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In a recent paper [1], Aganagic and Cottle have established a constructive characterization 
for a P0-matrix to be a Q-matrix. Among the principal results in this paper, we show that the 
same characterization holds for an L-matrix as well, and that the symmetric copositive-plus 
Q-matrices are precisely those which are strictly copositive. 

Key words: Characterization, Classes of Matrices, Linear Complementarity Problem. 

1. Introduction 

A Q-matr ix  is a real square matrix M for which the linear complementarity 

problem, (q, M), of finding a vector x such that 

q + M x > O ,  x>_O and x T ( q + M x ) = O  

has a solution for every vector q. The class of Q-matrices is denoted by Q. A 

Po-matrix is a real square matrix with nonnegative principal minors. Recently, 

Aganagic and Cottle [1] established the characterization below. 

Theorem. Let  M be a Po-matrix. The following are equivalent 
(A) M E Q, 

(B) M E R, and 

(C) M ~ R0. 

Here, R denotes Karamardian 's  class of regular matrices [5], i.e., the following 
system is inconsistent 

M~x + t = O, x i > 0 ,  
0 # x - 0 ,  t_>0 (1) 

M~x+t>_O, x j = 0 ,  

where M~ is the i-th row of M;  and R0 denotes the class of matrices M for which 

the problem (0, M) has a unique solution, or equivalently, system (1) is in- 
consistent for t = O. 
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In this paper,  we investigate the validity of the above theorem for some other 
classes of matrices.  

2. Main results 

We review some definitions. The class of S-matrices, denoted by S, consists 

of those real square matrices M for  which there is a vector  x-> 0 such that 

Mx > 0. Obviously,  Q _c S. A real square matrix M is said to be semi-monotone 

if for  every 0 ~ x -> 0, there exists an index k such that xk > 0 and (MX)k >- O. The 

class of semi-monotone matrices is denoted by L1 [3]. P0-matrices are certainly 

semi-monotone [4]. So are copositive matrices (i.e., real square matr ices M such 

that xVMx >- 0 for  all x -> 0). The class of L2-matrices, denoted by L2, consists of 
those real square matrices M satisfying the condition: for every  0 # x >-0 with 
Mx >- 0 and xVMx = 0, there exist nonnegat ive diagonal matrices DI and D2 such 

that D2x# 0 and ( D I M +  MTD2)X = 0. We define L = L1 (3 L2. This class L was 
introduced by Eaves  [3] who showed that if M is an L-matr ix ,  then it is a Q-matr ix if 

and only if it is an S-matrix. A coposit ive matrix M is called copositive-plus if 

xXMx = 0 and x - 0 imply ( M  + MT)x = 0 and strictly copositive if xVMx = 0 and 

x -> 0 imply x = 0. Clearly, coposit ive-plus and strictly coposit ive matr ices belong 

to L. A fiat point of M [2] is a vector  x such that xVMx -- 0 and ( M  +MT)x  = O. 
We establish our first result which shows that L e m m a  1 in [1] remains valid if 

P0 is replaced by the larger class Lv  The proof  is virtually a res ta tement  of that 

for the cited Lemma,  but with the substitution of P0 by L~. 

Lemma 1. Let  M C L~ (q Ro. Then M E R, thus M E Q. 

Proof. Suppose that  the sys tem (1) has a solution £ for  t = 0. We must  have  
t > 0. Hence  for  xi > 0, we have Mix < 0. This contradicts the assumption that 

M E L v  The contradiction establishes the lemma. 

Corollary 2. Let  M E Ro be copositive. Then M E R, thus M E Q. 

Lemma 3. Let  M E L2 f3 Q. Then M E Ro. 

Proof. Suppose that the system (1) has a solution g for  t = 0. We must  have 
£TM$ = 0. By assumption,  there exist nonnegative diagonal matrices D1 and/92 

such that Dzg#  0 and (D1M + MTDz)g = 0. Hence  

(~TD2)M = - (MY,)VD1 <- O. 

Consequently,  if we choose q -< 0 with qi < 0 for  (D25)i ~ 0, the problem (q, M) is 
infeasible. This contradiction establishes the lemma. 

Combining L e m m a s  1 and 3, we deduce: 
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Theorem 4. Let  M E L. The following are equivalent 

(A) M E Q, 

(B) M ~ R ,  

(C) M E Ro, and 

(D) M ~ S. 

It  is quite natural to wonder  whether  Theorem 4 (without condition (D)) will 

remain valid if L is replaced by L1. The difficulty lies in establishing (or 

providing a counterexample  to) the inclusion (LI A Q _c R0). In the rest  of  the 

paper,  we establish several  results which we believe will be useful for  the 
resolution of this conjecture.  

Proposition 5. Let  M E L I  (q Q. Then the system 

M x  =O, x > 0  

is inconsistent. 

(2) 

Proof. The semi-monotonici ty  of M implies that Mx < 0, x -  0 is inconsistent. 

By Tucker ' s  theorem of the alternative [6, p. 29], there is a 0 # y - 0 such that 

MTy >-0. If  the sys tem (2) is consistent,  then we must  have MTy = 0. Con- 

sequently,  the problem (q, M)  is infeasible if q-< 0 with q,-< 0 for y~ > 0. This 

contradict ion establishes the proposition. 

Remark. The inconsistency of the sys tem (2) is equivalent  to the fact  that any 

nonzero solution to (0, M)  must  have some zero component(s) .  

Corollary 6. Let  M @ Q be copositive. Then the system (2) is inconsistent. 

Proposition 7. Let  M E L1 V)Q. I f  2 is a nonzero solution to (0, M),  then 2 

contains at least two nonzero components.  

Proof. Indeed,  if xi > 0 and xi = 0 for  all j ~  i, then we must  have mii = 0 and 

mii >- 0 for  all j ¢  i. Choose  a vector  q with qi < 0 and qj > 0 for  j ~  i. Le t  f be a 
solution to (q, M).  Then by the choice of q, we must  have ~- > 0 for some j ~  i. 
For  such an index j, we have 

(q + M~)~ = 0 

which implies 

mjkZk = -- (qj + mji~i) < O. 
k~i 

Consequent ly,  for  the vector  x defined by xi = 0 and Xk = ~k for  k ~  i, there is no 

index k such that  Xk > 0 and (MX)k >-O. This contradicts  the assumption that 
M E L~. The contradict ion establishes the proposit ion.  
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Theorem 8. Let M C Q be copositive. Then the only flat point o f  M which is also 

a solution to (0, M)  is the zero vector. 

Proof.  Suppose  that  x -> 0 is a nonze ro  flat point  o f  M that  is also a solution to 

(0, M).  Le t  

a={i:xi>O} and d = { j : x j = O } .  

Since Mx >- 0 and xTMx = 0, we must  have (Mx)~ = 0. It is easy  to see that  

(X + Ou)TM(x + OU) = 02uTMu. 

If  U~ --> 0, the left side of  the above  equat ion  is nonnega t ive  for  0 > 0 sufficiently 

small. Thus  uTMu >-- 0 provided  that  ua -> 0. This implies that  for  all 0, 

(x + Ou)TM(x + OU) >-- 0 if u~ ---> 0. (3) 

Choose  a vec to r  q such that  q~ < 0 and qs > 0. Let  z be a solution to (q, M).  It is 

then easy  to show that  if A > 0 is sufficiently small so that  x~ - hz,  > 0, then 

(x - Az)i(M(x - Az))i < 0  for  (x - Az)i~ O. 

H e n c e  it fol lows that  for  such a A, we have  

(X -- Az)TM(x - AZ) < 0 

which  cont radic ts  (3). The cont radic t ion  establishes the theorem.  

Corol lary  9. Let  M E Q be symmetric and copositive. The following implication 

is valid: 

M x = 0 ,  x _ > 0 ~ x = 0 .  (4) 

Proof. In fact ,  any  vec to r  x-> 0 sat isfying Mx = 0 is a flat point  of  M which  is 

also a solution to (0, M).  By T h e o r e m  8, the only  such vec to r  is zero.  

Remark .  The  implicat ion (4) is weaker  than the s ta tement  that  (0, M)  has a 

unique solution. Never the less ,  Corol la ry  9 does  not  fol low f rom either T h e o r e m  

4 or  P ropos i t ion  5. 

Corollary 10. Let  M E Q be symmetric and copositive-plus. Then M is strictly 

copositive. 

Proof.  Le t  x > 0 be such that  xXMx = O. Since M is symmet r i c  and coposi t ive-  
plus, it fol lows that  Mx =0. H e n c e  by Corol lary  9, we  mus t  have x = 0 .  

Consequen t ly ,  M is strictly coposi t ive .  

Combin ing  T h e o r e m  4 and Coro l la ry  10, we deduce :  
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Theorem.  11. Let  M be copositive plus. The [ollowing are equivalent: 

(A) M ~ Q, 

(B) M E R ,  

(C) M ~ Ro, and 

(D) M E S. 

I f  in addition, M is symmetric,  then any one o[ the above is equivalent to: 

(E) M is strictly copositive, and 

(F)  the implication (4) holds. 

R e m a r k .  C o r o l l a r y  10 (and thus  the  en t i re  T h e o r e m  11) a lso  fo l lows  d i r e c t l y  

f rom T h e o r e m  4. 
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