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For solving the Euclidean distance Weber problem Weiszfeld proposed an iterative method. 
This method can also be applied to generalized Weber problems in Banach spaces. Examples 
for generalized Weber problems are: minimal surfaces with obstacles, Fermat's principle in 
geometrical optics and brachistochrones with obstacles. 
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• ..Wenn aber schon einmal Theorie 
getrieben werden soll, (man mrchte die 
Vorliebe da[iir angesichts gewisser miss- 
gliickter Erscheinungen ja allerdings 
manchmal zum Teufel wiinschen) so ist 
als eine ihrer Formen auch diejenige 
nrtig, die die Abstraktion auf die Spitze 
treibt. 

Alfred Weber, 1909 

I. Introduction 

The classical Weber problem of mathematical economics can be formulated as 
follows: Given points al . . . . .  a, E R d, find a point x ~ R d minimizing the func- 
tional 

w,. ffx-  a,ff,  wP) 
i=1 

where w~ are positive weights and II" If is the Euclidean vector norm of R d. This 
problem was stated in the context of location theory in the celebrated book of 
Alfred Weber in 1909 [44] (see also [33]). The same problem was stated as a pure 
mathematical problem by Fermat (see [32]), Cavalieri (see [38, Kap. IX]), Steiner 
(see [10, Vol. I, Ch. IV, §1.1.c]), Fasbender [21] and Sturm [40] and many others. 
In [4] many references to related publications of the 19th century are given. 
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The problem (WP) can be extended and generalized in many respects in order 
to adapt it to different practical needs. We give some possibilities for generaliza- 
tion: 
- -  Using any other norm rather than the Euclidean norm [23, 35, 47]. 

Replacing the wi by more general functions of the norm [46]. 
Minimizing the weighted sum of square roots of more general quadratic 
functions [5, 16]. 
Minimizing the sum of squared Euclidean distances (gravity problem) [20]. 
Imposing constraints on x [12, 16]. 
Optimal location of more than one point [24]. 
Optimal location with randomly located destinations aj [30]. 

Related problems are: 
- -  The convex minimax problem minx max/wi" IIx - aill (see [14, 19]). 

The nonconvex maximin problem maxx mini wi • IIx - a~ll (Maximin: bishop at 
Trier in 342) [13, 36]. 
The nonconvex problem of geometrically nonlinear frameworks [2, 41, 18]. 
Optimal location with integer conditions [6]. 
Optimal location on graphs [15, 27, 39]. 

A detailed investigation of the problems connected with Weber's problem is 
given in the book of Francis and White [26]. Francis and Goldstein [25] gave an 
extensive bibliography. The duality theory for Weber's problem is treated in [3], 
[5], and [31]. 

2. General izat ion of the Eucl idean distance Weber  problem 

Now we are going to generalize the original Weber problem (WP) (cf. [16, 17]). 
It will become evident later on that there is a large class of problems which can 
be formulated as generalized Weber problems. 

Let X be a reflexive Banach space. For an open set J2 _C R a let Y = L~(O) and 
Py = {Y ~ Y I Y -> 0 almost everywhere in J2}. Let A : X × X ~ y be a symmetric 
bilinear continuous operator (see [7, §6.1]), L : X  ~ Y a linear continuous opera- 
tor, q0 ~ Y fixed and w : Y ~ R a continuous linear functional. 

The following conditions are assumed to hold: 
(C1) (A(x, y))2 _< A(x, x ) .  A(y, y) almost everywhere in J2 and for all x and y 

in X (generalized Schwarz inequality). 
(C2) The quadratic operator q(x) := A(x, x) + L(x)  + qo is bounded from below 

q(x) _> a2 almost everywhere in J2 for all x E X, where a > 0. 
(C3) The continuous linear functional w is represented by a function in L=(O) 

which is denoted by w(t). It is assumed that there is a fixed positive constant w0 
such that 0 < Wo <- w(t) almost everywhere in O. 

(C4) The quadratic term of q is norm-coercive, i.e. there is a positive constant 
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m .  I[x[[ 2 -  w(A(x, x)) for all x E X 

(11" II is the norm in X). This means that we have a classical variational problem 
in X which is split into two pieces, namely w and q. 

Now we define another operator  tr : Py-->Py which is nonlinear and is placed 
between w and q. or is defined by 

~r(y(t)) = ~/y--~ for almost all t ~ /2 .  

Condition (C2) implies that O has finite measure,  thus cr is well-defined. 
For  a fixed nonempty closed convex set K C_ X we state the generalized 

Weber  problem 

Find x E K such that 
¢(x) := w(tr(q(x))) is minimal. (GWP) 

(C4) yields ¢(tz • x) >- Wo" Itzl " ~/-m for Ilxll = 1, consequently for fixed xo E K the 
set 

{x ~ K [ ¢(x) -< ~(x0)} (*) 

is bounded and closed and thus weakly compact.  (C1), (C3) and the non- 
negativity of q(x) together imply ¢(x) being a convex functional and thus this 
set is also convex.  We conclude that (GWP) has a solution ([11, Corollary 1.4.1]). 
By (C2) we can even prove strict convexi ty  of ¢(x) so that there is only one 
solution of (GWP) (see [11, Theorem 1.5.2]). 

3. The algorithm of Weiszfeld 

In 1937 Weiszfeld (A. Vazsonyi) [45] proposed a remarkable algorithm for 
solving (WP). This algorithm was generalized in [16]. We now attempt to 
generalize it to (GWP). 

For  any given y ~ Y satisfying y -> o~ a.e. in O (see (C2) for definition of a)  we 
state the auxiliary problem 

Find x E K such that 
w(q(x)/y) is minimal. (A(y)) 

The auxiliary problem means the minimization of a quadratic functional over  K 
which can be regarded as a standard problem in numerical analysis. 

The generalized algorithm of Weiszfeld is 

Step 0: Start with Yo E Y satisfying Yo -> a a.e. in O, put  r : = 0. 
Step 1: Let  Xr+l be a solution of (A(yr)). 
Step 2: Put  yr+l = o'(q(xr+O). 
Step 3: r := r +  1, go to Step 1. 
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When (A(y~)) has always a solution, the algorithm produces an infinite 
sequence of functions x,  It is not difficult to prove the existence of a solution to 

(A(yr)) but this will become clear anyway later on (Corollary 1). (C2) implies 
y,--_ c~ a.e. in O for all r. 

In order to simplify the argumentation we reformulate the problem as follows. 
Define in Z = L2(O) 

Ko = {~7 ~- Z I ~7 >- o-(q(x)) a.e. in O for some x E K}. 

Since K is a nonempty convex set and tr(q(x))  is a convex function, K0 is a 
nonempty convex set. We restate the problems (GWP) and (A(y)): 

Find r / E  Ko such that 
w(~) is minimal (RGWP) 

and 
Find ~ E K0 such that 
wO?2/y) is minimal. (RA(y)) 

It is easily seen that (GWP) and (RGWP) as well as (A(y)) and (RA(y)) are 
equivalent in the sense that for  each solution x of one of the original problems 

= cr(q(x)) solves the restated problem. To each solution 7/ of one of the 
restated problems there exists an x E K such that ~7 -> ~(q(x ) )  which solves the 
corresponding original problem. 

The first theorem states the monotonici ty of Weiszfeld's method: 

Theorem I. *(Xr+l) <<- ~(X,.). 

Proof (see Weiszfeld [45]). 

2 Yr+l --> 2" Yr " Y r + l  - -  y2r~ w(y~÷I[y~) >-- 2" w(y~+1) -- w(yr). 

Since w(yZ~÷l/yr) <-- W(yr) is 

q~(X,+I) = w(y,+O <-- w(yr) = ~(Xr). 

The set {x I w(q(x) /yr)  <-- w(q(x~)/y,)} is nonempty,  bounded, closed and con- 
vex, hence by [11, Corollary 1.4.1] we have 

Corollary 1. Al l  problems (A(y~)) have a solution. 

The following theorem states the main convergence result: 

Theorem 2. Le t  x* be a solut ion o f  (GWP). Then there exists a number  y > 0 
such that  

0 <- ~(Xr) -- ~(X*) <-- ~" X~ ( , p ( X r ) )  2 - -  ( ~ ( X r + l ) )  2. 

Proof. Let  y = y~ and y * =  o'(q(x*)). Define the linear t ransformation T:Z-- ->Z 
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by TW = • • ~/w/X/y. We put y(/~) = Ty + tz • (Ty  - Ty*) and denote by /Xo the 
parameter value which minimizes Ily(~)ll for 0 -</x _ 1. By convexity is Y(/-~o) 
TKo. Now we maximize w07) on Mo={nfllTnll2<_llY(~o)[[ 2) in order to find an 
upper bound for w. This maximization can be performed explicitly since Mo is a 
sphere in TY.  We get w(y)  <-IIX/--ww" YI[" Ily(~o)ll for all ~ E M0. If yl is a solution 
of (RA(y)), then yl E Mo since w072/y) = IITnll 2. As  w e  k n o w  an upper bound for 
w07) on M0 we have 

(w(yO) ~<- I IVw.  yll 2. [ly(/~o)[/2= w(y). Ily(~o)[I 2. 

An elementary calculation yields ((., ,) scalar product in Z) 

ily(~o)[i ~ = iiTyll~ _ ( Zy, Ty - Ty*) 2 
]l Ty - Ty*II 2 

Using [[Tyll 2= w(y) and (Ty, Ty*)= w(y*) we get 

w ( y ) -  w(y*)  [ITy - Ty*It "~ / (w(y) )2- (w(y l ) )  2. <- 

Since ]lTy - Ty*H 2= w(y) -  2. w ( y * ) +  IlTy*ll 2 we get the estimate of the theorem 
where the constant 3' depends on an upper bound and a positive lower bound for 
w(y)  an K0. 

Theorems 1 and 2 together imply convergence of ~(x,) to ~(x*) which implies 
weak convergence of Xr to X*. 

Theorem 3. Xr ~ X* (strongly).  

Proof. The second Fr6chet derivative ~o~h, h) of q~ can be easily calculated. By 
(C1), (C2) and (C4) we get 

q~(h, h) = [[h[[ 2. ~(x),  

where 8(x) is bounded from below on each bounded set. Hence, by [11, 
Theorem 1.6.3], lim Xr = X*. 

4. Discussion of the assumptions 

In order to adapt the generalized Weber problem to different practical situa- 
tions, the basic assumptions (C1-4) have to be modified. 

In the original Weber problem (WP) the set O consists of isolated single points 
/2 ={al . . . . .  an}. In this case is Y - - R  n equipped with the L 1 vector norm. 
Similarly Y can be adapted if ~ has a more complicated structure, e.g. the union 
of an open set with isolated points and arcs (see Example 4 below). 

In many applications is w not a continuous linear functional on the whole 
space Y. It is only necessary for w to be continuous on the set {tr(q(x)) I x E K} 
(see Examples 2 and 4). 
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The most serious assumption is (C2). If there is an x0 E X such that A(x0, x0) > 
0 almost everywhere in O, then A(x, x) >- 0 almost everywhere in 12 for all x E X 
by (C1). If, in addition, L is the zero operator and q0-> a2 almost everywhere, 
then (C2) is true [17] (see Examples 1 and 3). 

If a = 0, then the solution of (GWP) is not necessarily unique (see [45] for 
examples). This implies that Theorem 3 is no longer true, one can only guarantee 
that each accumulation point of {xr} is a solution of (GWP). Moreover, one has 
to find additional conditions to make sure that the problems (A(yr)) make sense. 
For the original Weber problem (WP) a = 0 (see Example 4). 

5. Applications 

We consider some illustrative examples. 

Example 1. As a simple problem having also practical relevance we consider the 
classical Fermat principle of geometrical optics: Given in the atmosphere a 
refraction index n(h) changing with height h. We want to find the path of light 
emitted from A and going to B (see Fig. 1). This path can be found by 

B 

Fig. 1. Fermat ' s  principle. 

minimizing the integral 

fo n(h). + (dh/dx) 2 dx. Vi 

Changing the variables yields 

fa~n(h). ~v/(dx[dh)2+ 1 dh--> Minimum 

which is a generalized Weber problem. We take £2 = (A, B), X the Sobolev 
space W1'2(O) of all those functions whose first generalized derivative is square 
integrable, 

K = {x E X I x(A) = O, x(B) = 1}, q(x) = (dx/dh)2+ 1, w(h) = n(h). 

The problem is of interest in the study of the behaviour of radar waves in the 
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atmosphere and in computations related to the transmission of signals through 
optical fibers [43]. 

Example 2. A quite similiar problem is given by the brachistochrone with 
"obstacle" as formulated in [34] (see Fig. 2). Here one wants to find a path from 

o05 :::JJJ  
B 

Fig. 2. Brachistochrone with obstacle. 

A to B which is traversed under the influence of gravity (constant g) in minimal 
time with the additional restriction that an obstacle is avoided by the path. The 
problem is to minimize 

1 

f[ 3 
0 

Change of variables again results in a generalized Weber problem which differs 
from the problem described above mainly in K being the set of all functions 
fulfilling the boundary conditions and avoiding the obstacle. (The problem might 
be of interest in designing body-slides.) 

Example 3. Another interesting problem is the minimal surface problem. Since 
this problem is a very aesthetic one and since it is a good test problem for 
methods solving nonlinear boundary value problems, a vast amount of literature 
exists. For the aesthetical point of view the reader is referred to [1]. Minimal 
surface problems with obstacles are treated e.g. by Nitsche [37] and Titov [42]. 
Many articles are devoted to the numerical solution of minimal surface problems 
(see e.g. [8] and [28]). A closely related problem is the capillarity problem [22]. 
The author has performed numerical tests in applying Weiszfeld's method to 
discretized minimal surface problems with obstacles [16]. In Fig. 3 the solution 
of the following example problem is shown: 

+1 +1 

f f %/1 + (du[dx) 2 + (du/dy) 2 dy dx, Minimize 
-1 -1  

s u b j e c t t o u = 0  f o r y = - + l , - 1 - < x - < l ,  

u = X / l + y  2 for x = +l ,  - l  < y _< l, 

u -> %/1 - x 2 - y 2  for X 2 "[" y2 ~ 1. 
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Fig. 3. Minimal surface with obstacle. 

Example 4. Returning to the original Weber  problem, we consider the task of 
locating a service center  (e.g. a fire station or a heliocopter station etc.) in a 
contiuous environment.  Let  ~ _C R d (d = 2 or 3) be a bounded open set. For  each 

~ ~2 we denote by w(~) the probability that service is needed in ~:. If the 
service station is located at the point x, the mean distance to the point where 

service is needed is given by 

,p(x) = f IIx -  :11 de 

Here  is X -- R d and q(x)  = ~d=l (X i - ~j)2. In this problem a = 0 as in the original 
Weber  problem. The functional to be minimized in (A(yr)) is 

e(x) = f w ( ~ )  . I Ix - ~II21IIXr - -  ~ll d ~ .  
.o 

In R 2 and R 3 is 1/l lx ,-  ~ll integrable. Since all other terms in the integral are 
bounded in ~,  the integral exists and ¢J(x) is a continuous function. 

6. Numerical considerations 

We add some remarks on the numerical properties of Weiszfeld's algorithm. 
Katz  [29] showed that its convergence is linear when applied to (WP) if the 
solution does not coincide with a destination a i. Katz 's  proof  cannot  be extended 
to (GWP) and, especially in the presence of constraints, one cannot expect  more 
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than linear convergence. Application of the method is, therefore, adviceable if 
the following three conditions are met: 
- -  The solution of (GWP) is only needed with moderate accuracy. Usually in 

practical problems of the type described above, an accuracy of some percent 
is sufficient. 

- -  An efficient computer program for minimizing the quadratic functional in 
(A(y)) is readily available. Note that minimizing a quadratic functional is 
equivalent to solving a linear operator equation. 

- -  A good starting solution is known. It should be mentioned here, that there is 
a close relationship between the minimal surface problem (formulated as 
(GWP)) and Dirichlet's problem ((A(1)) in this context) (cf. [9]). This rela- 
tionship is expressed by the fact that the solution of (A(y*)) also solves (GWP). 
The solution of (A(1)) can therefore be used as a reasonable starting solution for 
Weiszfeld's method. 
In [16] a more detailed discussion of the problem of minimal surfaces with 

obstacles is given. 
A related problem is the computation of the static equilibrium of geometrically 

nonlinear networks in structural mechanics. An impressive example is the 
Olympic tent in Miinchen. Such problems can be solved numerically by a 
method similar to Weiszfeld's [18]. 
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