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This paper describes a method to solve large sparse maximum entropy problems with linear 
equality constraints using Newtons and the conjugate gradient method. A numerical example 
is given to introduce the reader to possible applications of entropy models and this method. 
Some experience from large scale problems is also reported. 
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I. Introduction 

In this paper we will describe an algorithm for  solving the maximum entropy 
problem with linear equality constraints 

minimize ~ xj ln(xj/x°), 
j=l 

subject  to A x = g ,  x>-O, (1) 

where x ° is non-negative and A is an m × n matrix. The algorithm is particularly 
efficient when the matrix A is sparse (i.e. contains many zeroes) and m is much 
less than n. This problem arises f rom a minimum information principle [10]. 

Large sparse problems of this type occur  e.g. in the following situation (cf. 
section 4). We know a flow table x ° for  a certain period [ T - A T, T] and want to 
compute  a flow table x for  the period IT, T + AT]. We have some information 
for the new period (exact and/or forecasts),  which can be expressed as a linear 
system Ax = g. It can then be shown that the solution of (1) will give us the most  
probable solution. For  the concept  of entropy,  see e.g. [5]. 

To solve the entropy problem we transform (1) to a system of non-linear 
equations, which is solved by Newtons  method. In each step of Newtons  method 
the resulting linear system is solved by a scaled version of the conjugate gradient 
method. This approach has several advantages as will be explained in the 
following sections. 
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2. Application of Newtons method 

The Lagrangian for  the problem (1) is 

n 

L ( x ,  fl ,  Y) = ~ xj l n ( x j / x  °) + flT(g _ A x )  - TTx ,  
/=1 

where /3  E R m and 3' E R". This gives us the Kuhn-Tucker  conditions 

l n ( x j / x  °) + 1 -/3Ta. i -- yj = 0, j = 1, 2 . . . . .  n, 

g - A x  = O, "~Tx = O, Y >~ O, 

where a.j denotes the jth column of the matrix A. 
Since ~,']=, x j  l n ( x ] x  °) is a strictly convex function and x and g - A x  are linear 

it follows that a necessary and sufficient condition for the existence of a unique 

solution of the minimization prob!em (1) is that there is a solution of the 
Kuhn-Tucke r  conditions (see e.g. [4]). The first Kuhn-Tucke r  condition can be 
written 

xj = x ° exp(/3Ta.,j - 1 + "r~), J = 1, 2 . . . . .  n (2) 

f rom which it follows that the condition x -> 0 is satisfied if and only if x ° -> 0, i.e. 
the constraint x -> 0 disappears. Therefore ,  substitution of the first Kuhn-Tucke r  
condition into the second gives us 

P i ( f l )  = ~ ai,jx ° e x p { f l T a . , j  - -  I } -  gi = O, i = 1, 2 . . . . .  m (3) 
j=l 

and the problem to be solved is now P ( /3 )=  0. This system of non-linear 
equations can also be viewed as a condition for a stationary point for  the dual 
formulation (minimize ~7=1 x j ( f l ) -  flTg). 

TO apply Newtons  method to the system of non-linear equations (3) we 
determine the related Jacobian matrix P'(/3). We have 

OPi = ~ aijx 0 exp{/3Taki- 1}ak, = ~=1 ai,jxjak,j, 1 <--i, k <- m 
~13k ~=1 " ' " 

and thus the Jacobian matrix can be expressed as 

P ' ( f l )  = \~f3k,  I = A X A  T, where X = diag(xl, x2 . . . . .  x,). 

The idea to apply Newtons  method to entropy problems is due to Erlander [3]. 
We assume in the following that the system A X ° y  = g, y _> 0, is consistent. 

Then there is a solution x* to the minimization problem (1) and for some 
corresponding fl* the Kuhn-Tucke r  conditions are satisfied and P(/3*) -- 0. Note 
that if/3* is a solution to P(/3) = 0 then A X ° y  = g, y _ 0, is consistent because of  
(3). Thus our  assumption is necessary and sufficient for  (1) to have a unique 
solution. 
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Suppose first that the rows in the matrix A X  ° are linearly independent,  i.e. 
r ank (AX °) = m. Then,  f rom (2) it follows that  the Jacobian AXA T is posit ive 

definite and Newtons  method converges  (Newton-Kan to rov ich  theorem [6]) if 

the initial value of /3,/31, is sufficiently close to the solution /3*. We write 

Newtons  method as follows: 

Take  

x jl = x~ exp{a.Vj/31, - 1}, ] = 1, 2, ... , n, (4) 

and for  v = 1, 2, 3, ... compute  x "+1 f rom 

A X ~ A T  A/3 ~ = - ( A x  ~ - g),  (5) 

xy +1 = x~ exp{a.VjA/3"}, j = 1, 2 . . . . .  n. (6) 

If  r a n k ( A X ~ A  T) = r a n k ( A X ° ) <  m, then (5) has not a unique solution h/3 ~. 

However ,  x "+1 is uniquely determined,  because  the componen t  of  A/3 ~ in the 
null-space of A X " A  ~ is annihilated in (6). (Note  that  if A X " A T y  = 0, then we 
have ~ T x i a.,iy = 0, ] = 1, 2 .... , n, and x 7 exp{aYjA/3~} = x 7 exp{a~s(A/3 ~ - y)} 
because  either T a . jy  or x 7 is equal to zero). In this case we can eliminate 

equations in the sys tem A x  = g in such a way that we get a new sys tem M x  = h 

with r ank (AX °) equations. If  we insert M and h instead of A and g in (4)-(6) 

and choose a corresponding initial value of /3  we will get the same sequence x ", 

v = 1, 2, 3 . . . . .  as we get for  the original system. We conclude that the sequence 

x ~, v = 1, 2, 3 . . . . .  in (6) converges  to the solution x* independent  of the rank of 

A X  °, if the initial value/31 is chosen sufficiently close to a solution/3*. 

3. Solution of the systems of linear equations 

If  the matrix A is sparse,  it also can happen that the Jacobian A X A  v becomes  

sparse. If  also the Cholesky factor  of  this matrix is sparse,  then the sys tem (5) 
can be solved efficiently by a direct method.  However ,  in many  practical 

applications A X A  T is not sparse,  and then iterative methods are advantageous  to 
use. Note  also that  we do not need high relative accuracy  in the solution to (5). 

To solve the sys tem of linear equations (5) the conjugate gradient method 
(including scaling [1], [9]) is used. The following algorithm corresponds  to a 
symmetr ic  diagonal scaling of AX~A T to have unit diagonal elements.  

r : - - ( A x ~ - g ) ,  ro : = r ~ r  

D = diag(dl, d2 . . . . .  din), where d i :=  1 a i j x j  

p : = D r ,  r 2 : = r ~ : = r T p ,  A/3 ~ : = 0  (7) 
for  k := 1, 2 . . . . .  M C G  do 

q := A X ~ A T p ,  ql := qTp 

S := r2/qb r3 := r2 
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Afl" := Af l"  + s x p,  r : = - s  x q, rE := rTDr 

if r2/rl < e 2 then stop 
t := rz/ r3, p := D r  + t x p 

This method works well even when the matrix A X " A  T is only positive 
semidefinite (i.e. rank(AX °) < rn) and then Aft" converges to the solution of 
minimum Euclidian norm [1]. The value of M C G  should only be considered as a 
protection and can be set equal to e.g. m 4-2 [8]. The active termination criterion 
in (7) is normally the check if the Euclidian norm of the scaled residual in the 
conjugate gradient method has decreased to at least • times the initial value. 

Tests have been made with different choices of •. In Fig. 1, the number of 
matrix by vector multiplications for the whole algorithm, NG, is given as a 
function of e. The numbers on the curve are the required number of Newton 
steps. The example is derived from the first problem given in this paper where 
only • is changed. For this and also some other examples there were nearly no 
changes in computing time for the whole algorithm when • varied in the range 
[0.05, 0.2]. The reason for this is that the updating of x v (6), which also gives the 
new Jacobian, is nearly as fast as one step of the conjugate gradient method. 
Other termination criterias (e.g. the one described in [7]) have also be con- 
sidered, but they are inefficient to use for the same reason. The following three 
advantages of the scaled conjugate gradient method are important: it converges 
to a minimum norm solution, the required memory space is not more than 
2n + 5m words and it requires only the products A x ,  A2x  and A r z ,  where A2 is 
the matrix (a~j). A faster algorithm than the conjugate gradient method can be 
more expensive to use if it requires more memory space. Note that it is often 
possible to write efficient codes for the products A x ,  AEX and A T z  even when we 
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have a very compact but complicated description of the constraints. For an 
example see [2]. 

We remark that it is possible to apply a conjugate gradient method directly to 
the non-linear problem. However, this is not efficient because twice as much 
matrix by vector multiplications are required in each step compared to the 
conjugate gradient method applied to the linear problem. Besides, in Newtons 
method it is easy to implement accuracy criteria and we do not need to give a 
restart condition for the conjugate gradient method. 

4. Numerical examples 

The algorithm described here has been implemented as a FORTRAN program 
in [2]. We first describe a small numerical example to introduce the reader to 
possible application of this algorithm. In this example we have a model of 
household changes in five years periods for the capital of Sweden, Stockholm. 
The changes can be described in a flow table: 

al  

a2 

a3 

am 

bl b2 b3 

XI,I XI,2 XI,3 
X2,1 X2,2 X2,3 
X3,1 X3,2 X3,3 

Xm,l Xrn,2 Xm,3 

X,1 X :g2  X,3  

b~ 

• .. X1, n Xl* 

...  X2, n X2* 

•.. X3, n X3:~ 

"'" X,,,,, Xm . 

• X,n  X** 

where xi,j means the number of individuals which change from category ai to 
category bj during the five years period. We have also introduced the notations 

x~, = ~_. x~.j. i = 1 .2  . . . . .  m.  
j=! 

x , j = ~ , x ~ . j ,  ] = 1 . 2  . . . . .  n, 
i=1 

and 

( X • ,  j=l  X , j  o r  X * *  i=1 xi:~ . 

In this example we have n = 14 and m = 13. The categories are 
a~ individuals born in Stockholm during the period, 
az in-migrators during the period not older than 44 years, 
a3 in-migrators during the period older than 44 years, 
b~ individuals not older than 44 years that have died during the period, 
bz individuals older than 44 years that have died during the period, 
b3 out-migrators during the period not older than 44 years, 
b4 out-migrators during the period older than 44 years 
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t ~  ¢ q  
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and for  k = 1, 2, 3, 4 and 5: 
a2k+2 = b2k+3 k-person-households,  household head not older than 44 years,  

a2k+3 = bEk+4 k-person-households,  household head older than 44 years.  
N o w  a flow table is wanted for  the period 1975-1980 (Table 2). First we need an 

a priori flow table (i.e. x °) and as such we take the flow table for  the period 
1970-1975 (Table 1). F rom this table we also get some of the new constraints.  

The new values x;, ,  i = 4, 5 . . . . .  13, in Table 2 are set equal to the old values x,j,  

j = 5,6,  . . . ,  14, in Table 1. Fur ther  constraints  are obtained f rom forecasts ,  

namely the values for  xi. ,  i -- 1, 2 and 3, x.~, j = 1, 2, 3 and 4, (see Table 2) and 

X•5 + X:~6 "1- ½(X,7 q-- X,8 ) Jr 31(X:~9 "-~ X:~I0) + 14(X,1 1 "~ X,12) "1- (X:~I3 "~- X,14)/5.25 = 

62800 = the sum of households.  This problem has 18 constraints  and 13 × 14 = 

182 unknowns.  Note  that  m and n have different meanings here than in earlier 

sections. 
All larger households are included in f ive-person-households and because  of  

this we get the value 5.25. We also remark  that we can use x 1= x ° as an initial 
T 1 vector  in Newtons  method (4) because there is a solution to a.j/3 = 1, j = 

1, 2 . . . . .  n. Then the program in [2] was used to compute  Table 2. 

The size of  this example  would increase considerably if we refine the par- 

titions with respect  to the age of the household head and insert the size of 

dwelling and living areas in the categories. 

The second example  is a test  of  the numerical  behaviour  of  the algorithm for  

some large scale problems.  The structure of  the test  problems can be described 

as (for more  detailed information,  see [2]) 

22 minimize xij ln( x j  x ~j), 
i=1 j = !  

n 

subject  to ~ , x i j = x i . ,  i = 1 , 2  . . . . .  m 

~ xi.j = x,j ,  i = 1, 2 . . . . .  n. 

Then the corresponding constraint  matrix A in (1) has m + n rows,  rnn columns 

and 2mn non-zero elements.  For  different values of  m and n we get the results 

shown in Table 3. 

Table 3 
Test on different sizes of large scale problems 

Problem number 1 2 3 4 5 6 7 
Number of constraints 851) 425 850 425 850 425 212 
Number of unknowns 40000 3 9 9 0 0  1 9 8 2 4  2 0 0 3 4  1 0 0 5 6  1 0 0 0 0  10011 
Total number of matrix 

by vector multiplications 44 44 46 44 51) 50 44 
CPU-time in seconds 

on a DEC 10-machine 86 88 48 44 25 25 22 
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We note that the number of matrix by vector multiplications is nearly 
independent of the size of the problem. This is not true when we use the 
unscaled conjugate gradient method, i.e. when we let di = 1, i = 1, 2 . . . . .  m, in (7). 
For this example we get the large improvement from scaling for the first problem 
of Table 3, for which without scaling the number of matrix by vector multi- 
plications increased to 202 and the CPU-time to 407 seconds. 
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