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II.0. In troduct ion  

This is a continuation of H. Brezis and L. Nirenberg [1] (= [BN1]), and we will often 
refer to concepts and results in that paper. There, we extended degree theory to 
VMO maps between compact n-dimensional oriented manifolds without boundaries. 
In this paper we consider a class of maps u from a bounded domain ~ C R n into 
I~ n . In classical degree theory, for u E C o (~, ]~n), the degree of u at a point 

p ¢ u(0 ) (0.1) 

is defined; it is denoted by deg(u, f~, p). 
The larger class of maps we consider, as in [BNI], is the class VMO(f l ,~  n) 

satisfying an appropriate variant of (0.1). To define VMO in a domain ~, we have 
first to define BMO. There are several possible definitions; they turn out, however, 
to be equivalent. Here is one: 

Def in i t ion .  A real function f in L~0c(~ ) is in BMO(~) if 

IIflIBMO(~):=sBP.f f - -  ~ f  < ° ° ,  (0.2) 
B B 

where sup is taken over all Euclidean balls with closure in fL 
In fact, one may use balls in any norm in I~ ~ - -  though this is far from obvious 

- -  see Corollary AI.1. Furthermore, one may consider the sup in (0.2) over the 
1 dist(x, 0f~). class of balls B lying "well inside" f~, i.e., s ay /3  = Br(x) with r < 

The resulting norm is smaller than that in (0.2), but is equivalent to it (see Theo- 
rem AI.1). 
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Now VMO is the closure of C°(fl) in the BMO norm of (0.2). A usefid charac- 
terization of VMO(f~) is 

lim / t f - ] e ( x )  l = O  uniformly i n x .  

e_<½ dist(x,0f~) Be(x) 

Here 
P 

L(x) 
¢ ]  

B~ (x) 

This is the analogue of Sarason's characterization of VMO in I~n; see D. Sarason [1]. 
A surprising fact about VMO(f~) is that it is the closure in the BMO norm of 
C~(f~),  C ~ fimctions with compact support in f~ (see Theorem 1; it is proved in 
Appendix 1). 

The facts above about BMO and VMO in f~ are due to Peter Jones; the proofs 
given here are slight modifications of his. 

In addition to bounded domains in 1~ n we also consider domains ft in a smooth 
open n-dimensional Riemannian manifold X0, where ~ is compact in X0. BMO(ft) 
is defined as in (0.2); the sup is now taken over geodesic balls B,(x)  with e < ro, 
the injectivity radius of ~.  As in N " ,  the various possible alternate definitions of 
BMO(f~) are equivalent. Furthermore, the space BMO(ft) is independent of the 
Riemannian metric on Xo (see Lemma 2 in §II.1). VMO is defined as above. We 
then consider VMO maps of f~ into an n-dimensional smooth open manifold Y 
(which is smoothly embedded in some RN). If X0 and Y are oriented, and p C Y 
is such that (0.1) holds - -  in a suitable sense - -  then we define 

deg(u, f~, p); 

this is done again by approximation. 
In dealing with manifolds one has to consider the effect of change of local coordi- 

nates. A result used here, but which more properly fits in [BNI], asserts that if the 
manifold Xo is compact (without boundary), and if H is a smooth diffeomorphism 
of a ball BR in 1t~ '~ onto a subset of X0, then there are positive constants C, e0, such 
that 

( f  o H)~(y) - 7~(H(y))  _< CIIftlBMO (0.3) 

for every f E BMO(X0), lYl <- R/2,  and e < e0. This is essentially Lemma A3.3. 

In §II.1 BMO and VMO are introduced and their invariance under choice of 
norms, as described above, is presented as well as associated properties. 

Section 11.2 takes up the definition of the degree. The analogue we use of condi- 
tion (0.1) is that there exist a neighbourhood U in fl of cq~'/, and a number do > 0 
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such that 

f dist (x, Oft). 
1 

dist(u,p) > do VBe(x) in U with e = 

B~ (,) 

(0.4) 

Various properties of degree are then established, including (Corollary 1), the 
invariance of degree under continuous deformation in the BMO topology, provided 
that, under the deformation, (0.4) holds uniformly for all maps considered, with the 
same U and do. In Remark 4, an example is given in which the stability of degree 
fails in case this uniformity is dropped. 

In general, functions in VMO(ft) do not have a well defined trace on Oft. In §II.3, 
in case Oft is smooth, we introduce a subclass of VMO(ft) which does: Suppose 

E VMO(0ft); we may then extend ~ inside ft to a function ~ belonging to 
VMO(f~) with 

~(x) = cp(P(x)) near Oft. 

Here P is the projection to the nearest point on 0fh We then say that a function 
f E VMO(f~) has p as trace on Oft, written as 

f ¢ VMO~(ft) 

provided the function 

{ f - ~  in f t  

g = 0 outside f~, 

belongs to VMO on a neighbourhood of fl. 
Theorem 2 asserts that for f in VMO(ft), 

f e VMOe(ft) ¢=* ~oalim / If - ffl = 0. (0.5) 
s--~---2 dist(x,0f~) BE(x) 

Various examples of VMO~(ft) are presented in §II.3. Example 2 states that 
Wl'n(ft) C VMO~(ft). Lemma 7 asserts that for x near 0~, if d(x) = dist(x, Oft), 
the function 

f ( x )  = ~d( ,)(P(x))  

- -  then extended inside in the rest of ft by smooth c u t o f f -  belongs to VMO~(ft). 
Lemma 8 says that the harmonic extension of ~ inside ft belongs to VMO~(ft); this 
is proved in Appendix 3. 

Recently~ L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini [1] introduced a 
notion of degree for a class of Sobolev maps which is weaker than W 1,n and is not 
contained in VMO. 
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Finally, in §II.3, a question of H. Amann is answered. In [BNI], if X, Y are 
compact oriented n-manifolds without boundaries, and ~ , ~  C VMO(X,Y)  are 
connected by some homotopy H which is continuous in a parameter t on [0,1], with 
values in VMO(X,Y) ,  then (Corollary 6 in [BNI]) deg~ = deg¢.  Amann asked 
whether the conclusion still holds in case 

g e VMO ( Z  x [0,1],Y). 

Under suitable conditions on H for t near 0 and 1, Corollary 3 asserts that the 
answer is yes. 

Section II.4 extends to VMO~(f~) a standard result for continuous maps u : ~ 
IR n , with ula ~ = 7). Namely, if 7~ ¢ p Vx E c3f~, then 

(~-~P Of~,S '~-1) (0.6) deg(u, f~,p) = deg lP - PI' 

Appendix 1 proves a number of results of §II.1. 

In Appendix 2, written with P. Mironescu, we consider Toeplitz operators on S 1. 
For any continuous complex-valued function ~ on S 1, with 7) ¢ 0 everywhere, there 
is, classically, an associated Toeplitz operator T~. It is a Predholm operator in H e 
and 0 
In Theorem A2.1 a similar result is proved for ~ satisfying 

~ E V M O ( S 1 , C )  N L  °°, 1 7 ~ l > _ a > 0 o n S  1. 

This result is essentially contained in Theorem 7.36 in R. G. Douglas [1]; the proof 
here is different and is pretty much self contained - -  though we use the fundamental 
~ I - B M O  duality of C. Fefferman [1] (see also C. Fefferman and E. Stein [1]). 

Appendix 3 deals with properties of the harmonic extension of BMO and VMO 
maps. 

The plan of the paper is: 

II.1 BMO and VMO on domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  313 

II.2 Degree of maps on domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  316 

II.3 VMO functions having a VMO trace; VMO~ . . . . . . . . . . . . . . . . . . . . . . . . . . .  320 

II.4 For u E VMO w, deg(u,f~,p) = a boundary degree . . . . . . . . . . . . . . . . . . . . . .  334 

Appendix 1 Some properties of BMO and VMO in domains . . . . . . . . . . . . . . . .  338 

Appendix 2 (with P. Mironescu). Toeplitz operators and VMO . . . . . . . . . . . . .  349 

Appendix 3 The harmonic extension of VMO maps . . . . . . . . . . . . . . . . . . . . . . . .  357 

We are especially grateful to Peter Jones and wish to express thanks also to sev- 
eral colleagues for interesting conversations: H. Amann, S. Chanillo, A. Connes, 
I. Gohberg, P. D. Lax, F. H. Lin, P. Mironescu. 



Vol. 2 (1996) Part II. Degree theory and BMO 313 

II .1.  B M O  and V M O  o n  d o m a i n s  

Let f~ be a bounded domain (open connected set) in IR ".  Later we will consider 
domains in a manifold. 

There are several natural notions of BMO(ft). 

D e f i n i t i o n  1. A locally integrable real function f on ft belongs to BMO(~)  if 

:= sup 1 / IIflIBMO If - G I  < (1.1) 
B 

where C is the class of all open balls B whose closures lie in Ft, and 

-fB = / f, 
B 

the average of f over B. 
BMO(ft)  so defined forms a Banach space modulo constants. Similarly a map 

u : ft -+ II~ N belongs to BMO(ft,  R x )  if each component of u is in BMO(f~). Its 
BMO norm is also given by (1.1) where [ t denotes the Euclidean norm in N N . As 
in [BNI] an equivalent norm is 

in fact 

IlulI. = sup / / l u ( y ) - u ( z ) l d a ( y ) d a ( z ) ;  (1.2) 
B E C  

B B 

IlUHBMO <_ IMI* --< 21MIBMO. (1.3) 

D e f i n i t i o n  2. For 0 < k < 1 let Ck denote all balls Br  (z) C ft satisfying 

r _< k dist(z, Oft). 

Such balls are called "well inside" ft. Using Ck instead of C in (1) we obtain a 
different smaller norm 

IlfllBMO,k. 
It is not difficult to see that for 0 < kl,k2 < 1, the norms 

IIfllBMO,kl and IIfIIBMo,~= are equivalent 

(see Lemma A1.1 in Appendix 1). A more striking fact is that each of these is 
equivalent to the norm (1.1), even if no regularity of Oft is required. As we show in 
Theorem A1.1, this equivalence holds not just for the Euclidean norm but for any 
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norm on ~ n  This fact is far from trivial and is due to Peter Jones. We present a 
slight modification of his proof; see Theorem AI.1. 

It is more convenient to work with Definition 2. From now on we take that as 
our definition of BMO, with k fixed as 1/2, and we simply write 

Ilf[[BMO,1/2 as IlflIBMO and C i / 2 = C .  

We use formula (1.2) as well with balls B well inside (with k = 1/2). 

R e m a r k  1. In Definition 2, if we restrict the class Ck to all balls Br(x)  satisfying 

r < min {kdist(x,  cOfl),r0} 

for some given r0 > 0, we get a smaller norm which is, however, equivalent to the 
original one. This is easily seen by a trivial covering argument. 

R e m a r k  2. Another possible definition of BMO(f/) is to take as C the class of all 
cubes with closures in 12, or all those with edges parallel to the axes, or with cubes 
"well inside" f~. The corresponding norms are all equivalent to the BMO norm 
above (see the discussion after Theorem AI.1 in Appendix 1). 

Clearly L°°(f~) C BMO(f~) with continuous injection: 

IIfllgMo _< 2II/IIL~. 

In particular C°(N) C BMO(a) .  

\~% now define VMO(ft). It was first introduced by D. Sarason [1] in all of N '~. 

Def in i t i on .  VMO(f~) is the closure in BMO(fl) of C°(N), i.e. f E VMO(t2) if 
there is a sequence (fj)  in C°(N) converging to f in BMO(f/). 

In view of Lemma 1 below, if f E VMO(f~) then there is a sequence (fy) in 
C°(N) converging to f in BMO(f~), in L~oc(f~), and a.e. 

L e m m a  1. Given a compact set K in ii, there is a constant CK such that 

Itf - ?KIIL~<K) --< CKUIIBMO 

for every f E BMO(F/). 

The proof of Lemma 1 is similar to that of Lemma A.1 in [BNI]. 

To prove the assertion before the lemma, observe first that given any e > 0 and 
any compact set K C f~, there is a g E C°(N) such that 

] I f -  gilBeo < e, [ if--  gIIL~(K) < e. 



Vol. 2 (1996) Part  II. Degree theory and BMO 315 

This uses Lemma 1. The assertion then follows by choosing g = ½, j = 1, 2 , . . .  , 
and { 1} 

K = x E ft;dist(x,c~f~) > 7 ' 

It is clear that if S C VMO(f~) then 

lim j~ If - S~(x)l = 0 "uniformly in x". (1.4) 
~--40 

Be(x) 

where / ,  

L(x)  = f. 

Be (~) 

More precisely, (1.4) means that for every ~ > 0, there exists go such that, for 
all x E f~, 

Is- L(x) l  < a 
B~(~) 

1 dist(x, 0f~)). for all ~ < min{~o, 

The converse is true; this is far from obvious. In fact, a much stronger result 
holds. It is due to Peter Jones (private communication): 

T h e o r e m  1 (P. Jones). The following are all equivalent for S in BMO(f~): 

S e VMO(f~). (1.5) 

lim /fi ]f  - S~(x)] -- 0 uniformly in x (1.6) 
e--~0 J 

e_<½ dist(~,0f~) Be(x) 

in the sense above. 
There exists a sequence (fj) in C~(f~) converging to f in 
BMO(f~) n nloc(f~). (1.7) 

The proof of Theorem 1 is in Appendix 1. 

E x a m p l e  1. Wl'n(f~) C VMO(f~). 

To see this, observe first that Wl'n(f~) C BMO(f~), with continuous injection. 
This follows from Poinca%'s inequality in any ball B C f~, 

IS ---/B[ < C(n) (Vf l "  (1.8) 
B 

This implies that (1.6) holds and thus, by Theorem 1, S is in VMO(f~). 

R e m a r k  3. Theorem 1 asserts that C~'(f~) is dense in VMO(f~). Recall that it is 
not dense in Wl,n(fZ). 

More generally, we have as in [BNI]: 
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Example  2. WS'P(f~) C VMO(fl) in the limiting case of the Sobolev embedding: 
sp = n, 0 < s < n, (s may or may not be an integer). 

In [BNI] we discussed functions involving log Ix[: 

(a) log Ix] is in BMO(f~) but not in VMO(t~) if 0 E f~, 
(b) log t log Ixll is in VMO(f~). 
(c) ]loglzll~,0 < ~ < 1, is in VMO(f~). 

Consider now a domain ~2, having compact closure in a smooth manifold X 
without boundary. In order to define BMO([~) and VMO(f~), one first puts a 
smooth Riemannian metric on X, the notions above of BMO(~)  and VMO(~) 
extend except that we use geodesic balls B~(x) and always assume that e < ro, the 
injectivity radius of fL The definitions are independent of the choice of metric. In 
fact, there is a more general result: 

Lemma 2. Let f~l, ft2 be two bounded domains in 1R n and let H be a C 1 diffeo- 
morphism of a neighbourhood of ~1 onto a neighbourhood of-~2. I f  f E BMO(f~2) 
(respectively VMO(ft2)) then f o H is in BMO(Ftl) (respectively VMO(Ftl)) and 

I t fo  HI[BM o <_ C[[fIIBMO. 

This is proved in Appendix 1. Furthermore, Theorem 1 holds in this situation, 
with no change. 

Example  3. Let fl be such a domain on a manifold X. 

Lemma 3. The function 

~(x) = log (1/dis t (x ,  0n))  

is in BMO(f~). Here dist could be measured using any metric on f~ which is equiv- 
alent to the Riemannian metric. 

L e m m a 4 .  W i t h 9  a s m L e m m a 3 ,  ]~t a c V M O ( ~ ) f o r 0 < a < l .  

Lemmas 3 and 4 are proved in Appendix 1. 

II.2. Degree  of  maps  on  domains  

Let f~ be a general bounded domain in R '~, let u E VMO(f~, R '~) and let p be a 
point in Ii{ '~. Our goal is to define deg(u, f~,p) and prove that it has the standard 
properties of a degree. 

In the usual case, when u E C°(~) ,  one assumes that 

p ~ u(o~).  (2.1) 

General functions in VMO(f~) have no trace on the boundary. (Later we shall 
introduce a subclass of VMO functions with a trace - -  the notion of trace is delicate 
and the subclass is somewhat restricted,) Thus the condition (2.1) has to be given 
a different form. 
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N o t a t i o n .  We denote by D the class of balls Be (x) in f~ with 

1 
e = ~ dist(x, Oft). 

In place of (2.1) we use the condition: 

{thereexistfdo>O, andaneighbonrhoodUinf~ofOf~,suchthat 
l u - p l > d o  VBCU, BeD. (2.2) 

B 

In particular, (2.2) holds if [u - Pl > do a.e. in some neighbourhood U of 0f~. 
Clearly for u C C°(~) ,  (2.1) and (2.2) are equivalent. 

N o t a t i o n .  For e > 0, set 

ae  = {x e a;  dist(x,0ft)  > e}. 

Def in i t i on  of  d e g r e e  for u E VMO sa t i s fy ing  (2.2).  Given u E VMO(f~), we 
choose eo > 0 so that for all x C f~, 

lu-g~(x)I <_ do/2 (2.3) 

Be (x) 

for all e < eo and e _< ½ dist(x, 0f~). This is possible in view of (1.4). We may also 
take eo to satisfy 

{x E a; d i s t (x ,0a)  <_ 3e0} C U, 

with U as in (2.2). 

Combining (2.2) and (2.3) we have 

lue( x ) - P l > - d o / 2  if xE0122e and ¢_<eo. (2.4) 

Hence 

Claim.  

We then define 

deg (u, a , p )  = deg ( ~ ,  a2~,p) 

Proof of Claim. We may suppose p = 0. 

deg (ge, f~2~,P) is defined for every e _< e0. 

This degree is independent of e for 0 < ¢ _< Co. 

for e < eo. 
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We shall prove that for any given e in (0, e0], there exists ($ depending on e such 
that 

deg (g,, f~2t,0) = deg (ue, f~2~, 0) for It - e[ < a. (2.5) 

This yields the claim. 

The map gt is continuous in x and t where it is defined. Using (2.4) we see that 
there exists 5 > 0 such that 

do 
Ig t (x) l_>-  ~- if It-el<5 and d i s t (x ,0 f~2e)<a .  (2.6) 

Therefore 

deg (gt, f~2~, 0) is defined tbr tt - el < d. 

By homotopy invariance and (2.6), this degree is independent of t, and so 

deg(ut ,a2~,0)  =deg(ge,f~2e,0)  for I t - e  I <5.  

Finally, by excision, and (2.6) again, 

deg (ue, a2~, 0) = deg (~t, ft2t, 0), 

and the claim is proved. 

Consequently, deg(u,f~,p) is defined. It is clear that if u C C°(~) then the 
degree just defined agrees with the usual degree. 

We verify now some of the standard properties of degree: 

P r o p e r t y  1. If u C VMO(f~, R n) satisfies (2.2) and 

deg(u, ft, p) ¢ 0, 

then 
p ~ ess R(u). 

(The essential range of a map u, essR(u), is defined in §I.4 of [BNI]). In fact 

B~. (p) c ess R(u). 

The proof follows that of Property 1 in §I.4 of [BNI]. 
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P r o p e r t y  2 (Stability of degree in the BM0 topology). Let (uj) and u belong to 
VMO(f~) and satisfy 

uj ) u in BMO(Ft) n L~oc(a ) (2.7) 

and 

for some p C I~ r~, there exist a do > 0 and a neighbourhood U of 

0 f ~ i n f ~ , s u c h t h a t q £ 1 u j - p l > _ d 0  Vj, VB C U, B e T?, (2.8) 
, /  

B 

(in view of (2.7), the same holds for u). 
Then 

deg(uj, ft,p) = deg(u, f~,p) 

for all j sufficiently large. 

Proof. We may take p = 0. As in Lemma 4 of 1.1 of [BNI] we see that 

lim ~£ luj - gj,B I = 0 uniformly in j .  (2.9) 
IBl-+0 J BEC B 

1 dist(x,0f~).) It is here (Recall that B C C means that if B = Br(x), then r < 
that we use the assumption that uj ~ u in BMO(ft). (2.8) and (2.9) imply that 
there exists e0 such that for all e C (0,e0), 

do 
] / uj > - ~  Vj, VxEOf~2e. 

Be(z) 

Fix some e C (0, e0). Since uj -+ u in L~oc(ft), we have 

u-j,e --~ ge uniformly in ft.2~. 

Thus 
deg (gj,~,a2~,0) = deg (g~,a2~,0) 

for j sufficiently large. By our definition of degree we obtain the desired result. 

R e m a r k  4. In the argument ahove it is essential that (2.8) holds uniformly in j .  
Here is an illuminating example in which uniformity in (2.8) is dropped and the 
conclusion fails. Let f~ = (0, 1), and set 

1 
uj (x) = fj (x) 2 

I and where fj is the sequence defined in Example 6 of §I.2 in [BNI]. Since uj(0) = 
uj(1) = 1 d e g ( u j , g t , 0 ) = - 1 .  

On the other hand, uj -+ u ~ -½ in BMO and in L 1, and deg(u, ~t,0) = 0. 

An immediate corollary of the above is the invariance under suitable homotopy: 
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C o r o l l a r y  1. Let Ht(.) be a one-parameter family of VMO maps from ~ to I~ n, 
depending continuously - -  in the BMO ML~o c topology on the parameter t. As- 
sume in addition, that (2.8) hohts uniformly in t, i.e., the same do and U for all 
Hr. Then 

deg(Ht, [], p) is independent of t. 

C o r o l l a r y  2. Suppose u, v are VMO maps from f~ into ~ both satisfying (2.2). 
Suppose that for some dl < do, 

~ l u -  vI <_ dl, VB C U, BC79 .  

B 

T h e n  

deg(v ,~ ,p )  = deg(u ,~ ,p) .  

To prove this, just  use the h o m o t o p y H t  = tv + (1 - t)u, 
the preceding corollary. 

0 < t < 1, and apply 

P r o p e r t y  3 (Borsuk). Suppose u e VMO([~,R ~) and (2.2) holds with p = 0. If 
0 C [~, f~ is symmetr ic  about the origin and u is odd near 0f~, then 

deg(u,f~,0) is odd. 

This is an immediate consequence of our definition of degree - -  via Borsuk's 
theorem for continuous maps. 

R e m a r k  5. The definition of degree extends in a straightforward way to VMO 
maps from a domain ~, with compact  closure, in a smooth oriented Riemannian 
manifold X,  with values in another oriented smooth manifold Y, dim Y = dim X.  
Namely for u E VMO(f~, Y), and for p C Y such that (2.2) holds, where lu(z) - Pl 
is replaced by dist(u(z),p),  one defines 

deg(u ,~ ,p )  

as in the Euclidean case. 

I I . 3 .  V M O  f u n c t i o n s  h a v i n g  a V M O  t r a c e ;  V M O ~  

In general, VMO functions on a domain f~ do not have a well defined trace on 0[~ 
- -  even if 0f~ is smooth. An example for f~ = (0, 1) is the function cos(log I logx]). 
I t  is in VMO - -  even in H 1/2 - -  but has no trace at 0. 

I t  is useful to introduce a subclass which does admit  a trace on 012 belonging 
to VMO(0f~). As usual, f~ is a bounded domain in R n. 
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D e f i n i t i o n  o f  V M O o .  A function f E VMO(ft) belongs to VMO0(f~) if its ex- 
tension g outside ft as identically zero, belongs to VMO(B),  where B is an open 
ball containing ft. 

R e m a r k  6. A function f E VMO(ft) which is identically zero near Oft belongs to 
VMO0(ft). Indeed its extension g, by zero outside f~ lies in BMO(B),  as is clear 
by Remark 1. That  it lies in VMO(B) is a consequence of Theorem 1. 

A simple characterization in case 0ft is smooth is given by 

T h e o r e m  2. f E VMO(ft) belongs to VMO0(~t) iff 

lim /Ifl = 0. (3.1) 
IBf-+o 
BED B 

Condition (3.1) means that the average of lfI over balls Be(x) tends to zero as 
1 dist(x, Oft). x -+ Oft provided c = 

Proof. 
1. Proof  that f E VMO0(ft) ~ (3.1) if Of} is smooth: To see this, consider a ball 

1 dist(x, Oft). Let z be a closest point on Oft to x. Since Oft Be(x) E •, i.e., c = 
is smooth, there is some a > 0, and some ~0 > 0 such that 

IB3~(y) n acl > cqB3~(y)l Vy E On, Ve _< eo. (3.2) 

Since g E VMO(B),  given 5 > 0, there exists 8" 1 > 0 such that for e < s~, 

B3~ (z) 

(3.3) 

It follows that 

so that 

By Lemma A.4 in [BNI] 

1~3~(z)i _< _5 Vc < ~1- (3.4) 

I~(x)-~3~(z)l _<3 '~ f b-~3~(z)[ _<3~5. 
Ba~ (z) 

Using (3.4) we find that 
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Since g is in VMO(B),  there is ¢2 < ¢1 such that 

I g - g c ( x ) l - <  (~ for < c c2. 

B~(~) 

Combining this with (3.5) we obtain tile desired result. 

It is clear from the proof that what is required of fl is simply (3.2) rather 
than regularity. Thus 0Ft might merely be a Lipschitz boundary. However, some 
regularity of OFt is necessary. For example if Ft = unit disc in I~ 2 minus the origin, 

1 and f = 0 for IxI > 3/4, then and f is smooth in Ft with f = 1 in 0 < Ixl < 
f e VMOo(Ft) but does not satisfy (3.1). 

One also observes from the proof above that f E VMO0(~I) implies 

lim A ~ Ift = 0  
e -+0  J 

B~(z) 

where e = dist(x, OFt). 

2. Proof  that (3.1) ~ f 6 VMO0(f~). This is true for any bounded domain ft. 

We have to show that given any 5 > 0 there is some eo > 0 such that, for c < go, 

where B~(x) is any ball in 1~ n. If B~(x) is in Ftc or if B~(x) is "well inside" ~/, this 
is clear. Thus we may assume that 

B~(x) VIFt#O and B2~(x) Ntl c¢~ ,  

and in particular dist(x, 0~)  < 2e. 
Set A = B¢(x) M Ft. It suffices to prove that, for ~ < some ¢o, 

1 / I f t  < 5. 

Consider a maximal family of disjoint open balls Be~/a(xi) with centres xi ~ A 

1 dist(xi,OFt). Since xi E Be(x) we have and ei = g 

ei_< ~1 d i s t (x i ,x )+d i s t (x ,0 f~ )  _< ~ e  gi. 
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C la im .  G = U B~, (xi) covers A. 
i 

Suppose not. Suppose some y C A, y ~ G. Set 7 = ½ dist(y, 0f~); by maximality 
there exists some i such that 

Be¢/3(x i )  i n t e r sec t s  BT/a (y  ). 

Then 1 
¢ / <  dist (y, xi) <_ ~(7 +¢i), 

so that 
2el __< 7- 

But 
27 = dist (y,O~) < dist (y, xi) + dist (xi,Of~) 

<- ~ (7 + ei) + 2ei, 

7 
i.e., 57 <_ 7E/ < 57. Impossible. 

This proves the claim; we return to the proof of the theorem. We have 

f lfl ~ ~ f Ifl = 3'~ ~ IBcl/3(xi)l / Ifl" 
A i Be~(xl) i B~i(x~ ) 

(3.6) 

By (3.1) we may find ro > 0 such that, for every ball Br(a) with r = ½ dist(a, c3~t) < 
r0, 

tfl < ~/6 ~. 
B,.(a) 

We take ¢o = ~ro and thus, for ¢ < ¢o, we have 

3 
~ < ~ z < r o  Vi 

and hence 

Consequently, by (3.6), 

Ill < ~/6'~ Vi. 

B~i (xd 

f ISl <_ 
A 
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The balls Bc~/3(xi) are disjoint and they are all contained in B2~(x); it follows that 

i 

We conclude that 1 /  
[Be(x)[ IfJ <a. 

it 

[] 

R e m a r k  7. One may think that VMO0(f~) is a closed subspace of VMO(ft) but 
this is not true. In fact, it is dense in VMO(ft); see Remark 3. 

R e m a r k  8. The space wl 'n( f t )  is contained in VMO0(f~). This is clear from 
the definition of VMOo, for the extension of u C W~"~(ft) as zero outside ft is in 
WI 'n (B)  C VMO(B) see Example 1. 

Next we are going to define a class VMO~(f~) where ~ is a given function in 
VMO(0f~), assuming Oft is smooth. VMO~(f~) will consist of functions having 
"trace" qo on Oft. First we need 

L e m m a  5. Let f~ be a smooth bounded domain and let ~ C VMO(Oft). There 
exists a function ~ defined on a neighbourhood ~ of ~ such that ~ C VMO(~), and 
for x close to Oft, 

~(x)  = ~ ( P ( x ) )  (3.7) 

where P is the projection to the closest point in Oft. 

Proof. We first define ~ by (3.7) in a tubular neighbourhood U of OD, 

U = {x E ]R'~; dist(x, 0ft) < 5}. 

C la im.  ~ C VMO(U). 

In view of Lemma A.10 in [BNI] it sutfices to prove the claim when the boundary 
is on {x,~ = 0}, for U = {x E R'~; Ix,~l < 5}. If Q is a cube with edges parallel to 
the axes, then it is clear that 

. j £ ~ -  j ~  <_ II~Ol'BMO(O~) - 
Q Q 

If B is a ball in U, then it lies in such a cube Q, with side length = diam B, and 
then the inequality 

B B 
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follows with the aid of Lemma A.4 of [BNI]. We have proved that ~5 E BMO (U); that 
it is in VMO(U) is proved either by approximation or repeating the computation 
above, and letting tBI -~ 0. The claim is proved. 

To complete the proof of the lemma we simply multiply ~ by a smooth cutoff 
function; here we rely on Lemma B.8 of [BNI]. [] 

Now, the 

Defini t ion of  VMO~.  Let ft and ~ be as above, and let f E VMO(ft). We say 
that f has trace ~ on 0[t, i.e., f E VMO~, provided 

( f - ~ )  is in VMOo(a). 

This definition also makes sense if ft c X, a Riemannian manifold. 

R e m a r k  9. Though ~ is not quite unique - -  it depends on the choice of cutoff 
the notion of VMO~ is independent of our choice. This follows immediately with 
the aid of Remark 6. Furthermore, it is clear that f E VMO~ ¢* the following 
function f belongs to VMO(~): 

f in f~ 
f =  ~ ill ~\f~. 

R e m a r k  10. It follows from Theorem 1 that for any fixed ~ E VMO(0f~), the 
space VMOe(f~) is dense in VMO(f~) in the BMO topology. 

The notion of VMO~ is invariant under diffeomorphisms. In particular, if f~ is 
a domain (with compact closure) in a smooth manifold X, the notion of VMO~ is 
independent of the choice of Riemannian metric on X. We have namely 

L e m m a  6. Let X1, X2 be smooth Riemannian manifolds without boundaries and 
let f~l,f~2 be subdomains, respectively, with compact closures and smooth bound- 
aries. Let H be a C 1 diffeomorphism from -~1 onto ~2; H maps Of~l onto Oft2 as 
a C 1 diffeomorphism. Let ~ E VMO(0f~2) and let f E VMO~(f~2). Then 

f o H belongs to VMO~0oH(f~l). 

Proof. For i = 1, 2, let Hi be a neighbourhood of ~i so that for every x E ~1\f~1 
there is a unique closest point P(x) on aft1. We define an extension H of H to ~1 
as follows: For x E ftl\f~l, we set 

= y e 5 \a2 

where y is the unique point there with P(y) = H(P(x)) ,  and dist(y, H(P(x))  = 
dist(x, 0f~l). To define y we may have to shrink ~1. Clearly ~r is a bi-Lipschitz 
map of ~ onto a neighbourhood ~2 of ~2. 
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Turning to the function f ,  set, as in Remark 9, 

3 =  { f in a2 
in fi2\f~2, 

so that, fc VM0(~2). Consider now f o H; it is defined on ~i. 

Claim. f o H E VM0(w) where w is any open set with compact closure in ~i. 

Once the claim is proved, we are through, for if x E ~2\~2, then fo H(z) = 
(~ o H)(P(x)). 

1 dist(x, Ow). Consider Proof of Claim. Let B, (x) be a ball in w with c < 

I~o(~) B~(~) 

since (~r)-I is Lipschitz. Hence 

I <  C 

B~K (D(x)) BEK (~(~)) 

since /~ is Lipschitz with Lipschitz constant K. We also require that 

1 
E < ~ dist (H(w), 052) =: to. 

Clearly I _< Cllfl]BMO. By Remark I we see that 

lifo £rllgeo(~) _< Cllfllgeo(~o). 

By density we conclude that f o  H is in VMO(w). 

Next, we present some examples of functions in VMO~. 

Example  1. If f E C(~), and ~ = flon, then f C VMO~(fl). 

Selecta Math. 

[] 
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E x a m p l e  2. If f E Wl 'n(f t )  and ~ = fioa then f E VMOe(ft) .  Recall that 

f E VMO(f~) and ~ = flon c= W1-¼,'~(Oft) also lies in VMO(0f~), by Example 2 
in §I.1 in [BNI]. 
Proof. Since both conditions f C= W 1,n and f E VMO~ are invariant under diffeo- 
morphisms, we may locally flatten the boundary 0fL In addition we may suppose 
that the metric is locally Euclidean near the flat portion of boundary. Near the ori- 
gin in the flat boundary, we may use coordinates (x', z,~.), x' C IR n-1 , with Xn > 0 
in ft, xn = 0 on Oft. In view of Theorem 2 it suffices to show that 

lira i If(d' - f (x ' ,  o)ldx = o. 
IBI~O 
B E D  B 

For B C D, let Q = Q' x (e, 3e) be the smallest cube with edges parallel to the axes 
containing B. Then 

f - i(x',O) _< 2< i l i.ol 
Q Q' x (0,a~) 

_ c  I:.,,, " - + o  

Q' X (0,3e) 

as e - ~  0. 

E x a m p l e  3. Consider, as usual, a domain fZ having compact closure in a smooth 
Riemannian manifold X without boundary; Oft is smooth. Let ~ belong to 
VMO (Off). The following particular extension f of ~ inside ~ belongs to VMOe (fl). 
Let U = {x Ef t ;  dist(x, cof~) < 5} with 5 so small that any point x in U has a unique 
closest point P(x) on 0ff. The geodesics starting on 0f~ and orthogonal to Oft cover 
U simply. Denote dist(x, Oft) by d(x). For x in U, define 

f (x)  = ~d(x)(P(x)) 

i.e., f (x)  is the average of ~o on a ball on 0f~ centred at P(x), having radius d(x). 
We extend f to all of ft by multiplying it by a smooth cutoff function with support 
in U and which is identically one near 0ff, and we continue to denote by f the 
extension to all of ft. 

L e m m a  7. f belongs to VMO~(f~). 

Proof. By Lemma 6, the property of belonging to VMO~ is independent of the 
particular metric on X. It is convenient to replace the given Riemannian metric on 
ft by a different one. We describe the new metric just in U; it is easily extended 
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to fL The new metric preserves all geodesics starting on Oft and orthogonat to 
0f~, and preserves arc length on them. But it is a product metric. Namely, if 
x' = (xx , . . .  ,xn-1)  are local coordinates near a point 9 on Oft, with x ~ = 0, t = 0 
at ~, and t > 0 in U, the lines x' = constant, 0 < t < 5, correspond to our special 
geodesics orthogonal to Oft. The new metric has the form 

--2 
ds = dt 2 + ds '2 (3.8) 

where ds '2 = ds~o ~. 

The function f is continuous in ft. Therefore, to prove the lemma we need only 
consider balls Be (x) in U belonging to our family C. We have to show that 

¢ If(Y) - f (z)I  ~ Ctlq°NBMO, 

Be(x) s~(x) 

(3.9) 

with C a fixed constant independent of the ball; by density this proves that f is in 
VMO(ft).  To verify that f is in VMO~ we have to show that 

[ f ( y ) - ~ ( P ( y ) ) [  is small for ~ =  ~d(x) small. 

B~(x) 

(3.xo) 

We may use the local coordinates (x', t) described above, and suppose that Be(x) 
is the ball 

B~(x) = B e ( 0 ,  r)  with 2 e < r < 5 .  

Denote the ball in Oft, i.e., on t = 0, centred at P(x),  which in our local coordinates 
is the origin, and having radius e by B'  = B'(0) .  Now Be(0, r)  lies in the cylinder 

D =  B' e x ( r - g , r  +e) ,  

and since tDI N CIBe(x)I, to prove (3.9) it suffices to prove that 

D D 

Now if B'  is the ball in IR n-1 with centre 0 and radius e (measured in our metric 
ds'), we have 

¢ ~ B  I y ~ z ' c B '  
r - - e < s < r + e  r - - e < t < r + e  
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If B ' , ( y ' )  is the ball (in our metric ds ' )  about y' of radius s then 

Since 

i I i I 
B t ( z ) , B , ( y ) C B ' r + 2 ~ ( O  ), if r - e < s , t < v + e .  

r + 2 e  r + 2 e  r + 2 g  1 
< - -  < C  independent of r and e < -  

t ' s - r / 2  - - 2 r '  

we see with the aid of Lemma A.4 in [BNI] that 

l ~ ( y ' )  - ~T+2~(0)I, I~,(z')  - ~T+2~(0)I -< CIi~tlBMO 

329 

Since ~ is in VMO, 

f i r ( Y )  - ~(P(Y))I i s  small, 
D 

J : =  / I - ~ t ( x ' ) - ~ o ( x ' ) l  is small. 

x' EB' 
e<t<3e 

Thus 

/ J ~  is small for small. C 

B' 

With the aid of Lemma A.4 in [BNI], we see, as above, that for c small, 

] ~ ( x ' )  - <(0)1 is small if x' c B' and E < t < 3c. 

:_< <(0tl +[  l<(0)- 
zcB '  B' 

e<t<ae 

The first term on the right is small by (3.12), and the second, by (3.11). 

(3.11) 

(3.12) 

[] 

i.e., that for e small, 

if 7 is small; thus 

T<(Y') - ~ ( z ' ) l  -< ClI~IIBMO" 

Inserting this in I above we obtain (3.9). 

Turning to the proof of (3.10), we consider again the cylinder D, with now, 
7 = 2e. It suffices to prove that 
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E x a m p l e  4. Consider f t ,X  and ~ as in Example 3, ~ E VMO(0ft). 

L e m m a  8. The harmonic function in ~, which equals qo on Oft, belongs to 
VMO~(f~). 

The proof is given in Appendix 3, see Theorem A3.1. 

E x a m p l e  5. C o n s i d e r  u = ( l o g l z l )  * f in I~ ~, n _> 2, where f E LI(I~ n) with 
compact support (for simplicity), get ft C IR '~ be a smooth bounded domain. 
Clearly, u 6 WI'P(f~) Vp < n, but it need not belong to Wl'n(ft). Hence u has a 
trace on Oft, say ~. 

L e m m a  9. qo belongs to VMO(0f~) and u belongs to VMO~,(f~). 

Proof. First, note that u E VMO(ft). Indeed, by density, this follows from the fact 
that 

IMIBMo(a) < VII/IlL,. 

Next, that ~ belongs to VMO(Of~) follows from the estimate 

II~IIBMo(Oa) A OIIfllL'. 

This is derived in turn from the inequality 

Ill°glx--alllBMo o, ) --< C Vae 

where C depends only on f~. To prove the last inequality we need only establish 
for c small, 

B~(x) B~(x) 

(3.13) 

where C depends only on ft. Here x E cgf~ and B~s(x) is the geodesic ball on 0f~ 
centred at x. We consider two cases: 

(i) I x - a  I k 6 e ,  
(ii) I x - a  1<6e .  

Case (i) is obvious, since for e small, if y, z E B~(x), 

I x - y l  < e ,  I z -  z t  < c 

and thus 
1 <  l y - a l  <2. 
2 - Iz - ~l - 
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In Case (ii) we have 

J _ 2  ]~ 

B~ (z) 

log ~ da(y) <_ C(ft). (3.14) 

Finally, we prove that u E VMO~ (ft). By Theorem 2 it suffices to show that 

lim j£ lu- l--0 
¢--40 

Be (a) 

where c = ½dist(a,0ft) and ~ is as in (3.7). By density 
Theorem A3.1 and A3.2) it suffices to establish that 

f I u - ~ l  ~ ell filL1 
Be (a) 

(as in the proofs of 

(3.15) 

for e small, where C depends only on ft. 

Inequality (3.15) follows from 

f Ilogl x -  yl - loglP(x) - yll dx <- C(fl) 

B~(a) 

(3.16) 

for every y E lt~ n and for every e < some ~o- To prove (3.16) we consider, as before, 
two cases: 

(i) lY - al _> 6a, 
(ii) lY - al < 6e. 

Case (i) is obvious since, for x E B~(a), 

1< tx-yl <3.  
3 -  I P ( x )  - y t  - 

In Case (ii) one shows, in fact, that 

B,(a) 

(3.17) 

and 

J : =  ¢ 
B~ (a) 

I l°g IP(x)¢ - y l  dx < C(f~). (3.1s) 
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Inequality (3.17) is clear. To verify" (3.18) one has, first, as in (3.14), that for e 
small, 

J < C  f log ~ - ~  &r(~) 

B;~(P(a)) 

where B~c(P(a)) is the geodesic ball on af~ centred at P(a). Now, for [ C 
Bi~(P(a)), 

10 . 

Furthermore, for ¢ small, one sees that for such ~, 

Hence 

- yl >_ - P ( y ) I -  

J _< C + C / log -~P(y)I d~(g) 

B Z (P(a)) 

_< C + C / log -:2b_TP(y)l &r(g) _< C(a)  

since the last integral is bounded by a constant depending only on ft. [] 

We conclude this section with an answer to a question raised by H. Amann. Let 
X , Y  be smooth n-dimensional compact oriented manifolds without boundaries; 
Y is smoothly embedded in some IR 1'~. Consider two maps p , ¢  C VMO(X,Y) ;  
by [BNI] the degrees are well defined. Suppose p and ~ are connected by some 
homotopy H(x, t ) ,  0 < t _< 1. In Corollary 6 of [BNI] it was shown that if H 
is continuous in [0, 1] with values in VMO(X,Y)  then deg~ = deg¢.  Amann's 
question was whether the same conclusion holds in case 

H e VMO (X x (0, 1),Y). (3.19) 

The answer is yes, provided one makes a slightly stronger assumption on H for t 
near 0 and 1. In fact, under condition (3.19) it is not clear what. is meant by saying 
that g ( . , 0 )  = ~ , H ( . ,  1) = ¢. 

C o r o l l a r y  3. Assume in addition to (3.19) that 

h 

o B~(z) 
1 

1--h Bh(x) 

as h --+ O, uniformly in x C X 

as h -+ O, uniformly in x E X.  

(3.20) 
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Then 
deg(~, X, Y) = deg(~b, X, Y). 

Proof. Consider the manifold X = X x R with the product metric, and set f~ = 
X x (-1,2) i n 2 ,  

{ ~(x) for t ~ 0 

IYI(x,t) = H(x,t) for 0 < t < l  

¢(x) for t_> 1. 

(3.21) 

By Theorem 2, conditions (3.20) imply that H E VMO(f~, Y). (It is easy to see 
that (3.20) is, in fact, equivalent to the property that ~r E VMO(fl).) As in [BNI] 
we now define 

I~(x,t)  = P i ~ 
" 2  

Be (x,t) 

where P is the projection to the closest point in Y. In view of Lemma A.4 of [BNI] 
we may also work with 

O~(x,t) = P / 

Q~(~,t) 

where Q~(x, t) is the cylinder B~(x) x (t - e, t + e), for by Lemma A.4 of [BNI], 

sup - a (x,t) I 0 
x E X  
tEN 

as e-~O. 

Clearly for t < -e ,  G~(x,t) = ~ ( x )  = P ~ ( x ) ,  and for t > 1 + e, G~(x,t) = 
¢~ (x) = P~b~ (x). By standard homotopy 

deg (G¢(. , t), X, Y) is independent of t. 

Thus, for e small, deg(~, X, Y) = deg(qo~, X, Y) = deg(¢~, X, Y) = deg(¢, X, Y). 
[] 

R e m a r k  11. In connection with (3.19), a word of warning: If f E C([-1,  1], 
1 1 VMO(X) fILl(X)) one might think that f is in VMO(X x [-~, 7]). This need not 

be the case; here is an example. Take X = [-1, 1] in II{. For t > 0 consider 

1 if Ix I < t 

f ( x , t ) =  - 1 + 2  l°g Ixl if t < t x ] < v z t  
log t 

0 if Izl > vq 
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and for t < 0, f ( x ,  t) - O. By Example 6 in §I.2 of [BNI], f E C([-1,  1], VMO(X)). 
Continuity with values in L ~ is clear. But f does not belong to VMO(X x [-½, ½]), 
for 

f I f ( x , t ) - f ( ~ , r ) t d x d t d  ~ d T >  1, 

Qh @, 

where Qh = [-h ,  +h] x [ -h ,  +hi. 

I I .4 .  For  u E VMO~,deg(u, f~,p) = a b o u n d a r y  degree  

Recall the standard result that for a continuous map u : ft -+ IR ~, with ulo a = 7), 
and with ~ ¢ p everywhere on OFt for some point p E ]R n , 

deg(u, a , p ) =  deg ( ~ ,  0fit, S'~-1) . (4.1) 

Here we extend this result to maps u E VMOe provided Iqo - P l  > do > 0 a.e. 
on Oft. 

T h e o r e m  3. Assume the above, with ~ E VMO(0f~). Then there is a neighbour- 
hood U of Of~ in f~ such that 

f l u - p l  ~ d°. VBCU, B E D  

B 

- -  so that deg(u, f~,p) is defined. Furthermore, (4.1) holds. 

Pro@ We may take p = 0. Set ~5(x) = p(Pz)  where P is the nearest point 
projection on 0 f t ,~  is defined in a neighbourhood U of Oft. Let ¢ be a cutoff 
function with support in U, and ~ - 1 near 0~. Set ~(z) = ~(x)~(x), so that 

E VMO~(ft); since u E VMO~, 

lira , ¢ I u - ~ I  
iBl-+O 
B E D  B 

= 0 .  

But 

B B B 

_> do -f i l l  
B 
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for IBI small, since [~1 >__ do near 011. Hence there exists a neighbourhood U of 0~2 
such that 

f luf>_~ V B c U ,  B ~ .  
B 

We have proved the first assertion of the theorem. To verify (4.1) we make use 
of 

L e m m a  10. Assume ¢ C VMO(0f~,I~ ~) and I¢1 = 1 a.e. on Of L For x e f~, let 
¢(x) = i (~)¢(Px)  ~ ~bo,e. The~ 

deg (¢, a,  0) = deg (¢, Oa, S n- l ) .  

Pro@ We know (see Corollary 5 in [BNI]) that there exists a sequence Cj E 
C~(Ofl ,  S '~-1) such that Cj --+ ¢ in BMO and a.e. By (4.1) for continuous maps, 

where 

deg (?~)j,0~,S n - l )  ~- deg (~j,~'~,0) 

7j(x) = ¢(x)¢j(Px). 

As j ~ co, deg(¢j,Ofl,  S ~-1) -+ deg(¢ ,0~,S  n-l)  (by Theorem 1 in [BNI]). 

On the other hand we claim that ¢--j --+ ¢ in both Ll(~t) and BMO(f~). Indeed, 
convergence in L 1 follows from dominated convergence. Convergence in BMO uses 
the easily verified fact that ~/)j(Px) -+ ¢ (Px)  in BMO(U), and the estimate for 
products, namely Lemma B.8 in [BNI]. Moreover 

t~J (x)[ =- 1 in some fixed (uniform) neighbourhood of Oft. 

Hence, by the stability of degree in the BMO topology (Property 2 in II.2), we see 
that 

deg (~ j , a ,0 )  -+ deg (~ ,a ,0) .  

E3 

Proof of Theorem 3. Set ¢(a:) = ~(x) I~(x)l'x E 0~, so that ~ C VMO (by Lemma 
A.7 in [BNI], on compositions of VMO maps with Lipschitz maps). Thus, by the 
previous temma, with ¢ as defined there, 

Next we have 
deg (7, a, O) = deg (~, a, 0 ) (4.2) 
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where ~(x) = ~(x)~o(Px). Indeed we may consider the homotopy 

H(x, t) = t ~ ( x )  + (1 - t ) ~ ( . )  = ¢ ( . ) ~ ( P x )  I~o(Px)----~ + (1 - t) 

and note that for every x in some fixed neighbourhood of 0~], 

]H(x,t)l > [t + (1 - t)d0] _> rnin(d0, 1) Vt E [0,1]. 

Applying Property 2 once more, we obtain (4.2). 

Finally, it remains to prove that 

deg (~ ,~ ,0 )  = deg (u, f},0). (4.3) 

Recall that since u E VMO~ we have 

,ira fl -<=o 
IBI-÷o 
BED B 

Assertion (4.3) then follows from 

L e m m a  11. Assume u,v E VMO(~,I~ n) and 

lim f [ u  - v I = 0. 
tBl.-~o J 
BED B 

Assume that, for some neighbourhood U of OPt in ~, 

f lul do 0 V B C U ,  B E 7 9  > > 

B 

SO that deg(u, ~, O) is defined. Then there is a neighbourhood U' of OPt in ~ such 
that 

~]v t  > do VB c U', BE79.  
- 2 

B 

Moreover 
deg(v, ~, 0) = deg(u, ~, 0). 

Proof. The existence of U' is clear. Recall that, by definition (see §II.2), 

deg (u, ~, 0) = deg (~ ,~2~ ,0 )  
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deg (v, ft, 0) = deg (G, ft2e, 0) 

But we may fix e so small that (see (2.4)) 

and, similarly, 
do 

lim f [ u  - v[ = 0). Hence, by linear homotopy for the continuous (since maps, 
I~l-+o J 
BED B 

deg (g~, a2~, 0) : deg (G, ae~, 0). 

This proves Lemma 11 and completes the proof of Theorem 3. 

An application. Consider the equation 

A u = f  in f~, 

u = ~  on Of~, 

where ~ C Nn is a smooth bounded domain with n > 2. Assume 

f C L ~/2 (t2, I~'~), 

E VMO (0f~, S " - ' ) ,  

with 

deg S"- ')  # O. 

C o r o l l a r y  4. Under the conditions above 

ess R(u) D BI(0). 

For the definition of essR(u), see §I.4 in [BNI]. 

Proof. We claim that 
u e VMO~(f~). 
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(4.6) 

(4.7) 

(4.4) 

(4.5) 
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The  assert ion in the corollary then follows from Theorem 3 and P rope r ty  1 in 11.2. 
To prove (4.7) we distinguish two cases: 

Case (i): n > 3, 

Case (ii): n = 2. 

In Case (i) we write u = v + w where v is the solution of 

A v = f  in [~ 

v = 0 on Oft 

and w the harmonic  extension of ~ in fL Since v C W2"~/'2(f~), then v E w l ' n ( f t ) ,  
and in fact in W~"~(ft). Thus  v C VMO0(f~) by Example  2 in §II.3. On the other 
hand w E VMO~(f l )  by Theorem A3.1 in Appendix 3. Thus  u = v + w  E VMQ,(f~) .  

In Case (ii), we use the same decomposi t ion u = v + w. But  here we cannot  
assert  that  v E W l'e. Set 

= e( log Ixl) * f 

(here f is extended as 0 outside f~) so that  A g  = f .  

By L e m m a  9, ~5 C VMO¢(f~) where ¢ = ~loa E VMO(0f t ) ,  We have 

A ( ~ - v ) = 0  in f~ 

~5- v = g, on Oft. 

Hence ~ -  v E VMO¢(f~) by Theorem A3.1. Thus  u = v + w = ( v -  75) + ~ + w E 
VMO~ (~). [] 

R e m a r k  12. If n > 3, condit ion (4.4) is sharp in the sense that  if f E L (n/2)-¢ 
(any c > 0), the conclusion of  Corol lary 4 need not  hold. This m a y  be easily seen 
on Ft = BI(0) ;  the function u(x)  = x / i x  I satisfies (4.4) with f C LP(f~), for all 
p < n /2 ,  but  not  with p = n/2 .  

A p p e n d i x  1. S o m e  p r o p e r t i e s  o f  B M O  a n d  V M O  in  d o m a i n s  

We present  the proofs of a number  of results in §II.1. In part icular,  the equivalence 
of various notions of BMO is established - -  for general bounded  open sets ft. In 
addit ion we show that  C~°(ft) is dense in BMO(f t ) .  These results are due to 
Peter  Jones and some are implicit in P. Jones [1]. 

We star t  with an easy result; we use the definitions of §II.1 and do not  repeat  
them here. 
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L e m m a  AI .1 .  Consider 0 < kl < k2 < 1. Then 

II IIBMO,kl < I1 IIBMO,k~ ----- CII IIBMO,< (A1.1) 

where C may depend on n, kl, and k2. 

A deeper result, Theorem A1.1, implies that the constant C depends only on kl. 

Proof of Lemma AI.1. Throughout the proof, C denotes various constants depend- 
ing on n, kl, k2. Fix a ball Br(x) in ~t with 

r _< k2 dist(x, Of~). 

Our aim is to show that 

B.(x) B.(x) 

If(Y) - f(z)l  <- CII f l IBMo,<-  (A1.2) 

We use a covering argument similar to one in the proof of Lemma A. 14 in [BNI]. 
Consider a maximal family of disjoint open balls Bp(xi), with centres xi E 

Br (x), and radius 

p = A r  with A k l ( 1 - k 2 )  - < 1. ( A 1 . 3 )  
2k2 

Each ball of double radius, B2p(xi), belongs to the class Ckl. Indeed 

r < k2 dist (x, Oft) <_ k2( Ix -  xiI + dist(xi,Oa)) 

<_ k2r + k2 dist (xi, Of~), 

so that 

and 

k2 dist (xi,O~t) 
r<_ l - k 2  

2Ak2 dist (xi,Ofl) = kl dist (xi,cOf~). 2p = 2Ar <_ 1 - k 2  

Furthermore, clearly, 

B4~) c UB~(~,). 
i 

Thus c[Z 
B2p(xl) B2p(xd 

i•j B2p(xi) B2p(xj) 

(A1.4) 
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The first sum is bounded by 

21tfltB,~,o,,,, E tB~,(~,)I ~ <- CilftlB,,,,o,,~, E IB,(~')I ~ 
i 

_< Cllf l lBeo,k, iB,'+0(Z) i 2 
2n 

_< C I I f l t B M o , k , ~ "  • 

To estimate the second sum in (A1.4) we have 

S / 
iCj B~p(x~) B.2p(xj) 

-<E I i [Is(y)-z..(-,)l 
i¢ j  B2p(.~j B2~(:~S) 

Selecta Math. 

(11.5) 

_< CltfllBvo,,. ~ IB,~(~,:)t tB~(~DI 
i# j  

+ c Z IBo(x~)l In~(xj)l 172~(x~) - 7.~,p(xj)l. 
i¢j 

We now claim that for i ¢ j 

17~,~(x.D - ]2 , , (z j ) l  <- CII f t lBMo,k,- (11.6) 

Assuming (A1.6) we see that 

J ___ CllflIBMo,~, ( E  I~0(x')t) ~ 
_< ClI/tlBMo,k, IB,-+p(x)12 (A1.7) 

C r 2 n  t J BMO,kl. 

If we combine this with (A1.5) and (A1.4) we obtain (A1.2). 

Proof  of (A1.6). This is (tone as in [BNI] (proof of inequality (A.12)). Namely, for 
any two points Y, z in Br (x ) ,  

I L o m )  - 7.~,,(z)[ _< C~ Ilftl~3Mo,k,. (A1.8) 

In view of (A1.3), we then obtain (A1.6). 1b verify (11.8) consider a. chain of points 
y, y l , . . .  , Ye-1, z in B,.(x)  such that the distance between any two successive ones 
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is bounded by p, and with g < Cr/p. For any two successive points of the chain, 
say yi, Yi+l, we see, using Lemma A.4 of [BNI], that 

Y2Avi) - LAyi+I)I < c f I f -  73 (yi)I 
Bap(yl) 

< Cll/lI,MO,k,. 

Consequently, adding these inequalities for all successive points we obtain (A1.8). 
[3 

R e m a r k  A I . 1 .  The definition of II IIBMO,k involves balls in N", and we have 
only spoken of Euclidean balls. The reader may verify that Lemma AI.1 holds if 
we replace the Euclidean metric by any norm on R ~ . 

Using Lemma AI.1 it is easy to give the 

Proof of Lemma 2. Consider a ball Br(x) in ~1 with r < kdist(x,O~l), k to be 
chosen. We wish to estimate 

B~(~) B~(~) 

In view of Lemma A1.1 it suffices to consider any k in (0, 1). We have 

H(B~(x)) H(B,,(x}) 

C depends on a bound for the Jacobian of H -1. Note that 

H(Br(x)) C B~r(H(x)) 

for suitable c~ depending on the Lipschitz constant of H.  Furthermore, 

dist (H(x),O~2) > 5dist ( x , 0 ~ l )  

where 6 depends on the Lipschitz constant of H -1. Thus 

(~r < akdist(x,O~l) < - ~  dist (H(x),O~2). 

We now fix k so that, for example, c~k/5 = 1/2. Then we find 

I _< CII/IIBMOta~). 

[3 

We now come to one of the main results in this Appendix, the equivalence, due 
to Peter Jones, of the various notions of BMO, i.e., using all balls or just balls well 
inside the domain. In fact the bMls need not be Euclidean ones. They may be balls 
in any norm on N n . In the statement of Theorem AI.1, and in the proof, the balls 
and distance may be measured in any given norm. 
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T h e o r e m  A I . 1 .  Let f~ be an open bounded set in I~ n. For any real function 
f e n~oc(a), consider two (semi) norms 

Ilfll = HflIBMO = 

Ilfll ' =  ]lfll~MO = 

e_< ½ dist(x,0a) B,(x) B,(x) 

e<dist(x,Of~) Be(x) B~(x) 

There is a constant C depending only on n and the choice of norm on IR ~, such 
that 

]]fI[BMO _< H/II~MO --< C[IfIIBMo- (A1.9) 

The proof of Theorem A1.1 relies on the following two lemmas. 

L e m m a  A1.2.  There is a covering of B = BI(O) by balls Bi = Br~(Xi) with 
ri = 1(1 - txi]) > 0 such that for every 7 > (n - 1)In, 

E [Bil~" = C7 < oc. 
i 

In particular, 

E tBit t  l°g tBill < ec. (AI.10) 
i 

Pro@ L e t O < b <  l a n d s e t ,  f o r j = l , 2 , . . . ,  

Aj={xeB; 1-52-1~1x1~1-~} 

Note that 

B =  ~_3Aj. 
j = l  

For each fixed j ,  consider a maximal family ~) of disjoint balls Bp(xi) with xi E 
Aj Vi,and p = ¼b j. Clearly, the family B2p(xi) covers Aj. The corresponding 

family Bi = Br~(xi) with ri = ½(1 - I x i l )  > 2p also covers Aj.  Moreover 

0 e A x i )  c A = {x;  1 - ~ - 1  _ p < lzt < 1 - ~ + p} 
ieFj 

and so 
E ] Bp(xi)] < IA] <- Cbj' 
icFj 
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where C is independent of j .  It follows that 

card Fj <_ Cb j(1-n). 

Thus we obtain, since ri _< Cb j Vi, 

IBd ~ <__ CbJ( ' - " )b  ~j~ _< 6 ¢ ,  
icFj 

where d = b ~ - ~ + 1  < 1. Consequently 

cx~ 

E El ,l <cE d' 
j = l  iaFj j : l  

343 

[] 

There is a constant  C depending only on n and the choice of nor~m Lemma A1.3 .  
on N n such that 

- f r ( x ) - f l / 2 ( O )  <CllfNBMO1Og(1/r) V x •  BI(0) (AI . l l )  

with 
1(1 - [xl) r z ~  

Assuming Lemma A1.3 it is easy to derive Theorem AI.1, 

Proof  of  Theorem AI.1. It suffices to show that, for any ball B = B~(xo)  C 

Ba(xo) c f~, 

, : :  :):- :ol <_-c sup : ):- L(x) l 
J xEB J 
B e<½ dist(x,OB) Be(x) 

for some constant fo and some constant C depending only on n and the given norm 
on N ~. Without loss of generality we may suppose B = BI(0) and  IlfllBMO(B) = 1. 

Consider a covering Bi = B,,~ (xi)  of B as in Lernma A1.2. Set 

fo = f li~(o) 

and 

f i  = 7,., (xi).  

We deduce from (A1.11) that, for all i, 

< Clog 1 _< cl togiB, l [ + C (Aa 12) Is, £i 
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f If- Sol < _ ~  IB, I/IS - kt + ~_~ V IB~IIS ~ 1  - fol 
Bi Bi 

<_C 

by (A1.12) and L e m m a  A1.2. 

We now re tu rn  to the 

[] 

Proof of Lemma A1.3. The  line f rom 0 to x is identified with IR and we assume 
0 < x < 1. Consider  the sequence B,,k(xk ) of balls centred on tha t  line with 

and 

xk = l - ( 1 - x ) 2  k-1 

1 
rk = 5(1 - xk) = (1 - x)2/¢-'~. 

Let  ko be the largest  integer such that, xk > O. We always assume tha t  k _< ko, so 
tha t  B ~ ( x k )  C BI(O). 

I t  is easy to check tha t  

Brk/2 (Xk -- ~ )  C Brk(Xk) NBrk+l (xk+l), 

and thus, by L e m m a  A.4 of [BNI], we have 

L~+I 
Set 

fk = f ~  (xk); 

we infer tha t  

[f~ - fk+,[ _< ClIflIBMo 
Adding these inequalities we find 

Note tha t  

Vk < ko - 1. 

1 
If1 - fk~, I ~ Cllfl[BMO(kO - 1) ~ Cllf[IBMO log r"  ( A I . l a )  

1(1 -x). k=Y~(~) with ~=~ 
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Finally we claim that 
[fko -- 71/2(0)[ --< C[[fIIBMO. (Al.14) 

The desired conclusion (AI . l l )  then ibltows from (Al.13) and (Al.14). 

Proof o f ( A l . 1 4 ) .  Since xko+l <_ 0 we have xko _< 1 and rko = ½(1--xko) >_ ¼. 

It follows that B1/2(0) N B~k, ~ (Xko) contains tile ball/~ = B1/s(Xko -- ~). Applying 
Lemma A.4 of [BNI] once more we obtain 

I?1/2(0) - ]BI < C ItfIIBMo 

Ilk,,-fsl < C I l f l l s io  

and thus (Al.14) is established. 

R e m a r k  A1,2,  Theorem AI.1 holds for any open set f~, with ~ compact in a 
smooth open Riemannian manifold X0. In the definitions of the norms ][ II and 
H H', one also restricts the radii of the balls to be less than the injectivity radius 
ro of Xo - -  assumed to be positive. The constant C in (A1.9) then depends on the 
Riemannian metric on Xo. The proof of this more general result proceeds as in the 
proof above with minor modifications, 

Here are some consequences of the above results. 

C o r o l l a r y  A I . 1 .  Let a be an. open bounded set in I~ n. Suppose !1 II1 and tl 112 
are two norms on ~n Associated with these are two notions of BMO(fl):  

,IflIBiVio = sup / f -  / f} i =  1,2. 
Bt(~)c~ B~(~) B~(~) 

Here the ball B~(x) is measured in the norm ]] Ili. Then the two BMO norms 
are equivalent (and the equivalence constants depend only on n and the equivalence 
constants for It lit and lI II2). 

Next we take up the 

Proof of Lemma 3 in §ILl. Consider the function 

1 
~(x) = log ~(x, 0a)  

where d is the distance measured in some metric equivalent to the Riemannian 
1 dist(x, 0ff) - -  here dist refers to our one. For any ball B~(x) in fl, with E <_ 

Riemannian metric - -  we have to estimate 

B~ (.~) B~(x) 
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Clearly if y C Be(x), dist(y, cqf~) > e, and thus d(y, Of*) > ac  for some constant a. 
Hence for y,z C B~(x), 

IV(Y)- F(z)l <- C'd(Y, z) <- C d i s t ( y ' z ) e  -< C. (Al.15) 

Consequently J < C. [] 

With the aid of Theorem 1 we also give the 

1 dist(x,0ft) .  In view of Proof of Lemma 4. Consider a ball Be (x) in f~ with c _< 
Theorem 1 we have to show that given 5 > 0, there exists ¢o > 0 such that 

J =  .j£ j~ I ~ ( y ) - ~ ( z ) [ < g i  VxEf~,  

B~(~) B~(~) 

1 dist(x, 0~)}. Since ~ is continuous in f~ we need only and for all e _< rain{e0, 
consider such balls with dist(x, Oft) small. We have 

- < I (y) -  (z)l 

-  min{F(y), 

by (A1.15), 

Consequently 

< C dist(y,z) 
e I min FI l - a "  

Be(x) 

J < C[ rain 9~ o:-1 
B~ (.~) 

with C independent of x and e. Thus for dist(x, Oft) small, rain ~o is as large as 
B~ (x) 

wanted, so that J is small. [] 

We turn finally to the proof of Theorem 1. The proof we present is a slight 
modification of one shown to us by Peter Jones. 

Proof of Theorem 1. We need only prove that (1.6) implies (1.7), namely, if f E 
BMO(f~) and satisfies 

lira .¢  I f - f ~ ( x ) ] = 0  uniformly in x, (Al.16) 
~-+0 

s< ½ dist(~,Of~) Be(x) 

then 

there exists a sequence (fj) in C~( f l )  converging to f in 
BMO(ft)  Cl L~oc(a ). 

(A1.17) 

The proof makes use of the following simple 
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L e m m a  A1.4 .  Assume that f is in BMO(~) and satisfies (Al.16). Then each 
truncation 

k i] f ( x )  > k 

fk (x )  = f (x )  i] - k  < / ( ~ )  < k 

- k  if f ( z )  < - k  

also satisfies (Al.16) and moreover, 

fk ~ f in BMO giL~o c as k --~ oo. (Al.18) 

The lemma is a variant of Lemma A.17 in [BNI] and is proved in the same 
way. 

In view of Lemma A1.4 we may assume that our f satisfying (Al . t6)  is in L °°. 
The main step is to show that f may then be approximated in BMO giL 1 by L °° 
functions F satisfying (Al.16) and which, furthermore, have compact support in ~. 
Once this is done it is easy to complete the proof of the theorem: We may think of 

as lying in a compact manifold X0, without boundary and consider F defined on 
X0 to be zero outside gl. By Sarason's result (see Lemma 3 in [BNI]) F belongs to 
VMO(Xo). By Corollary 1 in [BNI], F~ is close to F in BMO glL 1 , if c is small. But 
for s small, F¢ also has compact support in fl. Since F~ is continuous, it may be 
approximated in the L ~ norm - -  and hence in BMO NL 1 - -  by smooth functions 
with compact support in ft. The proof of Theorem 1 would then be complete. 

As usual, it is convenient to repla~:e the BMO norm by an equivalent one: 

¢< ½ dist(x,0fl) BE(x)  B,(x) 

and to rewrite (A1.16) as 

lim f f [f(y) - f(z)l = O uniformly in x. (Al.16)' 
~-+0 

e<½ dist(x,01]) B~(x) S~(x) 

To carry out the main step, consider S satisfying (Al.16)' with ]Sl -< k. Using 
suitable cutoff functions we will construct the approximating functions Fj. 

Recalling the function of Lemma 3, 

1 
~(x) = log dist(x, 0gt) '  

without loss of generality, we may always assume that for all x, dist(x, Ogl) <_ 1, so 
that ~(x) > 0. For j = 1 ,2 , . . .  , set 

hi(x)= ( 1 -  1 + 
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and 
Fj = h i .  

We claim that the Fj have all the desired properties: 

(i) Fje L °°, 
(ii) each Fj satisfies (Al.16), 

(iii) the Fj have compact support, 
(iv) F j - +  f i n n  1, 
(v) Fj -+ f in BMO. 

Clearly (i), (iii) and (iv) are trivial. 

Proof of (ii). Each function hj is Lipschitz on f~, with Lipschitz constant kj. Then, 
for our usual balls Be (x), 

B~(x) B~(x) 

<_ / f If(y)--f(z)l+kjllf,lL~ ~ ¢ dist(y,z) 

Be(x) B~(~) B~(x) B~(~) 
) 0 as C > 0 by (A1.16)'. 

e~ooI ol (v). 

f 
Bdx) 

Consider 

B~ (x) 

Given 5 > 0, there exists Co > 0 such that 

If(y) - f(~)] < for E < Co, 

B~ (x) 

1 dist (x, 0f~) e_<~ 

thj(y)f(y) - hj(z)f(z) - (f(y) - f(z))[. 
Be(x) 

We will prove that I < 5 for j sufficiently large (independent of x and e). As usual, 
we distinguish two cases. 

(a) If e < e0 then 

Bd*) B~(x) B~(.) &(x) 

< ~ - +  

Bdx) B~(,) 

-< T + , IlfllL~ by Lemma 3, 

< 5 for j sufficiently large. 



Vol. 2 (1996) 

(b) If c _> ~0 then 

I _ < 2  

Part  II. Degree theory and BMO 

f thj(Y) - 1t I/(Y)f <- C1 f f j lL~ / (1  - h2). 
Be(x) 

This can be made less than 5 for hj large, by dominated convergence. 
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[] 

Appendix 2 (with P. Mironescu). Toeplitz operators and VMO 

In this appendix we discuss Toeplitz operators on the circle S 1. Let us first recall 
the classical Toeplitz operators. Consider complex valued L2-functions on S 1 and 
the closed subspace 

7/u = ( f  ~ Lu(S1);/e~nef(O)dO = O, 
S 1 

and more generally, for p in [1, oc], 

= {s =o, 
S 1 

Let P be the orthogonal projection from L 2 onto 7/2 

n = 1, 2 , . . .  } ,  

n = 1,2, . . .  } .  

Given a function ~ E L~(S1,C) we denote by M~ the operation on L 2 of 
multiplication by ~. The associated Toeplitz operator (with symbol ~), is 

T~ = PMwP; (A2.1) 

the associated Hankel operator is 

g~ = (I - P)M~P. (A2.2) 

T~ is often considered as an operator from 7/2 to 7/2 

A classical result is that if ~ is continuous and nowhere zero, then T~ is a 
Fredholm operator and 

index( T~ ) = - deg ( ~ , S1, S1) . (A2.3) 

See, for example, R. G. Douglas [1], Theorem 7.26 and R. G. Douglas [2]; further 
references and history may be found there. A number of authors have extended this 
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result to other classes of functions qo, not necessarily continuous. See for example 
Theorem 7.36 in R. G. Douglas [1] and D. Sarason [1], [2], [3], [4], and the recent 
book by I. Gohberg and N. Krupnik [1]. 

Since the right hand side of (A2.3) makes sense for 9) E VMO(S 1) with tqol > 
a > 0 --- by [BNI], it is natural to extend the classical result above to functions qo 
satisfying 

9) E VMO(S ~) A L°°(St), 19~1 > a > 0. (A2.4) 

We present such a result 

T h e o r e m  A2.1 .  Let 9) satisfy (A2.4). Then Te is Fredhohn and (A2.3) holds. 

This follows, in fact, from Theorem 7.36 in R. G. Douglas [1]. His result is more 
general: it asserts that if 9) is in 7/00 + C O and if @, the harmonic extension of 9) to 
the unit disc D, satisfies 

[95(rei°)[_>a>O for 1 - 5 < r <  1, (A2.5) 

then T~ is Fredholm. Moreover, 

(¢('e~°) S' Sl"~ index(T~)=-deg ~ ,  , j for everyrin (1-5,1). (A2.6) 

To derive Theorem A2.1 from Douglas' result one uses two facts: 

(i) If ~ E VMO C~L °°, then 9) G 7/00 + C 0. More precisely, 

6 VMO nL  °~ ~ 9) and ~ belong to 7/°0 + C °. 

This result is due to D. Sarason [1]. The space VMO NLO0 is sometimes called 
QC (quasi continuous); 

(ii) If 9) E VMO and 1~I >- a > 0 then its harmonic extension 95 satisfies (A2.5); 
see Lemma 5 in D. Sarason [3], and also Theorem A3.2 in Appendix 3 here. 

It seems worthwhile to present here a different proof which is more or less self 
contained. It is elementary except for the Fefferman inequality (see (A2.10) below). 

We derive Theorem A2.1 from the classical case - -  for ~ continuous - -  by 
approximation. The convergence of the right hand side of (A2.3), in the approxima- 
tion, holds by stability of degree in VMO, see Theorem 1 in [BNI]. The convergence 
of tile left hand side is more subtle since T~ does not depend continuously in the 
operator norm on the BMO norm of 9); see Remark A2.1. It turns out that H e has 
that property: 
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Lemma A2.1 .  

Proof. 

Hence 

Part  II. Degree theory and BMO 

There is a constant C such that 

IlH~ll ___ C[]¢flNBMO V~O E L°°(S1), 

Clearly t t¢  = 0 if ¢ C ~oo. Thus for any ¢ E ~oo, 

IIH~II = I I ( I -  P)M~-¢Pll <-IIM~-¢II _< II~-  ¢,llLoo. 

351 

(A2,7) 

I[H~II _< inf [l~--~bllL~ = dist(~,7-/°°) in L °°. 
¢E7/~  

(In fact equality holds by Nehari's theorem; see D. Sarason [4], page 100.) 

The assertion of the lemma follows fl'om the 

C la im .  
gist (~,7-/c~) _< CH~O[]BM 0 for ~ e n ~.  (A2.8) 

Proof of Claim. Recall that if X is a real Banach space, and M is a linear subspace 
of X then for any f 6 X*, 

sup (f, u) = dist(f,  M±),  (A2.9) 
uEM H~II<I 

where M ± is the set of points in X* which annihilate M. We take X = L 1 (S 1 , C) -~ 
L 1 (S 1 , ll~ 2 ), M =the set of finite linear combinations (over C) of e -ine, n = 1, 2 , . . . .  
Feffermans' inequality (see C. Feffermann [1]; see also C. Fefferman and E. Stein 
[1], and E. Stein [1]) implies that for u £ M, 

I fsu __ (A2.10) 
$1 

By definition, M ± = ~oc,, and (A2.7) then follows from (A2.9) and (A2.10). [] 

R e m a r k  A2.1.  There is no estimate of the form 

ItT~It < C([t~[IBMO + 11~ll5,) v~ 6 L °°. (A2.11) 

Proof. Write f E L 2 as 

f = PS + ( I -  P)S = P f  + P f - ~ f .  (A2.12) 
J 
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Since H~ + T~ = M~P we may write, for any f 6 L 2, 

M ~ f  = M~(P f )  + M ~ ( ( I -  P ) f )  

- (/) = M ~ ( P f )  + M~(PT) - f 

Thus, if (A2.11) were to hold, by (A2.11) and Lemma A2.1, 

IIM~ofllz2 < C(II~IIBMO + tl~llZ')Nfllz" + / f 

In particular, 
tIM~tt _< C(II~tIBMo + II~IIz2)- 

But IIM~It = II~tIL~- This yields a contradiction if we choose for qo the truncations 
of a function in BMO which is not in L °°. [] 

L e m m a  A2.2.  For qo 6 VMO elL °°, 

H~ is compact from L 2 into itself. 

Pro@ There is a sequence (qoj) of functions in C o such that ~j -+ ~ in BMO; see 
D. Sarason [1]. By Lemma A2.1 

tlHvj - H~oll < Cll~oj - ~tlBMO + 0. (A2.13) 

On the other hand, for every continuous ~b, H~0 is compact. This fact is classical 
and is easily verified by noting that for every ~b of the form 

He is a finite rank operator. 

Corollary A2.1. 

Proof. Just write 

and apply Lemma A2.2. 

+ N  

?z=--N 

For ~ E L ~ and ¢ E VMONL ~ 

T~TO - T~¢ is compact. 

<oT¢ - T~,~ = - P M ,  oH~ 

[] 

(A2.14) 
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L e I n m a  A2.3.  Assume (A2.4), then T~o is Fredholm in 7/2. 

Proof. By Lemma 2' in [BNI] we know that qo -1 C VMO ML °° and so, by Corol- 
lary A2.1, we have, on 7t 2 

T~oT~--~ = I + K,  K compact. 

Similarly, we have, on 7-I 2, 

T~-~T~ = I + K ' ,  K '  compact. 

It follows that (see e .g .S .  Lang[1]) T,o is Predholm. 

Before continuing with the proof of Theorem A2.1, it is convenient to introduce 
the class 

A = { g c V M O ;  ~ c L  ~ a n d ~ o  -1 C L ~ } .  

Note that if W E A, then ~o -1 C VMO; see Lemma 2' in [BNI]. 

L e m m a  A2.4.  Let (¢j) be a sequence in A such that IICjIIL~ < C, 1I¢5-111L~ < C 
and I]~bjIIBMO ~ 0. Then T~j is invertible in 7/2 for j sufficiently large. 

Proof. By (A2.14) we have, in 7/2, 

and 
T¢,;~T¢~ = I - PM¢ , HCj. 

(A2.15) 

Passing to a subsequence, we may always assume (by Lemma A.1 in [BNI]) that 
Cj -+ c, for some constant c, in L!. It follows (by Lemma A.7 in [BNI]) that 
¢j-1 __+ 0 in BMO. Applying Lemma A2.1 we conclude that 

IIPM¢,H, III -+ 0 and ]IPMv,7,H,j[I --+ O. 

Hence I - PMcs H¢71 and I - PM¢71Hcs are invertible for j sufficiently large; the 

conclusion of the lemma follows easily from (A2.15) and (A2.16). 

Next, a useful lemma about the product of functions in BMO. 

L e m m a  A2.5.  Let g C VMO ML °°. Then for every 5 > 0 there exists a constant 
Ca (depending on (~ and  g) such that 

l tfgll~io ~ alIfllzo~ -t- Cd(ltfltBMO -t-fIfIIL,) v f  c L ~,  

(A2.16) 
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Proof. Recall (see (1")in [BNI]) that 

IlfgllBMO < sups, ~ / / 
B~(x) B~(~) 

[f(y)g(y) - f(z)g(z)[. 

But 

f f / / s(z)ll (z)r 
Bdx) B~(~) B~(~) B~(x) 

< L + 211gllL~tlfItBMO, 

where 

B~(~) B~(z) 

Clearly, two estimates hold for L: 

L<2'lg']L~ / 'f', and L_<[,f]lg~ / / 19(y)-g(z)l. 
s¢(x) 8~(~) B~(=) 

(A2.17) 

Since g E VMO, there exists e0 depending only on g such that 

/ f , g (y ) -g ( z ) l<5  i f e < c o ,  
B~(z) B~(~) 

and thus L <_ 51lfllL~ by the second estimate in (A2.17). For e > eo we use the 
first estimate in (A2.17), namely 

L <_ 2tlgllL~eo / tfl <- CHflIL' 
B~ (z) 

and the conclusion of the lemma follows. 

L e m m a  A2.6. Let ~ C A and (pj) be a sequence in A such that tI~jlIL~ <<_ C, 
II~IlIL ~ <_ C and qoj ~ ~ in BMOV1L 1. Then 

index(T~) = index(Tv) for j sufficiently large. 

Proof. Lemma A2.5 (applied to f = ~j - qo and g = qo - t )  implies that 

f~J as j -+ oc. - - ~ 0  
-~- BMO 
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We deduce from Lemma A2.4 that T~j/~ is invertible in 7/2 for j sufficiently large. 

By Corollary A2.1 we have, in 7/2, 

Tvj/~ = T~jT1/~ + K 

T1/~T ~ = I + K'  

where K and K t are compact. Applying the standard properties of the index (see 
e.g.S. Lang [1]) we conclude that, for j sufficiently large 

0 = i n d e x  = i n d e x  = 

= index (T~j) + index(Tu~ ) = index (T~)  - index (T~). 

We may now prove Theorem A2.1 by approximation using (A2.3) for continu- 
ous ~. 

Proof of Theorem A2.1. Given ~ E A there is a sequence (~j) of continuous func- 
tions such that II~jIIL ~ < C, ilqo~-lIIL ~ _< C and 9~j --+ ~ in BMO~L1;  see e.g. 
Corollary 4 in [BNI]. We have 

index T~j = - deg (~j/ l~Jl)-  

For j sufficiently large, the left hand side equals index T~ (by Lemma A2.6) and 
the right hand side equals deg(~/l~[ ) by Theorem 1 in [BNI]. [] 

Here is an alternative proof of Theorem A2.1 which does not make use of Lem- 
mas A2.4, A2.5 and A2.6. It is slightly shorter, but it relies on an additional 
ingredient: the lifting property for maps in V M O ( S i , S  1) with degree zero (see 
Theorem 3 in Section 1.6 of [BNI]). On the other hand this proof is totally self con- 
tained - -  it does not rely on the classical case (~ continuous). The key observation 
is the following: 

L e m m a  A2.7 .  Consider a map m: A --~ Z satisfying 

m(~¢)  = m(~) + re(C) Vqo,¢ e A. 

Then there is an integer k such that 

kdeg ( ~ , S 1 , S  1) V~ E A. (A2.18) m(cfl) I- 

R e m a r k  A2.2 .  Surprisingly, in Lemma A2.7, no continuity is required of m. The 
condition on m is purely algebraic. 
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Pro@ We first claim that 

rn(~b)=0 V~bEA with deg(~@l ) ~ 0 .  

Indeed we may write, by Theorem 3 in §1.6 of [BNI], 

¢ --I¢lei# 

for some function cr C VMO(S 1, N). For every integer n, let 

g'n = ]~bl ¼ei~/'~ e A, 

so that 

Selecta Math. 

(A2.19) 

rn(~ ~) 

Thus, if re(C) ¢ 0, Ira(C)[ > n Vn - -  impossible; (A2.19) is proved. 

For ~o E A let 

d = deg (1--~, $1, $1 ) 

and write 
~o = edi°lcple i'~, rj C VMO(S1,R) 

(see Remark 10 in §I.6 of [BNI]). Then 

.~(~) = m(e ~0) + .~(t~1~ ~') = d.~(e ~0) 

by (A2.19). This proves (A2.18) with k = rn(ei°). 

Proof of Theorem A2.1. For every ~ E A we know that T~ is Fredhohn by Lemma 
A2.3. Set 

m(qo) = index(T~o). 

We have, by Corollary A2.1, for some compact operator K, 

m(qo,/J) = index(T~0) = index(T~T e + I() = index(T~oTe) = rn(~) + re(C) 

by standard properties of Fredholm operators. Applying Lemma A2.4 we conclude 
that 

for some integer k. Choosing ~p(0) = e i° we see that k = -1 .  KI 



Vol. 2 (1996) Part II. Degree theory and BMO 357 

Appendix 3. The harmonic extension of  V M O  maps 

In this appendix we discuss properties of the harmonic extension u of a BMO 
(or VMO) map qo defined on the boundary OFt of a domain ft C ]R n ; throughout we 
assume that Ft is smooth and bounded. 

The two main properties which are related to the core of our paper are the 
following: 

Theorem A3.1 .  Assume qo is a function in VMO(0Ft). Then its harmonic ex- 
tension u belongs to VMO~(f~). 

Theorem A3.2.  Assume qo C VMO(0fl,I~ N) and ~(x)  C E a.e. on Oft, where E 
is a closed set in I~ N . Then, for any ~ > 0 there is a neighbourhood U of Oft in ft 
such that 

dist (u(x) ,E)  < 5 Vx e U. (A3.1) 

R e m a r k  A3.1 .  The two theorems above hold in the general setting where ft is a 
domain on a manifold; the proofs carry over. 

First some notation. Fix a neighbourhood V of OFt in ft such that every point 
x E V has a unique projection P(x)  on Oft. Set 

d(x) = dist(x, Of/). 

Clearly, there is a constant C such that 

c - 1  ( d 2 ( x )  + f F ( x )  -  f2) < - 

<_ C(d2(x)  + 1P(x) - ~12)  vxev, v~eoFt. 
(A3.2) 

Given a function ~ defined on OFt, consider (as in §11.3, Example 3), for x C V, 

= = 

Bd(.)(P(x)) 

The next result provides a useful connection between the harmonic extension u 
of 7) and the function ~; it will allow us to derive, easily, Theorems A3.1 and A3.2 
from the corresponding properties of ~. 

L e m m a  A3.1 .  There is a constant C such that 

Ilu - ~lILO~(v) < CII~I[BMO(Oa ). (A3.3) 

The proof of Lemma A3.1 relies on the following two lemmas; the first one is a 
variant of an observation due to C. Fefferman and E. Stein [I]: 
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L e m m a  A3.2 .  
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There is a constant C, dependin 9 only on n, such that 

f tlC(Y ) - .~t(a)l 

yEBn 

Selecta Math. 

(A3.4) 

where BR = {y E lI~ ~-1 ; lY[ <- R},  a E BR/2,0 < t < R /2  and 

Ct (a )  = ~.  
B~ (a) 

L e m m a  A3.3 .  Let H be a smooth diffeomorphism from BR onto a subset of 0~.  
Then there are constants C and to such that 

for all ~ E BMO(a~]), tYt -< R/2  and 0 < t < to. 

Assuming Lemmas A3.2 and A3.3 we present the 

Proof of Lemma A3.1. We nlay suppose that IIFIIBMo(0~) = 1 and f o n  ~ = 0. Let 
P(x ,  ~) be the Poisson kernel so that 

u(x) = / P(x ,  ~)~(~)d~. 

0t2 

Recall (see e .g .M. Avellaneda and F. H. Lin [1], Lemma 21) the estimate 

0 <_ P(x ,~)  < C dist(x 'O~) Yx E Q, V~ C 0~.  (A3.6) 
Ix - ~I n 

For every constant c we have 

lu(x) - cl -< / P(~, 5)1~(5) - cldS. (A3.7) 
o~ 

We apply (A3.7) with c = ~(x) = ~d(x)(p(x)) and set 

t = dist(x, Oft) = d(x). 

From the estimate (A3.6) we obtain 

o a  
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Consider a finite family of smooth maps H.i : B2R --+ 0D such that each Hi is a 
diffeomorphism (onto its image) and 

U H,(BR/.,.) 
i 

For each x E V there is some i such that 

covers OfL 

P(x) ~ H~(BR/2). (A3.9) 

[ ]+Ct / [ ] = I i+h ,  (A3.10) 

HI(BR)  ~ 

Thus we have 

tu(x)- ~(x)f <_ ct J 
Hi(BR)  

where 
[ ] = ]~(¢) - ~ , ( P ( x ) )  I 

Ix - [I '~ 

To est imate/2 note that, by (A3.2), 

I x -  g[ > C - 1 / 2 ] P ( x )  - gl > c~ > O, 

since { C Hi(BR) c and p(x) E Hi(BR/2). Therefore 

I2 < Ct(Jl~OllL,(Oa) + [ ~ ( P ( x ) ) [ )  _< C (A3.11) 

by Lemmas A.1 and B.7 in [BNI]. We recall that Lemma B.7 implies that II~IIL~ < 
c(1  +{log t[); the proof of this fact uses the John-Nirenberg inequality. 

To est imate/1,  use the change of variables { = Hi(y), so that by (A3.2), 

f [g)(Hi(y)) - ~t(P(x))[ d 
11 < Ct  (t 2 + [P(x) Hi(y)12)~/~ y' 

BR 

and thus 

I1 < C* / [~b(y) - -~t(P(x))[& (A3.12) 
- (t2 + ; - ~  v, 

BR 

where ~b = qo o H / a n d  a = H[q(P(x)). 
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From (A3.12) we deduce that 

I1 ~ Ct, f I1/)('1]") -- Ct(a)l( t2 + +ja [~'t(a)--~)~5- -~t(P(x)) IdY 
Bn 

_< Ct]¢IIBMO(B.) + Ctl('fllIBMO(cga), 

(Aa.la) 

by Lemmas A3.2 and A3.3. Note that [a I _< R/2  by (A3.9), and that we may 
choose a neighbourhood V' of Oft, V' C V, so that, for every x E V',  t = d(x) <_ 
min{to, R/2};  here to is defined in Lemma A3.3. 

In view of Lemma 2 in §II.1 we obtain 

I1 <_ C. (A3.14) 

Combining (A3.11) and (A3.14) we conclude that 

1~(.) - ~ ( x )  1 <_ c w: ~ v'.  

If x E V \V '  we have 

I'~(x)i < cIIsoll/~,(on) _< c 

(since u is harmonic), and clearly 

I~(x)l <_ cII~11~,(o~) _< c. 

Hence, in all cases, 
Ju(x)-~(x)] < C  WeV. 

[] 

We now return to the 

Proof of Lemma A3.2. By scaling we may assume that R = 1. We may also suppose 
that 

f 

II~btlBMO(B2R) = 1 and that ] ~b = 0. 
d 

Bn 

and set 

Consider the sequence of balls in 1R '~-1 , 

B R = B 2 ~ t ( a  ) k = 0 , 1 , 2 , . . .  

Ak = Bk \Bk-1  k = 1, 2 ,3 , . . .  
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Let ko be the largest integer k such that 

2kt + lal _< 1, 

and set 

b k = / ¢  for 0 < k < k o .  

Bk 

Note that 

bo = ~t (a). 

By Lemma A.4 in [BNI] - -  recall our definition of BMO(B2R) - -  we have 

Ibk+l-bkl<_C for 0 < k < k o - 1 .  

Adding these inequalities yields 

I b k - b o t < C k  for 0 < k < k o .  

On the other hand, note that 

1 < 2k,, t < I. 
4 -  

By Lemma A.4 in [BNI] we have 

and thus 

f 
bk,,- J/ ~ <_ C 

J 

tyL<_I 

Ibk,,[ <~ C 

since flyl<l ¢ = O. It follows from (A3.15) and (A3.16) that 

We write 

We have to estimate 

]bo] <_ Cko <_ Clog(1/t). 

I ¢ ( ~ )  - bof 
I = t / 

L~IS1 

I = Ii + I2 + Is 

361 

(A3.15) 

(A3.16) 

(A3.17) 
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where 

I¢(y)  - bol 
±~ = t f (t~ + ~----yVS,~/2' 

B~ 

ko f I~b(y) - bol ko 
I2 = E t j (t2 +'~-Z-y--~n/2 = E Jk 

k=l A~ k=l 

and 

[3 : t  / 
lyl~l 

I~(Y) -bol 
(t 2 + la - y t2 )n /2"  

Clearly 
1j  ¢ /r I ~ ~ t~)(y) - b 0  t ~ C I~)(y) - b01 ~ C. 

Bo Bo 

(A3.18) 

Next, we estimate/3; observe that if y ~ Bko, l a -  Yl >- 2k°t >- 1/4, and thus 

r3 <_ ct / [¢ (y)  - bo[ <_ Ct(tL¢ltBMO(B~R) + thor). 

tvl_<l 

Therefore, by (A3.17), 
I3 <_ Ct(1 + log(I/t)) < C. 

Finally, we estimate Jk. On Ak we have la - y[ _> 2(k-1)t and thus 

(A3.19) 

&_< t jf l¢(y) - bol. 
(t 2 + 22(k-1)t2)n/2 

Bk 

Consequently 1 / 
J~ -< t~-12 , , (k-1)  (1¢ - bkl + tbk - hot) 

Bk 

- tn-12,~k IBkt t~ -- bkl + Ibk - bol 

< C(1  + k) by (A3.15). 
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It follows that 
ko 

I2= ~_,& <_C. 
k=l  

Combining (A3.18) - (Aa.20) we obtain the desired estimate (A3.4). 

(A3.20) 

[] 

Next, we give the 

Proof of Lemma A3.3. For any constant c we have 

Bt(y) B,(y) 

c / I~(~) - ~ 1 @ -  < IB~(v)------i 
H(Bt(y)) 

Choosing 

we find 

D ~(()d(, c = 4" 
, 1  

H(B,(y)) 

] t ~(H(~))d~- f ~(~)d~ <_ 
Bt(y) H(Bt(y)) 

C 
-< IB, m)l tH(B,(y))I i i I~°(') - ~°(~)ld'7'C" 

H(Bt(y)) 

(A3.21) 

There are constants to > 0 and K > 1 such that 

Bt/K(H(y)) C H(Bt(y)) C BtK(H(y)) 
We deduce from (A3.21) and (A3.22) that 

i ~(H(~))d~- f ~(~)d~ <_C i f 
Bt (y) H(B, (y)) BtK (H(y)) 

CII~IIBMO- 

Vt < to, lYl <-- R/2. (A3.22) 

On the other hand, by Lemma A.4 in [BNI], we have 

t i ~ -  f ~--<CN~NBMO 
H(Bt(y)) Btg(H(y)) 

[~(r/) - ~(~)Idr/d~ 

(A3.23) 

(A3.24) 
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I / ~- f ~ ~CII~tlBMO- 
Bt(li(y)) BtK(H(y)) 

(A3.25) 

Combining (A3.23), (A3.24) and (A3.25) we are led to the desired conclusion 

I f  ( ~ o H ) -  / cp_< CII(flIIBMO. 
Bt(y) Bt(H(y)) 

Finally, we turn to the 

[] 

Proof of Theorem A3.1. Observe first that if ~ 6 BMO(0ft), then its harmonic 
extension u belongs to BMO(ft) and 

IbllgMO(~e) ~ ClI~llgeO(a~). (A3.26) 

proving (A3.26) we may assume, as usual, that  II~]IBMO(0~) = 1 and that / / '  In 

of~ 
0. Let, ( be a smooth cutoff function with support in a small neighbourhood of OFt 
and such that ¢ - 1 near Of L By Lemma A3.1 we have 

and, in particular, 

On the other hand, by (3.8) in Lemma 7 of §II.3 we have 

It¢~HBMO{a) < C 

and therefore 

Since we clearly have 

t}¢UI[uMOtf,) _< C, 

tl(1 - ¢)~,tlc~(a) <_ C, 

it follows that (A3.26) holds. The Nct that u E VMO(~) whenever 9 ¢ VMO(0ft) 
is derived from (A3.26) by a standard density argument. 

Next we prove that if ~ ¢ VMO(0f~), then u C VMO~(f~). Since we already 
know that {g ¢ VMO~(ft) (see Lemnm 7 in §II.3) it suffices to verify that 

(u - ¢~) e VMO0(a). 
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Given (~ > 0 we have to check (see Theorem 2 in §II.3) that 

f l u - ~ [ < ~  for e=~d(x) small. 

B~(x) 

Let ~ be a continuous function oi1 Off. 
let ~(x) = ~d(z)(P(x)) for x E V. 

Write 
- ~ = [ ( ~  - v )  - ( ~  - ~ ) ]  + ( v  - ~). 

Application of Lemma A3.1 to (7) - ¢) yields 

[]U -- ~[]n~(B~(x))  "Q C[[~  - ¢[IBMO(0f2) "~" [Iv -- -V[]LOO(Be(x)) (A3.28) 

provided G < Go with Go sufficiently small such that B~ o (x) C V. 
Choose ¢ C C °(0~)  with 

cIl~ - ~b[[BMO(O~) < ~/2 (A3.29) 

and then choose ea < eo sufficiently small so that 

f l y -  ~[[L~(B~(~)) < (~/2 for G < G1. (A3.30) 

This is clearly possible since v and ~ are continuous on f~ and v = ~ = ¢ on 0fL 
Together, (A3.28)-(A3.30) yield 

[[u - ~[[LC~(B~(x)) < a for ¢ = ~d(x) < G1. 

The desired conclusion (A3.27) follows. [] 

A similar procedure furnishes the 

Proof of Theorem A3.2. As in the proof of Theorem A3.1 we write 

u = g + [(u - v) - (g - V)] + (v - g). (A3.31) 

Recall that, by Lemma A3.1, 

I I ( u  - v)  - ( ~  - v ) l l L ~ ( v )  <_ cIl~ - ~bllBMO(Oa). (A3.32) 

Fix Go > 0 such that d(x) < ¢o implies x C V. Choose O c C °(0~)  such that 

C [ [ ~  -- ~)[]BMO(0~) < 6/3. (A3.33) 

(A3.27) 

Let v be its harmonic extension in fl and 
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Next ,  let el < So be so small  that  

Iv (x) -~(x) l  <5/3 i f d (x )  < e j .  

Finally, we m a y  find ez < el such that  

d i s t ( g ( x ) , E )  < 5  if d(x) <e2; 

this can be achieved since 7) C VMO(0f~)  (see (7) and R e m a r k  3 in [BNI]). 
Combining  (A3.31)-(A3.34)  we obta in  the desired es t imate  

d i s t ( u ( x ) , E )  < 5  if d(x) <e2. 

(A3.34) 

[] 

R e m a r k  A 3 . 2 .  T h e o r e m  A3.2 asser ts  that  if ~ takes  its values into some closed 
set  E, the harmonic  extension u has the proper t ies  that ,  close to 0f~, the values of 
u lie near  E. This  need not  be t rue  for a rb i t r a ry  extensions of p in Sobolev spaces.  
For example ,  with n = 2 arid 7) =- 0: If u E H i (ft), neat" the boundary ,  u need not  
be small.  

Here  is such a funct ion u defined on Ft = 1R~ = {(xl ,  x2), x2 > 0}. Consider  any 
decreasing sequence (e j) of posit ive numbers  such that  

and 

.o  

for example  cj = e -3- 
defined by 

Set 

cx~ 

E ej < oo 
j = l  

y=t I l°gcJ---~ < oo; 

does it. Let  (ak) be the sequence of points  on the x2-axis 

ak = O , 2 E e  j • 
j=k 

o o  

= - a j t )  

j = l  

where  ~ j ( r )  = log l togr l -  log llogejl if r < s j  and '~j(r) = 0 if r >_ ej. Note that  
supp u is contained in the set  

j = l  
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and that u E H 1 (N2) since 

~j 

l V u l  2 = 2 ~  r2l l o g r p  - l logeyl" 
B(a.i,ej) 0 

Clearly, u(ak) = +cx) Vk and ak -4 0 as k -4 oc. 
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