
Mathematical Programming 18 (1980) 338-343.
North-Holland Publishing Company

A P O L Y N O M I A L L Y B O U N D E D A L G O R I T H M F O R A
S I N G L Y C O N S T R A I N E D Q U A D R A T I C P R O G R A M

R. H E L G A S O N , J. K E N N I N G T O N and H. L A L L

Southern Methodist University, Dallas, TX U.S.A.

Received 23 March 1978
Revised manuscript received 13 June 1979

This paper presents a characterization of the solutions of a singly constrained quadratic
program. This characterization is then used in the development of a polynomially bounded
algorithm for this class of problems.

Key words: Nonlinear Programming, Convex Programming, Quadratic Programming,
Singly Constrained Quadratic Program.

1. Introduct ion

Consider the following quadratic program,

min ½x'Dx - a 'x , (1)

s.t. ~ .x j = c, (2)
1

0 -< x -< b (3)

where D is a positive diagonal matrix and b is a nonnegative vector. Quadratic
programs of this type arise when one applies a resource-directive decomposit ion
procedure using subgradient optimization to solve multicommodity network flow
problems (see [1,4, 5]). The basic approach is to distribute the arc capacity
among the commodities and then solve a set of single commodity problems. This
solution is feasible for the multicommodity problem. If in addition this solution
is within ~% (where the user selects ~) of a lower bound, then the procedure
terminates. Otherwise, a subgradient is used to determine a new proposed
allocation. Generally the proposed allocation is not feasible (i.e. exceeds the
original arc capacity). When this occurs, one must project this proposed al-
location back onto the set of feasible allocations. This projection involves
solving a quadratic program of the form (1)-(3) for each arc whose proposed
allocation exceeds the arc capacity. Since the subgradient procedure has been
found to be at least twice as fast as competing algorithms for this class of
problems (see [1]) there is great motivation for developing a fast algorithm for
(1)-(3).

Held et al. [4] present an algorithm for solving (1)-(3) when D is an identity

R. Helgason et al. I A polynomially bounded algorithm 339

matrix and (3) is replaced by x-> 0. The objectives of this exposition are (i) to
extend the theory of [4] to the more general program (1)-(3) and (iS) to present a
polynomially bounded algorithm for (1)-(3) based on this theory.

Related work involving the minimization of separable convex functions sub-
ject to (2) and (3) may be found in papers by Charnes and Cooper [3], Srikantan
[10], Sanathanan [9], Luss and Gupta [7], and Bitran and Hax [2]. A heuristic
algorithm for solving the integer version of (1)-(3) has been developed by
McCallum [8].

2. Characterization of solutions

Let us rewrite (1)-(3) in a slightly different form as follows:

rain ½x'Dx - a 'x , (4)

s.t. Y~. x s - c = O, (A), (5)
J

x s - b s <- O, (us), (6)

- x s <- O, (v s) , (7)

where A, us, and v s are the Kuhn-Tucker multipliers associated with the three
types of constraints. The Kuhn-Tucker conditions for (4)-(7) may be stated as
follows:

dsx s - a t + u i - v s + A = O for al lL (8)

us(xs - bs) = 0 for all L (9)

vsx j = O for al lL (10)

us, vj>_O for all L (11)

plus (5), (6) and (7)

where ds is the j th diagonal element of D. Consider the following solution as a
function of A.

x i (A) = m a x { m i n (~ i A , b ,) , O }]

us(A) = m a x { a j , A - djb i, 0} (12)

vs(A) = max{A - at, 0}.

For any selection of A, the above solution clearly satisfies (6), (7), and (11). We
now show that this solution will also satisfy (8), (9), and (10).

Proposition 1. The so lu t ion g iven by (12) sat is f ies (9).

340

Proof.

R. Helgason et al./ A polynomially bounded algorithm

C a s e 1:

a t - A - dtb t < 0 ~ u t = 0 ~ u t (x t - bj) = O.

C a s e 2:

a t - A - djb t >- 0 ~ a j ~ A >_ bj ~ x t = b i ~ u j (x j - b i) = O.

This completes the proof of Propositon 1.

Proposition 2. T h e s o l u t i o n g i v e n b y (12) s a t i s f i e s (10).

Proof. C a s e 1:

a t - A <O:ff < O ~ x t = O ~ v t x i = O .

C a s e 2:

a t - A - - - 0 ~ v t =0ffv~x t =0.

This completes the proof of Proposition 2.

Proposition 3. T h e s o l u t i o n g i v e n b y (12) s a t i s f i e s (8).

Proof. Case 1:

a j - A
dt >- bt ~ xt = bJ , at - A - dtbt >- O,

a s - A - dtb t >->- 0 ~ u t = a t - A - djb~.

a t - A > 0 ~ v t =0.

Thus

C a s e 2:

Thus

a j - h >0.

dtx t - a t + u t - v t + A = djb i - aj + a t - A - d jb t - O + A = O.

~ A aj - h
O< < bj ~ xt = dt , at - h - dtbt < O , a t - h > O .

a t - A - djbj < 0 ~ u t = O.

a i - h > O ~ v t =0.

R. Helgason et al. [A polynomially bounded algorithm 341

C a s e 3:

a j - A
_<O=:>xj=O, a j - X - < 0 . dt

at - h < O ~ at - h - dtbt <_ O, vt = h - a t.

ai - h - dtbi <-- O :::), u t =0 .

Thus

dix t - a t + u t - v t + h = 0 - a t + O - (A - a t) + h = 0.

This completes the proof of Proposit ion 3.
Hence to solve (1)-(3) one need only find the appropriate h such that (5) is

satisfied.
Let

g(A) = ~ x i (A) = ~ m a x { m i n (~ j A , b ,) , O } .
/ 1

Then we must find h* such that g(A*) = c. Note that since dj > 0 and bj ->0, xi(h)
may be expressed as follows:

b j, A <-- aj - djbj,

xt(h) = a i - A dt ' at - djbi < :t <-a t ,

O, h > a j .

Clearly each xt(A) is piece-wise linear and monotone nonincreasing. Since the
sum of such functions preserves this property, g(A) is piece-wise linear and
montone nonincreasing. A typical g is illustrated in Fig. 1.

3. Algorithm

Suppose there are n xj(A), then the breakpoints for the piece-wise linear
function gut) occur at the 2n points aj - dib i and aj for j = 1 n. Let Yl Y2n
denote these breakpoints where yl - Y2 -< . . . <- Y2n. Then for A --< Yl, g(A) = ~ , i b i

and for h - YEn, g(A) = 0.
We now present an algorithm for obtaining the value A*, such that g(A*)= c.

The procedure consists of a binary search to bracket A* between two break-
points followed by a linear interpolation.

A l g o r i t h m f o r A*

S t e p O. In i t ia l i za t ion . If c > ~ jb j or c < 0 , terminate with no feasible solution;
otherwise, set l<--l, r~--2n,

L~- -~ , i b j and R ~ 0 .

342 R. Helgason et al. / A polynomially bounded algorithm

g(X)

g(M =XffM +X2(,k) 7

X2(X) ~ ~ . . .

Xl(h) -- " " ~ ' . " ' 3 %

~ 2

I I I I I l I I ~''''

- -5 - - 4 - -3 - - 2 --1 0 1 2 3 4 5 /

Fig. 1. I l lustrat ion of g(A) (al = 5, d l = 1, bt = 3, az = 4, d2 = 2, b2 = 4).

Step 1. Test for bracketing. If r - I = 1, go
m~[½(l + r)]r, where [k]1 is the greatest integer -<k.

Step 2. Compute new value.
Set

C+-- 1~ " m a x { m i n (~ , bi),O}.

to step 4; otherwise, set

Step 3. Update. I fC = c, terminate with h*<"-ym.
If C > c, set I*--m, L~--C, and go to Step 1.
If C < c, set r ~ m , R<---C, and go to Step 1.

Step 4. Interpolate. Terminate with

A*<--yt q (Yr -- Yt)" (C -- L)
(R - L)

The above algorithm for (1)-(3) is considered "good" (see Lawler [6]) because
the number of elementary computational steps is bounded by a polynomial in the
size of the problem, n. Let c, a, and d denote the times required to execute one
comparison, one addition, and one division, respectively. Table 1 presents a
worst case analysis for each step of the algorithm. From Table 1, we see that
the computational time is bounded by (2c + 2a + d)[n logz(2n - 2)] + (a)n +
(2c + 2a + d) lOgE(2n - 2) + 3c + 6a + 3d. Hence, the algorithm for the singly
constrained quadratic program, presented in this exposition, is a member of the
class known as "good" algorithms.

R. Helgason et al./ A polynomially bounded algorithm

Table l
Worst case analysis of algorithm operations

343

Operations count
Step Maximum executions
number of step Comparisons (c) Additions (a) Divisions (d)

0 1
1 log2(2n - 2) + 1
2 log2(2n - 2)
3 Iog2(2n - 2)
4 1

Totals

2 n 0
1 2 1
2n 2n n
1 0 0
0 4 2*

(2n +2) (2n +2) (n + 1)
x log2(2n - 2) + 3 x log2(2n - 2) x log2(2n - 2) + 3

+ n + 6

* Includes one multiplication.

Acknowledgment

This research was supported in part by the Air Force Office of Scientific Research
under Grant Number AFOSR 77-3151.

References

[1] A. Ali, R. Helgason, J. Kennington and H. Lall, "Solving multicommodity network flow
problems", Operations Research, to appear.

[21 G.R. Bitran and A.C. Hax, "On the solution of convex knapsack problems with bounded
variables", in: A. Pr6kopa, ed., Survey of mathematical programming, Vol. 1 (North-Holland,
Amsterdam, 1979) pp. 357-367.

[3] A. Charnes and W.W. Cooper, "The theory of search: optimum distribution of search effort",
Management Science 5 (1958) 44-50.

[4] M. Held, P. Wolfe and H. Crowder, "Validation of subgradient optimization", Mathematical
Programming 6 (1974) 62-88.

[5] J. Kennington and M. Shalaby, "An effective subgradient procedure for minimal cost multi-
commodity flow problems", Management Science 23 (1977) 994-1004.

[6] E .L Lawler, Combinatorial optimization: networks and matroids (Holt, Rinehart, and Winston,
New York, 1976).

[7] H. Luss and S.K. Gupta, "Allocation of effort resources among competing activities", Opera-
tions Research 23 (1975) 360-365.

[8] C.J. McCallum Jr., "An algorithm for certain quadratic integer programs", Bell Laboratories
Technical Report, Holmdel, NJ (undated).

[9] L. Sanathanan, "On an allocation problem with multistage constraints", Operations Research 19
(1971) 1647-1663.

[10] K.S. Srikantan, "A problem in optimum allocation", Operations Research 11 (1963) 265-273.

