SHORT COMMUNICATION

ON Q-MATRICES

Jong-Shi PANG

Graduate School of Industrial Administration Carnegie-Mellon University, Pittsburgh, PA, U.S.A.

Received 31 May 1978 Revised manuscript received 17 November 1978

In a recent paper [1], Aganagic and Cottle have established a constructive characterization for a P_0 -matrix to be a Q-matrix. Among the principal results in this paper, we show that the same characterization holds for an L-matrix as well, and that the symmetric copositive-plus Q-matrices are precisely those which are strictly copositive.

Key words: Characterization, Classes of Matrices, Linear Complementarity Problem.

1. Introduction

A Q-matrix is a real square matrix M for which the linear complementarity problem, (q, M) , of finding a vector x such that

 $q + Mx \ge 0$, $x \ge 0$ and $x^T(q + Mx) = 0$

has a solution for every vector q. The class of Q-matrices is denoted by Q. A *Po-matrix* is a real square matrix with nonnegative principal minors. Recently, Aganagic and Cottle [1] established the characterization below.

Theorem. *Let M be a Po-matrix. The following are equivalent*

 (A) $M \in Q$, (B) *M E R, and* (C) $M \in R_0$.

Here, R denotes Karamardian's class of regular matrices [5], i.e., the following system is inconsistent

$$
M_i x + t = 0, \quad x_i > 0, M_i x + t \ge 0, \quad x_i = 0, \quad 0 \ne x \ge 0, \quad t \ge 0
$$
 (1)

where M_i is the *i*-th row of M; and R_0 denotes the class of matrices M for which the problem $(0, M)$ has a unique solution, or equivalently, system (1) is inconsistent for $t = 0$.

In this paper, we investigate the validity of the above theorem for some other classes of matrices.

2. Main results

We review some definitions. The class of *S-matrices,* denoted by S, consists of those real square matrices M for which there is a vector $x\geq 0$ such that $Mx > 0$. Obviously, $Q \subseteq S$. A real square matrix M is said to be *semi-monotone* if for every $0 \neq x \geq 0$, there exists an index k such that $x_k > 0$ and $(Mx)_k \geq 0$. The class of semi-monotone matrices is denoted by L_1 [3]. P_0 -matrices are certainly semi-monotone [4]. So are *copositive matrices* (i.e., real square matrices M such that $x^T M x \ge 0$ for all $x \ge 0$). The class of L_2 -matrices, denoted by L_2 , consists of those real square matrices M satisfying the condition: for every $0 \neq x \geq 0$ with $Mx \geq 0$ and $x^T Mx = 0$, there exist nonnegative diagonal matrices D_1 and D_2 such that $D_2x \neq 0$ and $(D_1M + M^TD_2)X = 0$. We define $L = L_1 \cap L_2$. This class L was introduced by Eaves [3] who showed that if M is an L -matrix, then it is a Q-matrix if and only if it is an S-matrix. A copositive matrix M is called *copositive-plus* if $x^TMx = 0$ and $x \ge 0$ imply $(M + M^T)x = 0$ and *strictly copositive if* $x^TMx = 0$ and $x \ge 0$ imply $x = 0$. Clearly, copositive-plus and strictly copositive matrices belong to L. A flat point of M [2] is a vector x such that $x^T M x = 0$ and $(M + M^T)x = 0$.

We establish our first result which shows that Lemma 1 in [1] remains valid if P_0 is replaced by the larger class L_1 . The proof is virtually a restatement of that for the cited Lemma, but with the substitution of P_0 by L_1 .

Lemma 1. Let $M \in L_1 \cap R_0$. Then $M \in R$, thus $M \in Q$.

Proof. Suppose that the system (1) has a solution \tilde{x} for $t = 0$. We must have $t > 0$. Hence for $x_i > 0$, we have $M_i x < 0$. This contradicts the assumption that $M \in L_1$. The contradiction establishes the lemma.

Corollary 2. Let $M \in R_0$ be copositive. Then $M \in R$, thus $M \in Q$.

Lemma 3. Let $M \in L_2 \cap Q$. Then $M \in R_0$.

Proof. Suppose that the system (1) has a solution \tilde{x} for $t = 0$. We must have $\tilde{x}^T M \tilde{x} = 0$. By assumption, there exist nonnegative diagonal matrices D_1 and D_2 such that $D_2\tilde{x} \neq 0$ and $(D_1M + M^TD_2)\tilde{x} = 0$. Hence

$$
(\tilde{\mathbf{x}}^{\mathrm{T}} D_2) \mathbf{M} = -(\mathbf{M}\tilde{\mathbf{x}})^{\mathrm{T}} D_1 \leq 0.
$$

Consequently, if we choose $q \le 0$ with $q_i < 0$ for $(D_2 \tilde{x})_i \ne 0$, the problem (q, M) is infeasible. This contradiction establishes the lemma.

Combining Lemmas 1 and 3, we deduce:

Theorem 4. Let $M \in L$. The following are equivalent (A) $M \in O$, (B) $M \in R$, (C) *M E Ro, and* (D) $M \in S$.

It is quite natural to wonder whether Theorem 4 (without condition (D)) will remain valid if L is replaced by L_1 . The difficulty lies in establishing (or providing a counterexample to) the inclusion $(L_1 \cap Q \subseteq R_0)$. In the rest of the paper, we establish several results which we believe will be useful for the resolution of this conjecture.

Proposition 5. Let $M \in L_1 \cap Q$. Then the system

$$
Mx = 0, \quad x > 0 \tag{2}
$$

is inconsistent.

Proof. The semi-monotonicity of M implies that $Mx < 0$, $x \ge 0$ is inconsistent. By Tucker's theorem of the alternative [6, p. 29], there is a $0 \neq y \ge 0$ such that $M^{T}y \ge 0$. If the system (2) is consistent, then we must have $M^{T}y = 0$. Consequently, the problem (q, M) is infeasible if $q \le 0$ with $q_i < 0$ for $y_i > 0$. This contradiction establishes the proposition.

Remark. The inconsistency of the system (2) is equivalent to the fact that any nonzero solution to $(0, M)$ must have some zero component(s).

Corollary 6. Let $M \in Q$ be copositive. Then the system (2) is inconsistent.

Proposition 7. Let $M \in L_1 \cap Q$. If \bar{x} is a nonzero solution to $(0, M)$, then \bar{x} *contains at least two nonzero components.*

Proof. Indeed, if $\bar{x}_i > 0$ and $\bar{x}_j = 0$ for all $j \neq i$, then we must have $m_{ii} = 0$ and $m_{ij} \ge 0$ for all $j \ne i$. Choose a vector q with $q_i < 0$ and $q_j > 0$ for $j \ne i$. Let \overline{z} be a solution to (q, M) . Then by the choice of q, we must have $\bar{z}_i > 0$ for some $j \neq i$. For such an index j , we have

$$
(q+M\bar{z})_j=0
$$

which implies

$$
\sum_{k\neq i} m_{jk}\bar{z}_k = -(q_j+m_{ji}\bar{z}_i) < 0.
$$

Consequently, for the vector x defined by $x_i = 0$ and $x_k = \overline{z}_k$ for $k \neq i$, there is no index k such that $x_k > 0$ and $(Mx)_k \ge 0$. This contradicts the assumption that $M \in L₁$. The contradiction establishes the proposition.

Theorem 8. Let $M \in Q$ be copositive. Then the only flat point of M which is also *a solution to (0, M) is the zero vector.*

Proof. Suppose that $x \ge 0$ is a nonzero flat point of M that is also a solution to $(0, M)$. Let

$$
\alpha = \{i \colon x_i > 0\} \quad \text{and} \quad \bar{\alpha} = \{j \colon x_j = 0\}.
$$

Since $Mx \ge 0$ and $x^T Mx = 0$, we must have $(Mx)_{\alpha} = 0$. It is easy to see that

$$
(x + \theta u)^{\mathrm{T}} M(x + \theta u) = \theta^2 u^{\mathrm{T}} M u.
$$

If $u_{\tilde{\alpha}} \ge 0$, the left side of the above equation is nonnegative for $\theta > 0$ sufficiently small. Thus $u^T M u \ge 0$ provided that $u_{\overline{\alpha}} \ge 0$. This implies that for all θ ,

$$
(x + \theta u)^{\mathrm{T}} M (x + \theta u) \ge 0 \quad \text{if } u_{\bar{\alpha}} \ge 0. \tag{3}
$$

Choose a vector q such that $q_{\alpha} < 0$ and $q_{\bar{\alpha}} > 0$. Let z be a solution to (q, M) . It is then easy to show that if $\lambda > 0$ is sufficiently small so that $x_{\alpha} - \lambda z_{\alpha} > 0$, then

$$
(x - \lambda z)_i (M(x - \lambda z))_i < 0 \quad \text{for } (x - \lambda z)_i \neq 0.
$$

Hence it follows that for such a λ , we have

 $(x - \lambda z)^T M(x - \lambda z) < 0$

which contradicts (3). The contradiction establishes the theorem.

Corollary 9. Let $M \in Q$ be symmetric and copositive. The following implication *is valid:*

$$
Mx = 0, \quad x \ge 0 \Rightarrow x = 0. \tag{4}
$$

Proof. In fact, any vector $x \ge 0$ satisfying $Mx = 0$ is a flat point of M which is also a solution to $(0, M)$. By Theorem 8, the only such vector is zero.

Remark. The implication (4) is weaker than the statement that $(0, M)$ has a unique solution. Nevertheless, Corollary 9 does not follow from either Theorem 4 or Proposition 5.

Corollary 10. Let $M \in Q$ be symmetric and copositive-plus. Then M is strictly *copositive.*

Proof. Let $x \ge 0$ be such that $x^T M x = 0$. Since M is symmetric and copositiveplus, it follows that $Mx = 0$. Hence by Corollary 9, we must have $x = 0$. Consequently, M is strictly copositive.

Combining Theorem 4 and Corollary 10, we deduce:

Theorem. 11. *Let M be copositive plus. The [ollowing are equivalent:*

- (A) $M \in O$,
- (B) $M \in R$,
- (C) $M \in R_0$, and
- (D) $M \in S$.

If in addition, M is symmetric, then any one of the above is equivalent to:

- (E) *M is strictly copositive, and*
- (F) *the implication* (4) *holds.*

Remark. Corollary 10 (and thus the entire Theorem 11) also follows directly from Theorem 4.

Acknowledgment

The author is grateful to the two referees for pointing out that Proposition 5 is true without the assumption $M^T \in L_1$.

References

- [1] M. Aganagic and R.W. Cottle, "A note on Q-matrices", Tech. Rept. SOL78-5, Systems Optimization Laboratory, Department of Operations Research, Stanford University (March, 1978).
- [2] R.W. Cottle, G.J. Habetber and C.E. Lemke, "Quadratic forms semi-definite over convex cones", *Proceedings of the international symposium on mathematical programming*, Princeton, 1967, pp. 551-565.
- [3] B.C. Eaves, "The linear complementarity problem", *Management Science* 17 (1971) 621--634.
- [4] M. Fiedler and V. Ptak, "Some generalizations of positive definiteness and monotonicity", *Numerische Mathematik* 9 (1966) 163-172.
- [5] S. Karamardian, "The complementarity problem", *Mathematical Programming* 2 (1972) 107-129.
- [6] O.L. Mangasarian, *Nonlinear programming* (McGraw-Hill, New York, 1969).