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Quantization of Lie Bialgebras, I 

Pavel  E t ingof  and Dav id  K a z h d a n  

Abs t rac t .  In the paper [Dr3] V. Drinfeld formulated a number of problems in quantum group 
theory, tn particular, he raised the question about the existence of a quantization for Lie bialge- 
bras, which arose from the probiem of quantization of Poisson Lie groups. When the paper [KL] 
appeared Drinfeld asked whether the methods of [KL] could be useful for the problem of quanti- 
zation of IAe biatgebras. This paper gives a positive answer to a number of Drinfeld's qUesti0ns, 
using the methods and ideas of [KL]. In particular~ we show the existence of a quantization for 
Lie bialgebras. The universality and functoriality properties of this quantization will be discussed 
in the second paper of this series. W'e plan to provide positive answers to most of the remaining 
questions in [Dr3] in the following papers of this series. 

I n t r o d u c t i o n  

The  ma in  resul t  of this  pape r  is a cons t ruc t ion  of a quan t iza t ion  for Lie b ia lgebras  

(see [Dr3] Sect ion 1). 
The  p a p e r  consis ts  of two par ts .  In  the first p a r t  we cons t ruc t  the quan t iza t ion  

of a f in i te -d imens ional  Lie b ia tgebra .  In  the second p a r t  we general ize  this  resul t  
to the  inf in i te -d imensional  case. The  cons t ruc t ion  in the first p a r t  consis ts  of three  
s teps.  

1) Given  a f in i te -d imensional  Lie b i a lgebra  a over a field k of charac te r i s t i c  
zero, we cons t ruc t  the double  g of  a. Our  definit ion of the double  coincides  with 
the one in [Drl] .  We  consider  tile ca tegory  34  whose ob jec t s  a re  l?-modules and 
H o m ~ ( U , W )  = Hom~(U,W)[[h] ] .  For  any assoc ia tor  g~ ([Dr2, D r 4 ] ) w e  define a 
s t ruc tu re  of a b r a i d e d  monoida l  ca tegory  on 34 ,  as in [Dr2]. 

2) We cons t ruc t  Verma  modu les  M + ,  M _  over ~t, and  use them to  cons t ruc t  
a f iber functor  f rom 34 to the tensor  ca tegory  of topologica l ly  free k[[h]] modules :  
F ( V )  = H o m ~  (M+®M_, V). Accord ing  to the  ca tegor ica l  yoga,  the  exis tence  of 
such a functor  impl ies  tile exis tence  of a ( topological)  Hopf  a l g e b r a  H i somorph ic  to  
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U(g)[[h]] such that  the tensor category jgt is equivalent to the category of represen- 
tations of H.  We show that H is isomorphic, as a topological algebra, to U(g)[[h]], 
where U(g) is the universal enveloping algebra of the Lie algebra g. 

3) We construct Hopf subalgebras H:~ of H and show that H+ is a quantization 
of a and that the algebra H is the quantum double of the Hopf algebra H+. 

R e m a r k .  We do not expect the existence of a quantization of any Lie bialgebra a 
which is isomorphic to U(a)[[h]] as a topological algebra. 

As an application of our techniques, we prove that any classical r -matr ix  r over 
an associative algebra A (r E A®A) can be quantized. In other words, there exists 
a quantum R-matr ix  R E A®A[[h]] such that R = 1 + hr + O(h2). We also show 
that R is unitary (R21R = 1) if r is unitary (r 21 = - r ) .  This answers questions in 
Section 3 of [Dr3]. As another application, we show the existence of the quantization 
of a quasitriangular Lie bialgebra a (not necessarily finite-dimensional) such that 
the obtained quantized universal enveloping algebra has a quasitriangular structure 
and is isomorphic to U(a)[[h]] as a topological algebra, which solves questions in 
Section 4 of [Dr3]. 

The construction of quantization given in Part I has two drawbacks. First, it 
does not work literally for infinite-dimensional Lie bialgebras. Second, it does not 
allow to prove functoriality and universality of quantization. Therefore, in Par t  II 
we slightly modify the construction, which puts the results of the first par t  in a more 
general setting. Now we consider arbi trary Lie bialgebras, not necessarily finite- 
dimensional. In this case the double g of a can als0 be constructed, but it carries a 
nontrivial topology if dim a = ec. Instead of the category of all g-modules, we now 
consider the category 3/t e whose objects are equicontinuous g-modules, which are 
topological g-modules satisfying certain conditions. On this category, we define a 
braided monoidal structure ar~alogously to the finite-dimensional c a s e , .  .... .. : .  

We construct Verma modules M+, M_ over g analogously to the finite-dimen- 
sional case. The module M_ is equicontinuous. The module M+, in general, is not 
equieontinuous, but the module M~.., dual to M+ in an appropriate topology, is an 
equicontinuous g-module. Using M_ and M~, we define a fiber functor from 34 ~ 
to the category of topological k[[h]]-modules, by F(V) = H o m ~ o ( M _ ,  M*~QV). 
Since the module M+ is not always equicontinuous, this functor is not always 
representable in M e. We define a tensor structure on F similarly to the finite- 
dimensional case, and show that if g is finite-dimensional, the functors obtained in 
the first and second parts of the paper  are isomorphic as tensor functors. 

Next, we consider the algebra H = EndF.  I t  is a topological algebra over 
k[[h]] with a "coproduct" A, which maps H into a completion of H®H, but not 
necessarily in H®H. 

Finally, we construct a subalgebra H+ of H such that A(H+)CH+®It+. This 
is a quantized universal enveloping algebra which is a quantization of a. For finite- 
dimensional a, this quantization is isomorphic to the one obtained in the first part .  
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In the second paper of this series we will settle Drinfeld's question of the exis- 
tence of a universal quantization of Lie bialgebras by showing that the quantization 
obtained in Par t  II of this paper is universal. In Drinfeld's language this means that 
the product and coproduct in the quantized algebra are expressed in terms of acyclic 
tensor calculus via the commutator and cocommutator. This result implies that our 
quantiza~ion of Lie bialgebras is a functor from the category of Lie bialgebras to 
the category of topological Hopf algebras. It also shows that our quantizations of 
classical r-matrices, unitary r-matrices, and quasitriangutar Lie bialgebras are uni- 
versal and functorial. Thus we will answer positively the corresponding questions 
of Drinfeld [Dr3]. 

Remarks.  

1. The material of Par t  I does not seem sut~cient for proving universality and 
functoriality. In fact, during the computation of the h2-term of multiplica- 
tion in Uh(a), using the method of Part  I, one gets non-acyclic expressions, 
which cancel at the end of computation. Thus, the generalization to the 
infinite-dimensional case is essential for the proof of functoriality, even for 
finite-dimensional Lie bialgebras. 

2. Most of the results of the paper  could be formulated and proved over the 
ring k[h]/(h N) rather than hi[h]], and then the results over k[[h]] could 
be obtained as a limit. The only problem arises with the notions of the 
dual quantized universal enveloping algebra and the quantum double, which 
collapse over k[[h]]/(hN). This is why we chose to work over k[[h]]. 

In fact, it is easy to see that the main results of this paper hold in a more general 
setting than stated. Namely, one can take the Lie bialgebra a to be "dependent on 
h", i.e. to be a Lie bialgebra over the ring k[[h]], which is topologically free as a k[[h]]- 
module. The procedm'e of quantization described in Part  II is well defined for this 
case, and, as will be shown in the second paper, defines a functor a--~Uh (a), from the 
category of Lie bialgebras over k[[h]] which are topologically free as k[[.h]]-modules 
to the category of quantized universal enveloping algebras (See Chapter 3). We will 
show that this flmctor is in fact an equivalence of categories and will construct the 
inverse functor. 

The third paper of this series is not written yet. Therefore we will only indicate 
the topics which we are planning to present in this part. First of all, we plan to 
consider the case of graded biatgebras with finite-dimensional homogeneous compo- 
nents and to show that in this case our formal quantization defines a family of Hopf 
algebras Hh, depending on a parameter h E k. Our second goat is to prove that, for 
Kac-Moody bialgebras, our quantization coincides with the quantum Kac-Moody 
algebra. As another application of our techniques we plan to show how to define 
a quantum analog of the Kac-Moody algebra for arbitrary symmetrizable Caftan 
matrix (not necessarily integral) and show that for generic values of q the "size" of 
the quantized algebra is the same as of the usual Kac-Moody algebra. This would 
settle the questions in Section 8 of [Dr3]. 
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PART I 

1. D r i n f e l d  c a t e g o r y  

The definitions and statements of Sections 1.1, 1.2 can be found in [Dr1]. 

1.1. Lie  a l g e b r a s  

Throughout  this paper, k denotes a field of characteristic zero. Let a be a Lie 
algebra over k, and 5 be a linear map a : a-~a®a. 

Def in i t i on .  One says that the map 5" defines a Lie bialgebra structure on a if it 
satisfies two conditions: 

(i) 5 is a 1-cocycle of a with coefficients in aQa, i.e. 

c~([ab]) = [ l e a  + a®l ,  5(b)] + [d(a), l®b + b@l]; 

(ii) The map 5* : a*®a*--+a* dual to (~ is a Lie bracket on a*. 

In this case a is tailed the cocomnmtator  of a. 

If a is a finite-dimensional Lie bialgebra then a* is a Lie bialgebra as well. 
Namely, the commutator  in a* is dual to the cocommutator  in a, and the cocom- 
mutator  in a* is dual to the commutator  in a. tf  a is infinite-dimensional, then ~* 
is not in general a Lie bialgebra but is a topological Lie bialgebra. That  is, a* is a 
Lie algebra in the usual sense, but the cocommutator  maps a* into the completed 
tensor product a*@a* and not necessarily into the usual tensor product a*®a*. 

For any Lie bialgebra a, the vector space fl = a®a* has a natural structure of a 
Lie algebra. Namely, a, a* are Lie subatgebras in fl with the bracket defined above, 
and the commutator  between elements of a, a* is given by 

[a,b] = ( a d * a ) b -  (l®b)(d(a)), a E a, b E a*, (1.1) 

where ad* denotes the coadjoint action. There is an invariant nondegenerate inner 
product on 9 given by (a + a', b + b') = a'(b) + b'(a), a, b E a, a ' ,  b' E a*. It  is easy 
to show that (1.1) is the unique extension of the commutator  from a, a* to g for 
which the inner' product (, } is ad-invariant. 
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1.2. Main  triples  

Def ini t ion.  A'triple (it, ~+, g - ) ,  where g is a finite-dimensional Lie algebra with a 
nondegenerate invariant inner product <, >, and g+, g_ are isotropic Lie subalgebras, 
such that 9 = 9+®fI-  as a vector space, is called a finite-dimensional Manin triple. 

To every finite-dimensional Lie bialgebra a, one can associate the corresponding 
Marlin triple (~ = a®a*, a, a*), where the Lie structure on g is as above. Conversely, 
if (g, ~+, ~_) is a finite-dimensional Manin triple then g+ (and g_) is naturally a 
Lie bialgebra. Namely the pairing <, > identifies g+ with g*_, so we can define 
5 : 9+-+g+®g+ to be the dual map to the commutator  of it-.  This map is a 1- 
cocycle of the Lie algebra 9+ with coefficients in the module ~+@9+, so it defines a 
structure of a Lie bialgebra on 9+. 

Thus, there is a one-to-one correspondence between finite-dimensional Lie bial- 
gebras and finite-dimensional Manin triples. 

If a is a Lie bialgebra then the Lie algebra g = a®a* also has a natural structure 
of a Lie bialgebra. Namely, the cocomrnutator on it is 5~ = 5a®(-5~.) ,  where 
5a, 5~. are tile cocommutators  of a, a*. The 1-cocycle 5~ is the coboundary of an 
element in g®g. Namely, if r E a®a*Ctt®g is the canonical element corresponding 
to the identity operator a-+a, then d~ = dr, where r is regarded as a 0-cochain of 
g with coefficients in g®g, and d is the differential in the cochain complex; that is 
5~(x) = [x®l + l®x,r] .  

The Lie bialgebra 1~ is called the double of a. 
Let a be a Lie algebra, and r E a®a. The equation 

+ + = 0 (1.2) 

in U(a) ®a is called the classical Yang-Baxter  equation. It  is easy to check that the 
canonical element r satisfies this equation. 

De f in i t i on .  We say" that a Lie biMgebra a is quasitriangular if it is equipped 
with an element r E a®a satisfying the classical Yang-Baxter  equation, such that 
5(@ = [a®t + l®a,  r] tbr any a E a (i.e. 5 is a coboundary of r). For example, 
the double 9 of any finite-dimensional Lie bialgebra a equipped with the canonical 
element r is a quasitriangular Lie bialgebra. 

1.3. Assoc iators  

Recall some notation amd definitions from the t.heory of associators [Dr2, BN]. Let 
T,~ be the algebra over k generated by elements to ,  1 <_ i, j < n, i ¢ j ,  with defining 
relations t~j = tj~, [t~j, hm] = 0 if i, j ,  l, m are distinct, and [t~j, t~k + tjk] = O. 

Let P 1 , . . . ,  P~ be disjoint subsets of {1 , . . .  ,m}. There exists a unique homo- 
morphism PP1 ..... p, : T~-+T~ defined by 

pc P~ ,qe C~ 
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For any X E Tn, we denote pp~ ..... p~ (X) by Xp1 ..... p .  
Let 55 E T3[[h]]. The relation 

551,2,345512,3,4 -~ 552,3,4~D1,23,4551,2,3 (1.4) 

in ~/~[[h]] (=relation (1.2) in [Dr2]) is called the pentagon relation. 
Let B = e ht~2/2 E T2[[h]]. The relations 

B12,3 = 553,1,2B1,355~,~,2B2,3551,2,3, 
(1.5) 

- 1  - 1  B1,23 = 552,3,1BL3552j,3BL255L2,3 

in ~/~[[h]] (=relations (3.91), (3.9b) in [Dr2]) are called the hexagon relations. 

Def in i t ion .  An element 55 E Ta[[h]] of the form 55 = e P(h{~2'haa), where P ( X ,  Y)  
is a Lie formal series with coefficients in k, is called a Lie associator over k if it 
satisfies the pentagon and hexagon relations. 

For k = C, an exampte of a Lie associator is the Drinfeld associator 55KZ 
obtained from the K Z  equations, as explained in [Dr2]. 

The following theorem about Lie associators is due to Drinfeld ([Dr4], Theo- 
rem A"). 

T h e o r e m  1.1. There exists a Lie associator defined over Q. 

This theorem implies that there exists a Lie associator defined over any field k 
of characteristic zero. From now on we will fix such a Lie associator 55. 

1.4. D r i n f e l d  c a t e g o r y  

Let g be a Lie algebra, over k, and f~ E S2g be a g-invariant element. 
We will be mostly interested in the case when g belongs to a finite-dimensional 

Manin triple (g, ~+, g_), and f~ = ~ i  gi®g i, where {9i} is a basis of g, and {gi} is 
the dual basis to {gi} with respect to the invariant inner product on g. tn this case 
the element f~ is called the Casimir element. 

Let 3/l denote the category whose objects are g-modules, and H o m ~  (U, W) = 
Hom~ (U, W)[[hi]. This is a k[[h]]-linear additive category. For brevity we will later 
write Horn for H o m ~ .  

DrinMd [Dr2] defined a structure of a braided monoidal category on 34 
as follows: For any Vt, V.2, V3 E ~M, consider a homomorphism 0 : T3 [[h]]-~ 
End(VI®V2®V3) by O(t~j) = [~i~, and define 55v1v_,v3 = 0(55). 

For any V1,V2 E 34, define VI®V2 E A4 to be the usual tensor product of 
Vt, V2 and the associativity morphism to be 55v~v.ovh, regarded as an element of 
Horn((Vl®V2)®V3,Vi®(V2®K~)). For any V1,V2 E 34, introduce the braiding 
/3v~v2 : VI®V'2--+V2®V1 by the formula/3 = soe ha/~, where s is the permutation. It 
follows from relations (1.4), (1.5) that the morphisms 55v~v~y3 and/3v~v~ define the 
structure of a braided monoidal category on 34 (see [Dr2]). 
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2. T h e  f iber  f u n c t o r  

2.1. T h e  c a t e g o r y  of  t opo log i ca l l y  f ree  k([h]]-modules 

Let V be a vector space over k. Then the space V[[h]] of formal power series in 
h with coet~cients in V has a natural structure of a topological k[[h]]-module. We 
call a topological k[[h]]-module topologically free if it is isomorphic to V[[h]] for 
some V. 

Let A be the category of topologically free k[[h]]-modutes where morphisms are 
continuous k[[h]]-linear maps. It is an additive category. Define the tensor structure 
on A as follows: for V, W C A define V®W to be the projective limit of the k[h]/h ~- 
modules (V/h~V)®k[h]/h ~ (W/h'~W) as n-+oc. 

Let Vect be the category of vector spaces. We have the functor of extension of 
scalars, V ~ V[[h]], from Vect to A. This functor respects the tensor product, i.e. 
(V®W)[[h]] is naturMty isomorphic to V[[h]]®W[[h]]. The category A equipped 
with the functor ® is a symmetric monoidal category. 

If X 6 A then X* = Homm(X, k[[h]]) is a topologically free k[[h]]-module. The 
assignment X--~X* is a contravariant funetor from A to itself. 

2.2. T h e  f o r g e t f u l  f u n c t o r  

Let (1~, g+, g - )  be a finite-dimensional Manin triple, ~2 6 $2~ be the Casimir element 
associated to the inner product ( , )  on g, and 34 be the Drinfeld category associated 
to ~. 

Let F : 3 4 ~ N  be the functor given by F ( M )  = Hom(U(g), M),  where U(g) is 
regarded as a left g-module. This functor is naturally isomorphic to the "forgetful" 
functor which assigns to every g-module M the k[[h]]-module M[[h]]. The isomor- 
phism between these two functors is given by the assignment f E F(M)-+f(1) C 
M[[h]]. 

2.3. V e r m a  m o d u l e s  

Consider Verma modules M+ = Ind ,+ l ,  M_ = Ind,_ 1 (here 1 denotes the triv- 
ial 1-dimensional representation). By the Poincar@ Birkhoff-Witt theorem, the 
product in U(g) defines linear isomorphisms U(9+)®U(g_)-+U(g),  and U(9_)® 
U(g+)~U(g) .  This shows that the modules M+ are freely generated over U(gm) 
by vectors 1+ such that g ± l i  = 0, and are identified (as vector spaces) with 
U(t~T) via xl±-+x. Since the vectors l i ® l m  C M±®M~: are g±-invariant, there 
exist unique 9-modute morphisms i l  : M±--+M±®M± such that i±(1±) : 1±®1±. 
These morphisms in the category 34 will play a crucial role in our constructions 
below. 

L e m m a  2.1. The assignment 1-+1+®1_ extends to an isomorphism of g-modules 
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~ :  U (~t)-+P$+ ® M -  • 

Proof. Since M:L has been identified with U(I~T), we can regard the map ~b as a 
linear map U(g)-+U(fj_)@U(g+). It  is clear that this map preserves the standard 
filtration, so it defines a map of the associated graded objects: Sg+Sg_®Sg+. 
This map is the isomorphism induced by the isomorphism g ~ t - ® g + .  Therefore, 
q~ is an isomorphism. [] 

Lemma 2.1 implies that the fnnctor F can be identified with the functor 
V-+Hom(M+@M_, V). This definition of F will be used from now on. 

2.4.  T e n s o r  s t r u c t u r e  o n  the  f u n c t o r  F 

Let (d, ®) be a monoidal category, • be the associativity constraint in d, and 1 
be the identity object in C. tSbr simplicity we assume that I ® X  = X ® I  = X for 
any object X E C, and the functorial isomorphisms X ~ X ® I ,  X--+I®X the are 
identity morphisms. 

Let F :  C+A be a functor such that F(1)  = k[[h]]. 

De f in i t i on .  By a tensor structure on the functor F one means a functorial iso- 
morphism J v w  : F(V) ® F(W) -÷ F(V ® W) satisfying the associativity identity 
F(Ovwu)Jv®w, uo(Jvw®l) = Jv, w®uo(l®Ywu), such that for any object V 
Jw = Jiv = 1. A functor equipped with a tensor structure is called a tensor 
functor. 

Now we describe a tensor structure on the flmctor F constructed in Section 2.2. 
For any v E F(V), w E F(W) define Jvw(v@w) to be the composition of 

morphisms: 

i+®i_ associagivlty rnorphism 
M + ® M _  ~(M+®a/S+)e(M_eM_) > 

(l®~2a)®l 
(M+®(M+®M_))®M_ 

associativlty morphism 
(M+®(M_®M+))®~£ + 

v®w 
(M+®M_.)®(M+®M_) ~ v ® w ,  (2.1) 

where/32a denotes the braiding/3 acting in the second and third components of the 
tensor product. 

It  is clear from this definition that alt combinatorial complexity of the morphism 
J comes from the arrows "associativity morphism" which involve associators. 

The arrows "associativity morphism" make the problem of checking various 
identities for J (Ibr example, the associativity identity) rather tedious. To avoid 
this, we can use MacLane's theorem, which says that any monoidal category is 
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equivalent to a strict one. Namely, when we check identities between morphisms 
in the category, we will assume that the category 34 is replaced with an equivalent 
strict manoidal category and" ignore associativity morphisms. For exampie, the 
definition of J will look as follows: 

= 

However, when we do computations with vectors in modules from :~l, it is 
important  to pay attention to brackets, since different positions of brackets are 
related with each other by the associator. 

P r o p o s i t i o n  2.2. The maps Jww are isomorphisms and define a tensor structure 
on the functor F.  

Pro@ It is obvious tha£ J v w  is an isomorphism since it is an isomorphism mod- 
ulo h. It is also clear that Jv~ = J1y = 1. Thus the only thing we need to check 
is the associativity identity Jv®w, uo (Jvw@l)  = Jv, w®uo( l@Jwu) .  To prove this 
equality, we need the following result. 

l~emma 2.3. (i±@1)o,;± = ( l®i±)oi~ in Hom(Me,  M~3), 

Proof. We prove the identity for i+. The identity for i_ is proved in the same way. 
We need to show that for any vector x ¢ M+ 

e~ . (i+@l)i+x = (l@i+)i+x. (2.2) 

Since comultipIication in U(g_) is coassociative, i.e. (i_~@l)i+x = (l@i+)i+x, it is 
sutIicient to show that the associator ~ is the identity on the image of (i+@1)i+. 
Because • is 9-invariant, it is enough to show that ~ .  (i+®1)i+1+ = (i+@1)i+1+, 
i.e. 

• . (1+@1+@1+) = 1+@1+@1+. (2.3) 

Since the subalgebras g+, 9-  are isotropic, the operators f~12, f~a annihilate the 
vector 1+@1+@1+. Thus, equation (2.3) follows from the definition of ~5. [] 

Now ,are can finish the proof of the proposition. Let "@l,@s : M+@M_--+ 
(M+@M_) ®s be the morphisms defined by 

¢1 = (1@/3.23@1@1@1)o(i+@i_@1@t)o(1@~2s@1)o(i+@i_}, 
Ss = (l@l@l@~4s®l)o(1@1@i+®i_)o(1@/~2s@1)o(i+@i_ ). (2.4) 

Then for any v ¢ F(V) ,  w < F ( W ) ,  u ¢ F(U) we have 

Jv®w,v (Jr  w ® l ) ( y e w ® u )  = (v®w®u)o~l , 

Jv, w®u (l@Jwv)(v@w@u) = (v@w@u) o@2. 
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Therefore, to prove the proposition, it is sufficient to show that. ~bl = ~b2. 
To prove this equality, we observe that tim functoriality of the braiding implies 

the identities 

(i+®i_®1®1)o(1®,.~23®1) = (1®/33,4s®1)o(i+®1®i_®1), 

(1®1®i+®i_)o(1®/323®1) = (1®/32a,4®1)o(1®i+®1®i_) (2.5) 

(here ~3,45 means the braiding applied to the third factor and to the product of the 
fourth and the fifth factors). Using Lemma 2.3 and identities (2.5), we reduce the 
statement ¢1 = ¢2 to the identity 

(1®A3®1®1®1)o(1®/33,45®1) = (1®1@t®fl45®1)o(1®/~23,4®1), (2.6) 

which foltows directly from the braiding axioms. [] 

We call the functor F equipped with the tensor structure J the fiber functor. 

3. Quantizat ion of  the double of  a Lie bialgebra 

3.1. Topological  Hopf  algebras 

Let A be an algebra over k with unit. Let I be a proper two-sided ideal in A. This 
ideal gives rise to a translation invariant topo!ogy on A such that {I ~, n > 0} is a 
basis of neighborhoods of 0. We will call A a topological algebra if A = lim A/I% +-_- 

Let ,4o be a topological algebra over k, and A = A0[[h]] as a topological k[[h]]- 
module. Suppose that A is equipped with a continuous, k[[h]]-linear, associative 
product., which coincides with the product in A0 modulo h. In this case we say that 
A is a topological algebra over/~[[h]], which is a detbrmation of A0. 

Let A, B be two topological algebras over k, I, J be the the corresponding 
ideals. Define the completed tensor product A®B to be the projective limit of 
algebras A/In®B/J  ~ as n --+ oo. Then A®B is also a topologicaI algebra, with 
topology defined by the ideal I®B + AQJ. 

The completed tensor product of topological algebras over k[[h]] is defined sim- 
ilarly. 

We say that a topological algebra A over k is a topological Hopf algebra if it is 
equipped with comultiplication A : A-+A®A, the counit c : A->k, and the antipode 
S : A-+A, which are linear, continuous, and satisfy tile standard axioms of a Hopf 
algebra. Note that an infinite-dimensional topological Hopf algebra may not be 
literally a Hopf algebra because the image of comultiplication may not belong to 
the algebraic tensor square of A. 

Topological Hopf algebras over k[[h]] are defined similarly. If A is a topological 
Hopf algebra over k[[h]] then B = A/hA is a topological Hopf algebra over k. In 
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such a case we say that A is a formal deformation of B over k[[h]]. In particular, 
if B = U(g) with the discrete topology, where 1; is a Lie algebra, then A is called a 
quantized universal enveloping algebra [Drl]. 

The following definition is due to Drinfeld [Dr1]. 

Definition. Let (1;, 5) be a Lie bialgebra. We say that a quantized universal en- 
veloping algebra A is a guantization of (1;, (~), or that (1;, 5) is the quasiclassical limit 
of A, if 

(i) An isomorphism of Hopf algebras A/hA--+U(g) has been fixed, and 
(ii) For any Xo C g and any x E A equal to xo mod h one has 

h - l ( A ( x )  - A°P(z)) .~ 6(xo) mod h, 

where A °p is the opposite comultiplication (A °p = sA). 

3.2. T h e  a l g e b r a  of  e n d o m o r p h i s m s  o f  the fiber functor 

Let H = End(F)  be the algebra of endomorphisms of the functor F. This algebra 
is naturally isomorphic to U(g)[[h]l. Namely, the map c~ : U(g)[[h]]-+H is defined 
on x E U(g) by the formula (o~(x)f)(y) = f (yx) ,  where f E Hom(U(g) ,M) ,  and 
is extended by linearity and continuity to U(g)[[h]]. This map is an isomorphism 
of algebras. From now on we will make no distinction between U(1;)[[h]] and H,  
identifying them by a. 

Let F 2 : M x A4-+A be the bithnctor defined by F2(V, W) = F(V)®F(W) .  It 
is clear that End(F  2) = H®H. 

The algebra H has a natural comultiplieation A : H--+ H ® H defined by 
= Jvwav®wJvw(v®w) ,  a C H, v E F(V) ,  w C F(W) ,  where 

av denotes the action of a in F(V).  We can also define the counit on H by 
e(a)  = a l e  k[[h]], whe re  1 is the neutral object. 

For any V E M ,  let V* be the dual space to V (regarded as an object of M) ,  and 
let cry : V*®V--+I be the canonical pairing. We have a functorial isomorphism ~v : 
F (V*) -+F(V)*  defined by @(v*)(v) = F(c~v)Jv.v(v*®v), v E F(V) ,  v* C F(V*). 

For any a C H,  let S(a)v = ~swr¢* ~-.la*v.sv ~* be a morphism F(V)**-+F(V)**. It is 
easy to show that the subspace F ( V ) c F ( V ) * *  is inwxiant under this morphism. 

The antipode S : H ~ H  is defined by S(a)v : S(a)vlF(V ). 

Proposition 3.1. The algebra H equipped with A,e,  S is a topological Hopf alge- 
bra. 

The proof is straightforward. 

3.3. Explicit representation of complication and antipode 

Let A0 : U ( g ) ~  U(g)®U(g)  be the standard coproduct. For any V,W E M ,  
let J ~ v  : F ( V ) ® F ( W ) - + F ( V ® W )  be the morphism defined by the formula 
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J°w(~®~)(z)  = (,®~)(A0(~)), ~ c u(g), ~ e r (v ) ,  ~ ~ F(w).  It is dear 
that J v w - - = @ w  modh.  

Let J E U(g)®2[[h]] be defined by the fbrmula 

j = (+--i®+--1) (+~,,I34([@(,~2,3,4)sehft23/2(1®(122,3,4)+l,2,34(l_t_®l+@l_@1 _)), 
(3.,) 

where ¢ is the isomorphism of Lemma 2.1. 

P ropos i t i on  3.2. For any V, W E A,  v E F(V) ,  w C F ( W )  one has Jvw(v®w)  = 

J~vcJ(~®w). 

Pro@ The statement follows from the definition (2.1) of J v w .  [] 

L e m m a  3.3. Let a E H.  Then 

A(a) = J-1Ao(a)J .  (3.2) 

Pro@ The iemma follows from Proposition 3.2 and the identities Ao(a)v,w = 

( J ° w ) - ~ a ~ ® ~ J  % ,  ~X(a)~,~ - '  = J v w a v ® w J v w ,  a E U(g). [2 

Now consider the explicit expression for the antipode. For any V E 34 define 
the morphism ~ : F(I/*)-+F(V)* by ~/(v*)(v) = F(crv)J~.v(V*®V), v e V,  
v* E V*. It is clear that ~v - ~o mod h. 

Let So : U(g)-+U(g) be the usual antipode. Let J = ~ y X j ® y j ,  z j , y j  E 
U(g)[[h]] (the sum is finite modulo h" for any n). Define an element Q E U(g)[[h]] 
by Q = 2 j  So(xj)yj .  

L e m m a  3.4. Let a E H. Then 

S(a) = Q-~So(a)Q. (3.3) 

Proof, It follows from the definitions of @, ~ o  and Q that @ = @So(Q)v*.  
Thus the Lemma follows from. the formulas S(a)v  • - 1  , • = (~v) a v * ~ v b ( v l ,  So(a)v  = 
(~o,~-1, ~o,b(v)" [] 
%V ] a v *  %V 

Thus, we have proved the following result. 

Corol lary  3.5. Introduce a new comuItiplication and antipode on the topological 
~opf algebra U(g)[[h]] by 

A(x)  = J - ' A o ( x ) J ,  s(x) : # - ' s 0 ( x ) @  (3.4) 

where Ao, So are. the usual comul~iplieation and antipode. Then (U(g)[[h]], A,S) 
is a topological Hopf algebra isomorphic to H. 

We will denote the topological Hopf algebra (U(g)[[h]], A, S) by Uh(g). 

Remark .  It is easy to see that according to the terminology of [Dr2], the ele- 
ment j - 1  is a twist that realizes an equivalence between the quasi-Hopf algebra. 
(U(g)[[h]], ~) and the Hopf algebra Uh(g). 
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3.4. The quasielassieal limit of Uh(fl) 

P r o p o s i t i o n  3.6. The topological Hopf algebra Uh(g) is a quantization of the Lie 
bialgebra (~, (~). 

Pro@ Take a C gCUh(g). Let 5(a) C U(~)®U(g) be defined by the tbrmula 
5(a) = h - l ( A ( a )  - A°P(a)) mod h. To prove the proposition, we need to show 
that for any a C g one has d(a) = c~(a), where 5~(a) is defined in Chapter 1. 

It is easy to check the following identities: 

e h a / 2 - 1 + h f ~ / 2  m o d h  2, ~ = 1  m o d h  2. (3.5) 

Let { g }  be a basis of g+, {9j-} be the dual basis of g_, and r = ~. j  9+®9j. 
Identities (3.1) and (3.5) imply that 

J - l + h r / 2  m o d h  2. (3.6) 

Therefore, by Lemma 3.3, 

h h2" A(a) -= Ao(a) + ~[Ao(a) , r ]  mod (3.7) 

Thus, 
h 

A ( a ) - A ° P ( a ) -  ~ [ A o ( a ) , r - s r ]  m o d h  2. (3.8) 

Since r + s t ( =  f~) is 9-invariant, we obtain 

5 = dr = a~, (3.9) 

Q.E.D. [] 

3.5. The quasi t r i a n g u l a r  s t r u c t u r e  on  Uh(g) 

Define the dement 
R = (J°P)-leha/9"J C Uh(~) ®2, (3.10) 

where joy is obtained from J by permuting components. We call this element the 
universal/~-matrix of Uh (g). 

P r o p o s i t i o n  3.7. R defines a quasitriangular structure on Uh(g). That is, R is 
invertible and 

RA = A°PR, (3.11) 

(A®I)(R)  =/~13J~23, ( l ® a ) ( R )  = ~1a/~12. (3.12) 
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Moreover, R is a quantization o f t ,  i.e. 

R - l + h r  m o d h  2. 

Selecta Math. 

(3.13) 

Pro@ Identity (3.13) follows from (3.5), (3.6) and the definition of R. This identity 
implies that R is invertible. 

One has 

= A°P(a)(J°P)-teha/2Y = A°~(a)/~, (3.14) 

which proves (3.11). 
Now let us prove the first identity of (3.12). The second identity is proved 

analogously. 
According to the definition of R, for any V, W E 34, v E F(V),  w E F(W),  one 

has R(v@w) = SJwlvF(/3vw)Jvw.  Thus, for any U E 34, u E F(U) one has 

(A®l)(R)(v®w@u) = ( Jv~®l )R(Jyw®l ) ( v®w®u)  

= s12,a(1®Jyw)Ju, v®w Is (/3v®w,u)Jv®w,u(Yvw®l)(v@w@u), (s4s) 

where st2,3 is the permutation of the first two components with the third one. Using 
the braiding property/3v®w,g = (/3vuN1)o(l®~wcr), the associativity of Yww, and 
the obvious . . . .  = Jv, u®wF(I@/3wu) 1dentines JrJ®vwF(/3vu@l)Jv®u w F(/3vu)@I, -1 
Jv, w®u = I®F(/3wu), one finds that the right-hand side of (3.15) equals to 
R13 R23 (v®w@u), as desired. [] 

4. Quantization of  finite-dimensional Lie bialgebras 

Our purpose in this section is to represent the quasitriangular topological Hopf 
algebra Uh(g) as a quantum double of another topological Hopf algebra, Uh(g+). 
The topological Hopf algebra Uh(g+) will be a quantization of the Lie bialgebra g+. 

4.1. The algebras Uh(9~=) 

As we have seen, the fiber functor F which we used to construct the quantum 
group Uh(g), is represented by the object M+®M_ of AJ. Therefore, we have a 
homomorphism 0 : End(M+@M_)-eEnd(F) = Uh(g) defined by O(a)v = voS(a), 
v C F(V),  V E A4, a E End(M+@M_). 
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L e m m a  4.1. The map 0 is an isomorphism. 

Proof. The Lemma follows from Lemma 2.1. [] 

Thus, we can identify End(M+NM_)  with Uh(g). From now on we make no 
distinction between them. 

Now let us define the subalgebras Uh(g±)CUh(~). 
Let x C F(M+). Define the endomorphism m_(x) of M+®M_ to be the com- 

position of the following morphisms in Jr4 : m_(x) = (x@l)o( l®i_) .  This defines 
a linear map m -  : F(l!/f+)-+Uh(ij). Denote the image of this map by Uh(g-).  

Let m°(x)  e U(g_) be defined by the equation x(1+@1_) = m° (z) l+ .  It is 
easy to show that m_ (x) = m ° (x) mod h, which implies that m_ is an embedding. 

A similar definition can be made for x e F (M_) .  Define the endomorphism 
m+(x) of M+@M_ to be the composition of the following morphisms in 34 : 
m+(x)  = (1®x)o(i+®1). This defines an injective linear map m+ : F(M_)~Uh(g).  
Denote the image of this map by Uh(g+). 

Proposit ion 4.2. Uh(g±) are subalgebras in Uh(g). 

Pro@ Let us give a proof for Uh(g-).  The proof for Uh(~+) is analogous. 
Using Lemma 2.3, we obtain 

m_(x)om_ (y) = (x®l)o(l@i_)o(y®l)o(l®i_) 

---- ( x® 1) o (y®1@1) o ( 1®1® i_ )  o ( l@ i_ )  

: ( z®1 )o (y®1@1)o (1@i_®1)o (1® i_ )  : (z@l)o(l@i_),  (4.1) 

where z : xo(y®l )o ( l®i_ )  e F(M+) .  
So by the definition we get m_(x)orn,_(y) = m_(z). [] 

Note that the algebra Uh(g-) is a deformation of the algebra U(g_). Indeed, 
we can define a linear isomorphism tt : U(g-)[[h]]~Yh(g-) by #(a)(1+®1_) = 
S (a ) t+ .  This isomorphism has the property It(ab) = #.(a)op(b) mod h 2, which 
follows from (3.5), but in general #(ab) # #(a)o#(b). 

The subalgebra Uh(g-) has a unit since it is a deformation of the algebra with 
unit U(g_), In fact, one can show that the unit equals to #(1), 1 6 U(g_). 

Similar statements apply to the algebra U(g+). 

Proposit ion 4.3. The map Uh(i]+)®Uh(g-)--+Uh(g) given by a@b-+ab is an iso- 
morphism. 

Proof. The statement is true because it holds modulo h. [] 

4.2. Polarization of  the R-matrix 

Define the e lement /{  C Uh(~+)@Uh(g--) by the identity 

Rofl-l o( i+ ®i_ ) = fl (4.2) 
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in Hom(M+@M_, M_@M+). It is obvious that such an element is unique. It can 
be computed as follows. 

Let v : M±[[h]]-+Uh(g=) be the linear isomorphism defined by the equation 
v(z(l_~ @ 1 _ ) ) =  m:F(x ) for any z E F(M±) .  Let K C U(g)®2[[h]] be given by 

(1@~2 3 4)se-h92a/2(l@~2,~ 4)~1 2 34(1+@1+@1-@1-)). K =  /A-1@¢ - l ~ < w  /~, 1,2,34 . . . . . .  

(4.3) 
Then it is easy to check, using (4.2), that 

= (v®v)(K - I  e hgU2 (1_ @1+)). (4.4) 

Proposi t ion 4.4. /~ = R. 

Proof. According to (3.10), the R-matrix R E Uh(~)@Uh(g) is defined by the con- 
dition that for any V, W E ~ /  and v E F(V) ,  w E F ( W )  one has the equality 

R°p(~ew)o923o(i+@i_) 

= 9o(,~@v)o923o(i+@i_) (4.5) 

in Hom(M+@M_, V@W). 
By the functoriality of the braiding, R°V(v@w) = 3oR(w@v)o3~134 . Besides, 

/312,34 =/323o/512o/334o/323 • Substituting this into (4.5) and taking into account that 
/3oi+ = i±, we get 

£ (~ ®v) o/~£3 ~ o (~+ ®i_  ) 

-_ ( ~ ® v ) o Z ~ o ( i + @ i _ )  (4.6) 

in Hom(M+@M_ , W O V ) .  
To show that R = / ~  we have to prove the identity 

(1@/~@1) o(i+ @1@1@i_)o~ 1 o(i+@i_) 

= fl23o(i+@i_) (4.7) 

in Hom(M+@M_, M+@M_@M+@M_). 
Interchanging the order of factors on the left-hand side of (4.7) and using Lemma 

2.3, we can rewrite (4.7) in the form 

(1@/~@ 1) o/3~ o(1@i+@i _. @1)o(i+@i_) 

=/3230(/+@/_) (4.8) 

in Horn (iV/+ @M_, M+ @M_ @ 2d+ @M_ ). 
It is obvious that identity (4.8) follows from the definition of/~. The proposition 

is proved. [] 
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4.3. S u b a l g e b r a s  Uh(g±) in t e r m s  o f  the  R - m a t r i x  

Let Uh(g±)* = HomA(Uh(9±),k[[h]]). Define k[[h]]-tinear maps p+ : Uh(gm)*-+ 
Uh(g=L), by p+(f) = ( l®f ) (R) ,  p_(f)  = (fQ1)(R).  Let U+ be the images of the 
maps p±, and ~?± be the closures of the k[[h]]-subalgebras generated by Ui .  

Proposition 4.5. 

Uh(g±)Qq[hl]k((h)) is the h-adic completion of ~f±Qk[[h]}k((h)). 

Proof. We prove the statement for U+. The proof for U_ is similar. 

We start with the following statement. 

L e m m a  4.6. For any x e U(g+) there exists an element tx E ~'+®k((h)) such 
that tx = x + O(h). If x has degree ~ m with respect to the standard filtration in 
U(9+), then tx can be chosen in such a way that hmtx E ~]+. 

Proof of the lemma. It is clear that 1 E ~ since 1 ---- p+ (s). So we can set ti = 1. 
Now consider the case z 6 g+. Let f E Uh(g-)* be any element such that 

f(1)  = 0 a n d  f(5)  = ( x , a )  for a n y a E g _  a n d ~ E U h ( g _ ) s u c h t h a t ~ = a  m o d h .  
Then it follows from (3.13) that p+(f) = hx+O(h2). So we can let tx = h-~p+(f). 
Thus, the Lemma is true for x E 9+- Since ~T+ is an algebra, the validity of the 
Lemma for x E 9+ implies its validity for any x 6 U(9+). [] 

Now we can prove the proposition. Let, To C Uh(9+). Let xo E U(g+) be 
the reduction of To mod h. Then To - tx o is divisible by h, so we can consider 
T1 = h-1 (To-tzo) and repeat our procedure. This gives us a sequence xi C U(9+), 
and To = ~,~_>0 tXm hm" This shows that To belongs to the h-adic completion of 

U+®k((h)), as desired. [] 

T h e o r e m  4.7. The subalgebras Uh9~ are Hopf subalgebras in Uh(9). 

Proof. The fact that Uh(gi) are closed under the cornultiplication A follows from 
Proposition 4.5 and identities (3.12). The fact that U)~(9±) are closed under the 
antipode S follows from Proposition 4.5 and the identity (S®I)(R) = R -1, which 
holds in any quasitriangular Hopf algebra. [] 

R e m a r k .  tn fact, it is possible to prove the following explicit formula for coproduct 
in Uh(gm): for any x E F (M+)  

A(m=F(X)) = (m=F®mT)(JM1M~ (i=kox)). (4.9) 

The proof is a direct verification. A similar formula is contained in Proposi- 
tion 9.3. 

It is obvious that Uh(g+)/hUh(g+) is isomorphic to U(9+) as a Hopf algebra. 
Therefore, Uh(9+) is a quantized universal enveloping algebra. It follows from 
Proposition 3.6 that its quasiclassical limit is the Lie bialgebra 9+- Similar state- 
ments apply to Uh(9-).  
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4.4. D u a l i t y  o f  q u a n t i z e d  un ive r sa l  enve lop ing  a lgebras  and  the  q u a n t u m  
d o u b l e  

The following general constructions can be found in [Drl]. 
If A is a quantized universal enveloping algebra then the dual A* = 

tIom~4(A, k[[h]]) carries a natural structure of a topological algebra. Namely, for 
any x,y  E A, f , g  E A* fg(x)  = ( fQg)(A(x)) ,  and the unit is e. It can be shown 
that A* has a unique maximal ideal I*, which is the kernel of the linear map A-+k 
given by f - + f ( 1 )  mod h. The topology on A* is defined by the condition that 
{(I*)~, n > 0} is a basis of neighborhoods of zero. This implies that the topological 
algebras (A®A)* and A'®A* are isomorphic. 

The algebra A* has a natural structure of a topological Hopf algebra. Namely, the 
coproduct is defined by A(f ) (x®y)  = f (xy) ,  the counit is 1, and the antipode is S*. 
(The definition of coproduct makes sense since the algebra A*®A* is isomorphic to 
(AeA)*.)  

As a topological k[Ih]I-module, A* is isomorphic to k I IX i , . . . ,  XN]I[IAI]. 
Let A be any quantized universal enveloping algebra. Let A* be the dual alge- 

bra, and let I* be the maximal ideal in A*. Consider the h-adic completion A V of 
the subalgebra ~ k 0  h-~(I*) " in the algebra A*®k[[h]]k((h)). Then A v is a new 
quantized universal enveloping algebra [Dr1]. This algebra is called the dual quan- 
tized universal enveloping algebra to A. 

The algebra A* can be identified with a snbalgebra in A v which is constructed 
as follows: 

Let A ~ : A ~ A  ®~ be the iterated coproduct maps: A°(a) = e(a), A 1 (a) = a, 
A2(a) = A(a),An(a) = (A®l®(n-2))(An-l(a)) ,  rt > 2. 

Let E = { i l , . . . , i k } C { t , . . . , n } ,  and il < " -  < ik. Let j r  : A®k--+A ®~'~ be the 
homomorphism defined by j z (a l®. . .®ak)  = bl®...®bn, a l , . . . , ak  E A, where 
bi = 1 if i ¢ E, and bi m = a,~, m = 1 , . . . , k .  

Let a s ( a )  = j s (Ak(a) ) ,  a E A. 
Define linear mappings 5~ : A--+A ®n for all n 2 1 by 

go{1 ..... % 

and a Hopf subalgebra A' = {a e A : 5n(a) ¢ h~A ®n} in A. 
It is easy to check that A* = (AV) '. If A is any Hopf algebra, let A °p denote 

the ttopf algebra A with the cornultiplication A replaced by A °~, and the antipode 
S replaced with S -1. A °p is also a Hopf algebra. 

Now we can define the notion of the quantum double. Let A be a quantized 
universal enveloping algebra. Consider the k[[h]]-module D(A) = A®(AV) °p. Let 
R E A®A*CAQ(AV) °p be the canonical element. We can regard /~ as an el- 
ement of D(A)®D(A) using the embedding AQ(AV)°L+D(A)®D(A) given by 
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x®y-+x®l®l®y. Drinfeld [Drl] showed that there exists a unique structure of 
a topological Hopf algebra on D(A) such that 

(1) A®I, l®(AV) °p are Hopf subatgebras in D(A), 
(2) R defines a quasitriangular structure on D(A), i.e. is invertible and satis- 

fies (3.12), (3.13), and 
(3) The linear mapping A®(AV)°p-+D(A) given by a®b--+ab is bijeetive. 

D(A), equipped with this structure, is a quasitriangular quantized universal 
enveloping algebra. It is called the quantum double of A. 

4.5. T h e  q u a n t u m  doub le  of  Uh(9+) 

P r o p o s i t i o n  4.8. p+ is a homomorphism of topological HopS algebras (Uh(9_)°P) * 
--+Uh(g+ ). p- is a homomorphism of topological Hopf algebras Uh (9_)*-+Uh(9+ ) °p. 

Pro@ We only prove the first statement. The second one is proved analogously. 
It is clear that p+ is continuous. Also, for any f,  9 E (5~(9_)°P) * one has 

p+(fg) = (l®fg)(R) = (1®f®g)((I®A°P)(R)) = (l®f®g)(R12R23) 

= ( l ® f ) ( R )  • ( l ® g ) ( R )  - -  p+(f)p+ (g);  

A ( p + ( f ) )  = ~ X ( ( l ® f ) ( n ) )  = ( l ® l O f ) ( ( ~ X ® l ) ( n ) )  

= ( t ® l ® f ) ( R 1 3 R 2 3 )  = (1®1®/-k(f) ) ( / ;~13-R24)  = (p+®p+)(A(f)). 

It is obvious that p+(1) = 1 and c(p+(f)) = s(f)  for any f .  Also, it is easy to 
check that p+((S-1)*f) = S(p+(f)). The proposition is proved. [] 

C o r o l l a r y  4.9. Uj: are Hopf subalgebras in Uh(g+). In particular, U± = Ue. 

Pro@ The first statement is clear. The second statement follows from the first one 
and the fact that U± is closed in Uh(g~:), which is easy to check. [] 

Prop®si t±on 4.10. The maps p+, p_ are inject±v±. 

Proof. We show the injectivity of p+ (the case of p_ is similar). Fix an element 
f E Uh(tt-)*, f ¢ 0. We can always assume that f ¢ 0 rood h. Let x C U(g_) be 
such that f(tx) ¢ 0 rood h (where tx was defined in Lemma 4.6), n _> 0 be such 
that h~tx E U_, and g e Uh(g+-)* be such that P-(9) = h'~t~ • Such a g exists by the 
definition of n. Then g(p+(f)) = (g®f)(R) = f(p_(g)) = h~f(t,~) ¢ O. Therefore, 
p+(f) ¢ 0. 

P r o p o s i t i o n  4.11. U± = Uh(9±)'- 

Pro@ We give the proof for U+. The proof for U_ is similar. 
First we need the following statement. 
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L e m m a  4.12. Let t E Uh(g+ )' be an element such that h -~ t  E Uh(9+ ) and h-~ t  = 
x + O(h),  x E U(t+) ,  x ¢ O. Then x has degree < n. 

Proof of the lemma. By the definition, 5~+1 (h-~t)  is divisible by h. On the other 
hand, 5n+I(h-nt)  = 5n+l(X) + O(h). Thus, 5~.+1(x) = 0, which implies that the 
degree of x is _< n, since the kernel of d~+l on U(g+) is the set of all elements of 
U(g+) whose degree is < n. [] 

Now we can prove the proposition. By Lemma 4.6, for any x C U(g+) of 
degree _< n, an element t~ can be chosen in such a way that h"~t~ E U+. This 
implies the inclusion U+ D Uh(g+)'. Indeed, let To E ~ ( ~ + ) ' ,  and To - h'~xo 

mod h re+z, where x0 E U(g+). Then, according to Lemma 4.12, the degree of x0 
is < m. Therefore, hmt~o E U+. Thus, T1 = To - h'~txo E U+ and is divisible 
by h "~+I, so we can repeat our procedure. This gives us a sequence of elements 
xi E U(g+) of degrees mi (me = m), such that m0 < ml < " '  < mi < . . . ,  and 
To = ~>_o t~  h m~ . This shows that To belongs to U+, as desired. 

To demonstrate the inclusion U+CUh(g~-)', observe that according to (3.12), 

(a~®l)(R) =/~+~ .../?~+~. 

This implies that 

(5n@i)(/~.) : ( X ' ~ l n + l  - 1) . . .  (ff~nn+l - 1 )  : O(hn). 

Therefore, 6n(p+(f))  is divisible by h ~ for any f E Uh(g-)*. [] 

Comparing our results with the definitions of the previous section, we see that 
we have obtained the following result. 

T h e o r e m  4.13. Le$ ~+ be a finite-dimensional Lie bialgebra and (9, g+,g_)  the 
associated Manin triple. Then 

(i) There exist guantized universal enveloping algebras Uh(g) and Uh(~±)C 
Uh(9), which are quantizations of the Lie bialgebras g, 9±Cg respectively; 

(ii) The multiplication map Uh(g+)®Uh(fl-)--+Uh(g) is a linear isomorphism; 
(iii) The algebras Uh(g+ ), Uh(9-)  °p are dual each other as quantized universaal 

enveloping algebras, in the sense of Drinfeld [Drl]; 
(iv) The factorization Uh(g) = Vh(g+)Uh(g-) defines an isomorphism of Uh(g) 

with the quantum double of Uh(fl+ ) ; 
(v) Uh(g) is isomorphic to U(g)[[h]] as a topological algebra. 

5. Quantization of  solutions of the classical Yang-Baxter  equation 

Let A be an associative algebra over k with unit, and r E A®A. The element r is 
called a classical r-matrix if it satisies the classical Yang-Baxter equation 

[r12, r l ~ ]  + [r~2, r23] + [r~3, ,'23] = 0. (5.1) 
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We say that  r is unitary if r °p = - r .  An algebra A equipped with a classical 
r -matr ix  r is called a classical Yang-Baxter  algebra. A is called unitary if r is 
unitary. 

Let A be a topological algebra over k[[h]]. Let R C A®A.  We say that R is a 
quantum R-matr ix  if it satisfies the quantum Yang--Baxter equation 

R12RlaR23 = R2aR13R12. (5.2) 

We say that R is unitary if R °p = R - I .  A topological algebra A equipped with a 
quantum R-matr ix  R is called a quantum Yang Baxter algebra. A is called unitary 
if R is unitary. 

The following theorem answers question 3.1 in [Dr3]. It  shows that any classical 
Yang-Baxter  algebra can be quantized. 

T h e o r e m  5.1. Let A be an associative algebra with unit over k, and r E A Q A  
be a classical r-matrix. Then there exists a quantum R-matr ix  R C A®A[[h]] such 
that R = 1 + hr mod h 2. I f  in addition r is unitary then R is also unitary. 

Proof. We start  with a construction of Reshetikhin and Semenov-Tian-Shansky 
[RS]. Let g+ = { ( l ® f ) ( r ) ,  f e d*}, g_ = { ( fQ1)(r ) ,  f e A*} be vector subspaees 
in A. It  is clear that g+, g_. are finite-dimensional, r E g+®g- ,  and the map 
Xr : ; l~ -~g-  defined by x r ( f )  = ( f ® l ) ( r ) ,  is an isomorphism of vector spaces. 

R e m a r k .  Note that the spaces g+ and may intersect nontrivially and even 
coincide. 

L e m m a  5.2. g+, g -  are Lie subalgebras in A. 

Proof. Let z , y  e g+, a = ( l®f ) ( r ) ,  y = ( t®9)(r) .  Using (5.1), we have 

laY] = (l®f®g)([rl~r23]) = - ( l®f®g) ( [ r l~  + rla,r2al) = ( l®h)(r ) ,  (5.3) 

where h E A*, h(a) = ( f®g)([r ,a®l  + 1®@. Thus, [xy] E g+, i.e. g+ is a Lie 
algebra. The proof for g_ is similar. [] 

Let g = g+®g_ be a vector space. Define the skew-symmetric bracket [, ] : 
g®g-+g as tollows. If z, y C g+ or x, y C g -  then the bracket [xy I is the Lie bracket 
in g+ or g_, respectively. K x C g+, y E g - ,  then lay] is defined by 

[xy]  = ( a d * x ) y  - ( 5 . 4 )  

Let ~r : 9--+A be the linear map whose restrictions to g+, ft- .are the corresponding 
embeddings. The restrictions of 7: to ~t+, g -  are injective but in general 7r itself is 
not aa~ embedding. 

L e m m a  5.3. 7c([xy]) = [Tc(x),Tr(y)], x ,y  C g. 

Proof. The Lemma is a direct consequence of the classical 25n-Bax te r  equation. 
[7 
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L e m m a  5.4. (9, [, ]) is a L ie  algebra. 

Proof.  We have to check the Jacobi identity in ~t. It is enough to check it for three 
elements a, x, y such that a E g+, x, y C 9- .  For brevity we write a(x) for (ad*a)x. 
We have 

[a[xy]] = a ( [xy ] )  - [ x ~ ] ( a ) ,  

[y[ax]] = [y, ~ (x )  - ~(a) ]  --- [y, a (~)]  - y ( ~ ( ~ ) )  + ~ (~ (~ ) ) ,  

[~[~a]] = ix, y ( ~ )  - a (y ) ]  = - [ ~ ,  ~ (y) ]  + ~ ( y ( a ) )  - x(a(~)). (5.5) 

Adding these three identities, and using the fact that [xy](a) = z ( y ( a ) )  - y ( x ( a ) ) ,  

we get 

[a[xyl] + [y[ax]] + [x[ya]] = a([xy]) + [y, a(x)] - ix, a(y)] + y(a(x)) - x(a(y)).  (5.6) 

Denote the right-hand side of (5.6) by X.  Applying 7r to both sides of (5.6), and 
using Lemma 5.3 and the Jacobi identity in A, we get 

~(X) = 0. (5.7) 

Since X E g+, and 7c is injective on g+, we get X = 0, which implies the Jacobi 
identity in g. [] 

Let ( , )  be the inner product on g such that (x+ + x _ ,  y+ + y - )  = x_ .y+ +y_  .x+, 
where x+, y+ C 9+, x_,  y_ E g - ,  and the dot denotes the natural pairing ~1-®g+--+k 
defined by the map Xr. This inner product is ad-invariant. Thus, (1~, g+, g - )  is a 
Marlin triple. 

Now we can finish the proof of the theorem. Lemma 5.3 implies that 7r : g--+A 
is a homomorphism of Lie algebras. Therefore, it extends to a homomorphism of 
associative algebras 7r : U(t~)-+A. Furthermore, (1~, IJ+, 9 - )  is a Manin triple. The 
Lie bialgebra g is quasitriangular, and its quasitriangular structure is defined by 
the classical r-matrix ~ = ~ x+®x_i  i , where x i+ is a basis of ~t+, and x i_ is a dual 
basis of g_. Note that (Tr®Tr)(~) = r. 

By Theorem 4.13, there exists a quasitriangnlar topological Hopf algebra Uh (g), 
with a quasitriangular structure/~ C Uh(~)®Uh(g) .  Moreover, the associative alge- 
bra Uh(tJ) is isomorphic to U(t~)[[h]], and the isomorphism can be chosen to be the 
identity modulo h. Thus, we can assume tha t /~  E (U(g)®U(g))[[h]].  

Se~ R = (Tr®Tr)(/~). From what we said above it follows that R satisfies (5.2) 
and R = 1 + hr  modulo h 2. 

Assume now that r °p = - r .  Let t) = ~ + ~op It follows immediately from the 
construction of /~  that /~op/~ is conjugate to e hS. But (~r®Tr)(t)) = r + r °p = O. 

This implies that R°PI-~ = 1, as desired. The theorem is proved. Q 
Let 7~ be the ring of algebraic functions of a variable h with coefficients in ]c 

which are regular at h = 0. 
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Theorem 5.5. Let A be a finite-dimensional associative algebra with unit over 
k and r E A ® A  be a classical r-matrix. Then there exists a family of quantum 
R-matrices R(h) E A®A®74 such that R = 1 + hr + O(h2), h-~O. If  in addition r 
is unitary then R(h)  is also unitary. 

Proof. The theorem follows immediately from Theorem 5.1 and the following result 
of M. Artin [Ar]. 

T h e o r e m .  Any system of polynomial equations in indeterminates xl ,  • • •, x,~ with 
coefficients in ]~[h] which has solutions over k[[h]] also has solutions over 74. 

Indeed, let us write R in the form R = 1 + hr + h2X(h) ,  and look for a series 
X ( h )  such that R satisfies the quantum Yang-Baxter equation, and the unitarity 
condition in the case when r is unitary. This is a system of polynomial equations on 
the components of X ( h )  with coefficients in k[h]. By Theorem 5.1, it has solutions 
over k[[h]]. Therefore, by Artin's theorem, it has solutions over 74. 

6. Quantization of quasitriangular Lie bialgebras 

6.1. Quasitriangular quantization of quasitriangular Lie bialgebras 

In this section we give a recipe of quantization of a quasitriangular Lie bialgebra a 
(not necessarily finite-dimensional), which produces a quantized universal envelop- 
ing algebra isomorphic to U(a)[[h]l as a topological algebra. This answers questions 
from Section 4 of [Dr3]. 

Let g+ = { ( l®f ) ( r ) ,  f C a*}, ~_ = { ( f®l ) ( r ) ,  f C a*) be subspaces in a. 
By Lemma 5.2, applied to A = U(a), these subspaces are finite-dimensional Lie 
subalgebras in a. Moreover, let g be the vector space ~+®g_. This space is a 
Lie algebra with bracket defined by (5.4) and an invariant inner product. By 
Lemma 5.3, we have a natural homomorphism of Lie algebras 7r : ~t-~a, and it is easy 
to see that this homomorphism is a morphism of quasitriangular Lie biatgebras. 

Let 34 ~ be the category whose objects are a-modules, and morphisms are defined 
by Hom~4o (~% W) = Homa(V, W)[[h]]. Let M ,  be the Drinfeld category associated 
to g. We have the pullback functor 7r* : 34~--~34~. Define the braided monoidal 
structure on 340 to be the pullback of the braided monoidal structure on M~. This 
definition makes sense, since the element f~ = r + r °p E fj®g is g-invariant by the 
definition of a quasitriangular Lie bialgebra. 

Let M+, M_ be Verma modules over g. Define a functor F : M , ~ N  by 
F(V)  = Homz% (M+®M_,  re* (V)). The tensor structure on F is introduced in the 
same way as in Section 1.8. Let H = EndF.  Since the functor F is isomorphic to 
the "forgetful" functor V-~ "the k[[h]]-module V[[h]]", the algebra 2I is isomorphic 
to U(a)[[h]] as a topological algebra over k[[h]]. On the other hand, H has a natural 
coproduct and antipode defined analogously to Section 3.2, and a quasitriangular 
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structure R 6 H ® H  defined analogously to Section 3.5. It is easy to check that the 
quasictassical limit of H is the Lie bialgebra a, and R = 1 + hr + O(he), so r is the 
quasiclassical limit of R. 

Furthermore, suppose that the original Lie bialgebra a is triangular, i.e. r is a 
unitary r-matrix. Then 9 = r + r °p = 0 ,  and hence R°PR = y - l e h a J  : 1 so the 
Hopf algebra H is triangular, too. 

Thus, we have the following theorem: 

T h e o r e m  6.1. Any quasitriangular Lie bialgebra a admits a quantization Ul~t(e) 
which is a quasitriangular quantized universal enveloping algebra isomorphic to 
U(a)[[h]] as a topological algebra. I f  a is trianglar, so is U~t(a). 

R e m a r k .  In the second paper of this series, we will show that as a topological 
Hopf algebra, U~ t (a) is isomorphic to Uh(a). 

6.2. R e p r e s e n t a t i o n s  o f  Uh(a) 

Let a be a quasitriangular Lie bialgebra (not necessarily finite-dimensional). By 
a representation of 0 ~ ( a )  we mean a topologically free k[[h]]-module V together 
with a homomorphism roy : U~t(a)-+Endk[[h]]V. Representations of Uh(a) form 
a braided tensor category, with the trivial associativity morphism and braiding 
defined by the R-matrix. Denote this category by TC 

The functor F : Ad~-~A can be regarded as a functor from f14~ to T~, since for 
any W E R4~ the k[[h]]-module F ( W )  is equipped with a natural action of U~Z(a). 
We denote this new fnnctor also by F.  This flmctor inherits the tensor structure 
defined by the maps Jww. 

T h e o r e m  6.2. The ]unctor F defines an equivalence of braided tensor categories 

Pro@ The theorem follows hom the definition of the functor F,  the algebra b~L(a) 
and the R-matrix R. [] 

PAaT II 

7. D r i n f e l d  c a t e g o r y  for an  a r b i t r a r y  Lie b i a lgeb ra  

7.1.  T o p o l o g i c a l  vec tor  spaces  

Recall the definition of the product, topology. Let S be a set, T a topological 
space, and T s the space of functions from S to T. This space has a natural weak 
topology, which is the weakest of the topologies in which all the evaluation maps 
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TS-+T, f -+f(s) ,  are continuous. Namely, let B be a basis of the topology on T. 
For any integer n _> 1, elements s~, . . . , s~  E S, and open sets U~ , . . . ,U~  E B, 
define V(s~ , . . . , s~ ,UI , . . . ,U~)  = { f  E T s : f ( s d  E Ui, i = 1 , . . . , n } .  Let B 
be the collection of all such sets V. This is a basis of a topology on T s which 
is called the weak topology. The obtained topological space is the product of 
copies of T corresponding to elements of S. If X is any subset in T s,  the weak 
topology on T s induces a topology on X.  We will call it the weak topology as 
well. 

Let k be a field of characteristic zero with the discrete topology. ]Let V be a 
topological vector space over k. The topology on V is called linear if open subspaces 
of V form a basis of neighborhoods of 0. 

R e m a r k .  I t  is clear that in any topological vector space, an open subspace is also 
closed. 

Let V be a topological vector space over k with linear topology. V is called 
separated if the map V-+ F~(V/U) is a monomorphism, where U runs over open 

subspaces of V. 
Topology on all vector spaces we consider in this paper will be linear and sep- 

arated,  so we will say "topological vector space" for "separated topological vector 
space with linear topology". 

Let M, N be topological vector spaces over k. We denote by t tomk(M, N)  the 
space of continuous linear operators from M to N,  equipped with the weak topology. 
A basis of neighborhoods of zero in Homk(M, N) is generated by sets of the form 
{A E Homk(M,N) : Av E U}, where v E M, and U C N is an open set. 

In particular, if N = ]~ with the discrete topology, the space Homk(M, N)  is the 
space of all continuous linear functionals on M, which we denote by M*. It  is clear 
that a basis of neighborhoods of zero in M* consists of orthogonal complements of 
finite-dimensional subspaces in M. In particular, if M is discrete then the canonical 
embedding M-+(M*)* is an isomorphism of linear spaces. However, if M is infinite- 
dimensional, this embedding is not an isomorphism of topological vector spaces 
since the space (M*)* is not discrete. 

7.2. C o m p l e t e  v e c t o r  s p a c e s  

Let V be a topological vector space over k. V is called complete if the map 
V--+ I ~ ( V / U )  is a epimorphism, where U runs over open subspaces of V. 

In particular, if a complete space M has a countable basis of neighborhoods of 
0, then there exists a filtration M = M0 D M1 D . . . ,  such that A~,>0M~ = 0, and 
{M~r~} is a basis of neighborhoods of zero in M. In this case M = lim~_+~ M / ~ .  

Examples. 
1. Any discrete vector space is complete. 
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2. If V is a discrete vector space then the topological space M = V[[h]] of 
formal power series in h with coefficients in V is a complete vector space. 

Let V be a complete vector space, UcV an open subspace. Then U is complete 
and V/U is discrete. 

Let V, W be complete vector spaces. Consider the space I/ '@W = 
lim V/VI®W/W1, where the projective limit is taken over open subspaces ~/%CV, 

W1 c W .  It is easy to see that VQW is a complete vector space. We call the oper- 
ation @ the completed tensor product. 

A basis of neighborhoods of 0 in !/@W is the collection of subspaces V6W~ + 
VieW, where V1, W1 are open subspaces in V, W. 

E x a m p l e .  Let V be a discrete space. Then V~k[[h]] = V[[h]]. 

Complete vector spaces form an additive category in which morphisms are con- 
tinuous linear operators. This category, equipped with tensor product @, is a sym- 
metric tensor category. 

7.3. Equicontinuous g-modules 

Let M be a topological vector space over k, and {As, x E X} be a family of elements 
of EndM. We say that the family {A~ } is equicontinuous if for every neighborhood 
of the origin UcM there exists another neighborhood of the origin U' c M  such that 
A~U' C_ U for all z E X. For example, if M is complete and A E EndM is any 
continuous linear operator, then {AA, A E k} is equicontinuous. 

Fix a topological Lie algebra g. 

Definition. Let M be a complete vector space. We say that M is an equicontinu- 
ous g-module if one is given a continuous homomorphism of topological Lie algebras 
~r : g-+EndM, such that the family of operators 7r(9), 9 6 g, is equicontinuous. 

E x a m p l e .  If M is a complete vector space with a trivial g-module structure then 
M is an equicontinuous g-module. 

Let V, W be equicontinuous g-modules. It is easy to check that V@W has a 
natural structure of an equicontinuous g-module. Moreover, (V@W)@U is naturally 
identified with V~(W@U) for any equicontinuous g-modules If, W, U. This means 
that the category of equicontinuous g-modules, where morphisms are continuous 
homomorphisms, is a monoidat category. This category is symmetric since the 
objects V6W and W@V are identified by the permutation of components. We 
denote this category by 3d~. 

7.4. Lie bialgebras and Manin triples 

Let a be a Lie bialgebra over k. We will regard a as a topological Lie algebra with 
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the discrete topology. Let a* be the dual space to a. The cocommutator  defines 
a Lie bracket on a* which is continuous in the weak topology, so a* has a natural 
structure of a topological Lie algebra. 

Furthermore, we equip the space g = a®a* with the product topology. The Lie 
bracket on g defined by (1.1) is continuous in this topology. 

Let g be a Lie algebra with a nondegenerate invariant inner product (,). So 
far we have no topology on g. Let g+,g_ be isotropic Lie subalgebras in g, such 
that g = g+®g_ as a vector space. The inner product (,) defines an embedding 
g_-+g+*. If this embedding is an isomorphism then we equip g with a topology, by 
putting the discrete topology on g+ and the weak topology on 9- -  If in addition the 
commutator  in g is continuous in this topology then the triple (g, g+, g_) is called 
a Manin triple. 

To every Lie bialgebra a one can associate the corresponding Manin triple (~ = 
a®a*, a, a*), where the Lie structure on g is as above. Conversely, if (g, g+, g_) is 
a Manin triple then g+ is naturally a Lie bialgebra: the pairing (,) identifies g+* 
with g_, which defines a commutator  on g+*. This commutator  turns out to be 
dual to a 1-cocycle (cf. [Drl]). Thus, there is a one-to-one correspondence between 
Lie bialgebras and Manin triples. 

Let (g ,g+ ,g_)  be a Martin triple. Let {ai, i  E I}  be a basis of ~+, and b i E g -  
be the linear functions on a defined by bi(aj) = (~j. 

Lemma 7.1. Let M be a complete vector space with a continuous homomorphism 
g-~EndM.  Then for any v E M and any neighborhood of zero U c M  one has 
biv E U for all but finitely many i E I. 

Pro@ Let {ira E I : m >_ 1} be any sequence of distinct elements. The bi~--+0, 
m - + ~ ,  so bi'~v-~0, m--+ec, for any v E M. This means that biv E U for almost 
all i. [] 

7.5. Examples of equicontinuous g-modules 

In this section we wilt construct examples of equicontinuous g-modules in the case 
when g belongs to a Marlin triple (g, g+, g_). 

Consider the Verma modules M+ = Ind,+ 1 M_ = Ind,_ 1, (here 1 denotes the 
trivial 1-dimensional representation). The modules M i  are freely generated over 
U(gT) by a vector 1+_ such that g ± l ±  = 0, and thus are identified (as vector spaces) 
with U(g:F) via xl~:-~x. 

Below we show that the module M_ and the module M~_ dual to M+ in an 
appropriate sense are equicontinuous g-modules. 

Lemma 7.2. The module M_,  equipped with the discrete topology, is an equicon- 
tinuous g-module. 

Proof. In order to prove the continuity of lrM_ (g) as a function on g, we have to 
check that  for any v E M_ the subspace Y~ = {b E g_ : bv = 0}Cg_ is open in g_. 
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One may assume that v = ail ai2 •. • ai,  1__. We show that Yv is open by induction in 
n. The base of induction is clear since g_v = 0 if n = 0. Now assume that v = ajw, 
where w = ail •.. ai,~_i 1._. By the induction assumption, we know that Y~ is open. 
For any b E g -  we have bv = bajw = [baj]w + ajbw. For any j E I we denote by 
W j c g -  the space of alt b E g_ such that ( l®b)(5(aj))  = 0. I t  is clear that Wj is 
open. For any b E Wj,  we have [baj] E g_, since ad*b(aj) = 0 by the definition of 
Wj. Let Z = {b E g_, [baj] E Yw}CWj.  By continuity of [,], Z is open. From the 
formula by = [baj}w + ajbw we get Z rh Y~cYv,  i.e. Y~ is open, as desired. This 
implies the continuity of the homornorphism 7rM_ : g-+EndM_.  The equicontinuity 
condition is trivial. [] 

Let us now introduce a topology on the space M+. This topology comes from 
the identification of M+ with U(g_).  The space U(g_) can be represented as a 
union of U~.(g_), n. > O, where Un(g-)  is the set of all elements of U(~_) of 
degree < n. Furthermore, for any n > 0, we have a linear map ge_~__+b%~(g_) 
given by x l Q . . . Q x n - + x l . . . x ~ .  This map induces a linear isomorphism ~n : 
®2_oSJg_-+Ur~(g_), where SJg_ is the j - th  symmetric power of g -  (as usual we 
set g_ ®0 = S°g_ -- k). Since SJI~_ has a natural weak topology, coming from its 
embedding to (g+ej)., the isomorphism ~j defines a topology on U~(g_). Moreover, 
by the definition, if m < n then U ~ ( g - )  is a closed subspace in U~(9-) .  This allows 
us to equip U(g - ) ,  i.e. M+, with the topology of inductive limit. By the definition, 
a set UcU(g_) is open in this topology if and only if U C~ U~(g_) is open for aI1 n. 

L e m m a  7.3. Let g E g. Then 7CM+ (g) is a continuous operator M+-+M+. 

Proof. Let g E g. We need to show that for any neighborhood of the origin U c M +  
there exists a neighborhood of the origin U ' c M +  such that xM+ (9)U'CU. 

Let U E U(g_) be a neighborhood of zero, and U~ = U N U~(g_). To construct 
U',  we need to construct U~'~ = U 'A  U~(g_) such that. U~ = U~+ I N 5~o(ft-)- Before 
giving the construction of U~, we make some definitions. 

For any neighborhood U of zero, there exists an increasing sequence of finite 
subsets T n c I ,  n _> 1, such that for any f E S ~ g - ,  rn < n satisfying the equation 
f ( a i~ , . . . ,  aim) = 0 for any i l , . . . ,  im E Tn, one has ~ ( f )  E U. Fix such a sequence 
{%~,~ > 1). 

Let i be as in Section 7.4. For any finite subset J C I  denote by S(J )  the set of 
all i E I such that there exists b E g_ and j E J with the property [bb~](aj) # O. 
Since [bb~](aj) = b®b~(5(aj)), the set S(J )  is finite. Let the sets S ~ ( J ) c I  be defined 
recursively by So(J) = J, S,~(J) = S (S~- I  (g)). 

To construct U',  we consider separately the cases 9 E g+ and g E g . First 
consider the case 9 E t~-. 

For any elements X l , . . . ,  x .  E g -  (n > 1) consider the element 

X = E x~(1) . . .z~(~) 
c~ES~ 
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in Un(g-) ,  where Sn is the symmetric group. Consider the element g X  6 Un+I (g- ) .  
It  is easy to see that it is possible to write g X  as a linear combination of elements 
of the form ~ c s ~  Y~(1)...Y~(,~), Yp C g_, 0 <" m < n + 1, in such a way that 
yp are i terated commutators  of 9 and x l , . .  •, x~, and the number of commutators  
involved in each term yp does not exceed n. 

Now we make a crucial observation. 

C l a i m .  Let J C I  be a finite subset. If  for some rn, 1 <_ m < n, we have x,~(a,i) = O, 
for all i E Sn(J) ,  then every monomial Yl . . .  Ym, in the symmetrized expression of 
g X  contains a factor yp such that yp(ai) = O, i E J. 

Proof. Clear. 

' U The construction of U' is as follows. For n > 1, let U~C n (g - )  be the span of 
all elements ~ ( f ) ,  0 < m _< n, where f 6 S'~9_ are such that f ( a i l , . . .  ,aim) = 0 
whenever i l , . . . , i m  6 S,~(T,~+I). Also, set U~ = 0 (recall that {0}Ok is a neigh- 
borhood of zero since k is discrete). Our observation shows that for any X E U~, 
g X  6 ~ + 1 ,  as desired. 

Now consider the case g C g+. Let Ro(g)CI  be the set of all i 6 I such that 
hi(9) ¢ O. This is a finite set. Define inductively the sets R~(g) by R.,~(g) = 
S(R~_~ (g)). 

For any finite subsets K, Y c I  denote by P ( K ,  J) the set of all i 6 I such that 
there exists j C Y and k 6 K w i t h  [ak b i](aj) # 0. I t  is clear that i f K ,  Y are 
finite then P(K ,  J) is finite. Let P~(K, J) be defined inductively by P~(K, J) = 
P(K, (m J)). 

Let n > 1 be an integer, X 6 UT~(g-) be as above, and K = R~(9). Consider the 
vector g X l +  6 M+. Using the relations in M+, we can reduce this vector to a linear 
combination of vectors of the form ~ c s ~  Y~I . . . Y , ~ ,  Yp 6 g- ,  0 < m < n + 1, 
in such a way that yp are obtained by iterated commutation of 9, Xl , . . .  ,x~. As 
before, it is easy to see that the resulting symmetrized expression will contain no 
more than n commutators.  

Now let us make a crucial observation. 

C l a i m .  Let J C I  be any finite subset. I f  for some m, 1 < m <_ n, we have x~(ai )  = 
O, for all i 6 S,~(P(K, S~(J)) ,  then every monomial y~ . . .Ym in the symmetrized 
expression of g X l +  contains a factor yp ,such that yp(ai) = O, i C J. 

Proof. Clear. 
The construction of U ~ is as follows. For n > 1, let U~cUr~(9-) be the span of 

all elements ~,~(f), f 6 S '~g_,  0 < m <_ n such that f ( a ~ , . . .  , a i~)  = 0 whenever 
i l , . . .  ,ira C Sn (P(K ,  Sn(Tn+I))). Also, set U~ = 0. Our observation shows that 
for any X 6 U~., g X  E U~+~, as desired. [] 

Consider the vector space M~ of continuous Iinear functionats on M+. By 
definition, M~_ is naturally isomorphic to the projective limit of Un(g-)* as n ~ o o .  
As vector spaces, U~(~_)* = (SJg_) * = SJg+. Therefore, it is natural to put  the 
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discrete topology on Un (;I-)*. This equips the module M~_ with a natural structure 
of a complete vector space. It is also equipped with a filtration by subspaces 
(~/lr;)n = gn-1 4- (g-)J-, ?'g > 1 such that. M+ = limM~/(M2:)n. 

- -  4___ 

R e m a r k .  The topology of projective limit on M~ does not, in general, coincide 
with the weak topology of the dual. In fact, it is stronger than the weak topology. 

By Lemma 7.3, MS has a natural structure of a g-module. Namely, the action 
of 9 on M~_ is defined to be the dual to the action of g on 3//+. 

L e m m a  7.4. M* is an equicontinuous g-module. + 

Proof. It is easy to see that a(M~)~c(M~_)n, a E g+, and b(M$)nC(M~)~_I, 
b E 9- .  This means that the operators 7rM$ (g) are continuous for any g E 9, and 
7rM~ (9)CEndM~ is an equicontinuous family of operators. It remains to show that 
the assignment 9--+1rMj~ (9) iS continuous for g E g. Since g+ is discrete, it is enough 
to check this statement for 9 E 9-- 

Let f E M$. Let f~ be the reduction of f modulo (M~)~. We can regard f as 
an element of ®~_0SJg+. Let us write f,~ in terms of the basis {ai}, and let T~(f) 
be the set of all i E I such that ai is involved in this expression. 

Let £~,(J) be as in the proof of Lemma 7.3, and i E [ \ Sn(Tn+l(f)). Then it 
is easy to see that bif E (M~)~. This shows that for any n > 0 and any f E M~ 

M* bif E ( ~.)n for almost all i E I. 
Thus, M~ is an equicontinuous ~t-module. [] 

R e m a r k .  If g+ is infinite-dimensional then M+ is not, in general, an equicontin- 
uous ~-module, since the family of operators {~rM+(g), 9 E g+} may fail to be 
equieontinuous. 

7.6.  T h e  C a s i m i r  e l e m e n t  

Consider the tensor product a®a*. This space can be embedded into Enda, by 
(x®f)(y) = f (y )x ,  x ,y  E a, f E a*. This embedding defines a topology on a®a*, 
obtained by restriction of the weak topology on Enda. Let a@a* be the completion 
of a a®a* in this topology. Since the image of aQa* is dense in Enda, this completion 
is identified with Enda. 

L e m m a  7.5. Let V, W E M~. The map 7cw®~rw : a®a*-+End(V@W) extends to 
a continuous map a~)a*--+End(V~W). 

Proof. Let x E V(~W be a vector. It is easy to see that the map 7cv®rcw(.)x : 
a®a*--+V@W is continuous. Since the space V@W is complete, this map extends 
to a continuous map a@a*~V@W. This allows us to define a linear map 7cvQTrw : 
a@a*--+End(V@W). We would like to show that this map is continuous. 

Let x E V@W be avec to r ,  and n > 0 be an integer. Let P c V @ W  be an 
open subspace, and U = {A E End(V@W) : Ax E P}.  Since open sets of this 
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form generate the topology on End(V@W), it is enough to show that there exists a 
neighborhood of zero Y c a ~ a *  such that (rcv®rrw)(Y)cU,  i.e. (rcv®rrw)(Y)xCP.  

We can assume that P = VI@W + W 1 6 V ,  where V1, W1 are open subspaces 
of 17, W. By the equicontinuity of roy(g), row(g), 9 C g, there exist open subspaces 
V2CV, Hz2cW such that rcv(g)V,2cl/~l, rrw(g)lg2CW1. Let y E V Q W  be a vector 
in the usual tensor product of V and W such that y - x E V2@W + V@W> Then 
for any t E a@a* (rrv®rrw)(t)(y - x) E P, so it is enough to find Y satisfying the 
condition Orv®rrw ) ( Y ) y C P .  

Tgt 
We have y = ~ j=~ ,v j®wj ,  vj E V,  wj C W.  Let X C a  be a finite-dimensional 

subspace such that for any b E X ± C a  * bwj E W1 for j = 1 , . . .  ,m.  Such a subspace 
exists by Lemma 7.1. The set Y = a 6 X  ± (the completion of a®X ± in a@a*) 
is open in a~a*, and (Trv®1rw)(Y)yCP, as desired. This shows the continuity of 
7rv®~w on a6a*.  [] 

Let r E a@a* be the vector corresponding to the identity operator under the 
identification aQa* with Enda. Let r °p C a*@a be the element obtained from r by 
permutat ion of the components. We define the Casimir element ft C a 6 a * ® a * 6 a  
to be the sum r + r °p. It  is easy to see that r = ~ ai®b i, r °p = ~ biNai, ft = 
~ ( a i ® b  i + bi®ai). 

Let. V, W be equicontinuous g-modules, and denote by rrv : g-->EndV, 7rw : 
g -+EndW the corresponding linear maps. Let f~vw = rcv®~rw(f}). This endo- 
morphism of V ~ W  is well defined and continuous by Lemma 7.5. Moreover, it is 
easy to see that f~vw commutes with g, so it is an endomorphism of V@W as an 
equicontinuous ~t-module. 

R e m a r k .  Although the Casimir operator ~t = ~(a i®b  i q- bi®ai) is defined in the 
product of any two equicontinuous g-modules V@W, the Casimir element C = 
~ ( a i b  i + biai) in general (for dim a = co) has no meaning as an operator in an 
equicontinuous g-module V. 

7.7. D r i n f e l d  c a t e g o r y  

Let 3d e denote the category whose objects are equicontinuous g-modules, and 
H o m ~ e  (g, W) = Hom~(U, W)[[h]]. This is an additive category. For brevity we 
will later write Hom for HomMo. 

Define a structure of a braided monoidal category on 3//e analogously to Sec- 
tion 1.4, using an associator ~ and the functor @. As before, we identify M e with 
a strict category and forget about positions of brackets. 

Let 3' be the functorial isomorphism defined by "YxY = f l ; 1  C Hom(X®Y, 
Y ® X ) ,  X , Y  E M e. It  is easy to check that ~ is a braiding on M e. We will need 
the braiding "y in our construction below. 
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8. T h e  f iber  f u n c t o r  

8.1. T h e  c a t e g o r y  o f  c o m p l e t e  k[[h]]-modules 

Let V be a complete vector space over k. Then the space V[[h]] = V@k[[h]] of 
formal power series in h with coefficients in V is also a complete vector space. 
Moreover, V[[h]] has a natural structure of a topological k[[h]]-module. We call a 
topological/~[[h]]-module complete if it is isomorphic to V[[h]] for some complete V. 

Let A ~ be the category of complete k[[h]]-modules, where morphisms are con- 
tinuous k[[h]]-linear maps. It is an additive category. Define the tensor structure 
on A c as follows. For V, W C .4 ~ define V(~W to be the quotient of the completed 
tensor product V@W by the image of the operator h®l  - l®h. It is clear that for 
V, W E A ~, V@W is also in A ~. The category A c equipped with the functor @ is a 
symmetric monoidal category. 

Let CVect be the category of complete vector spaces. We have the functor of 
extension of scalars, V ~  V[[h]], acting from CVect to A c. This functor respects 
the tensor product, i.e. (V@W)[[h]] is naturally isomorphic to V[[h]]@W[[h]]. 

8.2. P r o p e r t i e s  o f  the  V e r m a  m o d u l e s  

Let (g ,g+,g_)  be a Manin triple, and 3//¢ be the Drinfeld category associated to 
g. Let M+, M_ be the Verma modules over g defined in Section 7.5. 

Recall that the modules M i  are identified with U(gT). Thus, we can define the 
maps i:< : M±--+M±®M± given by comultiplication in the universal enveloping al- 
gebras U(gq:). These maps are U(l])-intertwiners, since they are U(g±)-intertwiners 
and map the vector 1± to the gT-invariant vector 1±®1±. 

Let M$ be as in Section 7.5, and f ,9  C M~. Consider the linear functional 
M + ~ k  defined by v-+(f®g)(i+(v)). It is easy to check that this functional is con- 
tinuous, so it belongs to M ; .  Define the map i S :  M*®M*--+M; by Q(f®g)(v)  = 
(f®g)(i+(v)), v E M+. It is clear that i~_ is continuous, so it extends to a morphism 
in M e :  % :  M~@M~_-+M~. 

Let V E 34. Consider the space Homg(M_, M~_@V), where Hom~ denotes the 
set of continuous homomorphisms. Equip this space with the weak topology (see 
Section 7.1). 

L e m m a  8.1. The complete vector space Hom~(M_,M~)V)  is isomorphic to V. 
The isomorphism is given by f - ->( l+N1)( f ( l_ ) ) ,  f E Hom~(M_, M~@V). 

Proof. By Frobenius reciprocity, Homg(M_, MT_@V ) is isomorphic, as a topolog- 
ical vector space, to the space of invariants (M*v~V)~-, via f - -+f ( l_ ) .  Consider 
the space Hom~(M+,V) of continuous homomorphisms from 5//+ to V, equipped 
with the weak topology, and the map ¢ : (Mj:6V)-+Homk(M+,V), given by 
¢(f®v)(x) = f(x)v,  u C M~_, x C M+, v C V. It is clear t h a  ¢ is injective 
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and continuous. 

C la im.  The map ¢ restricts to an isomorphism (M;6V)  ~--+Homg(M+,V). 

Proof. It is clear that ¢((M~_@V)~-)CHomg(M+, V). So it is enough to show that 
any continuous g_-intertwiner g : M+--+V is of the form ¢ ( f ) ,  g' E (M2_6V)~-, 
where f continuously depends on g. 

Let X c V  be an open subspace. Then for any 9_-intertwiner g : M+--+V and 
n > 1 the image of g (bn(9- )1+)  in V/Vm is finite-dimensional. This shows that 
g = q~(f) for some f E ( V N M ; )  ~- . It is clear that g' is continuous in g. The 
claim is proved. 

By Frobenius reciprocity, the space Itom~_ (M+, V) is isomorphic to V as a 
topological vector space, via f - + f ( l + ) .  The lemma is proved. [] 

8.3. T h e  forget fu l  functor  

Let F : A d ~ A  c be a functor given by F(V) = t tom(M_,  M~6V).  Lemma 8.1 
implies that this functor is naturally isomorphic to the "forgetful" flmctor which 
associates to every equicontinuous g-module M the complete k[[h]]-module M[[h]]. 
The isomorphism between these two functors is given by f -+(1+®1)( f (1_) ) ,  for 
any f E F(M). Denote this isomorphism by ~-. 

8.4. Tensor  s t ruc ture  o n  the functor  F 

From now on, when no confusion is possible, we will denote the tensor product in 
the categories Ad ~ and A c by ®, instead of 6 and 6 .  

Define a tensor structure on the functor F constructed in Section 8.3. 
For any v c F(V), w E F(W) define Jvw(v®w) to be the composition of 

morphisms: 

i-- v@W i@~23@i 
M_ > M_®M_ > M~_@V®M~®W~ 

i~®1®1 
M;@M;@V@W > M2~_®V@W, (8.1) 

where 723 denotes the braiding 7 acting in the second and third components of the 
tensor product. That. is, 

Jvw(v®w) = (i*+®1®1)o(l®723@l)o(v®w)oi_. (8.2) 

P r o p o s i t i o n  8.2. The maps Jvw are isomorphisms and define a tensor structure 
on the functor F. 

Pro@ It is obvious that Jvw is an isomorphism since it is an isomorphism mod- 
ulo h. 

To prove the associativity of Jvw, we need the following result. 
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Lemma 8.3. ( i _ @ t ) o i _  -- ( 1 @ i _ ) o i _  in H o m ( M _ , M e 3 ) ;  ( i~_®1)oi~ = 
'* o'* nom(M~, (M~) ®3) (1@%) z+ in 

Proof. The proof of the first identity coincides with the proof of Lemma 2.3 in Par t  I. 
To prove the second identity, define M+~M+~M+ to be space of continuous linear 
functionals on ~I~_@~I*~M~. Since the operators flij e End~(M~@M~@M~) 
are continuous, one can define the dual operators f/i*j E Ends(M+6M+6Mk), and 
hence the operator ~* dual to ~. It is easy to show analogously to the proof of 
Lema 2.3 that ~* (1+®1+®1+) = 1+N1+®1+, which implies the second identity of 
Lemma 8.3. 

Now we can finish the proof of the proposition. We need to show that for any v E 
F(V), w C F(W), u E F(U) Jy®w, uo(Yyw@l)(v@w@u) = Jy, w®uo(1NJwv) 
(yew®u), i.e. 

(i*+@l@l®1)o72s,so(i.*~@l®1@l®l)o"/~so(v@w@u)o(i-@l)oi- 

= (Q@l@l@l)o72so(l®l®i*~®1@l)o~4so(v®w®u)o(1@i_)oi_ (8.3) 

in F(V®W@U), where 723,4 means the braiding applied to the product of the 
second and the third factors and to the fourth factor. Because of Lemma 8.3 and 
commutation relation of 723,4 and i?~@I@i®I@1, identity (8.3) is equivalent to the 
identity 

"*  '* 0 0 (%@1@1®1)o(%@1®1@1@1) "/34,5 723 

= (i~®I®I®1)o728o(i®I®C~®I®I)o%s (8.4) 

in Hom(M$®V®M$®W®M$®U, M$®V®W®U). 
To prove this equality, we observe that the functoriality of the braiding implies 

the identity 
0 "* " *  O "/23 (1@1®%®1®1) = (1®%@1@1@1) 72 s4. (8.5) 

"* o'* = (1@i$)oi$, which follows from Lemma Using (8.5) and the identity (z+@l) % 
8.3, we reduce (8.4) to the identity "/84,5"/28 = "/~,84"/48 which follows directly from 
the braiding axioms. [] 

We will call the flmctor F equipped with the tensor structure defined above the 
fiber functor. 

9. Quantization of  Lie bialgebras 

9.1. T h e  a l g e b r a  o f  e n d o m o r p h i s m s  o f  the  f iber  f u n c t o r  

Let H = End(F)  be the algebra of endomorphisms of the functor F,  with a topology 
defined by the ideal hHCH. It is clear that H is a topological algebra over k[[h]] 
(see Part  I, Section 3.1). 
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Let H0 be the algebra of endomorphisms of the forgetful functor 3d~--+CVect. 
It follows from Lemma 8.1 that the algebra H is naturally isomorphic to H0[[h]]. 

Let F 2 : M e x M e s a  e be the bifunetor defined by F2(V, W) = F ( V ) ® F ( W ) ,  
Let H 2 = End(F2).  It is clear that H 2 D H Q H  but H 2 ~ H®H unless 9 is 
finite-dimensional. 

The algebra, H has a natural "comuttiplication" A : H-+H 2 defined by A(a)y,w 
(v®w) -1 = J y w a y ® w J v w ( v ® w ) ,  a E H, v E F(V) ,  w E F ( W )  where ay  denotes 
the action of a in F(V).  We can also define the counit on H by e(a) = al C k[[h]], 
where 1 is the neutral object. 

A topological algebra A over k[[h]] is said to be a topological bialgebra if it is 
equipped with a coproduct A : A--+A®A (where ® is the tensor product in A) and 
a counit c : A--+k[[h]l which are k[[h]]-linear, continuous, and satisfy the standard 
axioms of a bialgebra. 

We will need the following statement. 

P r o p o s i t i o n  9.1. Let A c H  be a topological subalgebra such that A (A)cA®A.  
Then (A, A, e) is a topological biatgebra over k[[h]]. 

The proof is straightforward. 

R e m a r k .  For infinite-dimensional g, the algebra H equipped with the topology 
defined by the ideal hH is not a topological bialgebra since A(H)  is not a subset 
of H®H. 

In the following sections we construct a quantum universal enveloping algebra 
Uh(9+), which is a quantization of the Lie bialgebra il+, in the sense of Drinfeld 
(see [Drl] and Part  I, Section 3.1). Namely, the algebra Uh(9+) is obtained as a 
subalgebra of H such that A(A)cA®A.  

9,2. T h e  a l g e b r a  Uh(g+) 

Let x C F(M_) .  Define the endomorphism m+(x) of the functor F as follows. For 
any V E A4 e, v E F(V) ,  define the element m+(x)v E F(V)  to be the composition 
of the following morphisms in 34 ~ : m+(z)v = (i;®l)o(l®v)ox. This defines a 
linear map m+ : F ( M _ ) ~ H .  Denote the image of this map by Uh(g+). 

It is easy to see that for any a E U(g+) ~-(m+(al_)v) -- aT(v) mod h, which 
implies that m+ is an embedding. 

P r o p o s i t i o n  9.2. Uh(9+) is a subatgebra in H. 

Pro@ Using Lemma 8.3, for any x,y E F(M_) ,  V E M e, v E F(V)  we obtain 

m+(x)m+(y)v  = (i*+®l)o(1®i;®l)o(l®l®v)o(l®y)ox 

= (i*+®l)o(i*+®lN1)o(l®l®v)o(1Ny)ox 

"* 0 " *  = (%®1) (l®v)o(~+®l)o(1Qy)ox 

= (i*+®l)o(l®v)oz, (9.1) 
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where z = (i~_®l)o(y®l)ox E F(M_). So by the definition we get m+(x)om+(y) = 
m+(z). 

Note that the algebra Uh(g+) is a deformation of the algebra U(g+). Indeed, 
we can define a linear isomorphism # : a([+)[[h]]--+Uh(g+) by #(a) = m_(al_°), 
a E U(g+)[[h]]. This isomorphism has the property #(ab) = #(a)o#(b) rood h 2, 
which follows from the fact that • ~ 1 mod h, but in general #(ab) # #(a)o#(b). 

The subalgebra Uh([+) has a unit which is equal to #(1), 1 C U(g+). To 
check this, it is enough to observe that #(1) is invertible and check the identity 
#(1) 2 = #(1). 

9.3. The  coproduc t  on  Uh(t~+) 

P r o p o s i t i o n  9.3. The algebra Uh(t~+) is closed under the coproduct A, i.e. 
A(Uj~(g+))CUh(~+)®Uh(~+), and for any ~ C F ( M _ )  one has 

A(m+ (x)) = (m+®m+)(JM I_ M_ ((l®i_)oX)). (9.2) 

Proof. Let z E F(M_),  V ,W E A/t ~, v 6 V, w E W. By the definition of A and 
m+, the element A(m+(z))  E H 2 is uniquely determined by the identity 

• * "* " 0 (%®1® 1) o(l®z+ ®l®1)%4o(1®vew) o ( I ® L )  x 

' *  O" 

in F(VOW). 
The element X = JM1M((I®i_)x)  E F(M_)®F(M_) is, by the definition, 

uniquely determined by the identity 

~ *  O " (l®i_)ox = (1@.+®t®1)o7~a Xo~_ (9.4) 

in F(M_ ®M_). Therefore, to prove formula (9.2), it is enough to prove the equality 
obtained by substitution of (i*_®l®i*_®l)o(l®v®l®w)oX instead of A(m+(x)) 
(v®w) in (9.3): 

(i*+ ®l®] )o(l®i*+ ®l®l )o~ys4o(levew)o( lei-)ox 
= (z+@l@l)oTsso(z+@l@~+®l)o(l@v@t®w)oX ~._ (9.5) 

in F(V®W).  
Using the functoriality of the braiding and Lemma 8.3, we obtain 

(i*+@1®l)o72so(i~ ®l®i; ®1)o(l®v®l@w) 
= (i~,.@1@])oT~so(i~@1@i*+@l)oT~s14o(1@1®v@w)oTs3 

"* 0 "* "* 0 - - i  = (z+®I®1) (z+®%®I®1) 73,45o72s,4o(1®l®v®w)oTss 

= (i~@1®l)o(i*+@i*+@1®l)og,4sos~}o(1@l@v®w)o72s 
= (i*+@l@l)o(iS®l®l®l)o(l@i*+@l@lel)o745OTsslo(l®l®v@w)oTss (9.6) 
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in H o m ( M $ @ M _ ® M $ ® M _ , M ; @ V @ W ) .  It is easy to see that i;o0, = i ; ,  so 
using Lemma 8.3 again, we get from (9.6): 

"* O 0 "* "* O (%®1@1) 72s (%@1®%@1) (l@vNl@w) 

= (i*+@l®t)o(l®i*+®l®l)o~'s4o(l@v@w)o(i;@l®l)o~/2s. (9.7) 

Substituting (9.7) into the right-hand side of (9.5) and using (9.4), we get 

(i;@l@l)o~/2so(i*+®l®i2@l)o(1NvNl@w)oXoi_ 

= (i*+@1@l)o(l@i*+@l®l)ov34o(l®v@w)o(i*+@l®l)ov2aoXoi_ 

• = (i*+N1N1)o(l®i*+®l®l)oTs4o(l®v®w)o(l@i_)ox (9.8) 

in F(V@W) ,  which proves (9.2). The proposition is proved. [] 

Corollary 9.4. The algebra Uh(g+) equipped with the coproduct A is a qua'ntized 
universal enveloping algebra. 

Proof. It follows from Lamina 9.1 and Propositions 9.2, 9.3 that Uh(11+) is a topo- 
logical bialgebra over k[[h]] isomorphic to U(11_)[[h]] as a topological k[[h]]-module, 
and such that Uh(11+)/hUh(11+) is isomorphic to U(11+) as a bialgebra. This implies 
that Uh(11) has an antipode, because the antipode exists mod h. Thus, Uh(11+) is 
a. quantized universal enveloping algebra. [] 

9.4. The algebra Uh(11+) is a quantization of 11+ 

Proposit ion 9.5. The algebra Uh(11+) is a quantization of the Lie bialgebra tt+. 

Pro@ Let x E Uh(11+) be such that there exists x0 C 11+cU(11+) satisfying the 
condition x _= x0 mod h. It is easy to show that for any V, W E 3/ff 

--1 TV®woJvwo(~-V@TW) = 1 + hr/2 + O(h 2) (9.9) 

in End(VNW). From (9.9) and the definition of eoproduct, analogously to the proof 
of Proposition 3.6 in Part I, it is easy to obtain the congruence 

h-~(A(x)  - A°P(x)) = 5(xo) mod h. (9.10) 

which means that Uh (11+) is the quantization of 11+. [] 

Thus we have proved the following theorem, which answers question 1.1 in [Dr3]. 

T h e o r e m  9.6. Let ~ be a Lie bialgebra over k. Then there exists a quantized 
universal enveloping algebra Uh (a) over k which is a quantization of a. 
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9.5. T h e  i s o m o r p h i s m  b e t w e e n  two cons t ruc t ions  o f  the  q u a n t i z a t i o n  

Let us compare the results of the previous sections to the results of Part  I. 
In Part I, we showed the existence of quantization for any finite-dimensional Lie 

bialgebra. Let (g, g+, g_) be a finite-dimensional Manin triple. Let D~(g+) denote 
the quantization of ~t+ constructed in this section, and by Uh(~+) the quantization 
constructed in Part I. 

P r o p o s i t i o n  9.7". The quantized universal enveloping algebras Uh(g+), [)h(g+) 
are isomorphic. 

Proof. If tJ is finite-dimensional, then M+ is an equicontinuous g-module. Let 
/> : ,~t~-+A ~ be the functor defined by/~(V) = Hom(M+®M_, V), V EAd e. The 
tensor structure on _/> can be defined as in Part I. 

Let cr ¢ Horn(l, M~_®M+) be the canonical element. Consider the morphism 

X :/~'-+F, defined as follows. For any V E M, v ¢/>(V),  define )iv (v) ¢ F(V) as 
the composition )iv(v) = (l@v)o(cr@l). It is obvious that X is an isomorphism of 
additive functors. 

C la im.  X is an isomorphism of tensor functors. 

Proof. The statement is equivalent to the identity 

(1®v®w)og 4o(lei+®i_)o(o-®l) 
= ( i *+®1®l )o?23o(1®v®1®w)o(c r®1®o®l )o i_ ,  (9.11) 

which should be satisfied in Hom(M_, MS@VOW ) for any V, W ¢ 3d e, v 6/#(V),  
w E F(W).  Using the identity (10vOl®w)o72s = 723,4o(l@l@v@w), we re- 
duce (9.11) to the identity 

S34o(1®i+®i_)o(o-®1) 
= (~+®1®1®1®1) o%3,40(~r® 1®~@1 ) (9.12) 

in Hom(M_, M~NM+®M_NM+@M_). Moving/~34 from left to right and inter- 
changing/3a41 with i~@1®1®1@1, we see that (9.12) is equivalent, to the identity: 

(lei+®i_)o( el) 
= (9.13) 

in Hom(M_,M~_®M+@M+®M_®M_). It is clear that 71,2so(l@a) = cr@l in 
Horn(M_, M_@M~@M+). Therefore, using the relations 723,473,45--1 = 723745--1, and 
/37 = 1, we reduce (9.13) to 

( l®i+)oa = (Q®1®l)o723o(cr®c 0 (9.14) 
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in Horn(l,  M~_®M+eM+). Since i~_o 7 = i:F, we can rewrite (9.14) as 

(l®i+)oG = (i~_®1®l)o712,3o(G®a). (9.15) 

Using the equality %2,3o(cr®1) = leG,  we reduce (9.15) to 

~* 1 l o  o ( l®i+)a  : ( '+® ® ) ( l®a®l)  G. (9,16) 

To prove this equality, we compute the image of 1 C 1 under right-hand side 
of (9.16). In this calculation, we can ignore the action of the associator because for 
any representations 1/1,1/~, Va of g the associator acts trivially on the g-invariants in 
V,®V.2®Va. The calculation yields that I goes to (1®i+)(a(1)), which proves (9.16). 
The claim is proved. 

Let J~4 CA//e be the full subcategory of discrete g-modules, and ~(~t) = 
End(~'l:~) be the quantization of g constructed in Part I. It is easy to show that the 
homomorphism of topological Hopf algebras EndF-+Uh(~t) defined by restriction 
from A4 ¢ to M is an isomorphism, since both algebras are canonically isomorphic 
to U(g)[[h]]. This means that the morphism X defined above induces an isomor- 
phism of topological Hopf algebras /]h(g), Uh(ft). It is easy to check that this 
isomorphism maps Uh(g+) onto Uh(EI+), which proves the proposition. [] 

Append ix :  c o m p u t a t i o n  of  the p r o d u c t  in Uh(a) m o d u l o  h a 

To illustrate the construction of quantization of Lie bialgebras, here we compute 
the product in the quantization Uh(a) of a Lie bialgebra a modulo h a. In the text 
below we always assume summation over repeated indices. 

Let {a~,i E I} be a basis of a, and {b i} be the topological basis of a* duat to 
{ai}. Let us write down the commutation relations for the Lie algebra g = a®a*: 

[aiajJ=c~jak,[bib j] = , k ~  [aibJ] = fJit%k--4kb k. (A1) 

Let 1~_ E M S be the functional on MS defined by 1~_(z1+) = e(x), z 6 U(a). 
Let {(M~)~} be the filtration of M~_ which was defined in Chapter 7. 
For x 6 U(a), let "~b~ : M_-+M~_@M_ be the g-intertwiner such that 

~b~l_ - l~_®xl_ mod (M; ) i .  

For x,y E U(a), we defined the quantized product z = yox to be the element of 
U(a)[[h]] such that the operator ~b~ is the composition 

~ l@~v  O; -1 

~*+ ®1 
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We want to compute the product aqoap modulo h a. We fix elements Pe E MS, 

i E I,  such that p~(l+) = 0, pi(/¢1+) = 5~. These elements are uniquety defined 
modulo (M~)2. 

Let w i C M_ be the vectors such that 

~ p l _  =- l~®apl_ + piQw ~ ,nod (M~)2QM-.  (A3) 

We must have bilbo, 1_ = 0 for all j ,  so l*+®bJapl_ +bJp~®w~ = 0. But bJp~(l+) = 

pi(-bJl+) = -6~, so we get w e = heap1_ = - - £ k a k l - .  
Thus we get 

~ba~l- -= l~_®apl_ -f iv~piNakl_ mod (M2~)2@M_. (A4) 

Using (A4), we get 

g'a.qarl- z (ar®l  + l®ar)~a~l = 

l *+ ®araq l_  ~k a ~a  - - $q ~pi~ k f~kpi®arakl_ rood (M~_)2@M_. (A5) 

We have 
a,'Pi(bJl+) = -Pi(arbJl+) = Pi(gkb~:l+) = g i ,  (A6) 

Thus, substituting (A6) into (A5), we get 

~ba~a~S_ ~ l~_®a~aql_ - fqikc~ipj®ak j 1_ -- f~kpi®a~al¢l_ mod (M2>)u@M-. 
(At) 

In particular, we have 

.j ,{kl,+®pj®akl - ~k , ~ • - -  - f~ pe®l+®ak%l_+ f~ l+®pi®avak.1- --~piJq 

g'<d, g= peepj@asl-  + f~k f~= pe®p,@aka=1- 

mod (M2)2@M~_QM_ + M+Q(M;)=QM_. (A8) 

The definition of an associator implies 

h 2 
= 1 + ~-~[t,2, t=a] + O(h a) (A9) 

, ( ] ) - - 1  (see [Dr2], [Dr4]) This means that the part of the ha-coefficient of -u,y~wa which 

belongs to a*®a*®a a is ~c~jb~®bJ®a~. 
Now let us apply ~-1  to both sides of (A8). We want to compute the answer 

in the form 1.;®1~®u + . . . ,  u E M_[[h]]. To do this, we only need to use the last 
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two terms on the r.h.s, of (A8) and the a '®a-part  of the quadratic term of ~. The 
calculation gives 

¢-'(t®¢%)¢apl_ -= l ~ _ ® l ~ ® u  r o o d  * ^ * ^ ( M ; ) I ® M ; N M _  * ~ * + M ~ ® ( M + ) I @ M - ,  

h2 ( 1elk flS cJ _m~ a . in Is .r u = aqapl_. + - ~ w p  ,q kl.qj~*,+ , + f ;  f ;  q za~a~a , ) l_ .  (A10) 

This shows that 

h2 ( ~ik +cls _j ~rn~ _ in ls r 
aq°av = aqav + ~ , , p  ,v %,qJ~*,~** + fp fq ci, ara'+a*) + O(ha) • (All)  

This formula is analogous to the formula deduced by DrintMd [Dr3] (equation 1.1). 

R e m a r k .  It is easy to see that this formula contains only acyclic monomials. In 
the second paper we will show that this is true for all coefficients of the quantiza/don. 
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