SHORT COMMUNICATION

ON Q-MATRICES

Jong-Shi PANG

Graduate School of Industrial Administration Carnegie-Mellon University, Pittsburgh, PA, U.S.A.

Received 31 May 1978 Revised manuscript received 17 November 1978

In a recent paper [1], Aganagic and Cottle have established a constructive characterization for a P_0 -matrix to be a Q-matrix. Among the principal results in this paper, we show that the same characterization holds for an L-matrix as well, and that the symmetric copositive-plus Q-matrices are precisely those which are strictly copositive.

Key words: Characterization, Classes of Matrices, Linear Complementarity Problem.

1. Introduction

A *Q*-matrix is a real square matrix M for which the linear complementarity problem, (q, M), of finding a vector x such that

 $q + Mx \ge 0$, $x \ge 0$ and $x^{\mathrm{T}}(q + Mx) = 0$

has a solution for every vector q. The class of Q-matrices is denoted by Q. A P_0 -matrix is a real square matrix with nonnegative principal minors. Recently, Aganagic and Cottle [1] established the characterization below.

Theorem. Let M be a P_0 -matrix. The following are equivalent

(A) $M \in Q$, (B) $M \in R$, and (C) $M \in R_0$.

Here, R denotes Karamardian's class of regular matrices [5], i.e., the following system is inconsistent

$$M_{i}x + t = 0, \quad x_{i} > 0, M_{i}x + t \ge 0, \quad x_{i} = 0, \qquad 0 \neq x \ge 0, \quad t \ge 0$$
(1)

where M_i is the *i*-th row of M; and R_0 denotes the class of matrices M for which the problem (0, M) has a unique solution, or equivalently, system (1) is inconsistent for t = 0.

In this paper, we investigate the validity of the above theorem for some other classes of matrices.

2. Main results

We review some definitions. The class of S-matrices, denoted by S, consists of those real square matrices M for which there is a vector $x \ge 0$ such that $Mx \ge 0$. Obviously, $Q \subseteq S$. A real square matrix M is said to be semi-monotone if for every $0 \ne x \ge 0$, there exists an index k such that $x_k \ge 0$ and $(Mx)_k \ge 0$. The class of semi-monotone matrices is denoted by L_1 [3]. P_0 -matrices are certainly semi-monotone [4]. So are copositive matrices (i.e., real square matrices M such that $x^T Mx \ge 0$ for all $x \ge 0$). The class of L_2 -matrices, denoted by L_2 , consists of those real square matrices M satisfying the condition: for every $0 \ne x \ge 0$ with $Mx \ge 0$ and $x^T Mx = 0$, there exist nonnegative diagonal matrices D_1 and D_2 such that $D_2x \ne 0$ and $(D_1M + M^T D_2)X = 0$. We define $L = L_1 \cap L_2$. This class L was introduced by Eaves [3] who showed that if M is an L-matrix, then it is a Q-matrix if and only if it is an S-matrix. A copositive matrix M is called copositive-plus if $x^T Mx = 0$ and $x \ge 0$ imply $(M + M^T)x = 0$ and strictly copositive if $x^T Mx = 0$ and $x \ge 0$ imply x = 0. Clearly, copositive-plus and strictly copositive matrices belong to L. A flat point of M [2] is a vector x such that $x^T Mx = 0$ and $(M + M^T)x = 0$.

We establish our first result which shows that Lemma 1 in [1] remains valid if P_0 is replaced by the larger class L_1 . The proof is virtually a restatement of that for the cited Lemma, but with the substitution of P_0 by L_1 .

Lemma 1. Let $M \in L_1 \cap R_0$. Then $M \in R$, thus $M \in Q$.

Proof. Suppose that the system (1) has a solution \tilde{x} for t = 0. We must have t > 0. Hence for $x_i > 0$, we have $M_i x < 0$. This contradicts the assumption that $M \in L_1$. The contradiction establishes the lemma.

Corollary 2. Let $M \in R_0$ be copositive. Then $M \in R$, thus $M \in Q$.

Lemma 3. Let $M \in L_2 \cap Q$. Then $M \in R_0$.

Proof. Suppose that the system (1) has a solution \tilde{x} for t = 0. We must have $\tilde{x}^T M \tilde{x} = 0$. By assumption, there exist nonnegative diagonal matrices D_1 and D_2 such that $D_2 \tilde{x} \neq 0$ and $(D_1 M + M^T D_2) \tilde{x} = 0$. Hence

$$(\tilde{x}^{\mathrm{T}}D_2)M = -(M\tilde{x})^{\mathrm{T}}D_1 \leq 0.$$

Consequently, if we choose $q \le 0$ with $q_i < 0$ for $(D_2 \tilde{x})_i \ne 0$, the problem (q, M) is infeasible. This contradiction establishes the lemma.

Combining Lemmas 1 and 3, we deduce:

Theorem 4. Let $M \in L$. The following are equivalent (A) $M \in Q$, (B) $M \in R$, (C) $M \in R_0$, and (D) $M \in S$.

It is quite natural to wonder whether Theorem 4 (without condition (D)) will remain valid if L is replaced by L_1 . The difficulty lies in establishing (or providing a counterexample to) the inclusion $(L_1 \cap Q \subseteq R_0)$. In the rest of the paper, we establish several results which we believe will be useful for the resolution of this conjecture.

Proposition 5. Let $M \in L_1 \cap Q$. Then the system

$$Mx = 0, \quad x > 0 \tag{2}$$

is inconsistent.

Proof. The semi-monotonicity of M implies that Mx < 0, $x \ge 0$ is inconsistent. By Tucker's theorem of the alternative [6, p. 29], there is a $0 \ne y \ge 0$ such that $M^{T}y \ge 0$. If the system (2) is consistent, then we must have $M^{T}y = 0$. Consequently, the problem (q, M) is infeasible if $q \le 0$ with $q_i < 0$ for $y_i > 0$. This contradiction establishes the proposition.

Remark. The inconsistency of the system (2) is equivalent to the fact that any nonzero solution to (0, M) must have some zero component(s).

Corollary 6. Let $M \in Q$ be copositive. Then the system (2) is inconsistent.

Proposition 7. Let $M \in L_1 \cap Q$. If \bar{x} is a nonzero solution to (0, M), then \bar{x} contains at least two nonzero components.

Proof. Indeed, if $\bar{x}_i > 0$ and $\bar{x}_j = 0$ for all $j \neq i$, then we must have $m_{ii} = 0$ and $m_{ji} \ge 0$ for all $j \neq i$. Choose a vector q with $q_i < 0$ and $q_j > 0$ for $j \neq i$. Let \bar{z} be a solution to (q, M). Then by the choice of q, we must have $\bar{z}_j > 0$ for some $j \neq i$. For such an index j, we have

$$(q+M\bar{z})_j=0$$

which implies

$$\sum_{k\neq i}m_{jk}\bar{z}_k=-(q_j+m_{ji}\bar{z}_i)<0.$$

Consequently, for the vector x defined by $x_i = 0$ and $x_k = \overline{z}_k$ for $k \neq i$, there is no index k such that $x_k > 0$ and $(Mx)_k \ge 0$. This contradicts the assumption that $M \in L_1$. The contradiction establishes the proposition.

Theorem 8. Let $M \in Q$ be copositive. Then the only flat point of M which is also a solution to (0, M) is the zero vector.

Proof. Suppose that $x \ge 0$ is a nonzero flat point of M that is also a solution to (0, M). Let

$$\alpha = \{i: x_i > 0\} \quad \text{and} \quad \bar{\alpha} = \{j: x_i = 0\}.$$

Since $Mx \ge 0$ and $x^T Mx = 0$, we must have $(Mx)_a = 0$. It is easy to see that

$$(x + \theta u)^{\mathrm{T}} M(x + \theta u) = \theta^2 u^{\mathrm{T}} M u.$$

If $u_{\bar{\alpha}} \ge 0$, the left side of the above equation is nonnegative for $\theta > 0$ sufficiently small. Thus $u^{T}Mu \ge 0$ provided that $u_{\bar{\alpha}} \ge 0$. This implies that for all θ ,

$$(x + \theta u)^{\mathrm{T}} M(x + \theta u) \ge 0 \quad \text{if } u_{\tilde{\alpha}} \ge 0.$$
(3)

Choose a vector q such that $q_{\alpha} < 0$ and $q_{\bar{\alpha}} > 0$. Let z be a solution to (q, M). It is then easy to show that if $\lambda > 0$ is sufficiently small so that $x_{\alpha} - \lambda z_{\alpha} > 0$, then

$$(x-\lambda z)_i(M(x-\lambda z))_i < 0$$
 for $(x-\lambda z)_i \neq 0$.

Hence it follows that for such a λ , we have

 $(x-\lambda z)^{\mathrm{T}}M(x-\lambda z)<0$

which contradicts (3). The contradiction establishes the theorem.

Corollary 9. Let $M \in Q$ be symmetric and copositive. The following implication is valid:

$$Mx = 0, \quad x \ge 0 \Rightarrow x = 0. \tag{4}$$

Proof. In fact, any vector $x \ge 0$ satisfying Mx = 0 is a flat point of M which is also a solution to (0, M). By Theorem 8, the only such vector is zero.

Remark. The implication (4) is weaker than the statement that (0, M) has a unique solution. Nevertheless, Corollary 9 does not follow from either Theorem 4 or Proposition 5.

Corollary 10. Let $M \in Q$ be symmetric and copositive-plus. Then M is strictly copositive.

Proof. Let $x \ge 0$ be such that $x^T M x = 0$. Since M is symmetric and copositiveplus, it follows that Mx = 0. Hence by Corollary 9, we must have x = 0. Consequently, M is strictly copositive.

Combining Theorem 4 and Corollary 10, we deduce:

Theorem. 11. Let M be copositive plus. The following are equivalent:

- (A) $M \in Q$,
- (B) $M \in R$,
- (C) $M \in R_0$, and
- (D) $M \in S$.

If in addition, M is symmetric, then any one of the above is equivalent to:

- (E) M is strictly copositive, and
- (F) the implication (4) holds.

Remark. Corollary 10 (and thus the entire Theorem 11) also follows directly from Theorem 4.

Acknowledgment

The author is grateful to the two referees for pointing out that Proposition 5 is true without the assumption $M^T \in L_1$.

References

- M. Aganagic and R.W. Cottle, "A note on Q-matrices", Tech. Rept. SOL78-5, Systems Optimization Laboratory, Department of Operations Research, Stanford University (March, 1978).
- [2] R.W. Cottle, G.J. Habetber and C.E. Lemke, "Quadratic forms semi-definite over convex cones", *Proceedings of the international symposium on mathematical programming*, Princeton, 1967, pp. 551-565.
- [3] B.C. Eaves, "The linear complementarity problem", Management Science 17 (1971) 621-634.
- [4] M. Fiedler and V. Ptak, "Some generalizations of positive definiteness and monotonicity", Numerische Mathematik 9 (1966) 163-172.
- [5] S. Karamardian, "The complementarity problem", Mathematical Programming 2 (1972) 107-129.
- [6] O.L. Mangasarian, Nonlinear programming (McGraw-Hill, New York, 1969).