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In a recent paper [1], Aganagic and Cottle have established a constructive characterization
for a Py-matrix to be a Q-matrix. Among the principal results in this paper, we show that the
same characterization holds for an L-matrix as well, and that the symmetric copositive-plus
Q-matrices are precisely those which are strictly copositive.
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1. Introduction

A‘Q-matrix is a real square matrix M for which the linear complementarity
problem, (g, M), of finding a vector x such that

g+Mx=0, x=0 and x"(g+Mx)=0

has a solution for every vector g. The class of Q-matrices is denoted by Q. A
Py-matrix is a real square matrix with nonnegative principal minors. Recently,
Aganagic and Cottle [1] established the characterization below.

Theorem. Let M be a Py-matrix. The following are equivalent
(A) MeqQ,
(B) M ER, and
(C) M ER,.

Here, R denotes Karamardian’s class of regular matrices [5], i.e., the following
system is inconsistent
Mx +t= 0, X; > 0,

0#x=0, t=0 m
Mx+t=0, x;=0,

where M, is the i-th row of M; and R, denotes the class of matrices M for which
the problem (0, M) has a unique solution, or equivalently, system (1) is in-
consistent for ¢t = 0.
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In this paper, we investigate the validity of the above theorem for some other
classes of matrices.

2. Main results

We review some definitions. The class of S-matrices, denoted by S, consists
of those real square matrices M for which there is a vector x =0 such that
Mx > 0. Obviously, Q C S. A real square matrix M is said to be semi-monotone
if for every 0 # x = 0, there exists an index k such that x, > 0 and (Mx), = 0. The
class of semi-monotone matrices is denoted by L, [3]. Py-matrices are certainly
semi-monotone [4]. So are copositive matrices (i.c., real square matrices M such
that xTMx =0 for all x = 0). The class of L,-matrices, denoted by L,, consists of
those real square matrices M satisfying the condition: for every 0 # x = 0 with
Mx =0 and xTMx = 0, there exist nonnegative diagonal matrices D; and D, such
that Dox# 0 and (D;M + M™D,)X = 0. We define L = L, N L,. This class L was
introduced by Eaves [3] who showed that if M is an L-matrix, then it is a Q-matrix if
and only if it is an S-matrix. A copositive matrix M is called copositive-plus if
x™x =0 and x = 0 imply (M + M")x =0 and strictly copositive if x"Mx = 0 and
x =0 imply x = 0. Clearly, copositive-plus and strictly copositive matrices belong
to L. A flat point of M [2] is a vector x such that x"Mx =0 and (M + M")x = 0.

We establish our first result which shows that Lemma 1 in [1] remains valid if
P, is replaced by the larger class L. The proof is virtually a restatement of that
for the cited Lemma, but with the substitution of P, by L.

Lemmal. Let M € L,NRy. Then M € R, thus M € Q.

Proof. Suppose that the system (1) has a solution ¥ for f =0. We must have
t >0. Hence for x; >0, we have Mx <0. This contradicts the assumption that

M € L,. The contradiction establishes the lemma.
Corollary 2. Let M € R, be copositive. Then M € R, thus M € Q.
Lemma 3. Let M€ L,N Q. Then M € R,.

Proof. Suppose that the system (1) has a solution £ for ¢ =0. We must have
#TMZ% = 0. By assumption, there exist nonnegative diagonal matrices D; and D,
such that D,# 0 and (D;M + M™D,)% = 0. Hence

(£TD)M = — (Mx)"D, <0.

Consequently, if we choose g =0 with g; <0 for (D,%);# 0, the problem (g, M) is
infeasible. This contradiction establishes the lemma.
Combining Lemmas 1 and 3, we deduce:
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Theorem 4. Let M € L. The following are equivalent
(A) MEQ,
(B) M €R,
(C) M ERy, and
D) MeS.

It is quite natural to wonder whether Theorem 4 (without condition (D)) will
remain valid if L is replaced by L;. The difficulty lies in establishing (or
providing a counterexample to) the inclusion (L; N Q C Ry). In the rest of the
paper, we establish several results which we believe will be useful for the
resolution of this conjecture.

Proposition 5. Let M € L., N Q. Then the system
Mx=0, x>0 2

is inconsistent.

Proof. The semi-monotonicity of M implies that Mx <0, x =0 is inconsistent.
By Tucker’s theorem of the alternative [6, p. 29], there 1s a 0 # y =0 such that
MT"y =0. If the system (2) is consistent, then we must have My =0. Con-
sequently, the problem (g, M) is infeasible if g =0 with g; <0 for y; > 0. This
contradiction establishes the proposition.

Remark. The inconsistency of the system (2) is equivalent to the fact that any
nonzero solution to (0, M) must have some zero component(s).

Corollary 6. Let M € Q be copositive. Then the system (2) is inconsistent.

Proposition 7. Let M€ L N Q. If X is a nonzero solution to (0, M), then X
contains at least two nonzero components.

Proof. Indeed, if x; >0 and %; =0 for all j# i, then we must have m; =0 and
m;; =0 for all j# i. Choose a vector q with ¢; <0 and g; >0 for j#i. Let Z be a
solution to (g, M). Then by the choice of g, we must have Z >0 for some j# i.
For such an index j, we have

(g+M2);=0

which implies
;, muZ, = —(q; + m;Zz;) <0.
Consequently, for the vector x defined by x; = 0 and x; = 3, for k# i, there is no

index k such that x;, >0 and (Mx), =0. This contradicts the assumption that
M € L,. The contradiction establishes the proposition.
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Theorem 8. Let M € Q be copositive. Then the only flat point of M which is also
a solution to (0, M) is the zero vector.

Proof. Suppose that x =0 is a nonzero flat point of M that is also a solution to
0, M). Let

a={i:x;>0} and a={j:x; =0}
Since Mx =0 and xTMx =0, we must have (Mx), = 0. It is easy to see that

(x + 6u)"™M(x + 6u) = 0°u" Mu.

If u; =0, the left side of the above equation is nonnegative for 6 > 0 sufficiently
small. Thus u"Mu =0 provided that u; = 0. This implies that for all 6,

(x +60u)"™M(x+ 6u)=0 if u; =0. 3)

Choose a vector g such that g, <0 and g; > 0. Let z be a solution to (g, M). It is
then easy to show that if A > 0 is sufficiently small so that x, — Az, >0, then

(x —A2)i(M(x — Az2)); <0 for (x —Az);#0.
Hence it follows that for such a A, we have
(x —A2)"™M(x—Az) <0
which contradicts (3). The contradiction establishes the theorem.
Corollary 9. Let M € Q be symmetric and copositive. The following implication
is valid:

Mx=0, x=0>x=0. 4

Proof. In fact, any vector x =0 satisfying Mx =0 is a flat point of M which is
also a solution to (0, M). By Theorem 8, the only such vector is zero.

Remark. The implication (4) is weaker than the statement that (0, M) has a
unique solution. Nevertheless, Corollary 9 does not follow from either Theorem
4 or Proposition 5.

Corollary 10. Let M € Q be symmetric and copositive-plus. Then M is strictly
copositive.

Proof. Let x =0 be such that x"Mx = 0. Since M is symmetric and copositive-
plus, it follows that Mx =0. Hence by Corollary 9, we must have x =0.

Consequently, M is strictly copositive.

Combining Theorem 4 and Corollary 10, we deduce:
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Theorem. 11. Let M be copositive plus. The following are equivalent:
(A) MeQ,
(B) M ER,
(C) M eR,, and
(D) MeS.
If in addition, M is symmetric, then any one of the above is equivalent to:
(E) M is strictly copositive, and
(F) the implication (4) holds.

Remark. Corollary 10 (and thus the entire Theorem 11) also follows directly
from Theorem 4.
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