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Degree Theory and BMO;
Part 11: Compact Manifolds with Boundaries

Haim Brezis and Louis Nirenberg
(and an Appendix with Petru Mironescu)

I1.0. Introduction

This is a continuation of H. Brezis and L. Nirenberg [1] (= [BNI]), and we will often
refer to concepts and results in that paper. There, we extended degree theory to
VMO maps between compact n-dimensional oriented manifolds without boundaries.
In this paper we consider a class of maps u from a bounded domain @ C R* into
R”. In classical degree theory, for u € C°(}, R"), the degree of u at a point

p ¢ u(69) (0.1)

is defined; it is denoted by deg(u, (2, p).

The larger class of maps we consider, as in [BNI], is the class VMO(Q, R"*)
satisfying an appropriate variant of (0.1). To define VMO in a domain €2, we have
first to define BMO. There are several possible definitions; they turn out, however,
to be equivalent. Here is one:

Definition. A real function f in L{ () is in BMO(Q) if
Il fllemo(n) = Sll;pflf “/f‘ < oo, (0.2)
B B

where sup is taken over all Euclidean balls with closure in (1.

In fact, one may use balls in any norm in R® — though this is far from obvious
— see Corollary A1.1. Furthermore, one may consider the sup in (0.2) over the
class of balls B lying “well inside” {, i.e., say B = B,(z) with r < 1 dist(z, 8Q).
The resulting norm is smaller than that in (0.2), but is equivalent to it (see Theo-
rem Al.1).
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Now VMO is the closure of C°(€)) in the BMO norm of (0.2). A useful charac-
terization of VMO(R) is

li_r)% f }f -7 (x)i =0 uniformly in z.
e<i ;ist(w,aﬂ) B.(z)

Here .
T.@=f f

Be(x)

This is the analogue of Sarason’s characterization of VMO in R"; see D. Sarason [1].
A surprising fact about VMO(Q) is that it is the closure in the BMO norm of
C§e(€), C*= functions with compact support in { (see Theorem 1; it is proved in
Appendix 1).

The facts above about BMO and VMO in © are due to Peter Jones; the proofs
given here are slight modifications of his.

In addition to bounded domains in R* we also consider domains  in a smooth
open n-dimensional Riemannian manifold Xy, where  is compact in Xo. BMO(f)
is defined as in (0.2); the sup is now taken over geodesic balls B, (z) with € < 1o,
the injectivity radius of 1. As in R", the various possible alternate definitions of
BMO(Q) are equivalent. Furthermore, the space BMO(Q2) is independent of the
Riemannian metric on Xy (see Lemma 2 in §IL.1). VMO is defined as above. We
then consider VMO maps of 2 into an n-dimensional smooth open manifold YV
(which is smoothly embedded in some RY). If Xy and Y are oriented, and p € ¥
is such that (0.1) holds — in a suitable sense — then we define

deg(u, 2, p);

this is done again by approximation.

In dealing with manifolds one has to consider the effect of change of local coordi-
nates. A result used here, but which more properly fits in [BNI], asserts that if the
manifold X, is compact (without boundary), and if H is a smooth diffeomorphism
of a ball Br in R” onto a subset of Xg, then there are positive constants C, gg, such
that

(f o H)e(y) = J(H{y))| < ClifllBmo (0.3)

for every f € BMO(Xo), [yl € R/2, and € < &g. This is essentially Lemma A3.3.

In §I1.1 BMO and VMO are introduced and their invariance under choice of
norms, as described above, is presented as well as associated properties.

Section I1.2 takes up the definition of the degree. The analogue we use of condi-
tion (0.1) is that there exist a neighbourhood U in Q of 812, and a number do > 0



Vol. 2 (1996) Part II. Degree theory and BMO 311

such that

f dist(u,p) > do VB(z)in U with € = %dist(m,aﬂ). (0.4)

B.(z)

Various properties of degree are then established, including (Corollary 1), the
invariance of degree under continuous deformation in the BMO topology, provided
that, under the deformation, {(0.4) holds uniformly for all maps considered, with the
same U and dp. In Remark 4, an example is given in which the stability of degree
fails in case this uniformity is dropped.

In general, functions in VMO{Q) do not have a well defined trace on 8Q2. In §11.3,
in case 0 is smooth, we introduce a subclass of VMO(Q) which does: Suppose
v € VMO(99Q); we may then extend ¢ inside  to a function @ belonging to
VMO(Q) with

o(z) = ¢(P(x)) near O0Q.

Here P is the projection to the nearest point on 9€). We then say that a function
f € VMO(Q) has ¢ as trace on 8}, written as

f € VMO, (9)
provided the function
{ f—o in Q
g .
’ 0 outside (1,

belongs to VMO on a neighbourhood of 2.
Theorem 2 asserts that for f in VMO(Q),

fEVMOu() = lim_ f If =] =0. (0.5)
z—
e=1 dist(z,00) B.(x)

Various examples of VMO, (f2) are presented in §I1.3. Example 2 states that
Whn(Q) € VMO, (€). Lemma 7 asserts that for z near 99, if d(z) = dist(z, 89),

the function
F(z) = By (P(2))

— then extended inside in the rest of £ by smooth cutoff — belongs to VMO,,(£2).
Lemma 8 says that the harmonic extension of ¢ inside ) belongs to VMO, (€2); this
is proved in Appendix 3.

Recently, L. Greco, T. Iwaniec, C. Sbordone and B. Stroffolini [1] introduced a
notion of degree for a class of Sobolev maps which is weaker than W™ and is not
contained in VMO.
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Finally, in §I1.3, a question of H. Amann is answered. In [BNI], if X,Y are
compact oriented n-manifolds without boundaries, and p,v € VMO{X,Y) are
connected by some homotopy H which is continuous in a parameter ¢ on [0,1], with
values in VMO(X,Y), then (Corollary 6 in [BNI]) degy = degt. Amann asked
whether the conclusion still holds in case

H e VMO (X x [0,1],Y).

Under suitable conditions on H for ¢ near 0 and 1, Corollary 3 asserts that the
answer is yes.

Section I1.4 extends to VMO, () a standard result for continuous maps u : I —
R", with u{m = . Namely, if ¢ #p Vz € 09, then

deg(u,Q,p) = deg ( 4

-p
lo —

Appendix 1 proves a number of results of §II.1.

,89,5”“1> . (0.6)

In Appendix 2, written with P. Mironescu, we consider Toeplitz operators on S*.
For any continuous complex-valued function ¢ on S, with ¢ # 0 everywhere, there
is, classically, an associated Toeplitz operator T,. It is a Fredholm operator in H?
and

index(T,) = —deg (%,51,51) :
P
In Theorem A2.1 a similar result is proved for ¢ satisfying

0 € VMO(SH,C)NnL>®, |p|>a>00nS".

This result is essentially contained in Theorem 7.36 in R. G. Douglas [1]; the proof
here is different and is pretty much self contained — though we use the fundamental
H'-BMO duality of C. Fefferman [1] (see also C. Fefferman and E. Stein [1]).

Appendix 3 deals with properties of the harmonic extension of BMO and VMO
maps.

The plan of the paper is:

1.1 BMOand VMO ondomains............. i 313
I1.2 Degree of maps on domains ..., 316
I1.3 VMO functions having a VMO trace; VMOg ... 320
I1.4 For u € VMO,, deg(u,),p) = a boundary degree ...................... 334
Appendix 1 Some properties of BMO and VMO in domains................ 338
Appendix 2 (with P. Mironescu). Toeplitz operators and VMO ............. 349
Appendix 3 The harmonic extension of VMO maps ........................ 357

We are especially grateful to Peter Jones and wish to express thanks also to sev-
eral colleagues for interesting conversations: H. Amann, S. Chanillo, A. Connes,
1. Gohberg, P. D. Lax, F. H. Lin, P. Mironescu.



Vol. 2 (1996) Part II. Degree theory and BMO 313
11.1. BMO and VMO on domains

Let Q be a bounded domain (open connected set) in R™. Later we will consider
domains in a manifold.
There are several natural notions of BMO(Q).

Definition 1. A locally integrable real function f on © belongs to BMO(Q) if

1 _
Iflowo = sup o é If = Fa| < o0, (11)

where C is the class of all open balls B whose closures lie in {2, and

fB = f f:
B
the average of f over B.

BMO(?) so defined forms a Banach space modulo constants. Similarly a map
u: = RY belongs to BMO(f2, RV) if each component of u is in BMO(Q). Its
BMO norm is also given by (1.1) where | | denotes the Euclidean norm in RY . As
in [BN]] an equivalent norm is

Jull = sup { {W — u(2)|do(y) do(2); (12)
in fact
lullsyio < [lulle < 2llullsmo- (1.3)

Definition 2. For 0 < & < 1 let C;; denote all balls B,.(z) C  satisfying
r < kdist(z, 892).

Such balls are called “well inside” Q. Using Ci instead of € in (1) we obtain a
different smaller norm
I FllBmo -

It i1s not difficult to see that for 0 < ky, ks < 1, the norms

fllBMok, and  ||fllBmok, are equivalent

{see Lemma Al.1 in Appendix 1). A more striking fact is that each of these is
equivalent to the norm (1.1}, even if no regularity of 99 is required. As we show in
Theorem Al.1, this equivalence holds not just for the Euclidean norm but for any
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norm on R™. This fact is far from trivial and is due to Peter Jones. We present a
slight modification of his proof; see Theorem Al.1.

It is more convenient to work with Definition 2. From now on we take that as
our definition of BMO, with k fized as 1/2, and we simply write

I fllemo,1/2 as |IflleMo and Cyn =C.

We use formula (1.2) as well with balls B well inside (with k = 1/2).
Remark 1. In Definition 2, if we restrict the class Cj, to all balls B, (x) satisfying

7 < min {kdist(z, 0), 7o }
for some given ry > 0, we get a smaller norm which is, however, equivalent to the

original one. This is easily seen by a trivial covering argument.

Remark 2. Another possible definition of BMO((2) is to take as C the class of all
cubes with closures in Q, or all those with edges parallel to the axes, or with cubes
“well inside” Q. The corresponding norms are all equivalent to the BMO norm
above (see the discussion after Theorem Al.1 in Appendix 1).

Clearly L*°(Q2) € BMO(Q) with continuous injection:

Ifllemo < 2|l flize=-

In particular C°(02) ¢ BMO(f).
We now define VMO(Q). It was first introduced by D. Sarason [1] in all of R™.

Definition. VMO(f) is the closure in BMO(Q) of C°(), i.e., f € VMO(Q) if
there is a sequence (f;) in C°(Q) converging to f in BMO(Q).

In view of Lemma 1 below, if f € VMO(f) then there is a sequence (f;) in
C°(Q) converging to f in BMO(f), in L, (), and a.e.

loc

Lemma 1. Given a compact set K in Q, there is a constant Cx such that

I f = Frllir < CrllfliBMO

for every f € BMO(Q).
The proof of Lemma 1 is similar to that of Lemma A.1 in [BNI].
To prove the assertion before the lemma, observe first that given any € > 0 and

any compact set K C €, there is a g € C° (Q) such that

If —gllemo <&, IIf —gllorx) <e.
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This uses Lemma 1. The assertion then follows by choosing € = %, i=12,...,
and

K = {a: € ; dist(z,00) > %}
It is clear that if f € VMO(QQ) then

Eli_gr(l) f |f=7F.(z)| =0 “uniformly in z”. (1.4)
Be (x)
where
T@=f 1
Be(z)

More precisely, (1.4) means that for every § > 0, there exists ¢ such that, for
all z € Q,

for all € < min{eq, § dist(z,89Q)}.

The converse is true; this is far from obvious. In fact, a much stronger result
holds. It is due to Peter Jones (private communication):
Theorem 1 (P. Jones). The following are all equivalent for f in BMO(Q):

f € VMO(Q). (1.5)

ﬁ_}l% |f = f.(z)| =0 wuniformly inz (1.8)
65% (;:ist(m,aﬂ) B.(z)

in the sense above.
There exists a sequence (f;) in C§°(§2) converging to f in
BMO(Q) N LL ().

loc

1.7)

The proof of Theorem 1 is in Appendix 1.
Example 1. Wh*(Q) C VMO(Q).

To see this, observe first that W™ () C BMO({2), with continuous injection.
This follows from Poincaré’s inequality in any ball B C 1,

1/n
f!f -7sl<C() (/(Vﬂ") : (1.8)
B B

This implies that (1.6) holds and thus, by Theorem 1, f is in VMO().

Remark 3. Theorem 1 asserts that C§°(f2) is dense in VMO(£2). Recall that it is
not dense in WH(Q).
More generally, we have as in [BNI]:
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Example 2. W*?(Q1) C VMO(Q) in the limiting case of the Sobolev embedding:
sp=n,0 < s <n, (s may or may not be an integer).

In [BNI] we discussed functions involving log |z|:

(a) log|z| is in BMO(Q) but not in VMO(£2) if 0 € €,

{(b) loglloglz]| is in VMO(Q2).

(¢) |loglz||*,0 < & < 1, is in VMO(Q).

Consider now a domain {2, having compact closure in a smooth manifold X
without boundary. In order to define BMO(2) and VMO(), one first puts a
smooth Riemannian metric on X, the notions above of BMO(f) and VMO()
extend except that we use geodesic balls B.(z) and always assume that € < g, the
injectivity radius of 0. The definitions are independent of the choice of metric. In
fact, there is a more general result:

Lemma 2. Let Q1,Q be two bounded domains in R" and let H be a Ct diffeo-
morphism of a neighbourhood of Q1 onto a neighbourhood of Q. If f € BMO(fs)
(respectively VMO(Sy)) then fo H is in BMO(Qy) (respectively VMO(Qy)) and

IIf e Hlemo < ClifllBmo-

This is proved in Appendix 1. Furthermore, Theorem 1 holds in this situation,
with no change.

Example 3. Let Q be such a domain on a manifold X.
Lemma 3. The function
¢(z) = log (1/ dist(z, Q)
is in BMO(Q). Here dist could be measured using any metric on {1 which is equiv-
alent to the Riemannian metric.
Lemma 4. With ¢ as in Lemma 3, |p|* € VMO(Q) for 0 < a < 1.

Lemmas 3 and 4 are proved in Appendix 1.

11.2. Degree of maps on domains

Let © be a general bounded domain in R?, let v € VMO(},R*) and let p be a
point in B"®. Our goal is to define deg(u, {2, p) and prove that it has the standard
properties of a degree.

In the usual case, when u € C°(£2), one assumes that

p ¢ u(d9). (2.1)
General functions in VMO(Q) have no trace on the boundary. (Later we shall
introduce a subclass of VMO functions with a trace — the notion of trace is delicate
and the subclass is somewhat restricted.) Thus the condition (2.1) has to be given
a different form.
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Notation. We denote by D the class of balls B.(z) in § with
1.
£=3 dist(z, 02).

In place of (2.1) we use the condition:

there exist dp > 0, and a neighbourhood U in © of €2, such that
fiu—plzdg VBCU, BeD. (2.2)
B

In particular, (2.2) holds if ju — p| > dy a.e. in some neighbourhood U of 9.
Clearly for u € C°(Q), (2.1) and (2.2) are equivalent.
Notation. For ¢ > 0, set

Qe = {z € Q; dist(z,80) > ¢}.

Definition of degree for u € VMO satisfying (2.2). Given u € VMO((Q), we
choose €9 > 0 so that for all z € Q,
fu~ T (2)] < do/2 (2.3

Be(z)

for all £ < g0 and £ <  dist(z, ). This is possible in view of (1.4). We may also
take gg to satisfy
{z € Q; dist(z,00) < 3z} C U,

with U as in (2.2).
Combining (2.2) and (2.3) we have

|Us(a:) —pl >dp/2 U z€0Q and e <egg. (2.4)

Hence
deg ("EE, Qse, p) is defined for every € < &g.

Claim. This degree is independent of € for 0 < ¢ < gg.
We then define

deg (u, 0, p) = deg (Te, Qoe,p) for e <eq.

Proof of Claim. We may suppose p = 0.
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We shall prove that for any given ¢ in (0, &0, there exists § depending on € such
that

deg (T, Q2,0) = deg (Te, o, 0) for |t —e] < 6. (2.5)
This vields the claim.

The map Ty is continuous in = and ¢ where it is defined. Using (2.4) we see that
there exists § > 0 such that

[ (z)| > d if |t—el<d and dist(z,00) <6 (2.6)

al)
4

Therefore
deg (W, Q2¢,0) s defined for |t — ] < 6.

By homotopy invariance and (2.6), this degree is independent of £, and so
deg (uy, Voe,0) = deg (Te, e, 0) for |t —e] <.
Finally, by excision, and (2.6) again,
deg (Te, Qae,0) = deg (T, Q2¢, 0},

and the claim is proved.

Consequently, deg(u,,p) is defined. It is clear that if u € C°(0) then the
degree just defined agrees with the usual degree.

We verify now some of the standard properties of degree:
Property 1. If u € VMO(Q, R") satisfles (2.2) and
deg(u, 2, p) # 0,

then
p € ess R{u).

(The essential range of a map u, essR(u), is defined in §1.4 of [BNI]). In fact
Ba,(p) C ess R(u).

The proof follows that of Property 1 in §1.4 of [BNT}.
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Property 2 (Stability of degree in the BMO topology). Let (u;) and u belong to
VMO(©) and satisfy

u; —u in BMO(Q) N LL () (2.7)
and
for some p € R", there exist a dg > 0 and a neighbourhood U of
09 in {2, such that f luj —p| >do Vj, VBCU,BeD, (2.8)
B

(in view of (2.7), the same holds for u).
Then
deg(uja Q7p) = deg(ua va)

for all 7 sufficiently large.
Proof. We may take p = 0. As in Lemma 4 of 1.1 of [BNI] we see that

;}Bi[mo f{u] - Ej,BI =0 uniformly in j. (2.9)
—
BeC B

(Recall that B € C means that if B = B,(z), then r <
that we use the assumption that u; — u in BMO(Q2). (
there exists ¢ such that for all € € (0,&9),

dist(z,09Q).) It is here
8} and (2.9) imply that

1

2

2.
d

'fujjzg Vj, V€ ..

Be(z)

Fiz some ¢ € (0,&0). Since u; — u in L{, (1), we have
Uje — U, uniformly in Qs
Thus
deg (e, Q2e, 0) = deg (T, Qac, 0)
for j sufficiently large. By our definition of degree we obtain the desired result.
Remark 4. In the argument above it is essential that (2.8) holds uniformly in j.

Here is an illuminating example in which uniformity in (2.8) is dropped and the
conclusion fails. Let @ = (0,1), and set

1

u;(z) = fi(z) - 5

where f; is the sequence defined in Example 6 of §1.2 in [BNI]. Since u;(0) = £ and
U‘J(]’) = —%7 deg(Uj, Qa 0) =-1
On the other hand, u; & v = —3% in BMO and in L?, and deg(u,,0) = 0.

An immediate corollary of the above is the invariance under suitable homotopy:
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Corollary 1. Let Hi(-) be a one-parameter family of VMO maps from Q to R",
depending continuously — in the BMONL], . topology — on the parameter t. As-
sume in addition, that (2.8) holds uniformly in t, i.e., the same dy and U for all
H;. Then

deg(Hy, 8, p) is independent of t.

Corollary 2. Suppose u,v are VMO maps from § into R* both satisfying (2.2).
Suppose that for some d; < dy,

f]u—vlgdl, VBcU, BeD.
B

Then
deg(v, 2, p) = deg(u, 2, p).

To prove this, just use the homotopy H; = tv+ (1 —t)u, 0 <t <1, and apply
the preceding corollary.

Property 3 (Borsuk). Suppose u € VMO(Q2,R") and (2.2) holds with p = 0. If
0 € Q, O is symmetric about the origin and u is odd near 92, then

deg(u, 3,0} is odd.

This is an immediate consequence of our definition of degree — via Borsuk’s
theorem for continuous maps.

Remark 5. The definition of degree extends in a straightforward way to VMO
maps from a domain 2, with compact closure, in a smooth oriented Riemannian
manifold X, with values in another oriented smooth manifold ¥, dimY = dim X.
Namely for u € VMO(Q,Y), and for p € Y such that (2.2) holds, where |u(z) — p|
is replaced by dist(u(z), p), one defines

deg(u, 2, p)

as in the Euclidean case.

11.3. VMO functions having a VMO trace; VMO,

In general, VMO functions on a domain £ do not have a well defined trace on 9§
— even if 99 is smooth. An example for = (0, 1) is the function cos(log | log z|).
It is in VMO — even in H'/2 — but has no trace at 0.

It is useful to introduce a subclass which does admit a trace on 02 belonging
to VMO(81)). As usual, § is a bounded domain in R".
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Definition of VMOg. A function f € VMO(R) belongs to VMOo(Q) if its ex-
tension g outside () as identically zero, belongs to VMO(B), where B is an open
ball containing €.

Remark 6. A function f € VMO(Q) which is identically zero near 9} belongs to
VMOg(Q)). Indeed its extension g, by zero outside (2 lies in BMO(B), as is clear
by Remark 1. That it lies in VMO(B) is a consequence of Theorem 1.

A simple characterization in case 902 is smooth is given by

Theorem 2. f € VMO(R) belongs to VMO () iff

Jim /g fl=0. (3.1)
BeD B

Condition {3.1) means that the average of |f]| over balls B.{(z) tends to zero as
z — O provided ¢ = § dist(z, 0%).

Proof.

1. Proof that f € VMO (Q2) = (3.1) if 69 is smooth: To see this, consider a ball
B.(z) € D, ie.,, € = £ dist(z,0Q). Let z be a closest point on O to z. Since O
is smooth, there is some « > 0, and some gg > 0 such that

|Bse(y) NQ°| > a|Bs.(y)| VyedN, Ve<eo. (3.2)

Since g € VMO(B), given § > 0, there exists g1 > 0 such that for € < &1,

J lo-9.)l <6 (3.3)
B35(Z)
It follows that | Hna ‘
B35 z)N ¢
G3:(2)| 57— <9,
Igs ( )I {BBS(Z)l
so that 5
195 (2)] < p Ve <ey. (3.4)

By Lemma A .4 in [BNI]
7.0~ 3. <3 o= 7l <37
Bie(z)

Using (3.4) we find that
1
7.()] < (3% + a) 5. 3.5)
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Since g is in VMO(B), there is £ < £; such that
{g mgs(m)i <4 fore <es.
B.{(z)
Combining this with (3.5) we obtain the desired result.

It is clear from the proof that what is required of Q is simply (3.2) rather
than regularity. Thus 99 might merely be a Lipschitz boundary. However, some
regularity of A is necessary. For example if { = unit disc in R* minus the origin,
and f is smooth in @ with f = 1in 0 < |z| < 1 and f = 0 for |z| > 3/4, then
f € VMO4(Q) but does not satisfy (3.1).

One also observes from the proof above that f € VMOg(§)) implies
lim 1=
Be(z)
where ¢ = dist(z, 0Q).

2. Proof that (3.1) = f € VMOy(2). This is true for any bounded domain (2.

We have to show that given any § > 0 there is some g > 0 such that, for € < ¢y,
J lot) - g2)] <23
Be(z) B (z)

where B.(z) is any ball in R*. If B.(z) is in Q° or if B.(z) is “well inside” {2, this
is clear. Thus we may assume that

B:(z)NQ#0 and DB (z)NQ° #0,

and in particular dist{z, 9) < 2e.
Set A = B.{z) N . It suffices to prove that, for £ < some &y,

1
) lm < 6.

Consider a maximal family of disjoint open balls B, ,(z;) with centres z; € A
and g; = } dist(z;,090). Since x; € B(z) we have

e Vi

B2 Qo

1/ .. .
£ < i(dlst(mi,a:) + dlst(x,BQ)) <
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Claim. G = B;,(z;) covers A.
i

Suppose not. Suppose some y € A, y ¢ G. Set v = 1 dist(y, 8Q); by maximality
there exists some ¢ such that

B, /3(z;) intersects B.,3(y).

Then

g; < dist (y,2:) < = (v +¢i),

DOIP—‘

so that
2e; <.

But
2y = dist (y, Q) < dist (y, z;) + dist (z;,00)

< %(7 +&) + 2,

7
ie, by < 7g < 57' Impossible.

This proves the claim; we return to the proof of the theorem. We have

/ n<y | 128" 5 |Beo A (3.6)

Y B (s) B, (z:)

By (3.1) we may find ro > 0 such that, for every ball B, (a) with r = 3 dist(a, Q) <
70,

/ 1] < 6/6™.
B, (a)

We take g9 = %ro and thus, for € < gg, we have

3
Eigisg'ro Vi

and hence

f Ifl < 8/6" Vi.

Be (i)

Consequently, by {3.6),

/lfl < %ZlBe,/S z)|
A
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The balls B,, /3(z;) are disjoint and they are all contained in By, (x); it follows that
Z {Bsg/3<x1ﬁ)\ < !BZE($)l = QHst(m)"

We conclude that )

‘Bg(x)[[um&

O

Remark 7. One may think that VMOo(Q) is a closed subspace of VMO({?) but
this is not true. In fact, it is dense in VMO(Q)); see Remark 3.

Remark 8. The space W, ™(Q) is contained in VMOg(2). This is clear from
the definition of VMOQy, for the extension of u € W,"*(§) as zero outside Q2 is in
Win(B) C VMO(B) — see Example 1.

Next we are going to define a class VMO, () where ¢ is a given function in
VMO(I9), assuming IQ is smooth. VMO, () will consist of functions having
“trace” ¢ on 0%} First we need

Lemma 5. Let Q be a smooth bounded domain and let ¢ € VMO(9Q). There
ezists a function & defined on a neighbourhood  of Q such that € VMO(R), and
for z close to 011,

pla) = o(P(a)) 3.7
where P is the projection to the closest point in 9Q.

Proof. We first define ¢ by (3.7) in a tubular neighbourhood U of 012,
U = {z € R";dist(z, 09) < 6}.

Claim. @ € VMO(U).

In view of Lemma A.10 in {BNI] it suffices to prove the claim when the boundary
is on {z,, = 0}, for U = {z € R*;|z,| < 6}. If Q is a cube with edges parallel to
the axes, then it is clear that

ft@*—//@} < llellsmoany-
Q Q
If B is a ball in (7, then it lies in such a cube @, with side length = diam B, and

then the inequality ‘
F17- 47| < Clietaoon
B

B
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follows with the aid of Lemma A .4 of [BNI]. We have proved that ¢ € BMO(U); that
it is in VMO(U) is proved either by approximation or repeating the computation
above, and letting |B] — 0. The claim is proved.

To complete the proof of the lemma we simply multiply @ by a smooth cutoff
function; here we rely on Lemma B.8 of [BNI]. 0

Now, the

Definition of VMO,,. Let Q and ¢ be as above, and let f € VMO(§2). We say
that f has trace ¢ on 09, i.e., f € VMO,, provided

(f—®) isin  VMOg(Q).

This definition also makes sense if {2 C X, a Riemannian manifold.

Remark 9. Though ¢ is not quite unique — it depends on the choice of cutoff —
the notion of VMO,, is independent of our choice. This follows immediately with
the aid of Remark 6. Furthermore, it is clear that f € VMO, < the following

function f belongs to VMO({):

}«_ { f in 0
“le i O\
Remark 10. It follows from Theorem 1 that for any fixed ¢ € VMO(9Q), the
space VMO, () is dense in VMO({) in the BMO topology.
The notion of VMO,, is invariant under diffeomorphisms. In particular, if €2 is

a domain {with compact closure) in a smooth manifold X, the notion of VMO, is
independent of the choice of Riemannian metric on X. We have namely

Lemma 6. Let Xi,X; be smooth Riemannian manifolds without boundaries and
let Q,Qy be subdomains, respectively, with compact closures and smooth bound-
aries. Let H be a C diffeomorphism from Q4 onto Qa; H maps 09 onto 59 as
a C' diffeomorphism. Let o € VMO(98),) and let f € VMO, (Q2). Then

foH belongsto VMOgou ().
Proof. For i = 1,2, let Q; be a neighbourhood of Q; so that for every z € 61\01

there is a unique closest point P(z) on 8. We define an extension H of H to £
as follows: For z € Q;\Qy, we set

H(z) =y € 0\

where y is the unique point there with P(y) = H(P(z)), and dist{y, H(P(z)) =
dist(z,c’?{h). To define y we may have to shrink ;. Clearly H is a bi-Lipschitz
map of {2 onto a neighbourhood Q2 of Q5.
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Turning to the function f, set, as in Remark 9,

7 in O\,

so that fE VMO(@Q). Consider now fo H: it is defined on Q5.

Claim. fo He VMO (w) where w is any open set with compact closure in Q1.

Once the claim is proved, we are through, for if z € ﬁz\ﬁz, then )?o H (z) =
(p o H)(P(z))

Proof of Claim. Let B.(z) be a ball in w with ¢ < % dist(z, Ow). Consider

I= / / FoHy) — FoH(x)
Be(z) Be(z)
C

N tBe(:L'

A
pa——
e
—
—
=3
-3
v
|
iy
P
~
Bondl

Bex (H(z))  Ber(H(x))

since H is Lipschitz with Lipschitz constant K. We also require that

1, e
e < 'if(—dlst (H(LU),BQQ) =70

Clearly I < C||f|lsmo- By Remark 1 we see that
17 o Hllzmogw) < Cllflamods)-

By density we conclude that f o H is in VMO(w). O
Next, we present some examples of functions in VMO,,.

Example 1. If f € C(©), and ¢ = fiaq, then f € VMO, (Q2).
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Example 2. If f € W'*(Q) and ¢ = flag then f € VMO, (). Recall that
f € VMO(Q) and ¢ = fjan € W1=m(8Q) also lies in VMO(89), by Example 2
in §L.1 in [BNI].

Proof. Since both conditions f € W1™ and f € VMO,, are invariant under diffeo-
morphisms, we may locally flatten the boundary Q. In addition we may suppose
that the metric is locally Euclidean near the flat portion of boundary. Near the ori-
gin in the flat boundary, we may use coordinates (z',z,), ' € R*!, with z,, > 0
in Q,z, =0 on d. In view of Theorem 2 it suffices to show that

|B|—=0
BeD

lim /[f(:c’,zn) - f(x',O)‘dx =0,
B

For B € D, let Q = Q' x (g, 3¢) be the smallest cube with edges parallel to the axes
containing B. Then

Jlra e - 160)| < (22; [
Q Q@' x(0,3¢)
1/n

<C / |fe | -0

Q' %(0,3¢)

as e — 0.

Example 3. Consider, as usual, a domain ) having compact closure in a smooth
Riemannian manifold X without boundary; 0Q is smooth. Let ¢ belong to
VMO(09). The following particular extension f of ¢ inside 2 belongs to VMO, ().
Let U = {z € Q;dist(z,0Q) < 8} with § so small that any point z in U has a unique
closest point P(z) on 9. The geodesics starting on 62 and orthogonal to 89 cover
U simply. Denote dist{z,952) by d(z). For z in U, define

f(@) = By (P(2))

i.e., f(z) is the average of ¢ on a ball on 9Q centred at P(xz), having radius d{z).
We extend f to all of 2 by multiplying it by a smooth cutoff function with support
in U and which is identically one near 92, and we continue to denote by f the
extension to all of {1

Lemma 7. f belongs to VMO, (0).

Proof. By Lemma 6, the property of belonging to VMO, is independent of the
particular metric on X. It is convenient to replace the given Riemannian metric on
1 by a different one. We describe the new metric just in U; it is easily extended
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to §1. The new metric preserves all geodesics starting on 92 and orthogonal to
00, and preserves arc length on them. But it is a product metric. Narmely, if
' = {x1,... ,Tp-1) are local coordinates near a point 7 on 90, with ' =0,t =0
at 7, and ¢ > 0 in U, the lines 2’ = constant, 0 < ¢ < 4, correspond to our special
geodesics orthogonal to 9€2. The new metric has the form

ds’ = df? + ds” (3.8)

where ds'? = dslzm

The function f is continuous in 3. Therefore, to prove the lemma we need only
consider balls B, (z) in U belonging to our family C. We have to show that

f f < Cllellsmo, (3.9)

Be(z)

with €' a fixed constant independent of the ball; by density this proves that f is in
VMO(Q). To verify that f is in VMO, we have to show that

// |f(y) (y))| is small for E-":%d(l') small. (3.10)

B {z)

We may use the local coordinates (', ) described above, and suppose that B.(x)
is the ball
B.(z) = B.(0,7) with 2e<7<6.

Denote the ball in 8Q, i.e., on t = 0, centred at P(z), which in our local coordinates
is the origin, and having radius ¢ by B’ = B.(0). Now B((0,7) lies in the cylinder

D =B x(r—-¢,1+¢),

and since |D| < C|B.(z)|, to prove (3.9) it suffices to prove that

f fif — £(2)| < Cliglsmo.

Now if B' is the ball in R*~! with centre 0 and radius & (measured in our metric
ds’), we have

- J R -wE)l

y/eBl ZIEBI
T—eL8<T+e FT-elt<THE
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If BL(y') is the ball (in our metric ds’) about ¥’ of radius s then
Bi(2'),By(y') C Bl 5.(0), if 1—e<s,t<T+e.

Since

2 2 2 1
s 6, T+ < Tz < C independent of 7 and &< -7,
t s T/2 2

we see with the aid of Lemma A.4 in [BNI] that

I@s(y‘) - zﬁr—}-Qs(O){’ l@t(’z;) - _951'-!—23(0)} < C“(P”BMO

if 7 is small; thus
[2.(y") = B:(z)] < CllvliBumo.
Inserting this in I above we obtain (3.9).

Turning to the proof of (3.10), we consider again the cylinder D, with now,
7 = 2¢. It suffices to prove that

Jliw) = e(Pw)] s sma,

i.e., that for ¢ small,

J = f [B,(z') — (z')| is small.
l?’EB’
e<t<3e

Since ¢ is in VMO,

f'cp ~5.(0)] is small for & small. (3.11)
B!

With the aid of Lemma A.4 in [BNI], we see, as above, that for £ small,
|7,(z') —%.(0)| issmallif z'€ B’ and e<t< 3e. (3.12)

Thus
J< f 17(c") - 7.(0)] + / 1.(0) — ().
/.

z2eB’
e<t<3e

The first term on the right is small by (3.12), and the second, by (3.11). O



330 H. Brezis and L. Nirenberg Selecta Math.

Example 4. Consider 2, X and ¢ as in Example 3, ¢ € VMO(9).

Lemma 8. The harmonic function in §), which equals ¢ on 08, belongs to
VMO, ().

The proof is given in Appendix 3, see Theorem A3.1.

Example 5. Consider u = (log|z|) * f in R*, n > 2, where f € L*(R") with
compact support (for simplicity). Let @ C R™ be a smooth bounded domain.
Clearly, u € WLP(2) Vp < n, but it need not belong to W"(1). Hence u has a
trace on 952, say .

Lemma 9. ¢ belongs to VMO(09Q) and u belongs to VMO, ().

Proof. First, note that v € VMO(Q). Indeed, by density, this follows from the fact
that

lullemo) < Cliflir

Next, that ¢ belongs to VMO(0Q2) follows from the estimate
llellsmoany < CllfllL

This is derived in turn from the inequality

” log |z <C VYaeR"

- a ”BMO(BQ)
where C depends only on Q. To prove the last inequality we need only establish

for € small,

J = f / |logly — a| - log|z — al|do(y)do(z) < C Va€R*, (3.13)

Bl(z) Bl(x)

&

where C' depends only on Q. Here z € 8 and B.(z) is the geodesic ball on 01
centred at x. We consider two cases:

(i) |z —a] > 6e,
(ii) |z — a| < 6e.

Case (i) is obvious, since for € small, if y, z € B.(z),
lz—y|<e, |z—2zl<e

and thus

=R

(SR
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In Case (ii) we have

J<2 f llog I!da(y < C(). (3.14)
Bl(z)

Finally, we prove that u € VMO, (). By Theorem 2 it suffices to show that

tim |-l =0
B.{a)

where ¢ = Ldist(a,0Q) and @ is as in (3.7). By density (as in the proofs of
Theorem A3. 1 and A3.2) it suffices to establish that

J =3l <Cifl (3.15)
B.(a)
for ¢ small, where C depends only on (1.

Inequality (3.15) follows from

f |log |z — y| — log |P(z) — y||dz < C(Q) (3.16)
Bc(a)

for every y € R™ and for every € < some £5. To prove {3.16) we consider, as before,
two cases:

(i) ly — a| = 6e,
(i) |y — a| < 6e.

Case (i) is obvious since, for z € B:(a),

1_ |-y
35 Pl -g =

In Case (i1) one shows, in fact, that

/ \1 y'[d <Cp (3.17)
Be(a)
and
J = / llogL}d < cm). (3.18)

B (a)
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Inequality (3.17) is clear. To verify (3.18) one has, first, as in (3.14), that for
small,

J<cC jf 110g!§¥§§d{d0(§)
By, (P(a))

where Bj.(P(a)) is the geodesic ball on € centred at P(a). Now, for { €
By (P(a)),
1€ —yl < 10e.

Furthermore, for £ small, one sees that for such &,

€~ 9> Lle~ Pw)-

Hence _ €~ Pl
- Y
< LTI L
J<C+C f [1og - lda(f)
B3 (P{a})
- P
<Cc+C f ]1og E——éo—;y—)l‘da(f) < C(Q)
B3, (P(a))
since the last integral is bounded by a constant depending only on . O

We conclude this section with an answer to a question raised by H. Amann. Let
X,Y be smooth n-dimensional compact oriented manifolds without boundaries;
Y is smoothly embedded in some RY. Consider two maps ¢,¢¥ € VMO(X,Y);
by [BNI] the degrees are well defined. Suppose ¢ and 1) are connected by some
homotopy H(z,t), 0 < ¢t < 1. In Corollary 6 of [BNI] it was shown that if H
is continuous in [0,1] with values in VMO(X,Y’) then degy = degt. Amann’s
question was whether the same conclusion holds in case

H € VMO (X x (0,1),Y). (3.19)

The answer is yes, provided one makes a slightly stronger assumption on H for ¢
near 0 and 1. In fact, under condition (3.19) it is not clear what is meant by saying
that H(-,0) = ¢, H(-,1) = 9.

Corollary 3. Assume in addition to (3.19) that

h

f / ‘H(y,t) - Lp(y)lda(y)dt =0 ash—0, uniformly inz € X

"0 (x
Bu(a) (3.20)

1
f f |H(y,t) — w(y)ido(y)dt =0 ash— 0, uniformly inz € X.
1—-h By, (z)
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Then
deg(p, X,Y) = deg(¥, X,Y).

Proof. Consider the manifold X = X x R with the product metric, and set =
X x{(-1,2)in X,

wlz) for t<0
H(z,t) = H(z,1) for 0<t<l1 (3.21)
() for t>1.

By Theorem 2, conditions (3.20) imply that He VBLIO(Q, Y). (It is easy to see
that (3.20) is, in fact, equivalent to the property that H € VMO(2).) As in [BNI]
we now define

Hu(z,t)=P f i
Be(z,t)
where P is the projection to the closest point in Y. In view of Lemma A .4 of [BNI]
we may also work with
Gz, t) =P f H
Qcl=.t)
where Q. (z,t) is the cylinder Be(z) x (t —€,t + ¢), for by Lemma A .4 of [BNI],

sup }Efs(a:,t) - G‘g(x,t)[ -0 as ¢—=0.
i

Clearly for t < —¢, Ge(z,t) = pe(z) = PP (z), and for ¢ > 1 +¢, Ge(z,t) =
Ve (z) = Py (z). By standard homotopy

deg (G:(-,t),X,Y) isindependent of t.

Thus, for & small, deg(p, X,Y) = deg(p:, X,Y) = deg(¥y:, X,Y) = deg(s, X,Y).
O

Remark 11. In connection with (3.19), a word of warning: If f € C([-1,1],
VMO(X)N L' (X)) one might think that f is in VMO(X x [-, 1]). This need not
be the case; here is an example. Take X = [-1,1] in R. For ¢t > 0 consider

1 if |z| <t
log |z]
logt
0 if |z| >Vt

flz,t)=¢ =142 if t<|z] <Vt
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and for t < 0, f(z,t) = 0. By Example 6 in §1.2 of [BNI], f € C([-1,1], VMO( ).
Continuity with values in L! is clear. But f does not belong to VMO(X x [—1, £1),

for
1

//flf(ﬂf,t) f(&,7)|dr drdgdr > o,

Qn  Qn
where Qp = [—h, +h] x [=h, +h].

1L.4. For u € VMO, deg(u,,p) = a boundary degree

Recall the standard result that for a continuous map u : & = R, with ujpq = ¢,
and with ¢ # p everywhere on 9% for some point p € R”,

deg(u, 2,p) = deg(l(p pl o0, 8" 1) (4.1)

Here we extend this result to maps u € VMO, provided |¢ — p| > do > 0 a.e.
on 99.

Theorem 3. Assume the above, with ¢ € VMO(9Q). Then there is a neighbour-
hood U of 08 in Q such that

flu——p|2%9 VBCUBED

— so0 that deg(u, ), p) is defined. Furthermore, (4.1) holds.

Proof. We may take p = 0. Set ¢(z) = p(Pz) where P is the nearest point
projection on 0%, ¢ is defined in a neighbourhood U of 6§). Let ¢ be a cutoff
function with support in U, and ¢ = 1 near 9Q. Set B(z) = ((z)@(z), so that
P € VMO, (Q); since u € VMO,

[llsigo //|u—'@‘:0.
BeD B

flo-slz 17l fu
Zdo—f|u|

But
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for | B| small, since || > dp near 0. Hence there exists a neighbourhood U of 012
such that

d
/fu;z-gﬁ VBcC U BeD.
B

We have proved the first assertion of the theorem. To verify (4.1) we make use
of

Lemma 10. Assume v € VMO(OQ,R") and j¢] = 1 a.e. on 0. For z € , let
P(z) = ((2)Y(Pzx) as above. Then

deg (1, 2,0) = deg (v, 00, 5™ ).

Proof. We know (see Corollary 5 in [BNI]) that there exists a sequence ¥; €
C(89Q, S 1) such that 1; = ¢ in BMO and a.e. By (4.1) for continuous maps,

deg (sz 8Q7 Sn_l) = deg (EJ, Q, O)
where B
¥, (@) = ((z)y;(Px).
As j — oo, deg(y;, 00, 5™ 1) — deg(y, 80, 5™ 1) (by Theorem 1 in [BNI]).

On the other hand we claim that ¢; — % in both L'(£2) and BMO(Q). Indeed,
convergence in L! follows from dominated convergence. Convergence in BMO uses
the easily verified fact that ¢;(Pz) — ¥(Pz) in BMO(U), and the estimate for
products, namely Lemma B.8 in [BNI]. Moreover

}Ej (3:)] =1 in some fized (uniform) neighbourhood of 8.

Hence, by the stability of degree in the BMO topology (Property 2 in I1.2), we see
that

deg (¥,;,9,0) — deg (,0,0).
0
Proof of Theorem 3. Set ¥(x) = ﬁ;g—%,m € 09, so that v € VMO (by Lemma

A.7 in [BNI], on compositions of VMO maps with Lipschitz maps). Thus, by the
previous lemma, with ¥ as defined there,

deg (%,9,0) = deg (l-%,aﬂ,sn—l) .

Next we have .
deg (¢, 9,0} = deg (3,2, 0) (4.2)
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where @(z) = ((z)@(Pz). Indeed we may consider the homotopy

t

H(z,t) = t¥(z) + (1 - )p(z) = ((2)p(Pz) | 5 + (1 -

lp(Pz)|

and note that for every z in some fixed neighbourhood of 042,
|H(z,t)| > [t+ (1 - t)do] > min(dp,1) Vte€[0,1].

Applying Property 2 once more, we obtain (4.2).

Finally, it remains to prove that
deg (7, 2,0) = deg (u,Q,0).

Recall that since u € VMO,, we have

dm f|u ~-p|=0.
BeD B

Assertion (4.3) then follows from

Lemma 11. Assume u,v € VMO(Q, R?) and

lim /[u —v| =0.
|B]—0
BeD B

Assume that, for some neighbourhood U of 08} in Q,

/[ulzdo>0 VBcU, BeD
B

Selecta Math.

t)

so that deg(u,,0) is defined. Then there is a neighbourhood U’ of 9 in Q such

that p
fyvzz—g VBcCU', BeD.
B

Moreover
deg(v, Q,0) = deg(n, ,0).

Proof. The existence of U’ is clear. Recall that, by definition (see §I1.2},

deg (u,,0) = deg (T, D2, 0)
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and
deg (v, 0, 0) = deg (v:, M2, 0)

for £ < 9.
But we may fix ¢ so small that (see (2.4))

Iﬁ‘g(a:)l > dz_o, ]’fb'g(z)l > 2—0 Yz € 8o,

and, similarly,
d
]'u‘s(x) - EE(:I;)] < ZO Yz € 905,

(since ‘éiim f f — v] = 0). Hence, by linear homotopy for the continuous maps,
-0
BED B

deg (HE, 979 0) =deg (ﬁe, Qo 0).

This proves Lemma 11 and completes the proof of Theorem 3.

An application. Consider the equation

Au=f in
u=¢ on O,

where 2 C R” is a smooth bounded domain with n > 2. Assume

fe L Q,RY), (4.4)

p € VMO (09,5"71), (4.5)
with

deg (p, 00, 5" 1) £ 0. (4.6)

Corollary 4. Under the conditions above
ess R(u) D B1(0).

For the definition of essR{u), see §1.4 in [BNI].

Proof. We claim that
u € VMO, (9). (4.7
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The assertion in the corollary then follows from Theorem 3 and Property 1 in 11.2.
To prove (4.7) we distinguish two cases:

Case (i): n >3,
Case (i) n=2.

In Case (i) we write u = v + w where v is the solution of

Av = f in Q
v=10 on Of

and w the harmonic extension of ¢ in Q. Since v € W2™2(f), then v € W1 (),
and in fact in W()l"(ﬂ) Thus v € VMOy(£2) by Example 2 in §I1.3. On the other
hand w € VMO,,(Q) by Theorem A3.1 in Appendix 3. Thus v = v+w € VMO,(Q).

In Case (ii), we use the same decomposition u = v + w. But here we cannot
assert that v € WH2. Set
v = c(loglz]) * f

(here f is extended as 0 outside §2) so that Av = f.
By Lemma 9, ¥ € VMO, (Q) where 9 = tjaq € VMO(J2). We have

Ao —-v)=0 in Q
T —v=1 on OfL
Hence § — v € VMO () by Theorem A3.1. Thusu =v4+w = (v-0)+0+w €
VMO, (52). a

Remark 12. If n > 3, condition (4.4) is sharp in the sense that if f € Lin/2)=e
{(any £ > 0), the conclusion of Corollary 4 need not hold. This may be easily seen
on Q = Bi(0); the function u(z) = xz/|z| satisfies (4.4) with f € L?(2), for all
p < n/2, but not with p =n/2.

Appendix 1. Some properties of BMO and VMO in domains

We present the proofs of a number of results in §1I.1. In particular, the equivalence
of various notions of BMO is established — for general bounded open sets . In
addition we show that C§°(f1) is dense in BMO(£). These results are due to
Peter Jones and some are implicit in P. Jones [1].

We start with an easy result; we use the definitions of §II.1 and do not repeat
them here.
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Lemma Al1.1. Consider 0 < ki < ky < 1. Then

I llBMok <1 liBmok. < Cll - llBMO.K, (AL1)

where C may depend on n, ky, and k;.

A deeper result, Theorem Al.1, implies that the constant C depends only on &;.
Proof of Lemma Al.1. Throughout the proof, C denotes various constants depend-
ing on n, ky, ks. Fix a ball B.(z) in § with

r < ks dist(z,00Q).

QOur aim is to show that

1=} 1@~ 1e) < Ollswos (A12)

B.(z) Br(z)

We use a covering argument similar to one in the proof of Lemma A.14 in [BNI].
Consider a maximal family of disjoint open balls B,(z;), with centres z; €
B, (z), and radius
k1(1 - kg)
2ks

Each ball of double radius, By, (z;), belongs to the class C, . Indeed

p=Ar with A= <1 (A1.3)

7 < ko dist (x,@Q) < kg(}x —z;] + dist(x,',aﬂ))
< kor + ko dist (xi, 89),

so that

ky
r< T dist (z;,80)

and

2p = 2Ar < 12Aij: dist (z;,09) = k; dist (z;,00).

— A2

Furthermore, clearly,
B.(z) C UBl’p(zi)-

Ig%[Z/ / |f(v) - £(2)]
' Bay(wi)  Bap{(wi)

v [ [ w-sel)

7 Byp(z:)  Ba(x;)

Thus

(A1.4)
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The first sum is bounded by

2| flemons 3 |Bap(@)|” < Cllfllemons 3, [Bolz:)|’

1

< Cllf Mo,k !Brw(ﬂ?)lz (AL5)
< Cllfllpmo, i, 72"
To estimate the second sum in (Al.4) we have
1= [ [ lw-sel
I Bay(a:)  Boyle;)
<> [ [ =Tt
i# Bep(zi)  Baslx;)
1 Fapwi) = Fopla)]] + [Faplen) - £(2)]
< Cllflmvios Y |Bo(a:)] B ()|
i#]
+C Y |Bo(@i)| |Bola)| [Foplwe) = Foplas)]-
i#i
We now claim that for ¢ # j
|Fap(@i) = Fap(z)] < CllfllBMOLE - (AL6)

Assuming (A1.6) we see that

J < CllfllBmO,k (Z |Bp($i)|)2
< Cll filemo s | Bro (@) [} (ALT)

< ¥ fllBMO 1 -

If we combine this with (A1.5) and {A1.4) we obtain (A1.2).

Proof of (A1.6). This is done as in [BNI] (proof of inequality (A.12)). Namely, for
any two points y, z in B,.(z),

|F20(y) = Tp(2)] < Cg‘ 1 f Mok, - (A1.8)

In view of (A1.3), we then obtain (A1.6). To verify (A1.8) consider a chain of points
Yy Y1, -+ s Ye—1,2 in Bp(z) such that the distance between any two successive ones
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is bounded by p, and with £ < Cr/p. For any two successive points of the chain,
say Vi, Yit+1, we see, using Lemma A.4 of [BNI], that

oy (45) — Tap(in)| < C / 1 = Fopls)|
B3, (yi)
< ClfllBMO,k; -

Consequently, adding these inequalities for all successive points we obtain (A1.8).
O

Remark Al.1. The definition of || |lBmo,x involves balls in R™, and we have
only spoken of Euclidean balls. The reader may verify that Lemma A1l.1 holds if
we replace the Euclidean metric by any norm on R".

Using Lemma A1.1 it is easy to give the

Proof of Lemma 2. Consider a ball B,(z) in O with r < kdist{z, ), k to be
chosen. We wish to estimate
= f ) 1) - fHE))
B.(z) B.{z)

In view of Lemma A1.1 it suffices to consider any k in (0,1). We have

r<o [ [ vw-r0)

r
H(B.(z)} H{By(z))
C depends on a bound for the Jacobian of H~!. Note that
H(B,(z)) C Bar (H(z))
for suitable o depending on the Lipschitz constant of H. Furthermore,
dist (H(z),80;) > édist (z, )

where & depends on the Lipschitz constant of H~!. Thus
ar < akdist{z,80;) < 9? dist (H(z), 092).
We now fix k so that, for example, ak/é = 1/2. Then we find

I < CllfllBMotn,)-
|

We now come to one of the main results in this Appendix, the equivalence, due
to Peter Jones, of the various notions of BMO, i.e., using all balls or just balls well
inside the domain. In fact the balls need not be Euclidean ones. They may be balls
in any norm on R". In the statement of Theorem A1.1, and in the proof, the balls
and distance may be measured in any given norm.
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Theorem Al.1. Let Q be an open bounded set in R". For any real function
f €L (), consider two (semi) norms

1= 1o = s f |- f 1]

e<l dist(2,89)  B.(w) B.(z)
=1l = s f 1= f g
e<di§t(m,8§2) B.(z) B.(x)

There is a constant C depending only on n and the choice of norm on R™, such
that -
Ifllemo < I fllBmo < CllfllBmo- (AL9)

The proof of Theorem Al.1 relies on the following two lemmas.

Lemma A1.2. There is a covering of B = B1(0) by balls B, = B, (x;) with
Ty = %(1 — |z:]) > 0 such that for every v > (n—1)/n,

Z lBiI’Y = Gy <00
H

In particular,
> " |Bi| |log|Bi|| < oo (A1.10)

Proof. Let 0 < b< 1andset, for j=1,2,...,
Aj={zeB; 1-V'<|zg)<1-V}
Note that

B = G Aj.
j=1

For each fixed j, consider a maximal family F; of disjoint balls B,(zx;) with z; €
A; Vi,and p = b/, Clearly, the family Bs,(x;) covers A;. The corresponding
family B; = B, (z;) with r; = %(1 — |x;]) > 2p also covers A;. Moreover

U B,(z;) C A= {=; 1=t —p<lzf <1V +p}
i€F;

and so
ST |B,(z)] <14l < OV,
i€ F;
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where C' is independent of j. It follows that
card Fj < Cp/—1.
Thus we obtain, since r; < CH Vi,

Z |B,|" < CH -y < cd,
iEF;
where d = b"7~"*! < 1. Consequently
o0 oo )
Yo Y B <CY d <o
j=1  i€F; i=1
0

Lemma A1.3. There is a constant C depending only on n and the choice of norm
on R such that

folz) - ?1/2(0)] < C|lfllemo log(1/r) Yz € B;(0) (A1.11)
with .
r=g(1- |z]).

Assuming Lemma A1.3 it is easy to derive Theorem Al.1.

Proof of Theorem Al.1. It suffices to show that, for any ball B = Bs{zg) C
B&(wo) - Q)

I:z{lf‘fo}é-é sup f 1f - F.(2)]

€.
eS%dist(x,aB) B, (z)

for some constant f, and some constant C depending only on n and the given norm
on R*. Without loss of generality we may suppose B = B:(0) and || f|lsmo(s) = 1.

Consider a covering B; = B, {z;) of B as in Lemma A1.2. Set
fo= .?1/2 (0)

and _
fi = fo ().
We deduce from (A1.11) that, for all 4

[fi — fo| < Clog - < O log|Bil] + C. (AL12)



344 H. Brezis and L. Nirenberg Selecta Math.

Therefore

1 1
__\;!If*folsl——— Blflf le+‘3121311,«2 fol

<C

by (A1.12) and Lemma Al.2. O
We now return to the

Proof of Lemma A1.3. The line from 0 to z is identified with R and we assume

0 < z < 1. Consider the sequence By, (zy) of balls centred on that line with

zp=1-(1-2)2""!

and ]
2 (
Let kg be the largest integer such that z; > 0. We always assume that & < kg, so
that B, (z;) C B1(0).

It is easy to check that

= =(1—zp) = (1 —x)2¢2

Brja (w1 = ) € By (@) N By (@er1),

and thus, by Lemma A .4 of [BNI], we have

Foul@s) = Fropo (:Ek - 12_)} < Clfllsmo

Fros @rt1) = Frogo (31 = 55) | < Cllfllmaso.

Set
i = fro(21);

we infer that
|fx = fear] S Clifllemo Yk < ko — 1.

Adding these inequalities we find

|7~ fu < Cllflsmotko ~ 1) < Cllfllswolog + (AL13)

Note that
(1-2).

t\’)ln—l

fi = f.(z) with r=
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Finally we claim that _
| o = F1/2(0)] < Cllflleao- (A1.14)

The desired conclusion (A1.11) then follows from {A1.13) and (A1.14).

Proof of (A1.14). Since zy,41 < 0 we have zp, < 1 and ri, = (1 —24,) > &
It follows that By/5(0) N B;, {zx,) contains the ball B=nB /3(Tr, — §)- Applying

Lemma A.4 of [BNI] once more we obtain

[71/2(0) = 5] < Cllfllsmo
Ifko ~713] <C “f”BMO

and thus (A1.14) is established.

Remark A1.2. Theorem Al.l holds for any open set {2, with Q compact in a
smooth open Riemannian manifold Xo. In the definitions of the norms || || and
|| |V, one also restricts the radii of the balls to be less than the injectivity radius
ro of Xo — assumed to be positive. The constant C in (A1.9) then depends on the
Riemannian metric on Xg. The proof of this more general result proceeds as in the
proof above with minor modifications.

Here are some consequences of the above results.

Corollary Al.1. Let Q be an open bounded set in R"™. Suppose || |1 and ||
are two norms on R*. Associated with these are two notions of BMO():

Iflovo, =_swp— f Jr= f o] i=12

BEOCY Biey B

Here the ball Bi(z) is measured in the norm || |;. Then the two BMO norms
are equivalent (and the equivalence constants depend only on n and the equivalence
constants for || |1 end || |2}

Next we take up the
Proof of Lemma 3 in §11.1. Consider the function

1
pla) =log 7 2Q)

where d is the distance measured in some metric equivalent to the Riemannian
one. For any ball B.(z) in Q, with £ < 1dist(z,00) — here dist refers to our
Riemannian metric — we have to estimate

J= f / le(y) - o(2)]-
Be(z) Be(x)
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Clearly if y € B.(z), dist(y, 090) > ¢, and thus d{y, Q) > ac for some constant o.
Hence for y, z € B.(z),

o) = (=) < Zdly, 2) <

Consequently J < C. [
With the aid of Theorem 1 we also give the

Proof of Lemma 4. Consider a ball B.(z) in  with € < %dist(mkaﬂ). In view of
Theorem 1 we have to show that given 6 > 0, there exists eg > 0 such that

o]

dist(y, z) < C. (A1.15)

I=f  f lerw-eel<d we,

Be{z)  Be(z)

and for all &€ < min{eo, 5 dist(z,09)}. Since ¢ is continuous in  we need only
consider such balls with dist(z, ) small. We have

() — Oz lply) —elz)] .
P70 = S ot
by (A1.15),
¢ dist(y, 2)
© g

lo*(y) — 9% (2)| <

Consequently
J < C| min ¢[*!
<Clm n ol
with C independent of z and e. Thus for dist(z, Q) small, én%n) @ is as large as
wanted, so that J is small. [

We turn finally to the proof of Theorem 1. The proof we present is a slight
modification of one shown to us by Peter Jones.

Proof of Theorem 1. We need only prove that (1.6) implies (1.7), namely, if f €
BMO(Q?) and satisfies

lin%) // |f - Tg(x){ =0 uniformly in =, (A1.16)
e—
e<3 dist(2,00) g, (z)

then

there exists a sequence (f;) in C§°(f2) converging to f in
BMO(Q) N L .(9).

loc

(A1.17)

The proof makes use of the following simple
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Lemma Al.4. Assume that f is in BMO(Q) and satisfies (A1.16). Then each

truncation
k i flz)>k
fay=< fl&) if —-k<flz)<k
~k if flz) < -k

also satisfies (A1.16) and moreover,
ff—= f in BMONLL, as k — co. (A1.18)

The lemma is a variant of Lemma A.17 in [BNI] and is proved in the same
way.

In view of Lemma A1.4 we may assume that our f satisfying (A1.16) is in L.
The main step is to show that f may then be approximated in BMONL! by L®
functions F satisfying {A1.16) and which, furthermore, have compact support in 2.
Once this is done it is easy to complete the proof of the theorem: We may think of
1 as lying in a compact manifold Xy, without boundary and consider F' defined on
X to be zero outside . By Sarason’s result (see Lemma 3 in [BNI]) F belongs to
VMO(X,). By Corollary 1 in [BNI], F is close to F in BMONL!, if ¢ is small. But
for € small, 7, also has compact support in Q. Since F. is continuous, it may be
approximated in the L™ norm — and hence in BMONL! — by smooth functions
with compact support in £2. The proof of Theorem 1 would then be complete.

As usual, it is convenient to replace the BMO norm by an equivalent one:

= s ff - S
e< 3 dist(z,00) B.(z) B.(z)
and to rewrite (A1.16) as
li_r)r}) / |f(y) - f(2)| =0 uniformly in z. (Al.16)
ES—% dist(z,00) B.(z) B.{(z)

To carry out the main step, consider f satisfying (A41.16)" with |f] < k. Using
suitable cutoff functions we will construct the approximating functions Fj.
Recalling the function of Lemma 3,

(z) = log dist(z, 00)’

without loss of generality, we may always assume that for all z, dist(z,80) < 1, so
that @(z) > 0. For  =1,2,..., set

mio) = (1- §w<m>)+
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and
F; =h;f.
We claim that the F; have all the desired properties:
(i) F; e L=,
(i) each F; satisfies (A1.16),
(iii) the F; have compact support,
(iv) F; = fin L',
(v) F; — fin BMO.
Clearly (i), (iii) and (iv) are trivial.

Proof of (ii). Each function h; is Lipschitz on (2, with Lipschitz constant k;. Then,
for our usual balls B.(z),

f |hi() f(y) — hi(2)F(2)]

B (x) B. ()

< f @ -l e Jof s

Be(x) Be () Be(z) Be(z)
—0 as —0 by (A1.16)".

Proof of (v). Given § > 0, there exists €9 > 0 such that

f ]f(y) - f(Z)] < g— for € <egy, < %dist(a:,aﬂ).
B.(z) Belz)

Consider

1= @i - mE6 - G - )
Be(z) Be(w)

We will prove that I < & for j sufficiently large (independent of z and €). As usual,
we distinguish two cases.

(a) If e < g then

1<z f f - 1@ e f o e =)

Be(z)  Be(z) Be{z)  Be(a)
28 1 j
<B4 ff e -l
Be(z) B (z)
26
< 35 + ?‘.‘”f”L‘” by Lemma 3,

< & for j sufficiently large.
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(b) Ife>epthen
I<2 f Ih;(9) — 1] 1 @) < Cllf Lo / (1 hy).
B, (z) Q

This can be made less than ¢ for h; large, by dominated convergence. 0

Appendix 2 (with P. Mironescu). Toeplitz operators and VMO

In this appendix we discuss Toeplitz operators on the circle S*. Let us first recall
the classical Toeplitz operators. Consider complex valued L2-functions on S and
the closed subspace

H? = {fe L2(51);/ei"0f(9)d0=0, n= 1,2,...},

S

and more generally, for p in [1, c0],

HP = {fELp(Sl);/emyf(g)dB:O, n:l,Q’_”}.

g1

Let P be the orthogonal projection from L? onto H2.
Given a function ¢ € L*(S',C) we denote by M, the operation on L? of
multiplication by ¢. The associated Toeplitz operator (with symbol ), is

T, = PM,P; (A2.1)
the associated Hankel operator is
H,=(1-P)M,P. (A2.2)

T, is often considered as an operator from H? to H2.

A classical result is that if ¢ is continuous and nowhere zero, then T, is a
Fredholm operator and

index(T,,) = — deg (‘%, sl,sl) . (A2.3)

See, for example, R. G. Douglas [1], Theorem 7.26 and R. G. Douglas [2]; further
references and history may be found there. A number of authors have extended this
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result to other classes of functions ¢, not necessarily continuous. See for example
Theorem 7.36 in R. G. Douglas [1] and D. Sarason [1], [2], [3], [4], and the recent
book by I. Gohberg and N. Krupnik [1].
Since the right hand side of (A2.3) makes sense for ¢ € VMO(S?!) with |¢| >
a > 0 — by [BNI], it is natural to extend the classical result above to functions ¢
satisfying
@ € VMO(SH) N L=(SYH), ¢l >a>0. (A2.4)

We present such a result
Theorem A2.1. Let ¢ satisfy (A2.4). Then T, is Fredholm and (A2.3) holds.

This follows, in fact, from Theorem 7.36 in R. G. Douglas [1]. His result is more
general: it asserts that if ¢ is in H* + C° and if ¢, the harmonic extension of ¢ to
the unit disc D, satisfies

]@(rew)] >a>0 for 1-6<r<], (A2.5)

then T, is Fredholm. Moreover,

5 (repif
index(T,) = — deg (go(re . )

1ol : _
l@(re”}l’s S > for every r in (1 —4,1). (A2.6)

To derive Theorem A2.1 from Douglas’ result one uses two facts:

(i) If o € VMONL®™, then ¢ € H™ + C®. More precisely,
© € VMO NL™® <= ¢ and @ belong to H> + C°.

This result is due to D. Sarason [1]. The space VMO NL®™ is sometimes called
QC (quasi continuous);

(ii) If € VMO and |p| > a > 0 then its harmonic extension ¢ satisfies (A2.5);
see Lemma 5 in D. Sarason [3], and also Theorem A3.2 in Appendix 3 here.

It seems worthwhile to present here a different proof which is more or less self
contained. It is elementary except for the Fefferman inequality (see (A2.10) below).

We derive Theorem A2.1 from the classical case — for ¢ continuous — by
approximation. The convergence of the right hand side of (A2.3}, in the approxima-
tion, holds by stability of degree in VMO, see Theorem 1 in [BNI]. The convergence
of the left hand side is more subtle since T\, does not depend continuously in the
operator norm on the BMO norm of ¢; see Remark A2.1. It turns out that H, has
that property:
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Lemma A2.1, There is a constant C' such that

|Hyll < Cligllemo Y € Lo(SY). (A2.7)

Proof. Clearly Hy = 0if ¢ € H*>. Thus for any ¢ € H*™,
[Holl = |(I = P)Myp—yPl| < [[Mp—yll < Il — Pllz~.

Hence
< o = di o0 H 0
Hol < wé’%fm lo = YllLe = dist{p,H*) in L

(In fact equality holds by Nehari’s theorem; see D. Sarason [4], page 100.)
The assertion of the lemma follows from the
Claim.

dist (¢, H*) < Cllpllemo  for ¢ € L. (A2.8)

Proof of Claim. Recall that if X is a real Banach space, and M is a linear subspace
of X then for any f € X*,

sup (f,u) = dist(f, M~), (A2.9)
i1

where M is the set of points in X* which annihilate M. We take X = L(S1, C ~
LY(S',R?), M =the set of finite linear combinations (over C) of e™% n =1,2,....

Feffermans’ inequality (see C. Feffermann [1]; see also C. Fefferman and E. Stein
[1], and E. Stein [1]) implies that for u € M,

| [ 4] < Cliflamollulzs (42.10)
h

By definition, M+ = H*°, and (A2.7) then follows from (A2.9) and (A2.10). O

Remark A2.1. There is no estimate of the form

7ol < Cllellsmo + llells) Vo € L. (A2.11)

Proof. Write f € L? as

f:Pf+(I—P)f:Pf+P_?-ff. (A2.12)
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Since H, + T, = M,P we may write, for any f € L?,
Myf = My(Pf)+ My ((I - P)f)

= Mp(Pf)+ My (PF) = (f f)e

(
My(Pf) + MzPf — f)«ﬁ

= () + o)+ HoD) + (D) - (f £

Thus, if (A2.11) were to hold, by (A2.11) and Lemma A2.1,

13,112 < O lehosio + Nl Iflze +| f 1]l
In particular,

1M, < C(llellsmo + llwllr2)-

But |M,]] = ll¢ll. This yields a contradiction if we choose for ¢ the truncations
of a function in BMO which is not in L. 0

Lemma A2.2. For o € VMONL®™,

H, is compact from L? into itself.

Proof. There is a sequence (ip;) of functions in C® such that ¢; — ¢ in BMO; see
D. Sarason [1]. By Lemma A2.1

|Hy; — Holl < Cllp; — ¢llBmo — 0. (A2.13)

On the other hand, for every continuous ¢, Hy is compact. This fact is classical
and is easily verified by noting that for every ¢ of the form

+N

1/)(0): Z aneinﬁ

nz=—N
Hy is a finite rank operator. ]

Corollary A2.1. For p € L™ and ¢ € VMONL™

T,Ty —Typy 1is compact.

Proof. Just write
T,Ty —Tpy = -PMyHy (A2.14)

and apply Lemma A2.2.
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Lemma A2.3. Assume (A2.4), then T, is Fredholm in H2.

Proof. By Lemma 2’ in [BNI] we know that ¢~! € VMONL®™ and so, by Corol-
lary A2.1, we have, on H?

T,T,-» =1+ K, K compact.
Similarly, we have, on H?,
T, T,=1+K', K'compact.

It follows that (see e.g. S. Lang[1]) T,, is Fredholm.

Before continuing with the proof of Theorem A2.1, it is convenient to introduce
the class
A={peVMO; ypeL>®andyp '€ L™}

Note that if ¢ € A, then ¢! € VMO; see Lemma 2' in [BNI].

Lemma A2.4. Let (;) be a sequence in A such that |9~ < C, ]}gbj—lﬂl,oo <C
and ||v;llemo — 0. Then Ty, is invertible in H? for j sufficiently large.

Proof. By (A2.14) we have, in H2,

ijwal =] — Pijwal {A2.15)
and
T%ux w; =1 —PM ;:ij. (A2.16)

Passing to a subsequence, we may always assume (by Lemma A.l in [BNI]) that
¥; — ¢, for some constant ¢, in L'. It follows (by Lemma A.7 in [BNI]) that
w;l — 0 in BMO. Applying Lemma A2.1 we conclude that

”PijHw;IH — 0 and ”PMdJ;lHl/)j” — 0.

Hence I — PMy,H -1 and I — PM -1 Hy, are invertible for j sufficiently large; the
conclusion of the lemma follows easily from (A2.15) and (A2.16).

Next, a useful lemma about the product of functions in BMO.
Lemma A2.5. Let g € VMONL®™. Then for every 6 > 0 there exists a constant
Cs {depending on & and g) such that

fgllemo < 8l fllee + Cs (Il flimo + 1 fll) VS e L™,
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Proof. Recall (see (1) in [BNI]) that

17 dllao < SuPes f f 1 ()a(w) - F(2)a(2)].
Be(z) Be(z)

But

Jf e -see@l st fo 1w - sl

B.(z) Be(s) Be{z) B.(z)
< L+ 2|jglle=llfliBMO,

where

L= f / [FW)(9(v) — 9(2))|-

Be(z) B(z)

Clearly, two estimates hold for L:
Ll f 1l and L<lflim f f lo) g (a217)
B.(z) B.(z) B.(z)
Since g € VMO, there exists £¢ depending only on g such that
f o) -9 <8 ite<e,
B.(z) B<(z)
and thus L < 8|/ flL~ by the second estimate in {A2.17). For € > ¢ we use the
first estimate in (A2.17), namely
N
B.(z)

and the conclusion of the lemma follows.

Lemma A2.6. Let ¢ € A and (p;) be a sequence in A such that ||p;llr- < C,
”<PJ-_1|]L<>G < C and ¢; = ¢ in BMONL!. Then

index(T,,) = index(Ty) for j sufficiently large.
Proof. Lemma A2.5 (applied to f = ¢; — ¢ and g = ') implies that

@j
2

— {0 as j - o00.
BMO
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We deduce from Lemma A2.4 that T, is invertible in H? for j sufficiently large.
By Corollary A2.1 we have, in H?,

Tosro =To;Tajp + K
T1/¢T‘p =1 +K,

where K and K' are compact. Applying the standard properties of the index (see
e.g. S. Lang [1]) we conclude that, for j sufficiently large

0 = index (T, ,) = index (T, T1,) =
= index (T,,) + index(T} ) = index (T}, ) — index (T,,).

We may now prove Theorem A2.1 by approximation using (A2.3) for continu-
ous .

Proof of Theorem A2.1. Given ¢ € A there is a sequence (¢;) of continuous func-
tions such that [[¢;ljr~ < C, Hgaj_liipo < C and ¢; = ¢ in BMONL!; see e.g.
Corollary 4 in [BNI]. We have

indexT,; = —deg (p;/|v;)-

For j sufficiently large, the left hand side equals index T, (by Lemma A2.6) and
the right hand side equals deg(y¢/|¢|) by Theorem 1 in [BNI]. O

Here is an alternative proof of Theorem A2.1 which does not make use of Lem-
mas A2.4, A25 and A2.6. It is slightly shorter, but it relies on an additional
ingredient: the lifting property for maps in VMO(S!,S?) with degree zero (see
Theorem 3 in Section 1.6 of [BNI]). On the other hand this proof is totally self con-
tained — it does not rely on the classical case (¢ continuous). The key observation
is the following:

Lemma A2.7. Consider a map m: A — Z satisfying

m(py) = m(p) + m(y)) Vo, € A

Then there is an integer k such that

m(yp) = kdeg (ﬁ,51,51> Yy € A. (A2.18)

Remark A2.2. Surprisingly, in Lemma A2.7, no continuity is required of m. The
condition on m is purely algebraic.
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Proof. We first claim that

m{y)=0 Yy €A with deg (i) =0. (A2.19)

[
Indeed we may write, by Theorem 3 in §1.6 of [BNI],
7[’ — leew
for some function o € VMO(S!, R). For every integer n, let
wn — i,d)i%eio’/n e A,
so that
m(y) = m(y)) = nm(¥,).
Thus, if m(y) # 0, |m(y)| >n Vn — impossible; (A2.19) is proved.
For ¢ € A let

d = deg (}—%,SHSO

and write ‘ ’
o = e,y e VMO(S', R)

(see Remark 10 in §1.6 of [BNI]). Then
m(p) = m{e®) + m(|jple™) = dm(e*)

by (A2.19). This proves (A2.18) with k = m(e").

Proof of Theorem A2.1. For every ¢ € A we know that T, is Fredholm by Lemma
A2.3. Set
miyp) = index{T,).

We have, by Corollary A2.1, for some compact operator K,
m(py) = index(Tyy) = index(T, Ty + K) = index(T,Ty) = m(p) + m(y)

by standard properties of Fredholm operators. Applying Lemma A2.4 we conclude
that

m(p) = kdeg (%,51,51>

for some integer k. Choosing ¢(8) = ei® we see that k = —1. 0
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Appendix 3. The harmonic extension of VMO maps

In this appendix we discuss properties of the harmonic extension u of a BMO
(or VMO) map ¢ defined on the boundary 91 of a domain & C R™; throughout we
assume that {1 is smooth and bounded.

The two main properties which are related to the core of our paper are the
following;:

Theorem A3.1. Assume ¢ is a function in VMO(ORY). Then its harmonic ex-
tension u belongs to VMO, ().

Theorem A3.2. Assume ¢ € VMO(OQ,RY) and ¢(z) € £ a.e. on 0, where T
is a closed set in RY . Then, for any § > 0 there is a neighbourhood U of 8Q in Q
such that

dist (u(z),X) <6 VzeU. (A3.1)

Remark A3.1. The two theorems above hold in the general setting where Q) is a
domain on a manifold; the proofs carry over.

First some notation. Fix a neighbourhood V of € in € such that every point
x € V has a unique projection P(z) on ). Set

d(z) = dist(z, 00).
Clearly, there is a constant C such that

C U d(z) + |P(z) — &) < |z - €]

< C(d*(z) +|P(z) - €?) Yz eV, Ve (A32)

Given a function ¢ defined on 99, consider (as in §I1.3, Example 3), forz € V,

(z) = Fam) (P(2)) = / 0.

Bg(e)(P(z))

The next result provides a useful connection between the harmonic extension u
of ¢ and the function @; it will allow us to derive, easily, Theorems A3.1 and A3.2
from the corresponding properties of 7.

Lemma A3.1. There is ¢ constant C such that

llu = @ L (vy < Cligllsmocan)- (A3.3)

The proof of Lemma A3.1 relies on the following two lemmas; the first one is a
variant of an observation due to C. Fefferman and E. Stein [1}:
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Lemma A3.2. There is a constant C, depending only on n, such that

[ w5
CENPEPRRE

dy < Cllvllsmo(Bsr) (A3.4)
yEBr

where Bg = {y € R* ';|y| < R},a € Bryy,0 <t < R/2 and

Pi(a) = / Y.

B{a)

Lemma A3.3. Let H be a smooth diffeomorphism from B onto a subset of 0%1.
Then there are constants C and tg such that

(o H), () -7, (Hw)| < Cliellsmoran) (A3.5)

Jor all o € BMO(OQ), Wyl < R/2 and 0 < t < 1s.
Assuming Lemmas A3.2 and A3.3 we present the

Proof of Lemma A3.1. We may suppose that |l¢llsmoan) = 1 and [, ¢ = 0. Let
P(z,£) be the Poisson kernel so that

u(z) = / Pz, €)pl€)de.
84

Recall (see e.g. M. Avellaneda and F. H. Lin [1], Lemma 21) the estimate

0< P(a,8) < c%f—(%??—) Ve, VEean (A3.6)
For every constant ¢ we have
jute) = | < [ P, &)el€) - el (A3.7)
a0

We apply (A3.7) with ¢ = (z) = Py, (p(z)) and set
t = dist{z, 041} = d(z).

From the estimate (A3.6) we obtain

ute) )] <t [ 1£10 = PPV (A38)
an

|z ¢l
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Consider a finite family of smooth maps H; : Bop — 90 such that each H; is a
diffeomorphism (onto its image) and

|J Hi(Bry2) covers 09.

For each z € V there is some 7 such that
P(z) € H;(Bg2). (A3.9)

Thus we have
lu(z) — u(z)| < Ct / [ ]+Ct / [ ]=5L+5, (A3.10)
H{(BR) H,'(BR)C

where
(= 16O ~B(P)
lz — €™ '

To estimate I, note that, by (A3.2),

|z~ ¢ > C7Y2

P(z) - ¢ 2a>0,
since £ € H;(Br)® and p(z) € Hi(Bg/;). Therefore
L < Ct(llellLiany + [ (P@))|) < C (A3.11)

by Lemmas A.1 and B.7 in [BNI]. We recall that Lemma B.7 implies that |7,]|z~ <
C(1 + |logt]); the proof of this fact uses the John—Nirenberg inequality.

To estimate [, use the change of variables £ = H;(y), so that by (A3.2),

le(Hi(y)) — 2, (P(x))]
hém!@+wm—i@mm@’
and thus
I, < Ct 19 (y) -@(P(z))ldy’ (A3.12)

(2 +la —y|?)n/2

R

where ¢ = p o H; and a = H'(P(x)).
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From (A3.12) we deduce that

dy

[9¥(y) = ¥u(a)] + [¥:(a) — B, (P(x))]
I SC’tB/ (Z+]a -y

(A3.13)

< ClvliBmosr) + Cllvllsmoian),

by Lemmas A3.2 and A3.3. Note that |a|] < R/2 by (A3.9), and that we may
choose a neighbourhood V' of 90, V' C V, so that, for every z € V', t = d(z) <
min{tg, R/2}; here ¢y is defined in Lemma A3.3.

In view of Lemma 2 in §I1.1 we obtain

L < (A3.14)
Combining (A3.11) and (A3.14) we conclude that
lu(m) - ﬂ(:v){ <C Vre V'
If z € V\V’ we have

|u(z)| < Cllpllgioa) < C
{since u is harmonic), and clearly

[u(z)| < Cllelipoa) < C.
Hence, in all cases,

|u(z) - ﬂ(a:)i <C VzeV.

We now return to the

Proof of Lemma A3.2. By scaling we may assume that i = 1. We may also suppose
that

l¥llsmo(B.r) =1 and that /’i/) = 0.
Bgr
Consider the sequence of balls in Rr1
Br = By(a)  k=0,1,2,...

and set
A = Bp\Bg-1 k=1,2,3,...
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Let kg be the largest integer k such that

28 +ja| < 1,
and set

bk:f¢ for 0<k< k.
B,

Note that
bo = (a).

By Lemma A .4 in [BNI] — recall our definition of BMO(B;g) — we have
|bosr —b| < C for 0<k <ko—1.
Adding these inequalities yields
b —bo| < Ck for 0<k< k. (A3.15)

On the other hand, note that
< 2kep < 1. (A3.16)

R,

By Lemma A.4 in [BNI] we have
1bkn - f Tﬁ‘ <C
jyl<1

and thus
|bk()l < o

since flyl<1 1 = 0. It follows from (A3.15) and (A3.16) that
lbo] < Cko < Clog(1/1). (A3.17)

We have to estimate

= [(y) — bol
I'—tu/ﬁ @ +la—yP)y7™

We write
I=hL+L+1I;



362 H. Brezis and L. Nirenberg Selecta Math.

where
_ ¥ (y) — bol
b=t | e
ko _ bOi ko
B "Z / t2+ia—y! 2 A;Jk
and
_ l¥(y) — bol
et [ e
Jyl<1
yQBko
Clearly
1
I < pry / W(y) - bﬂl < Cf W’(y) ~b| < C. (A3.18)
B(; BU

Next, we estimate I3; observe that if y ¢ By,, |a — y| > 25¢ > 1/4, and thus
Iy <Ct / [¥(y) = bo| < Ct(Il¥llBMmo(Bar) + Ibol)-
Jul<t

Therefore, by (A3.17),
Iy < Ct(1 + log(1/t)) < C. (A3.19)

Finally, we estimate Ji,. On A we have |a — y| > 2(5~1¢ and thus

t
Ik < (12 + 22G=1)g2)n/2 / W’(y) - bol‘
B

Consequently
1
f—Tgn(k—1) / (|¢ — bi] + |bx — bol)

By

iy lB (f [~ bal + b —bot)

»2-,;(1 +k) by (A3.15).

Ji <

IA

IN
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It follows that .

L=Y J<C
k=1

Combining (A3.18) - (A3.20) we obtain the desired estimate (A3.4).

Next, we give the

Proof of Lemma A3.3. For any constant ¢ we have

’ ,f dé——c f Icp —c|d§

Bt(y B.(y)
C
< — cldn.
1B fetn) =
H(B:(y))
Choosing
c= f p(Q)d,
H{B:(y))
we find

| foetena- f e <

Bi(y) H(B:(y))

= B lH(Bt l/ / — () |dndC.

H(B:(y))

There are constants tg > 0 and K > 1 such that

By (H(y)) C H(Bi(y)) C Bix (H(y)) Vt<to, |yl < R/2.

We deduce from (A3.21) and (A3.22) that

| f emenas- fowou<cf f

Bily) H{(B:{y})) Bex (H{y))

< Cllellsmo-

On the other hand, by Lemma A.4 in [BNI], we have

| f e- f e[ <Clilsmo

H(B:(y)) Bk (H(y))

363

(A3.20)

(A3.21)

(A3.22)

¢)|dnd¢

(A3.23)

(A3.24)
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and

I f L f SDISCIIQ@HBMO. (A3.25)

B(H(v))  Buxc(H())

Combining (A3.23), (A3.24) and (A3.25) we are led to the desired conclusion

{f@”H}* f wlscnwnm.

B:(y) B(H(y))

Finally, we turn to the
Proof of Theorem A3.1. Observe first that if ¢ € BMO(JQ), then its harmonic
extension u belongs to BMO(£}) and

[ullzmo) < Clivlismoan- (A3.26)

In proving (A3.26) we may assume, as usual, that [l¢|[Bmo(sq) = 1 and that / Y=

aQ
0. Let ¢ be a smooth cutoff function with support in a small neighbourhood of 90
and such that { = 1 near 9. By Lemma A3.1 we have

ICu — Cull Lo (o) £ C
and, in particular,

lI¢u — Cullpmon) < C-
On the other hand, by (3.8) in Lemma 7 of §11.3 we have

li¢allBmo) < C
and therefore
iCullsmo) < C.

Since we clearly have
(1= Qullzes(n) <C,

it follows that (A3.26) holds. The fact that « € VMO(Q) whenever ¢ € VMO(9Q)
is derived from {A3.26) by a standard density argument.

Next we prove that if ¢ € VMO(9Q), then u € VMO, (). Since we already
know that (7 € VMO, () (see Lemma 7 in §I1.3) it suffices to verify that

(u — ¢T) € VMOo(Q).
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Given § > 0 we have to check (see Theorem 2 in §I1.3) that
— 1
/ lu - ul <§ for = Ed(m) small, (A3.27)
B.(z)
Let 1) be a continuous function on 0Q2. Let v be its harmonic extension in { and
let D(z) =y (P(z)) forz € V.

Write
u—T=[(u—v)—(@-1)] + (v-"2).

Application of Lemma A3.1 to (p — ¢) yields

lu — @l LB, (2)) < Clle = YllBMO(2Q) + [V — Tl Lo (B, (2)) (A3.28)

provided £ < &g with &g sufficiently small such that B, (z) C V.
Choose ¥ € C°(99) with

Clle = ¥liBMmo(an) < 6/2 (A3.29)

and then choose g1 < gq sufficiently small so that
”’U - D’][LW(BG(,;)) < (5/2 for < £1. (A330)

This is clearly possible since v and T are continuous on § and v = 7 = 4 on 9.
Together, (A3.28)-(A3.30) yield

1
[|ae _ﬂ”Lw(BE(w)) <6 for &= §d($) <éej.

The desired conclusion (A3.27) follows. 0

A similar procedure furnishes the

Proof of Theorem A3.2. As in the proof of Theorem A3.1 we write
u=T+ [(u—v) = (@-1)] +(v-"2). (A3.31)
Recall that, by Lemma A3.1,
l(w —v) — (@ - 0)||p=(v) < Clle = YllBMmOocan)- (A3.32)
Fix g9 > 0 such that d(z) < go implies z € V. Choose ¢ € C°(9Q) such that

Clie — ¥llBmo(any < 9/3. (A3.33)
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Next, let 1 < gg be so small that
}v(x) -%7(3:)} <6/3 id(z)<er.
Finally, we may find ¢, < €; such that
dist (w(z), L) <d if d(z) < ea; (A3.34)

this can be achieved since p € VMO(9Q) (see (7) and Remark 3 in [BNI]).
Combining (A3.31)-(A3.34) we obtain the desired estimate

dist (u(z),Z) <4 if d(z) < e3.
0

Remark A3.2. Theorem A3.2 asserts that if o takes its values into some closed
set ¥, the harmonic extension u has the properties that, close to 9, the values of
u lie near ¥. This need not be true for arbitrary extensions of ¢ in Sobolev spaces.
For example, with n = 2 and ¢ = 0: If u € H}(Q), near the boundary, u need not
be small.

Here is such a function u defined on §2 = Rﬁ_ = {(z1,z2), 22 > 0}. Consider any
decreasing sequence (g;) of positive numbers such that

oo
E £; <00
Jj=1

and

= 1
>
= [loge;l

for example ¢; = e=5* does it. Let (az) be the sequence of points on the z,-axis
defined by

o0
a =02 ¢
j=k

Set, -
u(w) = 35 - )

where ¢;(r) = log|logr| —log|loge;| if r < e; and 4;(r) = 0 if r > £;. Note that
supp « is contained in the set

s

B(ajvgj)’

j=i
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and that u € H'(R?) since

£;
dr 2
Vul? =2 r = .
= | e = e
B(ajvaj) 0
Clearly, u(ag) = +00 Vk and ap — 0 as k — oo. 0
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