvature R of the Gaussian 
beam changes with the distance z, the phase space ellipse is rotated as already discussed. 
Photographs taken in plane 4 for three different distances z are shown in Fig. 13 for the 
experiment presented in Fig. 12. It  is worth noting that the ellipse does not stand upright 
when the beam waist is reached, which is contrary to the geometrical calculations presented 
in Fig. 2. This rotation is only caused by diffraction at slit 2. 
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E 
z=%.Scm 

z:23cm 

Y 

X 

z=33cm 

Figure 13 Photographs of the intensity distr ibution in the observation plane for different distances z for the 
experiment w i th  the moving lens described in Fig. 12 (a = 140 mm, b = 350 mm, f0 = 1 O0 mm, f = 50 mm, 
2 = 0.6328#m, s = 25#m, A = 0.11 mm). 

The most interesting application of the phase space beam analyser is the determination 
of  the beam parameter  product of  a laser beam, especially when the beam quality strongly 
depends on the pumping conditions. We performed these experiments with the Nd : YAG 
laser and PSBA 2. To give the reader an idea what the distributions in the observation plane 
look like, photographs are presented in Fig. 14 for a fundamental mode and a high-order 
mode and two different widths of  slit 2. As an example for a resonator with changing beam 
parameter  product we used a nonsymmetric flat-flat resonator and increased the repetition 
rate. In this resonator the beam waist is always located on the output coupling mirror and 
imaging the waist onto the entrance slit of  the PSBA can be accomplished with a fixed lens. 
The beam waist radii and the angles of divergence were calculated by using the ABCD 
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a) b) 

YI 
c) d) 

Figure 14 Photographs of intensity distr ibut ions in the observat ion plane of PSBA 2 for  a YAG laser in 
fundamental  mode operat ion and in mul t imode operat ion w i th  80 times di f f ract ion- l imi ted beam qual i ty  
(a = 242 .8mm,  b = 170mm,  f0 = 100mm,  f = 200mm,  2 = 1.064/~m,s = 25/~m). (a) A = 0.1 mm, funda-  
mental mode, w 0 = 0 .52mm.  (b) A = 0.1 mm, mul t imode operat ion, beam radius 4.1 mm. (c) & = 0 .2mm,  
fundamental  mode, w 0 = 0 .52mm.  (d) A - 0 .2mm,  mul t imode operat ion, beam radius 4.1 mm. 

propagation rules for Gaussian beams and additionally measured with the common two- 
lens technique, before PSBA 2 was used. The set-up of the experiment and a comparison 
of the two measurements and the calculation are shown in Fig. 15. In Section 5.2 it was 
mentioned that a correction of the beam radius (d/2)psB A is not necessary and the angles of  
divergence must simply be shifted. After correction we see a perfect agreement with the 
values measured with the lenses. At 24 Hz repetition rate, which corresponds to a pumping 
power of  7.5kW, the resonator goes unstable. In this case the field distribution on the 
output coupling mirror no longer has a planar wavefront, which means that the beam waist 
is located somewhere inside the resonator. Since the intensity distribution in the observation 
plane strongly depends on the radius of  curvature of the phase distribution, the change from 
stable to unstable resonator can be well observed in phase space. Figure 16 shows photo- 
graphs for repetition rates of  10, 23, 24 and 25 Hz, clearly indicating the sudden change of  
the phase space structure when the resonator goes unstable. This sensitivity against the 
phase radius R beats any common lens technique for observing changes in mode structure. 

Finally, we used PSBA 2 to measure the focusing properties of  a beam emerging from 
an unstable resonator with an output coupling mirror with hard aperture. A confocal 
resonator with magnification M = 3 and an aperture radius of  1.4 m m  was used to measure 
beam radius and divergence in the vicinity of  the focal spot as shown in Fig. 17. Again the 
correct beam parameter  product of  1.4 m m  mrad is obtained. Similarly to the stable modes, 
the structure in phase space rotates and outside the focal plane a double stripe structure 
appears due to the near-field being an annular ring with inner radius 1.4ram and outer 
radius 4 m m  (Fig. 18). 
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Figure 15 Beam radii (d/2)PSB A and 
angles of divergence (0/2)PSBA measured 
wi th  PSBA 2 for  a pulsed N d : Y A G  
laser wi th  f la t - f la t  resonator (a = 
242.8mm, b = 170mm, f0 = 100mm,  
f = 200mm,  2s = 50#m,  2A = 0.43). 
The corrected values are compared 
wi th the results obtained by measuring 
beam radius and divergence wi th  a lens 
and wi th  the theoret ical curves given 
by matrix opt ics and Gaussian beam 
propagat ion rules. 

In summary, the experiments described above performed with different laser beams and 
two PSBAs clearly demonstrate that this optical device is very useful for the determination 
of beam parameters and, in addition, the sensitivity against phase alterations makes it a 
powerful tool for looking at changes in mode and phase structure of resonator modes. 

6. Conclusion 
The properties of the phase space beam analyser were investigated theoretically by solving 
the corresponding Fresnel integrals and this indicated that correction of the diffraction 
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O3 
u~ 

Q) 

b) 

c) 

Y d) Figure 16 Photographs of the intensity distributions 
taken in the observation plane of PSBA 2 at different 
repetition rates for the curves presented in Fig. 1 5. The 
shape suddenly changes when the resonator goes 
unstable. This is due to the changing radius of cur- 
vature R of the phase front and the increasing beam 
size. (a) 10Hz; (b) 23 Hz; (c) 24Hz; (d) 25 Hz. 

effects is possible. This calibration can be performed theoretically or by using input beams 
with known divergences and radii. Two PSBAs were calibrated with Gaussian beams and 
applied to different beam-propagation problems. The results clearly verified the applicabil- 
ity of the PSBA to the determination of beam parameter products and beam caustics as well 
as its ability to provide more insight into mode properties of  resonators. The two PSBAs 
used were chosen by the cylindrical lenses we had rather than by a detailed optimization 
according to Equations 24 and 25. In the future we will focus our attention on a further 
increase of angular and spatial resolution. 
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Figure 17 Beam radii (d/2)psB A and angles 
of divergence (0/2)PSB A measured with 
PSBA 2 for a focused beam of a Nd:YAG 
laser with confocal unstable resonator with 
magnification 3. The upper graph presents 
the experimental set-up (a = 242.8mm, 
b -  170mm, f0 = 100mm, f -  200mm, 
2 s -  50#m, 2A = 0.43mm). To increase 
the spatial resolution, plane 4 was imaged 
onto the CCD chip magnified by a factor 
of 3. 
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Figure 18 Photographs of the intensity distributions in plane 4 taken at different distances z from the lens in 
the experiment described in Fig. 17. (a) z = Ocm; (b) z = 25.7cm, (c) z = 32.7cm; (d) z = 38.7cm. 
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