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This paper presents a characterization of the solutions of a singly constrained quadratic 
program. This characterization is then used in the development of a polynomially bounded 
algorithm for this class of problems. 
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1. Introduct ion 

Consider the following quadratic program, 

min ½x'Dx - a 'x ,  (1) 

s.t. ~ .x j  = c, (2) 
1 

0 -< x -< b (3) 

where D is a positive diagonal matrix and b is a nonnegative vector. Quadratic 
programs of this type arise when one applies a resource-directive decomposit ion 
procedure using subgradient optimization to solve multicommodity network flow 
problems (see [1,4, 5]). The basic approach is to distribute the arc capacity 
among the commodities and then solve a set of single commodity problems. This 
solution is feasible for the multicommodity problem. If in addition this solution 
is within ~% (where the user selects ~) of a lower bound, then the procedure 
terminates. Otherwise, a subgradient is used to determine a new proposed 
allocation. Generally the proposed allocation is not feasible (i.e. exceeds the 
original arc capacity). When this occurs, one must project  this proposed al- 
location back onto the set of feasible allocations. This projection involves 
solving a quadratic program of the form (1)-(3) for  each arc whose proposed 
allocation exceeds the arc capacity. Since the subgradient procedure has been 
found to be at least twice as fast as competing algorithms for this class of 
problems (see [1]) there is great motivation for developing a fast algorithm for 
(1)-(3). 

Held et al. [4] present an algorithm for solving (1)-(3) when D is an identity 
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matrix and (3) is replaced by x-> 0. The objectives of this exposition are (i) to 
extend the theory of [4] to the more general program (1)-(3) and (iS) to present a 
polynomially bounded algorithm for (1)-(3) based on this theory. 

Related work involving the minimization of separable convex functions sub- 
ject to (2) and (3) may be found in papers by Charnes and Cooper [3], Srikantan 
[10], Sanathanan [9], Luss and Gupta [7], and Bitran and Hax [2]. A heuristic 
algorithm for solving the integer version of (1)-(3) has been developed by 
McCallum [8]. 

2. Characterization of solutions 

Let us rewrite (1)-(3) in a slightly different form as follows: 

rain ½x'Dx - a 'x ,  (4) 

s.t. Y~. x s - c = O, (A), (5) 
J 

x s - b s <- O, (us), (6) 

- x s <- O, ( v s ) ,  (7) 

where A, us, and v s are the Kuhn-Tucker  multipliers associated with the three 
types of constraints. The Kuhn-Tucker  conditions for (4)-(7) may be stated as 
follows: 

dsx s - a t + u i - v s + A = O for al lL (8) 

us(xs - bs) = 0 for all L (9) 

vsx j = O  for al lL (10) 

us, vj>_O for all L (11) 

plus (5), (6) and (7) 

where ds is the j th diagonal element of D. Consider the following solution as a 
function of A. 

x i ( A ) = m a x { m i n ( ~ i A , b , ) , O } ]  

us(A) = m a x { a j ,  A - djb i, 0} (12) 

vs(A) = max{A - at, 0}. 

For any selection of A, the above solution clearly satisfies (6), (7), and (11). We 
now show that this solution will also satisfy (8), (9), and (10). 

Proposition 1. The  so lu t ion  g iven  by  (12) sat is f ies  (9). 
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Proof. 

R. Helgason et al./ A polynomially bounded algorithm 

C a s e  1: 

a t - A - dtb t < 0 ~ u t = 0 ~ u t ( x  t - bj)  = O. 

C a s e  2: 

a t - A - djb t >- 0 ~ a j ~  A >_ bj ~ x t = b i ~ u j (x j  - b i) = O. 

This completes the proof of Propositon 1. 

Proposition 2. T h e  s o l u t i o n  g i v e n  b y  (12) s a t i s f i e s  (10). 

Proof. C a s e  1: 

a t - A  <O:ff < O ~ x t = O ~ v t x i = O .  

C a s e  2: 

a t - A - - - 0 ~ v  t =0ffv~x t =0.  

This completes the proof of Proposition 2. 

Proposition 3. T h e  s o l u t i o n  g i v e n  b y  (12) s a t i s f i e s  (8). 

Proof. Case 1: 

a j - A  
dt >- bt ~ xt = bJ , at - A - dtbt >- O, 

a s - A - dtb t >->- 0 ~ u t = a t - A - djb~. 

a t - A  > 0 ~ v t  =0. 

Thus 

C a s e  2: 

Thus 

a j - h  >0.  

dtx  t -  a t + u t -  v t + A = djb  i - aj + a t - A - d jb  t - O + A = O. 

~ A  aj - h 
O< < bj ~ xt = dt , at - h - dtbt < O , a t - h > O .  

a t - A - djbj  < 0 ~ u t = O. 

a i - h  > O ~ v  t =0. 
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C a s e  3: 

a j - A  
_<O=:>xj=O, a j - X - < 0 .  dt 

at - h < O ~ at - h - dtbt <_ O, vt = h - a t. 

ai - h - dtbi <-- O :::), u t =0 .  

Thus 

dix t -  a t +  u t -  v t + h = 0 -  a t + O - ( A - a t ) +  h = 0. 

This completes the proof of Proposit ion 3. 
Hence to solve (1)-(3) one need only find the appropriate h such that (5) is 

satisfied. 
Let  

g(A) = ~ x i ( A ) = ~ m a x { m i n ( ~ j A ,  b , ) , O } .  
/ 1 

Then we must find h* such that g(A*) = c. Note that since dj > 0  and bj ->0, xi(h) 
may be expressed as follows: 

b j, A <-- aj - djbj, 

xt(h ) = a i - A dt ' at - djbi  < :t <-a t ,  

O, h > a j .  

Clearly each xt(A) is piece-wise linear and monotone nonincreasing. Since the 
sum of such functions preserves this property,  g(A) is piece-wise linear and 
montone nonincreasing. A typical g is illustrated in Fig. 1. 

3. Algorithm 

Suppose there are n xj(A), then the breakpoints for  the piece-wise linear 
function gut)  occur  at the 2n points aj - dib i and aj for j = 1 . . . . .  n. Let  Yl . . . . .  Y2n 
denote these breakpoints where yl - Y2 -< . . .  <- Y2n. Then for A --< Yl, g(A) = ~ , i b  i 

and for h - YEn, g(A) = 0. 
We now present an algorithm for obtaining the value A*, such that g(A*)= c. 

The procedure consists of a binary search to bracket  A* between two break- 
points followed by a linear interpolation. 

A l g o r i t h m  f o r  A* 

S t e p  O. In i t ia l i za t ion .  If c > ~ jb j  or c < 0 ,  terminate with no feasible solution; 
otherwise, set l<--l, r~--2n, 

L~- -~ , i b  j and R ~ 0 .  
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g(X) 

g(M =XffM +X2(,k) 7 

X2(X) . . . . .  ~ . . . . ~ . . .  

Xl(h) -- " " ~ ' .  " '  3 . . . .  % 

~ 2 

I I I I I l I I ~'''' 

- -5  - - 4  - -3  - - 2  --1 0 1 2 3 4 5 / 

Fig. 1. I l lustrat ion of g(A) (al = 5, d l =  1, bt = 3, az = 4, d2 = 2, b2 = 4). 

Step 1. Test for  bracketing. If r - I  = 1, go 
m~[½(l + r)]r, where [k]1 is the greatest  integer -<k. 

Step 2. Compute new value. 
Set 

C+-- 1~ " m a x { m i n ( ~ ,  bi),O}. 

to step 4; otherwise, set 

Step 3. Update. I fC = c, terminate with h*<"-ym. 
If C > c, set I*--m, L~--C, and go to Step 1. 
If C < c, set r ~ m ,  R<---C, and go to Step 1. 

Step 4. Interpolate. Terminate with 

A*<--yt q (Yr -- Yt)" (C -- L)  
( R  - L )  

The above algorithm for (1)-(3) is considered "good"  (see Lawler [6]) because 
the number of elementary computational steps is bounded by a polynomial in the 
size of the problem, n. Let  c, a, and d denote the times required to execute  one 
comparison, one addition, and one division, respectively. Table 1 presents a 
worst case analysis for  each step of the algorithm. From Table 1, we see that 
the computational time is bounded by (2c + 2a + d)[n logz(2n - 2)] + (a)n + 
(2c + 2a + d) lOgE(2n - 2) + 3c + 6a + 3d. Hence,  the algorithm for the singly 
constrained quadratic program, presented in this exposition, is a member of the 
class known as "good"  algorithms. 
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Table l 
Worst case analysis of algorithm operations 
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Operations count 
Step Maximum executions 
number of step Comparisons (c) Additions (a) Divisions (d) 

0 1 
1 log2(2n - 2) + 1 
2 log2(2n - 2) 
3 Iog2(2n - 2) 
4 1 

Totals 

2 n 0 
1 2 1 
2n 2n n 
1 0 0 
0 4 2* 

(2n +2) (2n +2) (n + 1) 
x log2(2n - 2) + 3 x log2(2n - 2) x log2(2n - 2) + 3 

+ n + 6  

* Includes one multiplication. 
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