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every W-L matrix being an assignment matrix. 
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1. Introduction 

Cons ide r  a finite c o n n e c t e d  graph in which  two of the ver t ices  are dis- 

t inguished.  A path of the graph is a set of edges which  c o n n e c t  the two vert ices.  

A cut is a set of  edges which  has at least  one  edge in c o m m o n  with each path. 

H e n c e  the de le t ion  of a set of  edges which  cons t i tu tes  a cut  d i sconnec t s  (cuts) 

the two vert ices .  Cons ide r  the n u m b e r  of edges in each path  and  in each cut. The  

smal les t  of  the path  n u m b e r s  is called the length of the graph and  the smal les t  of  

the cut  n u m b e r s  is cal led the width. Moore  and  S h a n n o n  [5] have shown  that  the 

p roduc t  of  the length and  width  c a n n o t  exceed  the total  n u m b e r  of  edges of the 

graph. The i r  p roof  uses  the cost  a lgor i thm [3, pp. 130-134] to cons t ruc t  a set of  

d i s jo in t  c u t s - - o n e  for  each m e m b e r  of the shor tes t  path connec t i ng  the vert ices.  

The  ex i s tence  of such a par t i t ion  implies  the inequal i ty .  

*Due to unfortunate circumstances this article was originally published (Mathematical Programming 
16(2)(1979) 245-259) without the proof corrections. The correct version is printed herewith. Please use 

this version when referring to the paper. 
* The preparation of this paper was supported by the National Science Foundation under grant 

GP-14. 
f Editor's Note: This paper, although written in 1963, was sought for inclusion in Mathematical 

Programming Study 8--Polyhedral Combinatorics, which was dedicated to the memory of D.R. 
Fulkerson. Unfortunately, an editorial mishap prevented its inclusion. Nevertheless, the historical 
importance of the paper, the fact that it has been widely referenced and influenced Fulkerson's and 
others' work in the area has convinced the Editor that it should be published and hence made readily 
available. Alfred Lehman has given his assent to this despite his reluctance to publish a paper which 
is not current. 
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More generally, suppose that a pair of non-negative numbers, called the 
edge-length and edge-width, is given for each edge of the graph. Consider the 
sum of edge-lengths corresponding to each path and the sum of edge-widths 
corresponding to each cut. The smallest of the path sums is called the length of 
the graph and the smallest of the cut sums is called the width. This definition 
includes the Moore-Shannon definition as a special case (edge length and width 
both equal to 1). The product of this length and width cannot exceed the product 
of the length and width of each edge, summed over the edges of the graph. 
Duffin [1, Theorem 6] has shown this result using an argument based on 
Kirchoff's laws. It can also be shown by a modification of the cost algorithm 
decomposition used by Moore and Shannon. 

Now consider not a graph but a finite abstract set and a non-null collection of 
non-null subsets of this set. The members of the set are called edges and the 
distinguished subsets are called paths. A cut is again a collection of edges which 
intersects each path. Given a pair of non-negative numbers associated with each 
edge, the length and width are defined as before to be the smallest path and cut 
sums. If, for every possible assignment of edge weights, the product of the width 
and length does not exceed the product of the edge width and length summed 
over all the edges, then the system of paths is said to satisfy the width-length 
inequality. For example, suppose that there are three edges and that each pair of 
edges constitutes a path. Then for edge width and length equal to 1 the system 
has width and length equal to 2. Since there are only three edges the width- 
length inequality fails. The problem is to determine, without assigning various 
edge weights, whether a given collection of paths satisfies the width-length 
inequality. 

The collection of paths can also be given as an incidence matrix. Assume that 
the edges and paths are simply ordered. The entry in row i and column j is 1 if 
the jth path contains the ith edge. Otherwise the entry is 0. A criterion for the 
width-length inequality will be given in terms of the non-singular submatrices of 
this matrix. For this reason the paper will employ matrix notation. 

2. W - L  Matrices 

Let M be a given matrix whose entries are limited to the integers 0 and 1. It is 
also assumed that the integer 1 occurs in every column. Suppose that A is any 
non-singular (square) submatrix. A was obtained from M by deleting certain 
rows and columns. Let A* be the submatrix of M obtained by deleting the same 
rows and the complementary columns. A* (but not A) is allowed to be empty. 
Thus each row of M is either deleted or is split between A and A*. By a 
permutation of the rows and columns of M, A can be placed in the lower left 
hand corner of M. Then the relation between M, A, and A* is displayed by 

M 
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It will suffice to consider only those submatrices A which are at least 3 by 3. 
e and e* will denote row matrices whose entries are all l ' s  and whose length is 

the number of rows and columns of A* respectively. 

Definition. M is said to be a W - L  m a t r i x  if 
for  each non-singular submatrix A such that 

e A  -~ > 0 (i.e. every  entry of e A  -1 is positive) 
and 

e A - I A  * >- e* (i.e. every  entry of e A - 1 A  * is at least 1) 

hold, 
then A is a permutation matrix. 

(A permutat ion matrix has a single 1 in each row and column. All other entries 

are O's. Equivalently,  e A  -- e.) 

Suppose that M contains two columns such that for  every  entry 1 in the first 
column, there is a corresponding entry 1 in the second column. Then M is a 

W - L  matrix if and only if the submatrix obtained by deleting the second column 
is a W - L  matrix. The proof  is as follows. Consider the submatrix A. Since A is 

non-singular and e A  -1 has positive entries, at most one of the two columns 
enters into A. If the two columns agree on the rows constituting A and A*, the 
deletion of one of them from A* will not affect the validity of e A - I A  * >-e*. 

Otherwise it must be the second column which enters into A* and its deletion 
also does not affect the validity of e A - ~ A  * >- e*. 

Thus in determining whether  M is a W - L  matrix it suffices to consider the 
reduced matrix consisting of those columns which contain a minimal set of l 's.  

Also any duplicate columns can be deleted. All of the examples given in this 
paper are already reduced. Finally it should be noted that any permutation of the 
rows and columns of a W - L  matrix is also a W - L  matrix. 

If M is unimodular (that is, every  square submatrix has determinant 0, + 1, or 
- 1 )  then it is a W - L  matrix. This is the case since unimodularity implies that A -I 
has integer entries; e A  -~ has positive entries and hence A can have at most a 
single 1 in each column. Since A is non-singular it must be a permutation. (This 
observation for  the width-length inequality was made by Duffin and Hoffman 
[2].) 

It can .be verified that the following two matrices, each of rank 4, are W - L  
matrices, but that their transposes are not. Consequently neither matrix is 
unimodular. 

it 1oolli 101 it 0 0 1 1  
1 0 1 0 1 1 1 

0 1 0 1 1 0 0 
1 0 0 1 0 1 1 
0 1 1 0 1 1 0 
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If  one or more rows are deleted f rom a W - L  matrix and if the resultant  matrix 

has a 1 in each column then it is also a W - L  matrix. The corresponding proper ty  

does not hold for  columns: Consider the 3 by 3 submatr ix A in the lower 

left-hand corner of  the second matrix, eA -~ > 0 holds but eA-~A  * >_ e* does not 

and A is not a permutat ion matrix. Thus by definition the submatr ix  consisting of 

the first three columns is not a W - L  matrix. Fur thermore  this example  shows 

that the condition eA-~A  * >_ e* is a necessary part  of the definition of a W - L  
matrix. 

e ~ and e ~ will denote  row matrices whose entries are all l ' s  and whose length 
is the number  of  rows and columns of M respectively.  

Given M, let l and w be row and column matrices whose entries are 
non-negative real numbers  and whose length (number of columns and rows 

respectively) is the number  of rows of M. c and p denote row and column 

matrices whose entries are limited to O's and l ' s  and whose length also is the 

number  of rows of M. Fur thermore  c is to satisfy c M  >-e ~ and p is to be a 

column of M. Since M has no zero columns,  at least one c, namely c = e #, 
always exists. 

Definition. M is said to satisfy the wid th - l eng th  inequal i ty  if 
for each pair of matrices l and w, 

( m i n l p ) ( m i n c w ) < _ l w  

holds. 

In the terminology of the introduction, p and c are paths and cuts, l and w are 

the edge lengths and widths, and minp lp and mine cw are the length and width of 
M. The basic result of this section is that M is a W - L  matrix if and only if it 

satisfies the width-length inequality. This is shown, in circular fashion, by the 

following three lemmas.  

Lemma 1. I f  M satisf ies  the w id th - l eng th  inequali ty,  then it m u s t  be a W - L  

matrix .  

Proof. Given A, where e A  -1 • 0 and e A - 1 A  * >- e* hold, let l have the entries of 

eA -~ in those positions corresponding to the rows of M which are in A. The 
remaining entries in l are O's. Thus minp lp = 1. 

Let  w have the entries of A e  x (T denotes transposition) in those positions 
corresponding to the rows of M which are in A. The remaining entries in w can 
be any real numbers  greater  than ee x. By the width-length inequality, mine cw <- 

lw = ee x and hence there exists co such that  CoW <- ee T. From the construct ion of 
w it follows that Co can have non-zero entries only in those positions cor- 
responding to rows of M which are in A. Fur thermore ,  since coM >-e ~ and 
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CoW <---ee T hold, coM must  have  l ' s  in those positions corresponding to the 

columns of M which are in A. Consequent ly  eA -1 is a submatr ix  of  Co. Since 

eA -~ is positive, eA -1 = e, eA  --- e, and hence A is a permutat ion matrix. 

Definition. M has the cut  proper ty  if 
for any matrix 1 such that minp lp = 1 there exists a matrix c such that 

c has O's in every  position in which l has O's and 

for  any p satisfying lp = 1, then cp = 1. 

Clearly the same proper ty  results if minp ip = 1 and lp = 1 are replaced by 

min,  ip = k and Ip = k where k is any posit ive constant.  This modified definition 

is used in the proof  of  L e m m a  3. 

Lemma 2. I f  M is a W - L  matr ix ,  then it has  the cut  property .  

Proof. Suppose l is given and minp lp = 1. Consider  all/o'S such that lop = 1 for  

all p such that lp = 1 and lo has O's in all positions in which l has O's. 

Among these 10's chose one (loo) for which the set of p ' s  such that 10p -- 1 and 

the set of  0 entries are jointly maximal  (i.e., neither can be increased without 
decreasing the other.) Suppose  l ° also has this maximal  set of  O's and (tight) p ' s .  

(It is not  required that  minp l°p = 1 hold.) For  a sufficiently small posit ive 

number  E, (1 + E ) l o o - d  ° also has the propert ies  of loo. If  l ° S  10o, then E can 
be increased until either ((1 +E)loo--El°)p = 1 holds for  some additional p or 

(1 + e)loo-E! ° has an additional 0 entry. Since neither is possible,  l ° is identical 
with loo. 

Now construct  A as follows. Delete those rows of M which correspond to 0 

column entries in loo and delete those columns p for  which loop > 1. By the 
uniqueness argument  concerning loo, a subset  (possibly all) of the remaining 

(truncated) columns f rom a non-singular square matrix A. Since M is a W - L  

matrix and eA -1 > 0 and eA-~A * >_ e* hold, A is a permutat ion matrix and hence 

eA -1= e. Equivalently the non-zero entries of  100 are all l 's .  Thus c = lo0 is the 
required cut. 

Lemma 3. I [  M has the cut  property ,  then it also satisf ies the wid th - l eng th  
inequality.  

Proof. Let  l be given. I f  minp lp = 0, then the inequality is satisfied. Otherwise,  
there exists c~ given by  the cut proper ty .  For  sufficiently small posit ive E, l - ¢c~ 
has non-negative entries and 

min lp = min(l - ecl)p + min eclp = min(l - ~c~)p + e. 
P P P P 
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Consequently, for any w, 

l w - ( m i n l p ) ( m i n c w )  = ( l - , C l ) W - ( m i n ( l - , c O p ) ( m i n c w )  

+ , ( c l w - r n ~ n  c w )  

> - ( ' - e c , ) w - ( m i n ( l - , c O p ) ( m i n c w ) .  

Thus the validity of the width-length inequality for l - ~c~ implies the validity of 
the inequality for I. Furthermore, for any P0 such that lpo = minp lp holds, 

( l - ~c,)po = min lp - ¢clpo = rain lp - E = min(lp - ¢cl)p. 

can be increased until either some additional entry of l -Ec~ is 0 or 
some P0 such that lpo > min, lp satisfies (l - ¢c~)po = minp (i - Ecl)p. Let this 
maximum e be denoted by ~. If minp( / -  ElcOp = 0, then the inequality holds. 
Otherwise, application of the cut property to I-E~c~ yields c2, EE and so on. 
Eventually, since M is finite, the process must terminate in l - ~ i  Eic~ where 
minp (l - ~,i ~ici)p = 0 and consequently 

l w - ( m i n l p ) ( m i n c w ) > - ( l - ~ / , i c , ) w > - O .  

It should be noted that the ci's and E~'s are independent of w. 

This concludes the proof of the equivalence of the width-length and W - L  
properties. 

An examination of the proof of Lemma 3 shows that if M has the cut 
property, then for any l there exist c~'s and (non-negative) ~'s such that 
~ ¢ici < l and ~ i  ~i -> minp lp. Moreover the existence of these ci's and ~'s imply 
that 

l w - ( m i n l p ) ( m i n c w )  

-Z,,(c, w mincw)'O 
Also, since ciM >- e ~, ~,i ~e ~ <- ~,~ eic~M <- IM holds and hence ~ i  ei -< minp lp. 
The above together with the equivalence of the W-L ,  width-length and cut 
properties yields the following result. 

Lemma 4. M is a W - L  matrix  i f  and only i f  given l, there exist c~ . . . . .  cn together 
with non-negat ive numbers  ~1 . . . . .  ~n such that ~,i ¢ici <- l and ~,i ¢i = minp lp. 

This is the analogue, for path collections, of the max-potential rain-work 
theorem given in [1, p. 207]. 
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Given M, let M # be the matrix whose columns are the matrices c T satisfying 

cM >- e ~. The columns of M ~ may be arranged in any order. 

Lemma 5. M # is a W - L  matrix i[ and only if M is a W - L  matrix. 

Proof. First note that pTcT = (cp) T --> 1 holds for all p's and c's. Thus each pT is a 

"cut"  (p~M ~>- e ~ )  with respect to the edge-path matrix M ~. Furthermore for 
any cut with respect to M ~ there is a column p of M such that the cut has l's in 
every position in which pT has l's. This is a consequence of the duality of 
Boolean functions. Given I and w, the width-length inequality for M # assumes 
the form (mine lcr)(minpprw)<-Iw. This is equivalent to (minp wrp)(minc cl r) <-- 

wrl T which is the width-length inequality for w r, l T, and M. Thus M # satisfies 

the width-length inequality if and only if it is satisfied by M. 

M ~, which is the dual of M, will be used in the proof of Lemma 6. The use of 
M # instead of M essentially interchanges the paths and cuts. 

Let s be a column matrix whose entries are non-negative numbers and whose 
length is the number of columns of M. In addition, s is required to satisfy the 
inequality Ms < w. 

Definition. M is said to satisfy the max-flow min-cut equality if 
for each matrix w, 

max e&s = rnin cw 
$ C 

holds. 

(This formulation of the max-flow min-cut theorem is due to Duffin.) 
By definition, c M  >-e ~ and Ms <-w hold. Hence e~s <-cMs <-cw and con- 

sequently maxs e~s <- mint cw is automatic. The max-flow min-cut property thus 
asserts, for each w, the existence of s such that e~s >- minc cw. In the terminology 
of the introduction s ascribes a "flow" to each path such that the sum of flows 
corresponding to a given edge does not exceed the width (given by w) of that 

edge, and the sum of all flows is the width (minc cw) of the collection of paths 
given by M. When discussing flows, the term "capacity" is customarily used in 
place of "width". A detailed treatment of the max-flow min-cut property for 
graphs can be found in [3, Chapter I]. 

A subtle but important distinction should be made between the usual concept 
of flow in a network and the one used in this paper. In a network, flows (such as 
currents) admit superposition. This requires that the flows associated with each 
edge of a graph have both a magnitude and an orientation (direction). For the 
flows considered here there is a magnitude but no orientation and, in general, no 
orientation is possible. Superposition of flow magnitudes is subject only to a 
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triangule inequality. Nevertheless,  in the problem of maximizing the flow be- 
tween two vertices of a graph, the magnitudes of the oriented flows agree with 
the ones given here. The reason is that, by superposition, any assignment of 
oriented path flows can be transformed into an assignment where all flows 
corresponding to any edge have the same orientation. This property is exploited 
in [4] in the derivation of a system of inequalities for  resistor networks. 

For the reasons just given, the following result generalizes only the unoriented 

version of the usual max-flow min-cut theorem [3, p. 11]. 

Lemma 6. M satisfies the max-flow min-cut  equality if and only if it is a W - L  
matrix. 

Proof. Since the ci's in Lemma 4 need only satisfy ~ ;  Eic~ -<- l, they can be chosen 
from those c's having a maximal set of 0 entries. Hence in applying Lemma 4 to 
M ~ the ci's can be replaced by pr 's .  Thus M ~ is a W - L  matrix if and only if, 
given w T, there exist pT's and E~'s such that ~ e~p~ <-w r and ~ i  ~i : mine wTcT'~ 
and hence if and only if, given w, there exists s (whose non-zero components  
are the Ei's) such that Ms <- w and maxs e~s = mine cw. The result now follows 

from Lemma 5. 

Lemmas 1, 2, 3 and 6 are summarized in the following theorem. Note that the 

only proper ty  which does not involve either l or w is that of being a W - L  

matrix. 

Theorem 1. The following four assertions are equivalent: 

(i) M is a W - L  matrix, 
(ii) M satisfies the width-length inequality, 

(iii) M has the cut property, 

(iv) M satisfies the max-flow rain-cut equality. 

3. Graphs 

In this section it is shown that the path collection of any finite directed or 
undirected graph satisfies the width-length inequality. The proof  given here uses 
a weakened form of the cut property.  

Definition. M has the weak cut property if for  any matrix l such that rain v lp = 1 

there exists a matrix l* such that 

the entries of l* are O's and l 's ,  
1" has O's in every position in which l has O's, and 
for any p satisfying lp = 1, then l*p = 1. 

(Note that l* need not be a cut.) 
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Lemma 7. M has the weak  cut  proper ty  i f  and  only i f  it has  the cut  property.  

Proof. Since the cut c given by the cut property satisfies the requirements o n / * ,  
the cut proper ty  implies the weak cut property.  Now assume the validity of the 

weak cut property and consider A such that eA -~ > 0 and eA-1A  * >- e*. Let  l be 
defined as in the proof  of Lemma 1. Then by the given properties of I*, eA = e 

must hold. Thus M is a W - L  matrix and hence has the cut property.  

As a consequence of Lemma 7, the weak cut proper ty  can be added to the list 

given in Theorem 1. 

Let  R be a relation on the set of integers {0, 1, ..., n} (that is, R C {0, 1 . . . . .  n} 2) 
such that (0, 0) is not a member  of R and 

(*) there exists kl, . . . ,  km satisfying ORkl, . . . ,  kjRkj÷~ . . . . .  k~RO. 

A pa th  is a subset P of {1 . . . . .  n} such that R restricted to the set {0}UP 
satisfies (*). (Note that any superset of a path is also a path.) 

By assumption, the set {1 . . . . .  n} is a path and no path is empty. (Hence n is at 
least 1.) It will be shown that the collection of paths of R satisfies the 

width-length inequality. 

Given R and an indexing of its paths, the corresponding incidence matrix M 

has the entry 1 in row i and column j if the jth path contains the number i. 
Otherwise the entry is 0. 

Theorem 2. M,  as descr ibed  above,  is a W - L  matrix .  

Proof. Given l such that minp lp = 1, let l* be defined as follows. Consider any 
k~ . . . . .  km satisfying ORk~ . . . . .  kjRkj+~ . . . . .  kmRO. The set path P ={ki , . . . ,km} 
yields a matrix path p. If lp = 1 then select the first kj in k~ . . . . .  km which 
corresponds to a positive entry in I. Let  the corresponding entry in l* be 1. 

Assign all possible l 's  in this manner. The remaining entries of l* are O's. From 
the construction of M and l* it can be verified that l*p > l holds only if lp > 1. 

Hence  M has the weak cut proper ty  and by Lemma 4 and Theorem 1 it is a W - L  
matrix. An alternate proof  of this theorem can be derived from the cost 
algorithm procedure used by Moore and Shannon. 

R can also be considered as a directed graph. The vertices of this graph are 
indexed by 0, 1, . . . ,  n and the directed edges are the pairs (i, j) (initial and 
terminal vertices) such that iRj  holds. The paths corresponding to R are those 
collections of vertices (not including 0) forming a directed path which initiates 
and terminates at the 0 vertex. In this graph the weights ! and w are assigned to 
the vertices instead of the edges as was the case in the introduction. 

The width-length inequality still holds when weights are assigned to both 
edges and vertices: Consider a finite connected graph in which two vertices are 
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distinguished. The edges can individually be either directed or undirected. 
Lengths and widths are assigned to each edge and to each vertex, excepting the 
distinguished vertices. A path is a collection of edges and vertices which connect 
the two distinguished vertices. For each pair of adjacent edges in the path, the 
common vertex is assumed to be a member of the path. In the case of directed 
edges the two distinguished vertices are called "initial" and "terminal" and each 
directed edge of the path must be oriented from the initial and towards the 
terminal vertex. A cut is any collection of edges and vertices which intersects 
each path. The length and width are defined as in the introduction except that the 
sums include both edge and vertex weights. 

An equivalent collection of paths can also be derived from an appropriate 
relation R: Let both distinguished vertices be assigned the number 0 and let the 
edges and remaining vertices be labeled 1 . . . . .  n. iRj  will denote that the edge 
labeled i is incident on the vertex labeled j or that the vertex i is incident on the 
edge j. In the case of directed edges iR j  denotes that vertex i is the initial vertex 
of the edge j or that the vertex j is the terminal vertex of the edge i. It is clear 
that the collection of paths of R is isomorphic with the collection of paths of the 
graph. Thus, by Theorems 1 and 2, both path collections satisfy the width-length 
inequality. 

If weights are assigned only to certain edges and vertices then the width- 
length inequality still holds. The only modification is that the path sets are 
restricted to those edges and vertices carrying assigned weights. In the case of 
planar graphs it is possible to assign weights to edges and faces. Since this is the 
same as the weighting of edges and vertices in the dual graph it will not be 
discussed further. 

It is always possible to replace a graph with weighted edges by a graph with 
weighted vertices. In the first of the following examples the edges, indexed by 
1 . . . . .  5, are weighted. In the second example the same weights are ascribed to 
the corresponding vertices. Both graphs yield the same incidence matrix. 

*lo) ~(0) 

1 2 1 2 0 0 1 

0 1 1 
1 0 1 

4 5 0 1 0 

~(0) ~(0) 

The transformation of a graph with weighted vertices into one with weighted 
edges may require the introduction of unweighted directed edges. For example 
consider the following vertex and edge-weighted graphs and their common 
incidence matrix. This matrix cannot be realized by weighting only the edges of 
an undirected graph. 
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~(0) *(0) 

2 ~ / ~ 2  1 1 0 

0 0 1 
1 0 0 

3 4 0 1 1 

*(o) *(o) 

The W - L  property is also applicable to bipartite graphs [3, pp. 4%50]. The 
following transport  example comes from a problem posed by L.S. Joel. It 
requires the use of Theorem 1 instead of Theorem 2. 

A continuous commodity has m sources and n destinations. Each destination 
is directly connected to at least one source and receives an aggregate shipment 
of one unit f rom its sources. The cost of these shipments is a charge vii per unit 
shipped f rom source i to destination ] plus a charge w; per unit for  the maximum 
shipment f rom source i. It is desired to assign flows x; i f rom source i to 

destination j so as to minimize the total cost. Alternatively suppose that the per 
unit charge wi is replaced by a fixed charge wi which is levied for any (non-zero) 

use of the source i, regardless of the amount  of shipment. Does this alternative 
necessarily increase the total cost? 

In matrix notation the problem is this. One is given an m by n matrix v where 

0-< v 0 -< ~ (an infinite cost vi~. is assigned if there is no connection between 
source i and destination j) and an m by 1 matrix w where 0 -< w~ < ~. In addition, 
each column of v has a finite entry. Let  x denote any m by n matrix such that 
0 -< x~j < ~ and ~]i xii = 1 holds for  all j. It is desired to minimize first, 

v~jxij + ~ w~ max xij 

and second, 

{~ i f xn  otherwise. . . . . .  x/, are all 0, ~1 l)ijXij + ~ Wi6i where ¢~i = 

Are these minima equal? (Clearly the second minimum is never less than the 
first.) 

Le t  M be the m by n matrix obtained from v by replacing each finite v; i by 1 
and each infinite vii by 0. It will be shown that a necessary condition for equality 
over  the class of all v's and w's which yield M is that M be a W - L  matrix. In 
the case that the finite v;j's depend only on ], the W - L  proper ty  is both necessary 
and sufficient. The proof  is by the following argument. 

The restriction of  the vo's means that the value of ~ij  v~jx~j, being finite, must be 
the constant ~ i  min;vii- Hence  it suffices to minimize only the summations 
containing the w~'s. Also, neglecting the vli's, the cost is not changed if each xli is 
replaced by maxjx~j--and ~]~x~i= 1 is replaced by ~]~x~i_>l. Thus the first 
problem is to find l (where l = (maxj x u . . . . .  maxj x,i) ) which minimizes lw  subject 
to the constraint IM>_ e ~. 
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Suppose that M is a W - L  matrix. Then by the width-length inequality mine cw <- 

(minp/p)(minc cw)<-  lw and hence there exists Co such that cow --- lw holds for all 
admissible I. Consequently lw can be minimized by a 0-1 matrix and thus the 
minimum value of ~i wi~ is exactly the same as the minimum of ~;~ w~ max; x~j. Now 
conversely suppose that the minima are the same; that is, that lw can be minimized 

by a 0-1 matrix lo. Since IoM >- e ~ holds, lo is a cut. Hence mine cw <- low <- Iw. Thus 
for all I's such that minp lp = 1 and for all w's, (minp Ip)(min~ c w )  <- lw holds. This is 
a scaled version of the width-length inequality and hence M is a W - L  matrix. 

Finally, to show that the two minima need not be equal, it suffices to exhibit a 
non-W-L matrix. In terms of the original problem let v be 

and w be 

(i). 
Then the first minimum cost is 9 while the second, which must necessarily be an 
integer, is 5. These costs are realized by 

x =  ½ 0 and x =  
½ ½ 

respectively. 

0 
0 

4. Discussion 

Those path collections which satisfy the width-length inequality have been 
characterized combinatorially by the W - L  matrix property.  Another  approach to 
the problem is to characterize non-W-L matrices which in a certain sense are 
minimal: 

If a row is deleted from a W - L  matrix the resulting matrix is W-L.  If a row 
together with all columns which have an entry 1 in that row are deleted, the 
resulting matrix is also W-L.  In each case it is assumed that the resulting matrix 
has an entry 1 in each column. The validity of the first assertion is a con- 
sequence of the definition of a W - L  matrix while the validity of the second 
assertion follows from the same argument applied to the dual M #. These 
deletions are analogous to the deletion of an edge of a graph by short-circuiting 
or open-circuiting respectively. 

Now suppose that M is not a W - L  matrix. Further suppose that the deletion 
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of any row or a row and its associated columns (as mentioned above) yields a 
W - L  matrix. Such matrices will be called minimal. Equivalently, M is minimal if 
there exist an l and w such that (minp lp)(minc cw)> lw and any such l and w 
have no zero entries. Hence  the dual M # of a minimal matrix M is also a 
minimal matrix. 

A matrix M is a W - L  matrix if and only if it cannot  be reduced, by the 
previous row and column deletions, to a minimal matrix. Thus the role of the 
minimal matrices in the width-length inequality is similar to that of the two 
Kuratowski  (non-planar) graphs in characterizing planar graphs. Unfortunately 
the number of minimal matrices is infinite. Three types are displayed below. 

(il l°°°i)(i 11111 i)(i°°°° i) 
I oooo  

0 0 0 0 1  0 1 0 0 0  0 0 1 1 0  
1 0 0 1 0  0 0 1 0 0  0 1 1 0 0  
1 0 1 0 1  0 0 0 1 0  1 1 0 0 0  
0 1 0 1 1  0 0 0 0 1  1 0 0 0 0  
0 1 1 0 0  0 0 0 0 0  0 0 0 0 0  

The first of the above examples is also the incidence matr ix--points  versus 
l ines- -of  the seven point project ive plane. The second example is one of a class 

of degenerate project ive planes. The other members of this class are the 
analogous m by m matrices beginning with m = 3. They  satisfy the two axioms: 
two points determine a line and two lines determine a point, but fail to satisfy 

the axiom: there exist four points no three of which are on a line. These 
project ive plane examples are self-dual in the sense that M #'~ has the same 
columns as M #. (The only self-dual W - L  matrix, in reduced form, is the matrix 
(1). This is shown, using minimization methods,  in [4].) The third example is 
based on a cycle of odd length. The other members  of this class are the 

analogous 2n + 1 by 2n + 1 matrices beginning with n = 2. All of these examples 
possess the geometric duality M = M r (invariance under interchange of points 
and lines). Howeve r  the members of the third class are not self-dual, that is they 
fail to satisfy M ##= M ~. In fact, the reduced form of  the dual of the n = 4 
matrix, given below, is not even square. 

11 0 1 0 1 0 1 0 1 1 0 1 ~  
1 0 1 0 1 0 1 0 1 1 0 

1 0 1 1 0 1 0 1 0 1 0 1 
1 0 1 1 0 1 0 1 0 1 0 
0 1 0 1 1 0 1 0 1 1 1 
1 0 1 0 1 1 0 1 0 0 1 \!1OlOllO1 O i/ 

0 1 0 1 0 1 1 0 1 1 
1 0 1 0 1 0 1 1 0 1 
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Other than these three types and their permutations and duals, no additional 
minimal matrices have been found. Whether or not this list is complete, the 
multiplicity of minimal matrices seems to preclude their usefulness as a W-L 
matrix characterization. (Cf. author's foreword.) 

In the theory of resistor networks, both linear and non-linear, either of 
Kirchoff's laws can be replaced by an appropriate minimization condition. (In 
the continuous case the corresponding theory applies to the Dirichlet problem.) 
Suppose that potential is applied between two vertices of a passive resistor 
network. Then the validity of the width-length inequality is a necessary and 
sufficient condition that the two minimizations yield the same result. Since the 
width-length inequality is automatic for graphs (and in Euclidean space [1, p. 
214]) the preceding statement has meaning only for more generral path collec- 
tions. The details are given in [4]. 

Either of the above minimizations can be reformulated as a maximization in 
such a way that the function being maximized does not exceed (but eventually 
equals) the function being minimized. It is the width-length inequality which 
keeps these functions from passing. A motivation in the study of minimal and 
W-L matrices was to gain insight into the corresponding connective structure. 
Unfortunately only the following network interpretation has been found: The 
fixing of the potential difference between two vertices of a graph determines the 
potential difference solely for those edges which directly connect the two 
vertices. This is trivial for graphs as the potentials at all internal vertices remain 
arbitrary. Yet this is the property which is abstracted in the notion of a W-L 
matrix. Basically the question of structure is still unsolved. A suitable answer 
might be expected to extent this theory to the continuous case. 

Finally, it should be noted that the equivalence of the W-L property and the 
width-length inequality (Theorem 1) applies to certain infinite matrices: Assume 
that M is at most countably infinite and that A is a finite non-singular submatrix. 
The "min" (minimum) operation of the width-length inequality is replaced by 
the "inf" (infimum) operation. Also it is assumed that the sum of the components 
of l and w converge. (This assumption appears to be necessary.) Lemma 1, that 
the width-length inequality implies the W-L property, is valid for these infinite 
matrices. The reverse implication follows from Lemmas 2 and 3 provided that l 
and w have only a finite number of non-zero entries. It is also valid, by the 
continuity of the infimum operation, if the sum of the components of l and w 
converge. 
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