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The Frank-Wolfe theorem states that a quadratic function, bounded below on a nonempty 
polyhedral convex set, attains its infimum there. This paper gives sufficient conditions under 
which a function either attains its intimum on a nonempty polyhedral convex set or is 
unbounded below on some hairline of that set. Quadratic functions are shown to satisfy these 
sufficient conditions. 
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I. Introduction 

The existence theorem for quadratic programming states that a quadratic 
function Q bounded below on a nonempty polyhedral convex set C attains its 
infimum there. This result was first proved in 1956 by Frank and Wolfe [5]. 
Alternative proofs have since been given by Collatz and Wetterling [2] (for the 
case when Q is convex), Eaves [4] and Blum and Oettli [1]. 

Eaves [4] also improved on this result by showing that if Q does not attain its 
infimum on C, then Q must be unbounded below on some hairline contained in 
C. This was first claimed, but not proved, by Dennis in 1959 [3]. 

In [5], the example Q ( x ~ , x 2 )  = x 2 + (1 =-xlx2) 2 is given to show that these results 
do not hold in general for higher order polynomials. (Q here does not attain its 
infimum, zero, in the plane.) This leads one to ask: what is so special about a 
quadratic; and also perhaps, what is so special about polyhedral convex sets. 
Unfortunately, the proofs in [1], [2], [4] and [5] are specifically tailored to: the 
quadratic and polyhedral case, and shed little light on the answers to these 
questions. 

In this paper we shall deal with the first question. Let ~ be the class of all 
continuous functions / : R  n ~ R  1 (some n) such that for any polyhedral convex 
set C_C R n, f either attains its infimum or C or is unbounded below on some 
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halfline con ta ined  in C. We  shall define a class of  func t ions  ~ which,  in 

par t icular ,  conta ins  all quadra t ic  func t ions ,  and shall show tha t  ~ is con ta ined  
(strictly) in Y. 

2. Notation and definitions 

Le t  n denote  {1, 2 . . . . .  n}. For  x ~ R", a C n, let x~ ~ R k deno te  

(x~l , . . . ,  x~k) ~ whe re  a = {al . . . . .  ak}, a l  < " "  < a/~. 

For  A E R m×", a C_ m,/3 C n, let A~ deno te  the submat r ix  of  rows  of A indexed  by  

a ;  let A~ deno te  the submat r ix  of  co lumns  of A indexed  by /3 ;  let A ~  deno te  (A~.).~. 

A func t ion  f : R" ~ R ~ is said to be  norm-coercive if limk_~ If(Xk)l = ~ for  eve ry  

sequence  {Xk} _C R" such that  l i m k ~ l l x d l  = ~. 

3. The class q3 and some examples 

We define ~ by  induct ion on the n u m b e r  of  var iables .  

Definition 3.1. Le t  f : R" ~ R I be  cont inuous .  T h e n  f E ~ if there  exis ts  a non-  

singular  mat r ix  Q, and a par t i t ion of  n, n = a t3/3, such tha t  g : R" ~ R defined by  

g(x) = f(  Qx) satisfies 
(i) i f /3  ~ 0, then  g(x~, .) is a c o n c a v e  func t ion ;  

(ii) i f /3  = 0, then  g is n o r m - c o e r c i v e ;  
(iii) if a ~ 0 and /3 ~ 0, then  for  all A and b of  appropr i a t e  d imens ions ,  the 

func t ion  h(.),  def ined by  h(x~) = g(x~, Ax~ + b), is a m e m b e r  of  ~3. 
N o t e  that  for  n = 1, condi t ion  (iii) is tr ivial ly satisfied s ince ei ther  a o r /3  mus t  

be  empty .  H e n c e  a func t ion  of one  var iable ,  f ,  is in ~ if f is c o n c a v e  or if f is 

n o r m - c o e r c i v e  and cont inuous .  
N o t e  also tha t  the induct ion step in the definit ion of  ~ is in condi t ion  (iii). 

Examples  3.2. (i) All con t inuous  n o r m - c o e r c i v e  func t ions  are in ~3. Set Q = 1, a = 

n,/3 -- 0 in Definit ion 3.1. 
(ii) All c o n c a v e  func t ions  are in ~. Set  Q = I, a = ~t,/3 = n in Definit ion 3.1. 

(iii) All quadra t ic  func t ions  are in ~3. 

We  shall p r o v e  this by  induct ion on n, the n u m b e r  of  var iables ,  L e t  

f (x )  = cVx +½xTDx, X ~ R". 

I f  n = 1, then  f is e i ther  c o n c a v e  or f ( x ) ~  as f x l ~ ,  and we  are done.  
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Suppose the result is true for quadratic functions of n - 1 variables or fewer. 

Without loss of generality we may assume that D is symmetric. Hence there is 

an orthogonal matrix Q such that 

QTDQ = Diag(~ 1 . . . . .  A,) 

where the A~ are the real eigenvalues of D. 
Set d = QTc, and g(x)  = [ (Qx) .  Then 

g~x) = ~ ~,~,x~ + d,x~) + ~,  ~,~,x~ + d,x~). 
Ai>0 ,~i-<0 

Let  a = { i :Ai  > 0},/3 = {i:Ai-< 0}. Then a and /3 partition n, and g(x )  clearly 
satisfies conditions (i) and (ii) of Definition 3.1. 

Also, since for any A and b,g(x~,  Ax~ + b) is a quadratic function in fewer  
variables, the induction hypothesis applies and condition (iii) of Definition 3.1 is 
established. 

(iv) Any function of the form 

f ( u , v )  = (uTBu)  k - (vTDv)  m 

where B is positive definite, D is positive semi-definite and k > m -> 0, is in ~. 

Set Q = L and identify x~ with u and x~ with v. Since B is positive definite 

x~ Bx~ >- ~llx~ll 2 Vx~ (1) 

where ~: > 0 is the smallest eigenvalue of B. 
Since D is positive semi-definite, and the function 

t -> 0, (x~Dx~)" is convex in xe. 
Hence conditions (i) and (ii) of Definition 3.1 are satisfied. 
Further,  since D is positive semi-definite, 

o <_ x~Ox~ <_ wllx~ll 2 Vxa 

where rt -> 0 is the largest eigenvalue of D. Thus for any A and b 

0 <- (Ax~ + b)XD(Ax~ + b) 

-< •llmx= + bll = 

-< r/(~llx~li + Ilbll) = (2) 

where /x  is the largest row norm of A. 
Combining (1) and (2) we obtain 

f (x~,Ax~ + b) >- ~kllx~ll 2k - ,~(tzllx~ll + IIbll) :~. 

The right-hand side of this inequality is a polynomial in IIx~ll 

t m is nondecreasing in 

with leading 
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coefficient Ck > 0. Hence f(x~,Ax~ + b ) ~  ~ as IIx~ll---> o% This establishes condition 
(iii) of Definition 3.1 by an application of example (i). 

Remark. Example (iv) shows that the class ~ is indeed interesting, that is, 
consists of functions to which the Frank-Wolfe theorem as it stands is not 
applicable. 

4. Preliminary results 

Let C be a nonempty polyhedral convex set of the form 

C = { x ~ R ~ :  Ax<_b} 

where A ~ R ' ~ .  

Definition 4.1. Let  x E C, and let 3' = {i : Aix  = bi}. Then x is called a pseudo- 
extreme point of C if x uses linearly independent columns of A,., i.e. if 
8 = {j : xj# 0}, then A~ has full column rank. 

For convenience, when A is the zero matrix, define the origin to be the 
pseudo-extreme point of C. 

One can easily show that C always has pseudo-extreme points. Furthermore, 
it follows by Lemma 4.3 (stated below) that the extreme points of C, when they 
exist, are pseudo-extreme points of C. 

Geometrically, the pseudo-extreme points of C are the extreme points of all 
the sections of C at x~ = 0 where a ranges over all subsets (including the empty 
set) of n. 

In the following examples, the pseudo-extreme points are marked with 
asteriscs. The set C is the shaded area. 

(i) C =  x2 1 l ] \ x z / -  

/ /  /3 J 
//" 

/ 
k / 

/ "  I '~ x * ~ X'l 

ILIIII'~ 
Fig. 1. 
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(0 (ii) C =  x2 1 / \ x2 /  - " 

l 

x 2 

Fig. 2. 

The following theorem shows that C has a 
pseudo-extreme points. 

Theorem 4.2. C has a representation 

C ={s + l~t: s ~ S, t E T, l~ >-O} 

219 

representation in terms of its 

where S is the convex hull of  the pseudo-extreme points of  C, and T is the 

intersection of  a polyhedral convex cone with the unit sphere. 

To prove this result, we require 3 lemmas. 

Lemma 4.3. Let  x ~ C and let y -- {i : Ai x = bi}. Then x is an extreme point  o f  C 
iff the rank of  A~ is n. 

Lemma 4.4. I f  C has extreme points, then C has the representation 

C ={s +/~t :  s E S ,  t E T,I~ ->0} 

where S is the convex hull of  the extreme points o f  C and T is the intersection o f  a 
polyhedral convex cone with the unit sphere. 

The proofs of these two lemmas can be found in Goldman [6]. 
In the following, let x + and x-  denote the positive and negative parts of x, 

respectively. 

Lemma 4.5. Let  

4 
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Then x i s a  pseudo-extreme point of C if and only if (x+_) is an extreme point of 

Proof. Let x be a pseudo-extreme point of C. Let  3' = {i : Ai.x = bi}. Then since x 

uses linearly independent columns of A~., x- uses linearly independent 

columns, say 6 C 2n, of the partitioned matrix (A~., - A O. Let  B :-- (A, - A) and 
let I be the identity matrix of dimension 2n. Then C can be written as 

where 

Thus the row submatrix of A corresponding to the constraints which (x_ +) 

satisfies with equality is 

where g denotes 2n - & 
Rewrite this matrix as 

Since B~ and I~g both have full column rank it follows that 

By Lemma 4.3 (x [ )  is an extreme point of C, and the 

established. 
The converse follows easily along similar lines. 

first implication is 

Proof of Theorem 4.2. Let  (~ be as in the statement of Lemma 4,5. Since C has 
pseudo-extreme points, it follows by Lemma 4.5 that C has extreme points. 

Thus by Lemma 4.4 C has a representation 

$'  S' t '  {(s,,)+.(:,;): (s,,) (,,,) 
where S is the convex hull of the extreme points of 6', and T is the intersection 
of a polyhedral convex cone with the unit sphere. 
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Now C can be written as 

Hence  

Set 

C = { ( s , _ s , , ) + t ~ ( t , _ t , , ) . ( s ' )  ( t ' )  } s" EL c' EL >-o. 

Then by Lemma 4.5 S is the convex hull of the pseudo-extreme points of C. Set 

T = IlF t"lf" t" ~ L r -  t " #  o . 

Then 

C = { s  + ~zt: s E S, t ~ T, Ix ->0} 

as required. 

Theorem 4.6. Let g : C--*R be concave. Then either g attains its infimum at a 
pseudo-extreme point of  C or g is unbounded below on some hal]line of C. 

In 1961 Hirsch and Hoffman [7] proved a similar theorem using a different 
representat ion of C. They  decomposed C as 

C = M ~ L  

where L is a linear subspace and M is the L~-section of C, and showed that a 
concave function bounded below on C attains its infimum at an extreme point of 
M. In Fig. 1 the extreme points of M are circled. Note that they are not the same 
as the pseudo-extreme points of C. 

Proof of Theorem 4.6. Let  {Pl . . . . .  Pk} be the set of pseudo-extreme points of C. 
Let  

g(Pm) = ming(pi). 
l<_i<_k 

Let  S and T be as in Theorem 4.2. For any s ~ S 3A~ -> 0, i = l .... , k, ~=IAI = 1 
such that 

k 
S = ~A~pi. 

i = !  

By the concavity of g, 

g(s) = g Aipi >- A~(p,.). 
_ , =  
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Hence 

g(s)  >- g(Pm) Vs ~ S. (1) 

Now suppose that g does not attain its infimum at a pseudo-ext reme point of C. 

Then by (1) 3x  E C -~ S with 

g(x) < g(pm). 

By Theorem 4.2 x can be written as 

x = s + p A  

for some s ~ S, t ~ T, ~ _ 0. 

Since x ~  S,/x > 0. 

Further,  the half-line 

H = { s  + ~t: ~>-I~} 

is contained in C. 

Now V~ ->/~ 

s + txt = ( 1 - ~ ) s  + ( ~ ) ( s  + ,t).  

Since g is concave 

g(s + ~t)  >_ ( 1 - ~ ) g ( s )  + ( ~ ) g ( s  + ~t). 

Upon rear rangement  we get 

g(s  + + / 

Since 

g(s)  - g(s + ~t)  >- g (pm)  - g(x)  > 0 

it follows that 

g ( s +  ~t)---> - ~  as ~ o ~  

i.e. g is unbounded below on H. 

The following result is of interest  in its own right. 

Theorem 4.7. Let g : R" ~ R 1, n >- 2, be continuous and norm-coercive. Then g is 
either bounded above or bounded below. 

The proof  of this result uses the concept  of path connectedness .  A set D C R" 
is said to be path connected if for any x, y ~ D there is a continuous mapping 
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p : [0,1]->D such that p(0) = x and p(1) = y. 
Le t  Kr denote the closed ball of radius r, and /~r  its complement.  For  n -> 2 

/~r is path connected.  

Proof of Theorem 4.7. By assumption on g, there exists r > 0 such that 

x E g r ~  I g(x)  I -> 1. (1) 

We shall show that either g(x)  => 1 V x ~ K r  or g ( x ) < - - l ' V x  @Kr. If not 
3x, y ~ Kr ~ g ( x ) - >  1 and g ( y ) - < - l .  Since /~  is path connected there is a 

continuous mapping p : [0,1]-~/(r ~ p ( 0 ) =  X, p ( 1 ) =  y. Since g is continuous, the 
mapping h : [0,1]-->R defined by 

h(t)  = g(p(t))  

is continuous. Moreover  h ( 0 ) -  > 1 and h ( 1 ) -  < - 1 .  By the intermediate value 
theorem there exists to E [0,1] such that h(to) = O, i.e. 

g(p (to))= O. 

Since p(to) ~ K~ this contradicts (1). 
Hence  g is either bounded above or below o n / ( ,  Since K, is compact  and g is 

continuous, g is bounded on Kr. 

The following theorem is obtained as a consequence of the above result. 

Theorem 4.8. Let  g : R " - > R  be continuous and norm-coercive. Le t  P be any 

non-empty  closed convex set. Then g either attains its infimum on P or is 

unbounded below on some half-line contained in P. 

Proof. If g is bounded below on p, then 

IIxll-~oo, x E e ~ g ( x )  --->o9. 

Thus for k sufficiently large the set 

R = {x : g(x)  <_ k} n P 

is nonempty and compact.  

Since g is continuous g attains its infimum on R. The infimum of g on R is 
equal to the infimum of g on P and we are done. 

Suppose g is unbounded below on P. Then since g is continuous, there is a 
sequence {x,} C_ P ~ g(x , )  ~ - o9 and IIx, ll-> o~. 

If n = l, one of  the half-lines P n [ - o9,0], P n [0,o9) will do. 
If n -> 2, it follows by Theorem 4.7 that 

IIxll ~ o9, x E p ~ g ( x )  --> - oo. 

Since any unbounded convex set contains half-lines, any half-line in P will do. 
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Lemma 4.9. Let  P ( b ) =  {x :Ax  <-b}. Then there is a finite collection {(% 6i): 
i = 1 . . . . .  I} where y~ C_ m, 8~ C_ n such that Vb, x is a pseudo-extreme point  of  
P ( b ) ~  there exists i ~ I such that 

(i) A~xs~ = b,~; 
(ii) A;~  exists ; 

(iii) x~ = 0 where ~ = n ~ 6i. 

The proof  is immediate  f rom Definition 4.1 and will be omitted. 

5. Proof of the main result: ~ C 

The proof  is by induction on the number  of variables. Le t  C be any non-empty  

polyhedral  convex  set defined by 

C = {x ~ R " :  A x  <_b} 

where A E R  m×n. 

For n = 1, if fE~3 ,  then f is either concave  or [ f ( x ) l - ~  as [xl-->o~. In the 

former  case, Theorem 4.6 applies. In the latter case, Theorem 4.8 applies. 

Suppose the result holds for all k < n. Le t  f ~ ~3, f : R" --+ R I. Le t  Q, a and/3 be 
as in Definition 3.1. Since Q is nonsingular, it suffices to prove  the result for g 

defined by 

on the set 

g(x) = f (Qx)  

C = { x : / i x  -< b} 

where fi, = AQ. 
If either a = I~ or/3 = 0, then g is either concave  or norm-coercive  and we can 

use Theorem 4.6 or 4.8. 
So assume a ~  0 , / 3~  ¢1. Let  {x k} = {(x~, x~)} be a minimizing sequence for g in 

the sense that g(x~)'~ - ~  if g is unbounded below on C, or else 

g(xk)",ainf{g(x): x E C} = p > - ~  (say). 

Now for  each k hold x k fixed and solve 

min g(x~,u~), 
A 

subject to u s E C k = { y : A . x  k + f i ~ y < - b } .  

Since g(x  k, .) is concave,  we can apply Theorem 4.6: 
If  g(x  k, .) is unbounded below on (~k, then there is a half line {s + /z t  :/z _> 0} C_ t~k 
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such that 

g(xk, s + l . t t ) ~ - - ~  a s / z ~  

i.e. g is unbounded below on the half-line 

{(x~)  + ~ ( ~ ) "  ~ - ~ O } -  ~ 

and the result is proved. 
Otherwise, Vk, g(x k, ") attains its infimum at a pseudo-extreme point u~ E Ck. 

By Lemma 4.9 there exists (Yi,~) such that 

--_l Ar~ exists ; (1) 

= 0 where ~. =/3 ~ 6i. U fii 

Since the pair (x~, u~) is feasible 

~ u ~  <- b~, - - -  A~i~x~ (2) 

where ~ = m ~ y;. 
Since there are only finitely many such (y~,8~) there is an infinite subsequence 

K such that some (y~,6~) = (y,6) (say) is repeated for all k ~ K. 
Using (1) to eliminate u~ from (2) we get, Vk ~ K 

uk~= d -  Dx k, 

B x ~  <- c 

where 

D 6 "  

c = b~ - f i~d ,  

B = ~ o  - ~ a D .  

Now since k {(X~,X~)} is a minimizing sequence for g(') on C, it follows that 
k k {(x,,ut0} is a minimizing sequence for g(.) on C since by definition of u~, 

k k ~ k k g(x~,u ~) -- g ( x , , x  ~). 

But k k k (X,,UB) = (X~, d -  DX k) Vk E K. Hence {X~}kEr is a minimizing sequence for 
h(.) on ~ where 

A 
h(z)  = g(z, d - Dz),  

= { z : B z  <- c}. 
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We can now apply the induction hypothesis to h(.) on ~ using condition (iii) 
of Definition 3.1 as follows: 

If g is bounded below on C, then 

k k k .--~ oo g(x~,x~)' ,~p as 

so that 

g(xk ,  d - - D x k ) = h ( x k ) ~ p  a s k ~ , k ~ K .  

Hence  there exists $~ E ~ such that h($~) = p i.e. g($~, d - / ) x ~ )  = p, and we are 

done. 
Otherwise g ( x k , x k ) " ~ - - ~  SO that h ( z k ) ~ - ~ , k  E K, i.e. h(.) is unbounded 

below on ~. Hence  there exists a half-line {s +/~t : /z  _> 0} _C ~ such that 

h(s  + ~ t ) ~ - o o  a s / x ~  

i.e. g(.) is unbounded below on the half-line 

in C. This completes the proof.  

6. Concluding remarks 

We might ask questions about the structures of ~3 and ~. 
(i) Neither is closed under addition: Let  f (x)  = x 2 + e -x and g(x )  = - x 2. Then 

both f and g ~ ~3 while f + g ~  ~. 
(ii) ~ is closed under arbitrary affine transformations of the variables: Let  

f E ~,  f : R" ~ R t. Let  B ~ R "×k (any k) and d E R" be arbitrary. We must show 
that [ ( B x  + d)  has the required properties on any C = {x : A x  <- b} C_ R k. 

Let  E = {(x,y) : A x  <- b, y = B x  + d}. Since E is a polyhedral  convex set, so is 
its projection onto y space, Ev  (say). 

If inf{f(Bx + d) : x ~ C} = p > - ~, then inf{f(y) : y E E y }  = p. Since f ~ if, 
there exists y E E y  such t h a t / ( y )  = p. By definition of Ey  there exists • E C 
such that y = BE + d. Hence f ( B x  + d)  = p and we are done. 

If f ( B x  + d)  is unbounded .below on C, t h e n / ( y )  is unbounded below on Er. 
Hence,  there is a halfline H = {s +/. t t : /x ~0}C_ E r  such that f ( s +  t z t ) ~ - o o  as 
/z ~ oo. By using a theorem of the alternative [8] or otherwise, it can be shown 
that there is a halffline G = {g +/x/:/.L >__ 0} C C such that 

s = Bg  + d, 

t = B{. 

Hence f ( B x  + d) ~ - ~ on G as required. 
(iii) It can be easily shown that ~ is closed under affine transformations of the 
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variables y = Bx + d where B has full row rank. The result for general B is not 
known at present. 

(iv) The result of this paper can be slightly generalized by replacing in 
Definition 3.1 the class of norm-coercive functions by an arbitrary subclass of o~. 
That this new ~3 will still be in ~ follows immediately from the proof in Section 
5 where the only property required of norm-coercive functions is that they be in 
Y. 
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