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This paper describes a method to solve large sparse maximum entropy problems with linear
equality constraints using Newtons and the conjugate gradient method. A numerical example
is given to introduce the reader to possible applications of entropy models and this method.
Some experience from large scale problems is also reported.
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1. Introduction

In this paper we will describe an algorithm for solving the maximum entropy
problem with linear equality constraints

minimize Y, x; In(x/x?),
i=1
subjectto Ax=g, x=0, §))

where x° is non-negative and A is an m X n matrix. The algorithm is particularly
efficient when the matrix A is sparse (i.e. contains many zeroes) and m is much
less than n. This problem arises from a minimum information principle [10].

Large sparse problems of this type occur e.g. in the following situation (cf.
section 4). We know a flow table x° for a certain period [T — AT, T] and want to
compute a flow table x for the period [T, T + AT]. We have some information
for the new period (exact and/or forecasts), which can be expressed as a linear
system Ax = g. It can then be shown that the solution of (1) will give us the most
probable solution. For the concept of entropy, see e.g. [5].

To solve the entropy problem we transform (1) to a system of non-linear
equations, which is solved by Newtons method. In each step of Newtons method
the resulting linear system is solved by a scaled version of the conjugate gradient
method. This approach has several advantages as will be explained in the
following sections.
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2. Application of Newtons method
The Lagrangian for the problem (1) is
L(x B.9) = 3, InCofx) + (g — 4%) — 47,

where B €R™ and y €R" This gives us the Kuhn-Tucker conditions

ln(x,- X?)+ 1- BTa.,,- Y= 0, j= 1,2, ..., B,
g—Ax=0, vix=0, y=0,

where a.; denotes the jth column of the matrix A.

Since >, x; In(x;/x?) is a strictly convex function and x and g — Ax are linear
it follows that a necessary and sufficient condition for the existence of a unique
solution of the minimization problem (1) is that there is a solution of the
Kuhn-Tucker conditions (see e.g. [4]). The first Kuhn-Tucker condition can be
written

xi=xlexp(BTa;—1+%), j=12,...,n )

from which it follows that the condition x = 0 is satisfied if and only if x°=0, i.e.
the constraint x = 0 disappears. Therefore, substitution of the first Kuhn-Tucker
condition into the second gives us

P(B)=2 aixlexp{fTa,;—1}—g =0, i=12,..,m 3)
j=1

and the problem to be solved is now P(B8)=0. This system of non-linear
equations can also be viewed as a condition for a stationary point for the dual
formulation (minimize >,-; x;(B) — B"g).

To apply Newtons method to the system of non-linear equations (3) we
determine the related Jacobian matrix P’(8). We have

AP n n .
B_BL 21 a;ix}exp{BTar; — }ay; = 21 aixiai;, 1<ik=m
£ -

and thus the Jacobian matrix can be expressed as

P(B)= (ggl‘:) = AXAT, where X = diag(xy, X3, ... , X,).

The idea to apply Newtons method to entropy problems is due to Erlander [3].

We assume in the following that the system AX°y =g, y =0, is consistent.
Then there is a solution x* to the minimization problem (1) and for some
corresponding B* the Kuhn-Tucker conditions are satisfied and P(8*) = 0. Note
that if B* is a solution to P(8) =0 then AX’y = g, y =0, is consistent because of
(3). Thus our assumption is necessary and sufficient for (1) to have a unique
solution.
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Suppose first that the rows in the matrix AX? are linearly independent, i.e.
rank(AX®) = m. Then, from (2) it follows that the Jacobian AXAT is positive
definite and Newtons method converges (Newton-Kantorovich theorem [6]) if
the initial value of B, B, is sufficiently close to the solution B*. We write
Newtons method as follows:

Take
xj=x}exp{a”B'-1}, j=1,2,..,n “)
and for v =1,2,3, ... compute x**! from
AX?ATAB” = —(Ax" — g), &)
xtt'=xrexp{latAB*}, j=1,2,...n ©)

If rank(AX”A") =rank(AX® <m, then (5) has not a unique solution AB”.
However, x**! is uniquely determined, because the component of AB” in the
null-space of AX"AT is annihilated in (6). (Note that if AX*ATy =0, then we
have xjaT;y=0, j=1,2,..,n, and x! exp{lat;AB”} = x? exp{a”(AB” — ¥)}
because either a’;y or x! is equal to zero). In this case we can eliminate
equations in the system Ax = g in such a way that we get a new system Mx = h
with rank(AX® equations. If we insert M and h instead of A and g in (4)-(6)
and choose a corresponding initial value of B we will get the same sequence x”,
v=1,2,3, .., as we get for the original system. We conclude that the sequence
x*, v=1,2,3,..., in (6) converges to the solution x* independent of the rank of
AX?, if the initial value B! is chosen sufficiently close to a solution 8*.

3. Solution of the systems of linear equations

If the matrix A is sparse, it also can happen that the Jacobian AXAT becomes
sparse. If also the Cholesky factor of this matrix is sparse, then the system (5)
can be solved efficiently by a direct method. However, in many practical
applications AXAT is not sparse, and then iterative methods are advantageous to
use. Note also that we do not need high relative accuracy in the solution to (5).

To solve the system of linear equations (5) the conjugate gradient method
(including scaling {1], [9]) is used. The following algorithm corresponds to a
symmetric diagonal scaling of AX*AT to have unit diagonal elements.

r:=—(Ax*—g), ry:=r'r
D = diag(d,, d,, ..., d,), where d;:= 1/(2 a%,,-x,-”)
j=1

p:=Dr, ni=r:=rTp, AB":=0 (7
fork:=1,2,..., MCG do

q:=AX"A'p, q::=q'p

si=nlq, n=n
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AB*:=AB*+sXp, ri=—sXgq, r:=rDr
if r/r; < €? then stop
t2=r2/r3, p2=Dr+t><p

This method works well even when the matrix AX*AT is only positive
semidefinite (i.e. rank(AX% <m) and then AB"* converges to the solution of
minimum Euclidian norm [1]. The value of MCG should only be considered as a
protection and can be set equal to e.g. m + 2 [8]. The active termination criterion
in (7) is normally the check if the Euclidian norm of the scaled residual in the
conjugate gradient method has decreased to at least € times the initial value.
Tests have been made with different choices of e. In Fig. 1, the number of
matrix by vector multiplications for the whole algorithm, NG, is given as a
function of €. The numbers on the curve are the required number of Newton
steps. The example is derived from the first problem given in this paper where
only € is changed. For this and also some other examples there were nearly no
changes in computing time for the whole algorithm when ¢ varied in the range
[0.05, 0.2]. The reason for this is that the updating of x* (6), which also gives the
new Jacobian, is nearly as fast as one step of the conjugate gradient method.
Other termination criterias (e.g. the one described in [7]) have also be con-
sidered, but they are inefficient to use for the same reason. The following three
advantages of the scaled conjugate gradient method are important: it converges
to a minimum norm solution, the required memory space is not more than
2n + 5m words and it requires only the products Ax, A;x and ATz, where A, is
the matrix (a?;). A faster algorithm than the conjugate gradient method can be
more expensive to use if it requires more memory space. Note that it is often
possible to write efficient codes for the products Ax, A,x and ATz even when we

NG A
golL. X12 4 4 4

70 4 4 4
601

501
30-
201
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have a very compact but complicated description of the constraints. For an
example see [2].

We remark that it is possible to apply a conjugate gradient method directly to
the non-linear problem. However, this is not efficient because twice as much
matrix by vector multiplications are required in each step compared to the
conjugate gradient method applied to the linear problem. Besides, in Newtons
method it is easy to implement accuracy criteria and we do not need to give a
restart condition for the conjugate gradient method.

4. Numerical examples

The algorithm described here has been implemented as a FORTRAN program
in [2]. We first describe a small numerical example to introduce the reader to
possible application of this algorithm. In this example we have a model of
household changes in five years periods for the capital of Sweden, Stockholm.
The changes can be described in a flow table:

bl bZ b3 bn
ay | X X2 X130 0t X | Xix
Ay | X201 X2 X33 v Xoa | Xog
asz | X3 X3p X33 v Xaa | Xag
A | Xm1 Xm2 Xm3 " Xmn | Xmy
x*l x*Z x:k3 N x*n x**

where x;; means the number of individuals which change from category a; to
category b; during the five years period. We have also introduced the notations

and

In this example we have n = 14 and m = 13. The categories are

a, individuals born in Stockholm during the period,

a, in-migrators during the period not older than 44 years,

a3 in-migrators during the period older than 44 years,

b, individuals not older than 44 years that have died during the period,
b, individuals older than 44 years that have died during the period,

b, out-migrators during the period not older than 44 years,

b4 out-migrators during the period older than 44 years
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and for k=1,2,3,4 and 5:

Q242 = byess k-person-households, household head not older than 44 years,

aoks3 = baa k-person-households, household head older than 44 years.

Now a flow table is wanted for the period 1975-1980 (Table 2). First we need an
a priori flow table (i.e. x°) and as such we take the flow table for the period
1970-1975 (Table 1). From this table we also get some of the new constraints.
The new values x4, i =4, 5, ..., 13, in Table 2 are set equal to the old values x;,
j=35,6,...,14, in Table 1. Further constraints are obtained from forecasts,
namely the values for x5, i =1, 2 and 3, x4, j =1, 2, 3 and 4, (see Table 2) and
Xss + Xus + 347 + Xag) + Mo + Xser0) + HXserr + Xz2) + (Kseis + X510)/5.25 =
62800 = the sum of households. This problem has 18 constraints and 13X 14 =
182 unknowns. Note that m and n have different meanings here than in earlier
sections.

All larger households are included in five-person-households and because of
this we get the value 5.25. We also remark that we can use x' = x° as an initial
vector in Newtons method (4) because there is a solution to a78'=1, j=
1,2, ..., n. Then the program in [2] was used to compute Table 2.

The size of this example would increase considerably if we refine the par-
titions with respect to the age of the household head and insert the size of
dwelling and living areas in the categories.

The second example is a test of the numerical behaviour of the algorithm for
some large scale problems. The structure of the test problems can be described
as (for more detailed information, see [2])

n
minimize >, > x; In(x;/x%),
i=1j=1
n
subject to Z Xij=Xix, i=1,2,...,m
j=1
m
Zx,-,,-=x*,~, 1= 1,2, ey .

1

Then the corresponding constraint matrix A in (1) has m + n rows, mn columns
and 2mn non-zero elements. For different values of m and n we get the results
shown in Table 3. ‘

Table 3
Test on different sizes of large scale problems
Problem number 1 2 3 4 5 6 7
Number of constraints 850 425 850 425 850 425 212
Number of unknowns 40000 39900 19824 20034 10056 16000 10011
Total number of matrix

by vector multiplications 44 44 46 44 50 50 44

CPU-time in seconds
on a DEC10-machine 86 88 48 44 25 25 22
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We note that the number of matrix by vector multiplications is nearly
independent of the size of the problem. This is not true when we use the
unscaled conjugate gradient method, i.e. whenweletd;=1,i=1,2, ..., m, in (7).
For this example we get the large improvement from scaling for the first problem
of Table 3, for which without scaling the number of matrix by vector multi-
plications increased to 202 and the CPU-time to 407 seconds.
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