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Quantization of Lie Bialgebras, I

Pavel Etingof and David Kazhdan

Abstract. In the paper [Dr3] V. Drinfeld formulated a number of problems in quantum group
theory. In particular, he raised the question about the existence of a quantization for Lie bialge-
bras, which arose from the problem of quantization of Poisson Lie groups. When the paper [KL]
appeared Drinfeld asked whether the methods of [KL] could be useful for the problem of quanti-
zation of Lie bialgebras. This paper gives a positive answer to a number of Drinfeld’s questions,
using the methods and ideas of [KL]. In particular, we show the existence of a quantization for
Lie bialgebras. The universality and functoriality properties of this quantization will be discussed
in the second paper of this series. We plan to provide positive answers to most of the remaining
questions in [Dr3] in the following papers of this series.

Introduction

The main result of this paper is a construction of a quantization for Lie bialgebras
(see [Dr3] Section 1).

The paper consists of two parts. In the first part we construct the quantization
of a finite-dimensional Lie bialgebra. In the second part we generalize this result
to the infinite-dimensional case. The construction in the first part consists of three
steps.

1) Given a finite-dimensional Lie bialgebra a over a field k& of characteristic
zero, we construct the double g of a. Our definition of the double coincides with
the one in [Drl]. We consider the category M whose objects are g-modules and
Homm (U, W) = Homg(U, W)[[R]]. For any associator & ([Dr2, Dr4]) we define a
structure of a braided monoidal category on M, as in [Dr2].

2) We construct Verma modules My, M_ over g, and use them to construct
a fiber functor from M to the tensor category of topologically free k[[h]] modules:
F(V) = Homm (M ®@M_,V). According to the categorical yoga, the existence of
such a functor implies the existence of a (topological) Hopf algebra H isomorphic to
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U(g){[R]] such that the tensor category M is equivalent to the category of represen-
tations of H. We show that H is isomorphic, as a topological algebra, to U(g)[[h]],
where U{g) is the universal enveloping algebra of the Lie algebra g.

3) We construct Hopf subalgebras Hy of H and show that H. is a quantization
of o and that the algebra H is the quantum double of the Hopf algebra H. .

Remark. We do not expect the existence of a quantization of any Lie bialgebra «
which is isomorphic to U{a)[[k]] as a topological algebra.

As an application of our techniques, we prove that any classical r-matrix r over
an associative algebra A (r € A®A) can be quantized. In other words, there exists
a quantum R-matrix R € A®A[[R]] such that R = 1 + hr + O(h?). We also show
that R is unitary (R?*R = 1) if 7 is unitary (r?* = —r). This answers questions in
Section 3 of [Dr3]. As another application, we show the existence of the quantization
of a quasitriangular Lie bialgebra a (not necessarily finite-dimensional) such that
the obtained quantized universal enveloping algebra has a quasitriangular structure
and 1is isomorphic to U(a)[[]] as a topological algebra, which solves questions in
Section 4 of [Dr3].

The construction of quantization given in Part I has two drawbacks. First, it
does not work literally for infinite-dimensional Lie bialgebras. Second, it does not
allow to prove functoriality and universality of quantization. Therefore, in Part 11
we slightly modify the construction, which puts the results of the first part in a more
general setting. Now we consider arbitrary Lie bialgebras, not necessarily finite-
dimensional. In this case the double g of a can also be constructed, but it carries a
nontrivial topology if dim a = co. Instead of the category of all g-modules, we now
consider the category M? whose objects are equicontinuous g-modules, which are
topological g-modules satisfying certain conditions. On this category, we define a
braided monoidal structure analogously to the finite-dimensional case.. . .

We construct Verma modules M., M_ over g analogously to the ﬁmte dlmen—
sional case. The module M_ is equicontinuous. The module M., in general, is not
equicontinuous, but the module M7}, dual to My in an appropriate topology, is an
equicontinuous g-module. Using M_ and M}, we define a fiber functor from M*
to the category of topological k[[h]]-modules, by F(V) = Hompe(M_, MiQV).
Since the module M, is not always equicontinuous, this functor is not always
representable in M®. We define a tensor structure on £ similarly to the finite-
dimensional case, and show that if g is finite-dimensional, the functors obtained in
the first and second parts of the paper are isomorphic as tensor functors.

Next, we consider the algebra H = EndF. It is a topological algebra over
k[[h]] with a “coproduct” A, which maps H into a completion of H®H, but not
necessarily in H®H.

Finally, we construct a subalgebra H of H such that A(H)CH,.®H,. This
is a quantized universal enveloping algebra which is a quantization of a. For finite-
dimensional a, this quantization is isomorphic to the one obtained in the first part.
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In the second paper of this series we will settle Drinfeld’s question of the exis-
tence of a universal quantization of Lie bialgebras by showing that the quantization
obtained in Part II of this paper is universal. In Drinfeld’s language this means that
the product and coproduct in the quantized algebra are expressed in terms of acyclic
tensor calculus via the commutator and cocommutator. This result implies that our
quantization of Lie bialgebras is a functor from the category of Lie bialgebras to
the category of topological Hopf algebras. It also shows that our quantizations of
classical r~-matrices, unitary r-matrices, and quasitriangular Lie bialgebras are uni-
versal and functorial. Thus we will answer positively the corresponding questions
of Drinfeld [Dr3].

Remarks.

1. The material of Part I does not seem sufficient for proving universality and
functoriality. In fact, during the computation of the h?-term of multiplica-
tion in Uy (m), using the method of Part [, one gets non-acyclic expressions,
which cancel at the end of computation. Thus, the generalization to the
infinite-dimensional case is essential for the proof of functoriality, even for
finite-dimensional Lie bialgebras.

2. Most of the results of the paper could be formulated and proved over the
ring k[h]/(h") rather than k[[h]], and then the results over k[[h]] could
be obtained as a limit. The only problem arises with the notions of the
dual quantized universal enveloping algebra and the quantum double, which
collapse over k{[h]]/(h"). This is why we chose to work over k[[h]].

In fact, it is easy to see that the main results of this paper hold in a more general
setting than stated. Narmely, one can take the Lie bialgebra a to be “dependent on
h”,i.e.tobe a Lie bialgebra over the ring &[[h]], which is topologically free as a k[[h]}-
module. The procedure of quantization described in Part I is well defined for this
case, and, as will be shown in the second paper, defines a functor a—Upy{a), from the
category of Lie bialgebras over k[[h]] which are topologically free as k[[h]]-modules
to the category of quantized universal enveloping algebras (See Chapter 3). We will
show that this functor is in fact an equivalence of categories and wiil construct the
inverse functor.

The third paper of this series is not written yet. Therefore we will only indicate
the topics which we are planning to present in this part. First of all, we plan to
consider the case of graded bialgebras with finite-dimensional homogeneous compo-
nents and to show that in this case our formal quantization defines a family of Hopf
algebras Hy, depending on a parameter h € k. Our second goal is to prove that, for
Kac-Moody bialgebras, our quantization coincides with the quantum Kac—Moody
algebra. As another application of our techniques we plan to show how to define
a quantum analog of the Kac-Moody algebra for arbitrary symmetrizable Cartan
matrix (not necessarily integral) and show that for generic values of q the “size” of
the quantized algebra is the same as of the usual Kac-Moody algebra. This would
settle the questions in Section 8 of [Dr3].
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ParT 1

1. Drinfeld category
The definitions and statements of Sections 1.1, 1.2 can be found in [Dri].
1.1. Lie algebras

Throughout this paper, k& denotes a field of characteristic zero. Let a be a Lie
algebra over k, and § be a linear map 4 : g—a®ua.

Definition. One says that the map § defines a Lie bialgebra structure on o if it
satisfies two conditions:

(i) 6 is a l-cocycle of a with coefficients in 0®aq, i.e.
8([ab]) = [1®a + a®1,6(b)] + [0{a), 1®b + b 1];

(ii) The map §* : a*®a*—a* dual to J is a Lie bracket on a”.

In this case § is called the cocommutator of a.

If a is a finite-dimensional Lie bialgebra then a* is a Lie bialgebra as well.
Namely, the commutator in a* is dual to the cocommutator in a, and the cocom-
mutator in a* is dual to the commutator in a. If a is infinite-dimensional, then a*
is not in general a Lie bialgebra but is a topological Lie bialgebra. That is, a* is a
Lie algebra in the usual sense, but the cocommutator maps a” into the completed
tensor product a*®a* and not necessarily into the usual tensor product a*®@a*.

For any Lie bialgebra a, the vector space g = a®a™ has a natural structure of a
Lie algebra. Namely, a, a* are Lie subalgebras in g with the bracket defined above,
and the commutator between elements of a, a* is given by

[a,b] = (ad™a)b — (1®@b)(d{a)), a€a, bea”, (1.1)

where ad”™ denotes the coadjoint action. There is an invariant nondegenerate inner
product on g given by {a +a',b+ V) = da'(b) +b'(a), a,b € 0, &/, V' € o*. It is easy
to show that (1.1) is the unique extension of the commutator from a, a* to g for
which the inner product (, } is ad-invariant.
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1.2. Main triples

Definition. Atriple (g, 94,8~ ), where ¢ is a finite-dimensional Lie algebra with a
nondegenerate invariant inner product (, ), and g, g— are isotropic Lie subalgebras,
such that g = g+ ®g_ as a vector space, is called a finite-dimensional Manin triple.

To every finite-dimensional Lie bialgebra a, one can associate the corresponding
Manin triple (g = a®a”*, a, a*), where the Lie structure on g is as above. Conversely,
if (g,9+,9-) is a finite-dimensional Manin triple then gy (and g-) is naturally a
Lie bialgebra. Namely the pairing (, ) identifies g, with g*, so we can define
§ 1 g+~rg+®g4 to be the dual map to the commutator of g_. This map is a 1-
cocycle of the Lie algebra g, with coefficients in the module g, ®g., so it defines a
structure of a Lie bialgebra on g,.

Thus, there is a one-to-one correspondence between finite-dimensional Lie bial-
gebras and finite-dimensional Manin triples.

If ais a Lie bialgebra then the Lie algebra g = a®a* also has a natural structure
of a Lie bialgebra. Namely, the cocommutator on g is §; = §,®(—dq~), where
dq, 8+ are the cocommutators of a, a*. The l-cocycle &, is the coboundary of an
element in g®g. Namely, if r € a®a*Cg®g is the canonical element corresponding
to the identity operator a—a, then 65 = dr, where r is regarded as a O-cochain of
g with coefficients in g®g, and d is the differential in the cochain complex; that is
Og(z) = [z®1 + 1@z, 7].

The Lie bialgebra g is called the double of a.

Let a be a Lie algebra, and r € a®a. The equation

(112, 713] + [r12,T23] + [r13,723] = 0 (1.2)

in U(a)®? is called the classical Yang-Baxter equation. It is easy to check that the
canonical element r satisfies this equation.

Definition. We say that a Lie bialgebra a is quasitriangular if it is equipped
with an element 7 € a®a satisfying the classical Yang-Baxter equation, such that
6(a) = [a®1 + 1®a,r] for any a € a (i.e. § is a coboundary of r). For example,
the double g of any finite-dimensional Lie bialgebra a equipped with the canonical
element r is a quasitriangular Lie bialgebra.

1.3. Associators
Recall some notation and definitions from the theory of associators [Dr2, BN]. Let

T’ be the algebra over k generated by elements t;;, 1 < 4,j < n, i # j, with defining
relations t;; = tj;, [tij, tim] = 0if 4, 4, [, m are distinct, and [t;;, tix + ¢;5] = 0.

Let P,..., P, be disjoint subsets of {1,...,m}. There exists a unique homo-
morphism pp,.. p, : Tn—Ty defined by
I (77) R S (1.3)

pEF; ,gEF;
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For any X € T, we denote pp,, .. p,{X) by Xp, .. pP.-
Let @ € T3[[h]]. The relation

Q1 234P1034 = P2 34P1234P123 (1.4)

in Ty4{[h]] (=relation (1.2) in [Dr2]) is called the pentagon relation.
Let B = ¢"12/2 ¢ To[[h]]. The relations

Bisz = @3,1,231,3‘1)1_,%,232,3‘1’1,2,3,
Biss =053, B13%2,1,3B1297 55
in T3{[h]] (=relations (3.9a), (3.9b) in [Dr2]) are called the hexagon relations.

Definition. An element ® € T3[[h)] of the form & = eP(M12:023)  ywhere P(X,7)
is a Lie formal series with coefficients in k, is called a Lie associator over k if it
satisfies the pentagon and hexagon relations.

For k¥ = C, an example of a Lie associator is the Drinfeld associator ®xz
obtained from the K Z equations, as explained in [Dr2].

The following theorem about Lie associators is due to Drinfeld ([Dr4], Theo-
rem A”).

Theorem 1.1. There exists a Lie associator defined over Q.

This theorem implies that there exists a Lie associator defined over any field k
of characteristic zero. From now on we will fix such a Lie associator &.

1.4. Drinfeld category

Let g be a Lie algebra over &, and Q € 5%g be a g-invariant element.

We will be mostly interested in the case when g belongs to a finite-dimensional
Manin triple (g, g4, g-), and @ = 5, 9;®g", where {g;} is a basis of g, and {g'} is
the dual basis to {g;} with respect to the invariant inner product on g. In this case
the element  is called the Casimir element.

Let M denote the category whose objects are g-modules, and Homa (U, W) =
Homg (U, W)[[h]]. This is a k{[h]]-linear additive category. For brevity we will later
write Hom for Hom .

Drinfeld [Dr2] defined a structure of a braided monoidal category on M
as follows: For any Vi, V5,73 € M, consider a homomorphism 6 : T3 [[h]]—
End(Vy®Va®V3) by 8(t;;) = Q45, and define @y, v,v, = 0(P).

For any Vi,Va € M, define Vi®V, € M to be the usual tensor product of
Vi, Vo and the associativity morphism to be $y,v,y,, regarded as an element of
Hom((Vi@Vy)®Vs, Vi®(Va®V3)). For any V4,Va € M, introduce the braiding
Bviv, » Vi@Va—=Va®V) by the formula 8 = soeM/? where s is the permutation. It
follows from relations (1.4), (1.5) that the morphisms ®v,v,v, and Bv,v, define the
structure of a braided monoidal category on M (see [Dr2}).
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2. The fiber functor
2.1. The category of topologically free k([h]]-modules

Let V be a vector space over k. Then the space V[[h]] of formal power series in
h with coefficients in V has a natural structure of a topological k[[A]l-module. We
call a topological k[[h]]-module topologically free if it is isomorphic to V{[h]] for
some V.

Let A be the category of topologically free k[[h]}-modules where morphisms are
continuous k[[h]]-linear maps. It is an additive category. Define the tensor structure
on A as follows: for V,W € A define V®W to be the projective limit of the k[h]/h"-
modules (V/h™*V)®pp)/nn (W/h*W) as n—o0.

Let Vect be the category of vector spaces. We have the functor of extension of
scalars, V = V[[h]], from Vect to A. This functor respects the tensor product, i.e.
(VoW)[[h]] is naturally isomorphic to V[[h]]J@W{[h]]. The category A equipped
with the functor ® is a symmetric monoidal category.

If X € Athen X* = Hom (X, k[[R]]) is a topologically free k[[h]]-module. The
assignment X — X" ig a contravariant functor from A to itself.

2.2. The forgetful functor

Let (g, g+, g_) be a finite-dimensional Manin triple, () € S?g be the Casimir element
associated to the inner product (, ) on g, and M be the Drinfeld category associated
to g.

Let F' : M—A be the functor given by F (M) = Hom(U(g), M), where Ulg) is
regarded as a left g-module. This functor is naturally isomorphic to the “forgetful”
functor which assigns to every g-module M the k[[h]}-module M[[A]}. The isomor-
phism between these two functors is given by the assignment f € F(M)—f(1) €
M{[R]].

2.3. Verma modules

Consider Verma modules M} = Ind} 1, M_ = Ind} 1 (here 1 denotes the triv-
ial 1-dimensional representation). By the PoincaréBirkhoff~-Witt theorem, the
product in U(g) defines linear isomorphisms U{gy)®U(g-)—U{g), and U(g_)®
U(g4)—U(g). This shows that the modules M are freely generated over U(gs)
by vectors 1. such that gily = 0, and are identified (as vector spaces) with
U(gz) via zlp—z. Since the vectors 1.®1+ € ML ®My are gi-invariant, there
exist unique g-module morphisms i+ : My ML QM such that ¢.(14) = 1.®14.
These morphisms in the category M will play a crucial role in our constructions
below.

Lemima 2.1. The assignment 1—1,®1_ extends to an isomorphism of g-modules
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¢ U(g)—Mo@M_.

Proof. Since M, has been identified with U(g+), we can regard the map ¢ as a
linear map U(g)—U{g_)®U (g4 ). It is clear that this map preserves the standard
filtration, so it defines a map of the associated graded objects: Sg—Sg_®Sg..
This map is the isomorphism induced by the isomorphism g—g-®g4. Therefore,
¢ is an isomorphism. ]

Lemma 2.1 implies that the functor F can be identified with the functor
V—Hom (M, ®@M_,V). This definition of F' will be used from now on.

2.4. Tensor structure on the functor F

Let (C,®) be a monoidal category, ® be the associativity constraint in €, and 1
be the identity object in C. For simplicity we assume that 1@ X = X®@1 = X for
any object X € C, and the functorial isomorphisms X —-X®1, X=18®X the are
identity morphisms.

Let F: C—A be a functor such that F(1) = k[[h]].

Definition. By a tensor structure on the functor F' one means a functorial iso-
morphism Jyw : F(V)®F(W)-— F(V @ W) satisfying the associativity identity
F(@vwu)lvewuvo(Jyw®l) = Jyweuo(l®Jwy), such that for any object V
Jvi = Jiv = 1. A functor equipped with a tensor structure is called a tensor
functor.

Now we describe a tensor structure on the functor F constructed in Section 2.2.
For any v € F(V), w € F(W) define Jyw{v®w) to be the composition of
morphisms:

Qi associativity morphism
A9

M+®]W_ -———-—-)(J‘4+®M+>®(A/[_®M”) >

(1®B23)@1
(My®(MioM_))@M_

assoclativity morphism

(Mio(M_@M)0M_

(My®M_)o(MeoM_) —22 S vew, (2.1)

where (333 denotes the braiding 8 acting in the second and third components of the
tensor product.

It is clear from this definition that all combinatorial complexity of the morphism
J comes from the arrows “associativity morphism” which involve associators.

The arrows “associativity morphism” make the problem of checking various
identities for J (for example, the associativity identity) rather tedious. To avoid
this, we can use MacLane’s theorem, which says that any monoidal category is
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equivalent to a strict one. Namely, when we check identities between morphisms
in the category, we will assume that the category M is replaced with an equivalent
strict monoidal category and ignore associativity morphisms. For example, the
definition of J will look as follows:

Tyw (v®w) = (VBW)o(1®Pas®1)o(is®i-).

However, when we do computations with vectors in modules from M, it is
important to pay attention to brackets, since different positions of brackets are
related with each other by the associator.

Proposition 2.2. The maps Jyw are isomorphisms and define a tensor structure
on the functor F.

Proof. It is obvious that Jyw is an isomorphism since it is an isomorphism mod-
ulo h. It is also clear that Jy; = Jyyv = 1. Thus the only thing we need to check
is the associativity identity Jygw ro(Jyw®l) = Jy.weuo(1®Jwy). To prove this
equality, we need the following result.

Lemma 2.3. (i+®1)oiy = (1®i4)oiy in Hom(My, ME?).
Proof. We prove the identity for i;. The identity for ¢ is proved in the same way.
We need to show that for any vector z € M,

Since comultiplication in U(g_) is coassociative, i.e. ({1.@1)icz = (1®iy Yz, it is
sufficient to show that the associator @ is the identity on the image of (1, ®1)i,..
Because @ is g-invariant, it is enough to show that ® - (i1 ®1)iyp1. = (14 ®1)ip 1,
ie.

P - (14.@1.;.@1.;_) = 1+®1+®1+. (23)

Since the subalgebras g, g— are isotropic, the operators {15, {133 annihilate the
vector 1, ®1,®1,. Thus, equation (2.3) follows from the definition of @. O

Now we can finish the proof of the proposition. Let 1,1s : M,QM_—
(M, ®M_)®?% be the morphisms defined by

1 = (186239191R81)0(i4+ ®i_®1®1)o(18823R1)o(iL ®i_)},
Yy = (18101801591)o(101R1.®i_ Jo(18F23®1)o(i4 ®i_). (2.4)

Then for any v € F(V), w € F(W), u € F(U) we have

Jvew u(Jvw®l)(vQ@uweu) = (vQwRu)o:,
Jy,wer(18Jwv ) (vQudu) = (v@wu)oth;.
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Therefore, to prove the proposition, it is sufficient to show that ¢y = 1.
To prove this equality, we observe that the functoriality of the braiding implies
the identities

(i1 ®1_®181)o(1882381) = (1883,4501)0(i1. ®1®i_R1),
(18100, ®i_)o(1®B3®1) = (1883,491)o(1®iLR1Ri_) (2.5)

(here (3 45 means the braiding applied to the third factor and to the product of the
fourth and the fifth factors). Using Lemma 2.3 and identities (2.5), we reduce the
statement 1) = 1 to the identity

(18623R19181)0(183,4501) = (101R218064381)0(18823,481), (2.6)

which follows directly from the braiding axioms. ]

We call the functor F equipped with the tensor structure J the fiber functor.

3. Quantization of the double of a Lie bialgebra
3.1. Topological Hopf algebras

Let A be an algebra over k with unit. Let I be a proper two-sided ideal in A. This
ideal gives rise to a translation invariant topology on A such that {I", n > 0} is a
basis of neighborhoods of 0. We will call A a topological algebra if A = @A/ .

Let A4y be a topological algebra over k, and A = Ap[[h]] as a topological k[[A]]-
module. Suppose that A is equipped with a continuous, k[[h]]-linear, associative
product, which coincides with the product in A modulo A. In this case we say that
A is a topological algebra over k[[h]], which is a deformation of Aq.

Let A, B be two topological algebras over &k, I, J be the the corresponding
ideals. Define the completed tensor product A®B to be the projective limit of
algebras A/I"®B/J" as n — co. Then A®B is also a topological algebra, with
topology defined by the ideal IQB + A®J.

The completed tensor product of topological algebras over k[[A]] is defined sim-
ilarly.

We say that a topological algebra A over k is a topological Hopf algebra if it is
equipped with comultiplication A : A—A®A, the counit ¢ : A—k, and the antipode
S : A—A, which are linear, continuous, and satisfy the standard axioms of a Hopf
algebra. Note that an infinite-dimensional topological Hopf algebra may not be
literally a Hopf algebra because the image of comultiplication may not belong to
the algebraic tensor square of A.

Topological Hopf algebras over k[[h]] are defined similarly. If A is a topological
Hopf algebra over k[[h]] then B = A/hA is a topological Hopf algebra over k. In
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such a case we say that A is a formal deformation of B over k[[h]]. In particular,
if B = U(g) with the discrete topology, where ¢ is a Lie algebra, then A is called a
quantized universal enveloping algebra [Drl].

The following definition is due to Drinfeld [Drl].

Definition. Let (g,d8) be a Lie bialgebra. We say that a quantized universal en-
veloping algebra A is a guantization of (g, §), or that (g, d) is the quasiclassical limit
of A, if

(1) An isomorphism of Hopf algebras A/hA—U(g) has been fixed, and

(ii) For any zo € g and any = € A equal to g mod h one has

R A(z) — A%(2)) = 6(z0) mod A,

where AP is the opposite comultiplication (A% = sA).

3.2. The algebra of endomorphisms of the fiber functor

Let H = End(F') be the algebra of endomorphisms of the functor F. This algebra
is naturally isomorphic to U(g)[[h]]. Namely, the map o : U(g)[[h]]—H is defined
on z € U(g) by the formula (a(z)f)(y) = f(yz), where f € Hom(U(g), M), and
is extended by linearity and continuity to U(g){[#]]. This map is an isomorphism
of algebras. From now on we will make no distinction between U(g)[[h]] and H,
identifying them by a.

Let F%: M x M~+A be the bifunctor defined by F2(V,W) = F(V)F(W). Tt
is clear that End(F?) = HoH.

The algebra H has a natural comultiplication A : H — H® H defined by
Ala)y,w(v@w) = Jyhavew Jvw (W®w), a € H, v € F(V), w € F(W), where
ay denotes the action of o in F(V). We can also define the counit on H by
e(a) = a1 € K[[h]], where 1 is the neutral object.

For any V' € M, let V* be the dual space to V (regarded as an object of M), and
let oy : V*®@V =1 be the canonical pairing. We have a functorial isomorphism &y :
F(V*)=F(V)* defined by &y (v*)(v) = Flov)Jv-v(v*®v), v € F(V),v* € F(V*).
For any a € H, let S(a), = (£§§) 'a}.£&) be a morphism F(V)*—F(V)**. It is
easy to show that the subspace F(V)CF(V)** is invariant under this morphism.
The antipode S : H—H is defined by S{a)v = S(a)y|pv)-

Proposition 3.1. The algebra H equipped with A, e, S is a topological Hopf alge-
bra.

The proof is straightforward.
3.3. Explicit representation of complication and antipode

Let Ag : U(g) = U(g)®U(g) be the standard coproduct. For any V,W € M,
let Jow @ F(VQF(W)—F(VQW) be the morphism defined by the formula
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o (vew)(z) = (v@w)(Ag(x), z € U(g), v € F(V), w € F(W). Tt is clear
that Jyw = JUyy mod h.
Let J € U(g)®?[[A]] be defined by the formula

J=(¢"t@e™) (@1_,%,34(1®‘I’2,3,4)5€h923/2(1®q’2,3,4)‘1’1,2,34(1+®1+®1_®1—)),
(3.1)
where ¢ is the isomorphism of Lemma 2.1.

Proposition 3.2, ForanyV,W € A, v € F(V), w € F(W) one has Jyw (v@w) =
Tyw J(v@w).

Proof. The statement follows from the definition (2.1) of Jyw. 0
Lemma 3.3. Leta € H. Then
Aa) = J 1 Ag(a)J. (3.2)

Proof. The lemma follows from Proposition 3.2 and the identities Ag(a)y,w =
(Jow) tavew SO, Ala)vw = Jyyavew Jvw, a € U(g). .

Now consider the explicit expression for the antipode. For any V € M define
the morphism & : F(V*)=F(V)* by & w")(v) = Floy)JH., (v*@v), v € V,
v* € V*. It is clear that & = £}, mod h.

Let So : U(g)—U(g) be the usual antipode. Let J = 3. z;®y;, z;,y; €
U{g)[[h]] (the sum is finite modulo h™ for any n). Define an element @ € U{g)[[R]]
by @ = Zj So(5)y;-

Lemma 3.4. Leta € H. Then

S(a) = Q7*Ss(a)@. (3.3)

Proof. It follows from the definitions of &y, &), and @ that &y = &3,.56(Q)v~.
Thus the Lemma follows from the formulas S(a)y = (&) ay. & lrevy, Sola)v

() ay & r vy 0

Thus, we have proved the following result.
Corollary 3.5. Introduce a new comultiplication and antipode on the topological
Hopf algebra U(g)[[h]] by

A(.’l?) = J—1A0(1;>‘]7 S(:U) = QﬁlSO(w)Qa (34)

where Ag, So are the usual comultiplication and antipode. Then (U(g){[R]], A, S)
15 a topological Hopf algebra isomorphic to H.

We will denote the topological Hopf algebra (U(g)l[h]], A, S) by Un(g).

Remark. It is easy to see that according to the terminology of [Dr2], the ele-
ment J~! is a twist that realizes an equivalence between the quasi-Hopf algebra
(U(g)[{R]], ®) and the Hopf algebra Ux(g).
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3.4. The quasiclassical limit of U(g)

Proposition 3.6. The topological Hopf algebra Ur(g) is a quantization of the Lie
bialgebra (g,dq).

Proof. Take a € gCUpp(g). Let §(a) € U(g)®U(g) be defined by the formula
§(a) = h~Y(A(a) — A°?(a)) mod h. To prove the proposition, we need to show
that for any a € g one has 6(a) = dg{a), where §,(a) is defined in Chapter 1.

It is easy to check the following identities:

M2 =14 h0/2 mod h?, ®=1 mod A2 (3.5)

Let {gj} be a basis of g, {g; } be the dual basis of g_, and r = 3~ gj@g;.
Identities (3.1) and (3.5) imply that

J=1+hr/2 mod k2. (3.6)
Therefore, by Lemma 3.3,
h 2
Afa) = Agla) + 3 [Ao(a),r] mod K. (3.7)
Thus,
Afa) — A%(a) = g[Ao(a),r —sr] mod h®. (3.8)

Since r + sr{= 1)} is g-invariant, we obtain

§ = dr =6, (3.9)
Q.E.D. 0
3.5. The quasi triangular structure on U,(g)

Define the element
R = (J)" "2 ] ¢ U,(g)%?, (3.10)

where J°P is obtained from J by permuting components. We call this element the
universal R-matrix of Up(g).

Proposition 3.7. R defines a quasitriangular structure on Up(g). That is, R is
invertible and

RA = AR, (3.11)
(A®1)(R) = RizRos, (1®A)(R) = Ri3Ria. (3.12)



14 P. Etingof and D. Kazhdan Selecta Math.

Moreover, R is a quantization of r, i.e.

R=1+hr mod h% (3.13)

Proof. Identity (3.13) follows from (3.5), (3.6) and the definition of R. This identity
implies that R is invertible.
One has

RA(a) = (JP) M2 JA(a) = (JP) L2 Ag(a) ] = (JP) " Ag(a)e 2T
= A% (a)(JP)"1eh/2 ] = A°P(a)R, (3.14)

which proves (3.11).

Now let us prove the first identity of (3.12). The second identity is proved
analogously.

According to the definition of R, for any V,W € M, v € F(V), w € F(W), one
has R(v@w) = sJi/y F(Bvw)Jvw. Thus, for any U € M, u € F(U) one has

(AD)(R)(veweu) = (J1m @) R(Jywel) (vewdu)
= 312,3(1®J;%/)J§,1X/®WF(IBV®W,U)JV®W,U(JVW®1)(U®w®uja (3.15)

where s13 3 is the permutation of the first two components with the third one. Using
the braiding property Sygw,u = (Bvu®1)o(1&8ww ), the associativity of Jyw, and
the obvious identities JgéV’WF(ﬁV{;@l)JV@U,W = F{fByy)®1, J{;’}J®WF(1®ﬁWU}
Jvwer = 1QF(Bwy), one finds that the right-hand side of (3.15) equals to
Ry3Ro3{(v@w®u), as desired. O

4. Quantization of finite-dimensional Lie bialgebras

Our purpose in this section is to represent the quasitriangular topological Hopf
algebra Up(g) as a quantum double of another topological Hopf algebra, Up(g+.)-
The topological Hopf algebra Uy (g, ) will be a quantization of the Lie bialgebra g...

4.1. The algebras Up{gy)

As we have seen, the fiber functor F which we used to construct the quantum
group Ux(g), is represented by the object M, @M_ of M. Therefore, we have a
homomorphism 8 : End{M; @M. )~End(F) = Ux(g) defined by 8{(a)v = voS(a),
ve F(V),VeM,acEnd(Mi@M_).
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Lemma 4.1. The map 8 is an isomorphism.
Proof. The Lemma follows from Lemma 2.1. O

Thus, we can identify End(M,;®M_.) with Ux(g). From now on we make no
distinction between them.

Now let us define the subalgebras Uy {g+)CUr(g).

Let z € F(M,). Define the endomorphism m_(z) of M, QM. to be the com-
position of the following morphisms in M : m_(z) = (z®1)e(1®i.). This defines
a linear map m_ : F(M,)—U,(g). Denote the image of this map by U,(g-).

Let m® (z) € U(g_) be defined by the equation z(1.®1.) = m® (z)1;. It is
easy to show that m_(z) = m% (z) mod h, which implies that m_ is an embedding.

A similar definition can be made for € F(M.). Define the endomorphism
my(z) of Mi®M_ to be the composition of the following morphisms in M :
my(z) = (1®z)o(i1®1). This defines an injective linear map m4 : F(M_)—Ug(g).
Denote the image of this map by Up{g4).

Proposition 4.2. Ux(gs) are subalgebras in Up(g).
Proof. Let us give a proof for Up{g_). The proof for Ux(g,.) is analogous.
Using Lemma 2.3, we obtain
m.(z)om_(y) = (z@1)o(1Ri_)o(y®@1)o(1®i)
= (z®1)o(y®101)o(181®i_)o(1®i_)

= (z@1)o(y®181)o(1®i-®1)o(1®i_) = (201)o(1Ri-), (4.1)
where z = zo(y®1)o(1®i_) € F(My).
So by the definition we get m_(z)om_(y) = m_(z). i

Note that the algebra Ux(g_) is a deformation of the algebra U(g_). Indeed,
we can define a linear isomorphism g : U{g-)[[h]]=Ur(g-) by pla)(14®1_) =
S(a)l.. This isomorphism has the property p(ab) = p{a)ou(b) mod h?, which
follows from (3.5), but in general u(ab) # p(a)ou(b).

The subalgebra Uy (g—) has a unit since it is a deformation of the algebra with
unit U(g_). In fact, one can show that the unit equals to (1), 1 € U(g-).

Similar statements apply to the algebra U(gy ).

Proposition 4.3. The map Up(g+)®Ur(g-)—Un(g) given by a®b—rab is an iso-
morphism.

Proof. The statement is true because it holds modulo A. O
4.2. Polarization of the R-matrix

Define the element R € Uy(g4)®Ur(g-) by the identity
Rofo(iy ®i) = f (4.2)
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in Hom(M,®M_, M_®@M,). It is obvious that such an element is unique. It can
be computed as follows.

Let v @ My[[h]]=2Ux(g=) be the linear isomorphism defined by the equation
v(z(14®1_)) = mz(z) for any z € F(My). Let K € U(g)®*[[h]] be given by
K= (¢_1®¢~1) (@;%‘34(1®<I)2’3’4)3€—-h923/2(1®(I)2—é74)¢1‘2734(1+®1+®1~®1_)).

(4.3)
Then it is easy to check, using (4.2), that

R = (vav)(K M2 (1_®1,)). (4.4)
Proposition 4.4. R=R.
Proof. According to (3.10), the R-matrix R € Up(g)®U(g) is defined by the con-
dition that for any V,\W € M and v ¢ F(V)}, w € F(W) one has the equality
R (v@w)offrz0(it®i-)
= fo(w@v)ofaz0(i+ ®i-) (4.5)

in Hom(M,®M_,VeW).

By the functoriality of the braiding, R?{(v@w) = ﬁoR(w@v)oﬁE}Sll. Besides,
Bi2,34 = P23081200340023. Substituting this into (4.5) and taking into account that
Boiy = iq, we get

R(wgv)offyy' o(is &i-)
= (wQv)ofaz0(i+®i_) (4.6}
in Hom(M.@M_,WeV).
To show that R = R we have to prove the identity
(10R®1)o(iy@181Ri_)of3 o(i,®i_)
= Bo30(i ®i..) 4.7)

in Hom(M,.QM_, M. QM_QM QM.).
Interchanging the order of factors on the left-hand side of (4.7) and using Lemma
2.3, we can rewrite (4.7) in the form

(1®R®1)0f4 o(1®i4®i_®1)o(i4®i_)
= Bago(1+®i-) (4.8)

in Hom(M,@M_, M. QM_®M,.®M._)}.
It is obvious that identity (4.8) follows from the definition of . The proposition
is proved. O
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4.3. Subalgebras Up(gy) in terms of the R-matrix

Let Up(gs)* = Homua(Upn(gs), k[[h]]). Define k[[h]]-linear maps p+ : Up(gs)*—
Un(9+), by p+(f) = (M) (R), p-(f) = (f®1)(R). Let U be the images of the
maps p+, and Uy be the closures of the k[[h]]-subalgebras generated by U...

Proposition 4.5.
Un(g2)®uapk((R)) is the h-adic completion of Us®pnyk((R)).

Proof. We prove the statement for (~]+. The proof for U_ is similar.
We start with the following statement.

Lemma 4.6. For any x € U(gy) there exists an element t, € Uy®k{(h)) such
that ¢ty = z + O(h). If z has degree < m with respect to the standard filtration in
Ulgy), then t, can be chosen in such a way that h™t, € U,.

Proof of the lemma. Tt is clear that 1 € Uy since 1 = p. (). So we can set t; = 1.

Now consider the case z € g4. Let f € Up(g-)* be any element such that
f(1) =0and f(@) = (z,a) for any a € g_ and a € Up(g-) such that a = ¢ mod h.
Then it follows from (3.13) that py(f) = hz+ O(h?). So wecan let t, = h™1p, (f).
Thus, the Lemma is true for z € g,. Since Uy is an algebra, the validity of the
Lemma for = € g implies its validity for any = € U(g4.). O

Now we can prove the proposition. Let Ty € Up(gy). Let zg € U(gy) be
the reduction of 75 mod h. Then Ty — £, is divisible by A, so we can consider
Ty = h~}(To —t,,) and repeat our procedure. This gives us a sequence z; € U{g..),
and Tp = >, 5¢tz,, ™. This shows that Tj belongs to the h-adic completion of

U, ®k((h)), as desired. O
Theorem 4.7. The subalgebras Upgy are Hopf subalgebras in Up(g).

Proof. The fact that Up(gy) are closed under the comultiplication A follows from
Proposition 4.5 and identities (3.12). The fact that Uy(g+) are closed under the
antipode S follows from Proposition 4.5 and the identity (S®1)(R) = R, which
holds in any quasitriangular Hopf algebra. O

Remark. Infact, it is possible to prove the following explicit formula for coproduct
in Up(gx): for any z € F(My)
Alma(2)) = (me@me) (Jyh o, (i02)). (4.9)
The proof is a direct verification. A similar formula is contained in Proposi-
tion 9.3.
It is obvious that Up(g4)/AUn(g+) is isomorphic to U(g+) as a Hopf algebra.
Therefore, Up(gs) is a quantized universal enveloping algebra. It follows from

Proposition 3.6 that its quasiclassical limit is the Lie bialgebra g,. Similar state-
ments apply to Ux(g-).
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4.4. Duality of quantized universal enveloping algebras and the quantum
double

The following general constructions can be found in [Drl].

If A is a quantized universal enveloping algebra then the dual A* =
Hom 4(A, k[[h]]) carries a natural structure of a topological algebra. Namely, for
any 7,y € 4, f,g € A* fg{z) = (f®9)(A{z)), and the unit is £. It can be shown
that A* has a unique maximal ideal I*, which is the kernel of the linear map Ak
given by f—7(1) mod h. The topology on A* is defined by the condition that
{(I*)™,n > 0} is a basis of neighborhoods of zero. This implies that the topological
algebras (A®A)* and A*®A* are isomorphic.

The algebra A* has a natural structure of a topological Hopf algebra. Namely, the
coproduct is defined by A(f)(z®y) = f(zy), the counit is 1, and the antipode is 5*.
{The definition of coproduct makes sense since the algebra A*®A* is isomorphic to
(AR A)*.)

As a topological k[[h]}-module, A* is isomorphic to k[[X1,..., Xn]|[[R]].

Let A be any quantized universal enveloping algebra. Let A* be the dual alge-
bra, and let I* be the maximal ideal in A*. Consider the h-adic completion A" of
the subalgebra Y, o b~ (I*)" in the algebra A*®gppk((h)). Then A is a new
quantized universal enveloping algebra [Dr1]. This algebra is called the dual quan-
tized universal enveloping algebra to A.

The algebra A* can be identified with a subalgebra in AY which is constructed
as follows:

Let A" : A—5A®" be the iterated coproduct maps: A%(a) = e(a), A'(a) = q,
A%(a) = A(a),A™(a) = (A1) (A (a)), n > 2.

Let ¥ = {i1,...,5x}C{L,...,n}, and i; < - < ij. Let jx : A%* = 4%" be the
homomorphism defined by jo(a1®...Qar) = b1® ... ®by, a1,...,a; € A, where
by =1ifi¢ X, and b, =am, m=1,...,k.

Let Ag(a) = js(AF(a)), a € A.

Define linear mappings 6, : A—A®" for all n > 1 by

()= Y (1M EAs(e)

2C{1,..,n}

and a Hopf subalgebra A’ = {a € A : d,(a) € h"A®"} in A,

It is easy to check that A* = (AY)'. If A is any Hopf algebra, let A" denote
the Hopf algebra A with the comultiplication A replaced by A°P, and the antipode
S replaced with $~1. A% is also a Hopf algebra.

Now we can define the notion of the quantum double. Let A be a quantized
universal enveloping algebra. Consider the k{[h]}-module D(A) = A®(AY)°?. Let
R € A@A*CA®(AY)?? be the canonical element. We can regard R as an el
ement of D(A)®D(A) using the embedding A®(AY)?P—-D(AY@D(A) given by



Vol. 2 (1996 Quantization of Lie bialgebras, I 19

z®y—zR1®1Qy. Drinfeld [Drl] showed that there exists a unique structure of
a topological Hopf algebra on D(A) such that

(1) A®1, 1®(AY)°? are Hopf subalgebras in D(A),

(2} R defines a quasitriangular structure on D(A), i.e. is invertible and satis-
fies (3.12), (3.13), and

(3) The linear mapping A®(AY)?—D(A) given by a®b—ab is bijective.

D(A), equipped with this structure, is a quasitriangular quantized universal
enveloping algebra. It is called the quantum double of A.
4.5. The quantum double of Uy(g..)
Proposition 4.8. p, is a homomorphism of topological Hopf algebras (Uy(g-.)°?)*
—Un(g4). p- is a homomorphism of topological Hopf algebras Up(g-)* —Up(g4.)P.

Proof. We only prove the first statement. The second one is proved analogously.
It is clear that py is continuous. Also, for any f,g € (Un(g-)°?)* one has

p+(fg9) = (18f9)(R) = (10f®g)(1®AF)(R)) =
= (1&f{(R) - A®g)(R) = p+(f)p+(9);
Alp+(f) = A((AR[)(R)) = (181f)((AR1)(R))
= (181 f)(R13R23) = (1@1RA(f))(Ri3 Ras) = (p+@p+ ) (A(S)).

( ®f®g) (R19R23)

It is obvious that p4.(1) = 1 and e(p4(f)) = &(f) for any f. Also, it is easy to
check that py ((S™)*f) = S(p..(f)). The proposition is proved. O

Corollary 4.9. Uy are Hopf subalgebras in Up(g+). In particular, Up =Uy.

Proof. The first statement is clear. The second statement follows from the first one
and the fact that Uy is closed in Up(g.y), which is easy to check. O

Proposition 4.10. The maps py, p-. are injective.

Proof. We show the injectivity of p; (the case of p_ is similar). Fix an element
f € Un(g-)", f # 0. We can always assume that f #0 mod h. Let z € U(g_) be
such that f(t;) # 0 mod h (where t, was defined in Lemma 4.6), n > 0 be such
that A", € U_, and g € Up(g)* be such that p_(g) = h™t,. Such a g exists by the
definition of n. Then g(p.(f)) = (g®f)(R) = f(p-(g)) = h"f(ty) # 0. Therefore,
p+(f) #0. a

Proposition 4.11. UL = Up(g4)'.

Proof. We give the proof for U,. The proof for U_ is similar.
First we need the following statement.
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Lemma 4.12. Lett € Up(g+)' be an element such that ="t € Up(g4) and h™"™ =
z+O(h), z € U{gs),  # 0. Then z has degree < n.

Proof of the lemma. By the definition, 6,41 (h~"¢) is divisible by h. On the other
hand, 8,41 (A""t) = Spy1(z) + O(h). Thus, éyy1(z) = 0, which implies that the
degree of z is < n, since the kernel of 6,01 on U(gy) is the set of all elements of
U(gy) whose degree is < n. O

Now we can prove the proposition. By Lemma 4.6, for any =z € U{gy) of
degree < n, an element ¢, can be chosen in such a way that A"t, € U;. This
implies the inclusion Uy D Up{gs)'. Indeed, let Ty € Up(ge)', and To = A™xq

mod ™1, where 7o € U(gy). Then, according to Lemma 4.12, the degree of z
is < m. Therefore, h™t,, € Uy. Thus, Ty = Ty — h™t,, € Uy and is divisible
by A™*1, so we can repeat our procedure. This gives us a sequence of elements
x; € U(gy) of degrees m; (my = m), such that mg < my < - <m; < ..., and
Ty =3 ;g te;R™. This shows that Ty belongs to Uy, as desired.

To demonstrate the inclusion Uy CUx(g)', observe that according to (3.12),

(A"®1)(R) = Rint1 - Rant1.
This implies that
(6,®1)(R) = (Rint1 — 1) ... (Ban1 — 1) = O(R").
Therefore, 8, (p+(f)) is divisible by A™ for any f € Up(g-)*. O

Comparing our results with the definitions of the previous section, we see that
we have obtained the following result.

Theorem 4.13. Let g, be a finite-dimensional Lie biolgebra and (g,9+,9-) the
associated Manin triple. Then

(i) There exist guantized universal enveloping algebras Uy(g) and Up(g+)C
Upn(g), which are quantizations of the Lie bialgebras g, g+ Cg respectively;

(ii) The multiplication map Up(g9+)QUn(g-)—Ur(g) is a linear isomorphism,

(iil) The algebras Up(g+), Un(g-)"? are dual each other as quantized universaal
enveloping algebras, in the sense of Drinfeld [Dri];

(iv) The factorization Up(g) = Un(g+)Un(g-) defines an isomorphism of Un(g)
with the quantum double of Up(g+);

(v) Un(g) is isomorphic to U(g)[{lR]] as a topological algebra.

5. Quantization of solutions of the classical Yang—-Baxter equation

Let A be an associative algebra over k with unit, and r € A®A. The element r is
called a classical r-matrix if it satisies the classical Yang-Baxter equation

[r12,713] + [r12, ra]) + [r13,723] = 0. (5.1)



Vol. 2 (1996) Quantization of Lie bialgebras, I 21

We say that r is unitary if v = —r. An algebra A equipped with a classical
r-matrix r is called a classical Yang-Baxter algebra. A is called unitary if r is
unitary.

Let A be a topological algebra over k[[h]]. Let R € A®A. We say that R is a
quantum R-matrix if it satisfies the quantum Yang-Baxter equation

RiaRy3Hy3 = RogRiaRyo. (5.2)

We say that R is unitary if R? = R™1. A topological algebra A4 equipped with a
quantum R-matrix R is called a quantum Yang-Baxter algebra. A is called unitary
if R is unitary.

The following theorem answers question 3.1 in [Dr3]. It shows that any classical
Yang-Baxter algebra can be quantized.

Theorem 5.1. Let A be an associative algebra with unit over k, and r € AQA
be a classical r-matriz. Then there exists a quantum R-matriz R € A®A[[h]] such
that R =1+ hr mod h%. If in addition v is unitary then R is also unitary.

Proof. We start with a construction of Reshetikhin and Semenov-Tian-Shansky
[RS]. Let g+ = {(1xf)(r), f € A*}, g = {(f®1)(r), f € A*} be vector subspaces
in A. It is clear that g, g.. are finite-dimensional, r € g, ®g., and the map
Xr : g4 —g- defined by x,(f) = (f®1)(r), is an isomorphism-of vector spaces.

Remark. Note that the spaces gy and g.. may intersect nontrivially and even
coincide.

Lemma 5.2. g, g_ are Lie subalgebras in A.

Proof. Let z,y € gy, z = (10f)(r), v = (1®g){(r). Using (5.1), we have
[zy] = (18 f®g)([r12r2s]) = —(1®f®g)([r12 + m13,723]) = (1@A)(r),  (5.3)

where h € A%, h{a) = (f®g)(Ir,a®l + 1®a]). Thus, [zy] € g4, ie. gy is a Lie
algebra. The proof for g_ is similar. O

Let g = g+®g_ be a vector space. Define the skew-symmetric bracket [, ] :
g®g—+g as follows. If z,y € g4 or x,y € g then the bracket [zy] is the Lie bracket
in gy or g, respectively. If € gy, y € g, then [zy] is defined by

[ay) = (ad"z)y - (ad"y)z. (5.4)

Let 7 : g— A be the linear map whose restrictions to g, g—.are the corresponding
embeddings. The restrictions of 7 to g, g are injective but in general 7 itself is
not an embedding.

Lemma 5.3. #([zy]) = [#(z),7(y)], z,y € g.

Proof. The Lemma is a direct consequence of the classical Yan-Baxter equation.
!
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Lemma 5.4. (g,[,]) s a Lie algebro.

Proof. We have to check the Jacobi identity in g. It is enough to check it for three
elements a, z, y such that a € g4, z,y € g... For brevity we write a{z) for (ad”a)z.
We have

[a[zy]] = a([zy]) - [zy)(a),
lazl] = [y, a(z) — 2(a)] = [y, a(2)] - y(z(a)) +y(alz)),
[zlyal] = [z,y(a) — aly)] = —[z, a(¥)] + 2(y(a)) — z(a(y))- (5:5)

Adding these three identities, and using the fact that [zy](a) = z(y(a)) — y(z(a)),
we get

la[zy]] + [ylaz]] + [zlya]] = alfzy]) + [y, a(2)] — [z, a(y)] + y(a(z)) — z(a(y)). (5.6)

Denote the right-hand side of (5.6) by X. Applying 7 to both sides of (5.6), and
using Lemma 5.3 and the Jacobi identity in A, we get

m{(X) =0. (5.7)

Since X € gy, and 7 is injective on gy, we get X = 0, which implies the Jacobi
identity in g. ]

Let (, ) be the inner product on g such that (z +z_,yr+y-) = z_-yy +y— -z,
where 24,94 € g4, 7-,y— € g, and the dot denotes the natural pairing g_®g,—k
defined by the map x,. This inner product is ad-invariant. Thus, (g, g+,9-) is a
Manin triple.

Now we can finish the proof of the theorem. Lemma 5.3 implies that = : g—A
is a homomorphism of Lie algebras. Therefore, it extends to a homomorphism of
associative algebras 7 : U{g)—A. Furthermore, (g, g+, g-) is a Manin triple. The
Lie bialgebra g is quasitriangular, and its quasitriangular structure is defined by
the classical r-matrix 7 = 3 2% ®z%, where %, is a basis of g, and 2’ is a dual
basis of g_.. Note that (7®@n)(F) = r.

By Theorem 4.13, there exists a quasitriangular topological Hopf algebra Ux(g),
with a quasitriangular structure R € Uy (g)®Uy(g). Moreover, the associative alge-
bra Up(g) is isomorphic to U(g)[[h]], and the isomorphism can be chosen to be the
identity modulo h. Thus, we can assume that R € (U(g)®U(g)){[h]].

Set R = (n®n)(R). From what we said above it follows that R satisfies (5.2)
and R = 1+ hr modulo A%

Assume now that r°? = —r. Let 0 =7 + 7oP. It follows immediately from the
construction of R that RPR is conjugate to e’ But (n@7)(Q) =7 +r°? = 0.
This implies that R°?R = 1, as desired. The theorem is proved. ]

Let R be the ring of algebraic functions of a variable h with coefficients in k&
which are regular at A = 0.
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Theorem 5.5. Let A be a finite-dimensional associative algebra with unit over
k andr € A®A be a classical r-matriz. Then there exists a family of quantum
R-matrices R(h) € AQA®R such that R =1+ hr + O(h?), h—0. If in addition r
is unitary then R{h) is also unitary.

Proof. "The theorem follows immediately from Theorem 5.1 and the following result
of M. Artin [Ar].

Theorem. Any system of polynomial equations in indeterminates 1, ..., T, with
coefficients in k{h] which has solutions over k[[h]} also has solutions over R.

Indeed, let us write R in the form R = 1 + hr + h*X (h), and look for a series
X (h) such that R satisfies the quantum Yang-Baxter equation, and the unitarity
condition in the case when r is unitary. This is a system of polynomial equations on
the components of X (h) with coefficients in k[h]. By Theorem 5.1, it has solutions
over k[[h]]. Therefore, by Artin’s theorem, it has solutions over R.

6. Quantization of quasitriangular Lie bialgebras
6.1. Quasitriangular quantization of quasitriangular Lie bialgebras

In this section we give a recipe of quantization of a quasitriangular Lie bialgebra a
(not necessarily finite-dimensional), which produces a quantized universal envelop-
ing algebra isomorphic to U(a)[[h]] as a topological algebra. This answers questions
from Section 4 of [Dr3].

Let g+ = {(1xf)(r), f € o*}, g = {(f®1)(r), f € a*} be subspaces in a.
By Lemma 5.2, applied to A = U(a), these subspaces are finite-dimensional Lie
subalgebras in a. Moreover, let g be the vector space g4®g-. This space is a
Lie algebra with bracket defined by (5.4) and an invariant inner product. By
Lemma 5.3, we have a natural homomorphism of Lie algebras 7 : g—a, and it is easy
to see that this homomorphism is a morphism of quasitriangular Lie bialgebras.

Let M be the category whose objects are a-modules, and morphisms are defined
by Homay, (V, W) = Hom,(V, W)[[h]]. Let M, be the Drinfeld category associated
to g. We have the pullback functor 7% : Mo—M,. Define the braided monoidal
structure on M, to be the pullback of the braided monoidal structure on M. This
definition makes sense, since the element ) = r + r°? € gRg is g-invariant by the
definition of a quasitriangular Lie bialgebra.

Let M., M_ be Verma modules over g. Define a functor F : M;—A by
F(V) = Homa, (My®@M_,7*(V)). The tensor structure on F is introduced in the
same way as in Section 1.8. Let H = EndF. Since the functor F is isomorphic to
the “forgetful” functor V— “the k[[h]]-module V[[h]}”, the algebra H is isomorphic
to U(a)[[R]] as a topological algebra over k[[h]]. On the other hand, H has a natural
coproduct and antipode defined analogously to Section 3.2, and a quasitriangular
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structure R € H®H defined analogously to Section 3.5. It is easy to check that the
quasiclassical limit of H is the Lie bialgebra a, and R = 1+ hr + O(h?), so r is the
quasiclassical limit of R.

Furthermore, suppose that the original Lie bialgebra a is triangular, i.e. r is a
unitary r-matrix. Then Q = r + r% = 0, and hence R%?R = J'e"?J =1 so the
Hopf algebra H is triangular, too.

Thus, we have the following theorem:

Theorem 6.1. Any gquasitriangular Lie bialgebra a admits a quantization U,ft(a)
which is a quasttriengulor quantized universal enveloping algebra isomorphic to
U(a)[[h]] as a topological algebra. If a is trianglar, so is Uf ().

Remark. In the second paper of this series, we will show that as a topological
Hopf algebra, U*(a) is isomorphic to Uy(a).

6.2. Representations of Ux(a)

Let a be a quasitriangular Lie bialgebra (not necessarily finite-dimensional). By
a representation of UZ(a) we mean a topologically free k[[h]]-module V' together
with a homomorphism 7y : Ugt{a)ﬁEndthﬂV. Representations of Up{a) form
a braided tensor category, with the trivial associativity morphism and braiding
defined by the R-matrix. Denote this category by R.

The functor F : My—A can be regarded as a functor from M, to R, since for
any W € M, the k[[h]]-module F(W) is equipped with a natural action of UZ*(a).
We denote this new functor also by F. This functor inherits the tensor structure
defined by the maps Jyw.

Theorem 6.2. The functor F' defines an equivalence of braided tensor categories
Ma—R.

Proof. The theorem follows from the definition of the functor F, the algebra U ,‘fé(a)
and the R-matrix R. O

Parr 11

7. Drinfeld category for an arbitrary Lie bialgebra
7.1. Topological vector spaces
Recall the definition of the product topology. Let S be a set, T a topological

space, and T° the space of functions from S to 7. This space has a natural weak
topology, which is the weakest of the topologies in which all the evaluation maps
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TS=T, f—f(s), are continuous. Namely, let B be a basis of the topology on T
For any integer n > 1, elements sy1,...,s, € S, and open sets Uy,..., U, € B,
define V(s1,...,80,U1,...,Un) = {f € TS : f(s;) € U, i = 1,...,n}. Let B
be the collection of all such sets V. This is a basis of a topology on T° which
is called the weak topology. The obtained topological space is the product of
copies of T corresponding to elements of S. If X is any subset in 7%, the weak
topology on T induces a topology on X. We will call it the weak topology as
well.

Let k be a field of characteristic zero with the discrete topology. Let V be a
topological vector space over k. The topology on V is called linear if open subspaces
of V form a basis of neighborhoods of 0.

Remark. It is clear that in any topological vector space, an open subspace is also
closed.

Let V Dbe a topological vector space over k& with linear topology. V is called
separated if the map V— 1(3{10// U) is a monomorphism, where U runs over open
subspaces of V.

Topology on all vector spaces we consider in this paper will be linear and sep-
arated, so we will say “topological vector space” for “separated topological vector
space with linear topology”.

Let M, N be topological vector spaces over k. We denote by Homy (M, N) the
space of continuous linear operators from M to N, equipped with the weak topology.
A basis of neighborhoods of zero in Homy (M, N) is generated by sets of the form
{A € Homy(M,N): Av € U}, where v € M, and U C N is an open set.

In particular, if N = k with the discrete topology, the space Homg (M, N) is the
space of all continuous linear functionals on A, which we denote by M*. It is clear
that a basis of neighborhoods of zero in M™ consists of orthogonal complements of
finite-dimensional subspaces in M. In particular, if M is discrete then the canonical
embedding M —(M*)* is an isomorphism of linear spaces. However, if M is infinite-
dimensional, this embedding is not an isomorphism of topological vector spaces
since the space (M*)* is not discrete.

7.2. Complete vector spaces

Let V be a topological vector space over k. V is called complete if the map
V— 1{1_@(‘7 /U) is a epimorphism, where U runs over open subspaces of V.

In particular, if a complete space M has a countable basis of neighborhoods of
0, then there exists a filtration M = My > M1 D ..., such that N,>oM, = 0, and
{M,} is a basis of neighborhoods of zero in M. In this case M = lim, oo M/M,.

Examples.

1. Any discrete vector space is complete.
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2. If V is a discrete vector space then the topological space M = V[[A]] of
formal power series in i with coefficients in V' is a complete vector space.

Let V be a complete vector space, UCV an open subspace. Then U is complete
and V/U is discrete.

Let V, W be complete vector spaces. Consider the space VW =
giLnV/ V1@W /W1, where the projective limit is taken over open subspaces V3 CV,

WiCW. Tt is easy to see that V&W is a complete vector space. We call the oper-
ation ® the completed tensor product.

A basis of neighborhoods of 0 in V@W is the collection of subspaces V&W; +
Vi @W, where V;, W, are open subspaces in V, W.

Example. Let V be a discrete space. Then V®k[[h]] = V[[A]].

Complete vector spaces form an additive category in which morphisms are con-
tinuous linear operators. This category, equipped with tensor product &, is a sym-
metric tensor category.

7.3. Equicontinuous g-modules

Let M be a topological vector space over k, and {A4,,z € X } be a family of elements
of EndM. We say that the family {A,} is equicontinuous if for every neighborhood
of the origin U C M there exists another neighborhood of the origin U'CAM such that
AU C U for all z € X. For example, if M is complete and A € EndM is any
continuous linear operator, then {AA, X € k} is equicontinuous.

Fix a topological Lie algebra g.

Definition. Let M be a complete vector space. We say that M is an equicontinu-
ous g-module if one is given a continuous homomorphism of topological Lie algebras
7 : g—EndM, such that the family of operators 7(g), ¢ € g, is equicontinuous.

Example. If M is a complete vector space with a trivial g-module structure then
M is an equicontinuous g-module.

Let V,W be equicontinuous g-modules. It is easy to check that V®W has a
natural structure of an equicontinuous g-module. Moreover, (VO®W)&®U is naturally
identified with V&(W&®U) for any equicontinuous g-modules V, W, U. This means
that the category of equicontinuous g-modules, where morphisms are continuous
homomorphisms, is a monoidal category. This category is symmetric since the
objects VOW and W&V are identified by the permutation of components. We
denote this category by M§.

7.4. Lie bialgebras and Manin triples

Let a be a Lie bialgebra over k. We will regard a as a topological Lie algebra with
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the discrete topology. Let a* be the dual space to a. The cocommutator defines
a Lie bracket on a* which is continuous in the weak topology, so a* has a natural
structure of a topological Lie algebra.

Burthermore, we equip the space g = a®a* with the product topology. The Lie
bracket on g defined by (1.1) is continuous in this topology.

Let g be a Lie algebra with a nondegenerate invariant inner product {,}. So
far we have no topology on g. Let g..,g— be isotropic Lie subalgebras in g, such
that g = g4+ ®g_ as a vector space. The inner product (,) defines an embedding
g-—rg+ . If this embedding is an isomorphism then we equip g with a topology, by
putting the discrete topology on g and the weak topology on g—. If in addition the
commutator in g is continuous in this topology then the triple (g, g,9-) is called
a Manin triple.

To every Lie bialgebra a one can associate the corresponding Manin triple (g =
ada*, a,a*), where the Lie structure on g is as above. Conversely, if (g,g+,9-) is
a Manin triple then g is naturally a Lie bialgebra: the pairing (,} identifies g, *
with g, which defines a commutator on go*. This commutator turns out to be
dual to a 1-cocycle (cf. [Drl]). Thus, there is a one-to-one correspondence between
Lie bialgebras and Manin triples.

Let (g,9+,8-) be a Manin triple. Let {a;,i € I} be a basis of g, and b* € g_
be the linear functions on a defined by b(a;) = dj;.

Lemma 7.1. Let M be o complete vector space with o continuous homomorphism
g—EndM. Then for any v € M and any neighborhood of zero UCM one has
biv € U for all but finitely many i € 1.

Proof. Let {im € I : m > 1} be any sequence of distinct elements. The bim -0,
m—+00, so bimu—0, m—co, for any v € M. This means that b’v € U for almost
all 1. O

7.5. Examples of equicontinuous g-modules

In this section we will construct examples of equicontinuous g-modules in the case
when g belongs to a Manin triple (g, g.,8-).

Consider the Verma modules M = Indg, 1 M. = Indj 1, (here 1 denotes the
trivial 1-dimensional representation). The modules M. are freely generated over
U{gs) by a vector 14 such that g1 1+ = 0, and thus are identified (as vector spaces)
with U{gs) via 21—z,

Below we show that the module M_ and the module M} dual to M, in an
appropriate sense are equicontinuous g-modules.

Lemma 7.2. The module M., equipped with the discrete topology, is an equicon-
tinuous g-module.

Proof. In order to prove the continuity of was_(g) as a function on g, we have to
check that for any v € M_. the subspace ¥, = {b € g_ : bw = 0}Cg. is open in g_.
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One may assume that v = a;, a4, ... a;, 1... We show that ¥, is open by induction in
n. The base of induction is clear since g_v = 0 if n = 0. Now assume that v = a,w,
where w = a4, ...a;,_, 1. By the induction assumption, we know that Y, is open.
For any b € g we have bv = bajw = [bajlw + ajbw. For any j € I we denote by
W;Cg- the space of all b € g.. such that (18®b)(6(a;)) = 0. It is clear that W is
open. For any b € W;, we have [ba;] € g, since ad"b(a;) = 0 by the definition of
W;. Let Z = {b € g—,[ba;] € Y;, }CW;. By continuity of [,], Z is open. From the
formula bv = [bajlw + a;bw we get Z NY,CY,, i.e. Y, is open, as desired. This
implies the continuity of the homomorphism 7as_ : g—EndM_. The equicontinuity
condition is trivial. O

Let us now introduce a topology on the space M. This topology comes from
the identification of M, with /(g..). The space U(g-) can be represented as a
union of Un,(g.), n > 0, where U,(g-) is the set of all elements of U(g_) of
degree < n. Furthermore, for any n > 0, we have a linear map g®"—U,(g-)
given by 1®...®x,—21 ... 2y, This map induces a linear isomorphism &, :
@?zosj g_—U,(g_), where S7g_ is the j-th symmetric power of g_ (as usual we
set g_® = S%_ = k). Since S7g_ has a natural weak topology, coming from its
embedding to (gfj)*, the isomorphism ¢; defines a topology on U, (g—). Moreover,
by the definition, if m < n then U,,(g_) is a closed subspace in Uy, (g-). This allows
us to equip U(g-), i.e. My, with the topology of inductive limit. By the definition,
a set UCU{g_) is open in this topology if and only if U N U,(g-) is open for all n.

Lemma 7.3. Let g € g. Then mp, (g) is a continuous operator MM, .

Proof. Let g € g. We need to show that for any neighborhood of the origin UCM,.
there exists a neighborhood of the origin U'C M. such that 7, (g)U'CU.

Let U € U(g-) be a neighborhood of zero, and U, = U NU,(g_). To construct
U', we need to construct U}, = U' NU,(g—) such that U}, = U, NUx(g-). Before
giving the construction of U}, we make some definitions.

For any neighborhood U of zero, there exists an increasing sequence of finite
subsets T,,CI, n > 1, such that for any f € S™g_, m < n satisfying the equation
flai,...,a;,) =0foranyiy,...,i, € Ty, one has &,(f) € U. Fix such a sequence
{Th,n > 1}

Let I be as in Section 7.4. For any finite subset JCI denote by S(J) the set of
all ¢ € I such that there exists b € g_ and j € J with the property [bb%](a;) # 0.
Since [bb*](a;) = b®b*(6(a;)), the set S(J) is finite. Let the sets S,(J)CI be defined
recursively by Sp(J) = J, Sp(J) = 5(Sn_1(J)).

To construct U', we consider separately the cases ¢ € gy and g € g—. First
consider the case g € g_.

For any elements x1,...,Z, € g— {n > 1) consider the element

X = Z Za(1)y - ZLo(n)
oESna
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in Uy, (g-.), where S, is the symmetric group. Consider the element ¢X € Up,11(g_).
It is easy to see that it is possible to write ¢X as a linear combination of elements
of the form ) .o ¥Yo(1) - Yo(m) ¥p € 8-, 0 < m < n+ 1, in such a way that
yp are iterated commutators of g and z1,...,%x, and the number of commutators
involved in each term y, does not exceed n.

Now we make a crucial observation.

Claim. Let JCI be a finite subset. If for somem, 1 < m < n, we have x,,(a;) = 0,
for all i € 8,,(J), then every monomial yy .. . ym, in the symmetrized expression of
gX contains a factor y, such that yp(a;) = 0,1 € J.

Proof. Clear.

The construction of U’ is as follows. For n > 1, let U/ CUp(g—) be the span of
all elements £, (f), 0 < m < n, where f € S™g_ are such that f(a;,...,a:,) =0
whenever i1,...,im € Sp{The1). Also, set Uy = 0 (recall that {0}Ck is a neigh-
borhood of zero since k is discrete). Our observation shows that for any X € U/,
9X € Upsy, as desired.

Now consider the case g € g.. Let Ro(g)CI be the set of all 4 € I such that
b'(g) # 0. This is a finite set. Define inductively the sets R,(g) by R.(g) =
S(Bn-1(g))-

For any finite subsets K, JCT denote by P(K, J) the set of all ¢ € I such that
there exists j € J and k € K with [axb%](a;) # 0. It is clear that if K,J are
finite then P(K,J) is finite. Let P,(K,J) be defined inductively by P,(K,J) =
P, a1 (K, J)).

Let n > 1 be an integer, X € U,(g_) be as above, and K = R, (g). Consider the
vector gX 14 € M, Using the relations in M, we can reduce this vector to a linear
combination of vectors of the form ZUGSm Yor  + Yor> Yp € g, 0 <m < n+ 1,
in such a way that y, are obtained by iterated commutation of g, z1,...,z,. As
before, it is easy to see that the resulting symmetrized expression will contain no
more than n commutators.

Now let us make a crucial observation.

Claim. Let JCI be any finite subset. If for somem, 1 <m < n, we have zp(a;) =
0, for oll i € 5,(P(K,S,(J)), then every monomial yy ...Yym in the symmetrized
expression of gX 1, contains o factor y, such that y,(a;) =0, 1€ J.

Proof. Clear.

The construction of U’ is as follows. For n > 1, let U/, CU,(g—) be the span of
all elements £,,(f), f € S™g_, 0 < m < n such that f(a;,,...,a;,) = 0 whenever
1, -yt € Sp(P(K, Sp(Thi1))). Also, set U§ = 0. Our observation shows that
for any X € U/, gX € Upy1, as desired. O

Consider the vector space M} of continuous linear functionals on M,. By
definition, M} is naturally isomorphic to the projective limit of Uy,(g-)* as n—oo.
As vector spaces, Upn(g—)* = (S7g_)* = S7g,. Therefore, it is natural to put the
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discrete topology on Un(g—)*. This equips the module M} with a natural structure
of a complete vector space. It is also equipped with a filtration by subspaces
(M})p = Up—1 +(g-)*, n > 1 such that My = @Mi/(Mi}n

Remark. The topology of projective limit on M} does not, in general, coincide
with the weak topology of the dual. In fact, it is stronger than the weak topology.

By Lemma 7.3, M} has a natural structure of a g-module. Namely, the action
of g on M7 is defined to be the dual to the action of g on M.

Lemma 7.4. M} is an equicontinuous g-module.

Proof. Tt is easy to see that a(M7),C(M3)n, a € g4, and oM ) C(M])n_1,
b € g-. This means that the operators mpsx (g) are continuous for any g € g, and
T (g)CEndM is an equicontinuous family of operators. It remains to show that
the assignment g—7asx (g) is continuous for g € g. Since g is discrete, it is enough
to check this statement for g € g—.

Let f € M}. Let f, be the reduction of f modulo (M3 ),. We can regard f as
an element of @?:085 g+. Let us write f,, in terms of the basis {a;}, and let T,,(f)
be the set of all 4 € I such that a; is involved in this expression.

Let S,(J) be as in the proof of Lemma 7.3, and i € I\ Sp(Th+1(f)). Then it
is easy to see that b'f € (M}),. This shows that for any n > 0 and any f € M}
b'f € (M}), for almost all i € I.

Thus, M7 is an equicontinuous g-module. |

Remark. If g, is infinite-dimensional then M, is not, in general, an equicontin-
uous g-module, since the family of operators {m, (g), g € g+} may fail to be
equicontinuous.

7.6. The Casimir element

Consider the tensor product a®a*. This space can be embedded into Enda, by
(z@y) = fly)x, z,y € a, f € a*. This embedding defines a topology on a®a”,
obtained by restriction of the weak topology on Enda. Let a®a* be the completion
of 3 a®a* in this topology. Since the image of a®a” is dense in Enda, this completion
is identified with Enda.

Lemma 7.5. Let V,W € Mg. The map my@mw : a®a*—End(V@W) extends to
o continuous map ada* —End(VRW).

Proof. Let z € V@W be a vector. It is easy to see that the map my®nw (-)z :
a®a*—V&W is continuous. Since the space VW is complete, this map extends
to a continuous map a®a*—V&W. This allows us to define a linear map 7y @my :
a®a*—End(V@W). We would like to show that this map is continuous.

Let £ € VW be a vector, and n > 0 be an integer. Let PCV®W be an
open subspace, and U = {A € End(V&W) : Az € P}. Since open sets of this
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form generate the topology on End(V&W), it is enough to show that there exists a
neighborhood of zero Y Ca®a* such that (my @mw )(Y)CU, ie. (v @mw )(Y)zCP.

We can assume that P = Vi@W + W&V, where Vi, W, are open subspaces
of V,W. By the equicontinuity of nv (g), 7w (g), g € g, there exist open subspaces
VoV, WaCW such that wy (g)VaCVi, aw (g)WoCWi. Let y € VW be a vector
in the usual tensor product of V and W such that y — z € Va®W + V@W,. Then
for any ¢t € a®a* (my@mw)(t)(y — z) € P, so it is enough to find Y satisfying the
condition (my @mw )(Y)yCP.

We have y = Z;n:l,vj@wj, v; €V, w; € W. Let XCa be a finite-dimensional
subspace such that for any b € X+ Ca* bw; € Wi for j = 1,...,m. Such a subspace
exists by Lemma 7.1. The set ¥ = a®X*L (the completion of a®X* in a®a*)
is open in a®a*, and (my ®7w (Y )yCP, as desired. This shows the continuity of
7y Qmw on ada*. 0

Let r € a®a* be the vector corresponding to the identity operator under the
identification a®a* with Enda. Let 7°P € a*®a be the element obtained from r by
permutation of the components. We define the Casimir element ) € a®a*®@0*®a
to be the sum 7 + r°P. It is easy to see that 7 = 3 a;®b, 1P = Y b'®a;, Q =
Z(a,@bi + b’®al)

Let V, W be equicontinuous g-modules, and denote by ny : g—EndV, nw :
g—EndW the corresponding linear maps. Let Qyw = my®@mw (). This endo-
morphism of V&W is well defined and continuous by Lemma 7.5. Moreover, it is
easy to see that Qvw commutes with g, so it is an endomorphism of V&W as an
equicontinuous g-module.

Remark. Although the Casimir operator @ = 3 (a;®b* + b'®aq;) is defined in the
product of any two equicontinuous g-modules VW, the Casimir element C =
S>(aib® + b'a;) in general (for dima = co) has no meaning as an operator in an
equicontinuous g-module V.

7.7. Drinfeld category

Let M?® denote the category whose objects are equicontinuous g-modules, and
Hom e (U, W) = Homgy (U, W)[[h]]. This is an additive category. For brevity we
will later write Hom for Hom pqe.

Define a structure of a braided monoidal category on M? analogously to Sec-
tion 1.4, using an associator ® and the functor ®. As before, we identify AM® with
a strict category and forget about positions of brackets.

Let v be the functorial isomorphism defined by vxy = By € Hom(X®Y,
YRX), X,Y € M. It is easy to check that v is a braiding on M®. We will need
the braiding -+ in our construction below.
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8. The fiber functor
8.1. The category of complete k[[h]]-modules

Let V be a complete vector space over k. Then the space V[[h]] = V®kK[[h]] of
formal power series in A with coeflicients in V' is also a complete vector space.
Moreover, V[[h]] has a natural structure of a topological k[[h]]l-module. We call a
topological k[[h]]-module complete if it is isomorphic to V[[A]] for some complete V.

Let A°¢ be the category of complete k[[h]]-modules, where morphisms are con-
tinuous k[[h]]-linear maps. It is an additive category. Define the tensor structure
on A¢ as follows. For V,W € A° define V@W to be the quotient of the completed
tensor product V&W by the image of the operator h®1 — 1®h. It is clear that for
V,W € A°, V&W is also in A°. The category A° equipped with the functor @ is a
symmetric monoidal category.

Let C'Vect be the category of complete vector spaces. We have the functor of
extension of scalars, Vi V[[h]], acting from C'Vect to .A°. This functor respects
the tensor product, i.e. (V®W)[[h]] is naturally isomorphic to V[[h]]@W [[h]].

8.2. Properties of the Verma modules

Let {g,9+,9—) be a Manin triple, and M?® be the Drinfeld category associated to
g. Let M, M_ be the Verma modules over g defined in Section 7.5.

Recall that the modules My are identified with U(gs). Thus, we can define the
maps 4+ : Me—ML®M, given by comultiplication in the universal enveloping al-
gebras U(gz). These maps are U(g)-intertwiners, since they are U(g4)-intertwiners
and map the vector 14 to the gr-invariant vector 1+ ®1..

Let M} be as in Section 7.5, and f,g € M. Consider the linear functional
M —k defined by v—(f®@g)(ix(v)). It is easy to check that this functional is con-
tinuous, so it belongs to M. Define the map % : MI®M}—M7 by it (f®g)(v) =
(f®g)(i+(v)), v € M. It is clear that 1% is continuous, so it extends to a morphism
in M iy Mi®Mi—M].

Let V € M. Consider the space Homg(M_, M3 ®V), where Homg denotes the
set of continuous homomorphisms. Equip this space with the weak topology (see
Section 7.1).

Lemma 8.1. The complete vector space Homg(M_,M_t@V) 1s isomorphic to V.
The isomorphism is given by f—(1,®@1)(f(12)), f € Homg(M_, M1 &V).

Proof. By Frobenius reciprocity, Homg (M ,,Mj;@)V) is isomorphic, as a topolog-
ical vector space, to the space of invariants (Mj;@V)Q—, via f—f(1.). Consider
the space Homg (M4, V) of continuous homomorphisms from M, to V, equipped
with the weak topology, and the map ¢ : (M}&V)—Homy(M.,V), given by
o(fev)(x) = f(x)v, v € MY, z € My, v € V. It is clear that ¢ is injective
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and continuous.
Claim. The map ¢ restricts to an isomorphism (M:®V)®- —Homg (M, V).

Proof. It is clear that ¢({M;&V)®-)CHomy (M, V). So it is enough to show that
any continuous g_-intertwiner g : M, —V is of the form ¢(g'), ¢ € (Mi&V)9-,
where ¢’ continuously depends on g.

Let XCV be an open subspace. Then for any g.-intertwiner g : M, —V and
n > 1 the image of g(Un(g-)1+) in V/V,, is finite-dimensional. This shows that
g = ¢(g') for some ¢' € (V®M7)®-. It is clear that ¢' is continuous in g. The
claim is proved.

By Frobenius reciprocity, the space Homg_ (M, V) is isomorphic to V as a
topological vector space, via f—f(14). The lemma ig proved. O

8.3. The forgetful functor

Let F : M®—A° be a functor given by F(V) = Hom(M_, M3®V). Lemma 8.1
implies that this functor is naturally isomorphic to the “forgetful” functor which
associates to every equicontinuous g-module M the complete k{[A}]-module M[[A]].
The isomorphism between these two functors is given by f—(1+®1)(f(1.)), for
any f € F(M). Denote this isomorphism by .

8.4. Tensor structure on the functor

From now on, when no confusion is possible, we will denote the tensor product in
the categories M? and A° by ®, instead of ® and ®.

Define a tensor structure on the functor F constructed in Section 8.3.

For any v € F(V), w € F(W) define Jyw (v®w) to be the composition of
morphisms:

i vQw 1®723®1
M_—— M_@M_ ———— M;VeMieW
19181
Mi@M;®VW ———— MIoVeW, (8.1)

where o3 denotes the braiding v acting in the second and third components of the
tensor product. That is,

Jvw (v@w) = (1L ®101)o(1@v23®1)o(v@w)oi_. (8.2)

Proposition 8.2. The maps Jyw are isomorphisms and define o tensor structure
on the functor F.

Proof. It is obvious that Jyw is an isomorphism since it is an isomorphism mod-
ulo A.

To prove the associativity of Jyw, we need the following result.
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Lemma 8.3. (i_®1)oi. = (1®i-)oi_ in Hom(M_,M®?); (iL®1)oi} =
(1% )oi%. in Hom(M3, (M3)®®).
Proof. The proof of the first identity coincides with the proof of Lemama 2.3 in Part L.
To prove the second identity, define M, ®M, &M, to be space of continuous linear
functionals on M}&®M;®M7. Since the operators €;; € Endy (M} &M QM)
are continuous, one can define the dual operators (27; € Endg (M. &M, ®M,), and
hence the operator ®* dual to ®. It is easy to show analogously to the proof of
Lema 2.3 that $*(1,®1,®14) = 1. ®1,®1, which implies the second identity of
Lemma 8.3.

Now we can finish the proof of the proposition. We need to show that for any v €
F(V), w € FW), u € F(U) Jvgwuo(Jywel)(v@wedu) = Jywero(l®Jwy)
{(v@w®u), i.e.

(%, ®101®1)ovs3,50(1; 10111 )opazo(v@WRU)o(i_®1)oi_
= (i% ®101®1)oy230(101RE; ®1®1)oyso(VRWEU)o(1Ri_)oi (8.3)
in F(VeWU), where 734 means the braiding applied to the product of the
second and the third factors and to the fourth factor. Because of Lemma 8.3 and
commutation relation of y33 4 and i} ®1®1®1®]1, identity (8.3) is equivalent to the
identity
(13 ®109181)o(i} ®1810181)0y34 50%23
= (i1 018181)oy30(1R1®i; ®181)ovss (8.4)
in Hom(M;@VOM;eWeoMoU, MieVeWel).
To prove this equality, we observe that the functoriality of the braiding implies

the identity
1230(101®i% @1®1) = (1R Q®1R1®1)oys 34. (8.5)

Using (8.5) and the identity (i ®1)oi*% = (1®i% )oi}, which follows from Lemma
8.3, we teduce (8.4) to the identity 734 5723 = Y2,34745 which follows directly from
the braiding axioms. O

We will call the functor F equipped with the tensor structure defined above the
fiber functor.
9. Quantization of Lie bialgebras
9.1. The algebra of endomorphisms of the fiber functor
Let H = End(F) be the algebra of endomorphisms of the functor F, with a topology

defined by the ideal hHCH. It is clear that H is a topological algebra over k[[h]]
{see Part I, Section 3.1).
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Let Hy be the algebra of endomorphisms of the forgetful functor M§—CVect.
It follows from Lemma 8.1 that the algebra H is naturally isomorphic to Ho[[h]].

Let F? : M® x M®—.A° be the bifunctor defined by F2(V,W) = F(V)QF(W).
Let H?> = End(F?). It is clear that H? D H®H but H? # H®H unless g is
finite-dimensional.

The algebra H has a natural “comultiplication” A : H—H? defined by A{a)v,w
(vew) = Jywavew Jvw (v®w), a € H, v € F(V), w € F(W) where ay denotes
the action of a in F (V). We can also define the counit on H by e(a) = a1 € k[[h]],
where 1 is the neutral object.

A topological algebra A over k[[A]] is said to be a topological bialgebra if it is
equipped with a coproduct A : A5+ A®A (where ® is the tensor product in A) and
a counit & : A—k[[h]] which are k[[h]]-linear, continuous, and satisfy the standard
axioms of a bialgebra.

We will need the following statement.

Proposition 9.1. Let ACH be a topological subalgebra such that A{A)CA®A.
Then (A, A, €) is a topological bialgebra over k[[h]].

The proof is straightforward.

Remark. For infinite-dimensional g, the algebra H equipped with the topology
defined by the ideal hH is not a topological bialgebra since A(H) is not a subset
of HRH.

In the following sections we construct a quantum universal enveloping algebra
Un{g+), which is a quantization of the Lie bialgebra gy, in the sense of Drinfeld
(see [Drl} and Part I, Section 3.1). Namely, the algebra Up(g,) is obtained as a
subalgebra of H such that A(A)CA®A.

9.2. The algebra Ux(g,)

Let z € F(M_). Define the endomorphism m (z) of the functor F as follows. For
any V € M¢, v € F(V), define the element m4.(x)v € F(V) to be the composition
of the following morphisms in M® : my(z)v = (i1®1)o(1®v)oz. This defines a
linear map my : F(M_)—H. Denote the image of this map by Up(g+).

It is easy to see that for any a € U(gy) 7(my(al-)v) = a7{v) mod h, which
implies that m. is an embedding.

Proposition 9.2. U,(gy) is a subalgebra in H.
Proof. Using Lemma 8.3, for any z,y € F(M_),V € M*®, v € F(V) we obtain
my(z)mi(y)v = (IL81)o(10i1 ®1)o(181Qv)o(1Qy)ox
= (i3 ®1)o(i} ®1®1)o(101xv)o(1Qy)ox
= (11®1)o(18w)o(i} ®1)o(1®y)ox
= (i ®1)o(1®v)oz, (9.1)
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where z = (i1 ®1)o(y®1)ox € F(M_). So by the definition we get m., (z)om(y) =
m4.(2).

Note that the algebra Ug{gy) is a deformation of the algebra U(gy). Indeed,
we can define a linear isomorphism g : U(gy)[[Al]—=Un(g+) by pla) = m—_(al-),
a € U(gy)[[h]]. This isomorphism has the property pu(ab) = p(a)ou(h) mod A?,
which follows from the fact that ® = 1 mod h, but in general u(ab) # p(a)ou(d).

The subalgebra Up(gy) has a unit which is equal to p(1), 1 € U(gy). To
check this, it is enocugh to observe that u(1) is invertible and check the identity

p(1)* = p(1).
9.3. The coproduct on Uy(gy)
Proposition 9.3. The algebra Up(gy) is closed under the coproduct A, i.e.
A(Un(g+))CUR(g+)®Un(g+), and for any x € F(M_) one has
A(m (@) = (ms&m) (T y_ (18i_)oz)). 92

Proof. Let z € F(M_), VW € M®, v € V, w € W. By the definition of A and
m.., the element A(m (z)) € H? is uniquely determined by the identity

(i1 ®101)o(1®i%. Q181 )y3s0(l@vOw)o(18i_)ox
= (11 ®1®1)oyez0A(my(z))(v@w)oi_ (9.3)

in F(VeW).
The element X = Jy/ ,, ((1®i_)z) € F(M_)®F(M_) is, by the definition,
uniquely determined by the identity
(1®i_)ox = (1R} ®1®1)oysz0X 01 _ (9.4)
in F(M_®M_). Therefore, to prove formula (9.2), it is enough to prove the equality

obtained by substitution of (i* ®1®i* ®1)o(10v@1Qw)oX instead of A(m.(z))
(v@w) in (9.3):

(i:@l@l)oﬂ@ii®1®1)0734o(1®v®w)o(1®i_)om
= (it ®1®1)oyz0(i% 1Ri% ®1)o(1Rv@1Rw)o X o (9.5)

in F(VeW).
Using the functoriality of the braiding and Lemma 8.3, we obtain

(131 ®1Q1)oys0(if @11} ®1)o(1@ue1ew)
= (z‘i’;,®1®1)0723o(i;®1®i1®1)072~3{4o(1®1®v®w)om
= (15.®1@1)0(i ®1} ®181)073 450755 40 (1R 1®VOW) 023
= (1} ©181)o (i} ®i1®1R1)ovss5075; o (1@1@v®W)or2s3
= (iIL®1®1)o(i} ®181®1)o(1Ri% ®1®1®1)ovs5075; o (1@ 1QvAW)oYs (9.6)
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in Hom(MioM_g@Mi@M_,MI®VeW). It is easy to see that ifoy = i}, so
using Lemma 8.3 again, we get from (9.6):

(11 ®1®1)ove30(i% ®1®iT ®1)o(1Qve1Qw)
= (i3 ®9191)o(18i} ®1®1)oysso0(1Quaw)o (il ®1®1)oyss. 9.7)

Substituting (9.7) into the right-hand side of (9.5) and using (9.4), we get

(i3 ®1®1)oyz30(i% ®12i% ®1)e(1Rv1Qw)o X 0i_
= (11®121)o(1®i} ®1®1)oyzso(1®v@w)o (i} ®1®1)ovego X oi_
.= (11 3181)o(18i] ®181)oyz40(1@vQw)o(1®i.. Jox (9.8)

in F(V®W), which proves (9.2). The proposition is proved. O

Corollary 9.4. The algebra Up(g;) equipped with the coproduct A, is a quantized
universal enveloping algebra.

Proof. Tt follows from Lemma 9.1 and Propositions 9.2, 9.3 that U (g..) is a topo-
logical bialgebra over k[[A]] isomorphic to U(g-)[[h]] as a topological k[[h]]-module,
and such that Uy (g4 )/hUs(g+) is isomorphic to U(gs.) as a bialgebra. This implies
that Up(g) has an antipode, because the antipode exists mod h. Thus, Up(gy) is
a quantized universal enveloping algebra. O

9.4. The algebra Uj(gy) is a quantization of g4

Proposition 9.5. The algebra Up(g..) is a quantization of the Lie bialgebra g. .

Proof. Let x € Uy(g4+) be such that there exists 2o € g4 CU(gy) satisfying the

condition = 9 mod h. It is easy to show that for any V,W & M¢
T;éWOJVWO(TV(X)Tw) =1 +ﬁ7‘/2+0(h2) (9.9)

in End(V®W). From (9.9) and the definition of coproduct, analogously to the proof
of Proposition 3.6 in Part T, it is easy to obtain the congruence

h Y (A(z) — A%(z)) = 6(zo) mod h. (9.10)

which means that Uy (g4.) is the quantization of g,.. O
Thus we have proved the following theorem, which answers question 1.1 in [Dr3].

Theorem 9.6. Let a be a Lie bialgebra over k. Then there exists a quantized
uniwwersal enveloping algebra Un(a) over k which is a quontization of a.
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9.5. The isomorphism between two counstructions of the gquantization

Let us compare the results of the previous sections to the results of Part L.

In Part I, we showed the existence of quantization for any finite-dimensional Lie
bialgebra. Let (g, g4, g-) be a finite-dimensional Manin triple. Let Up(g4+) denote
the quantization of g, constructed in this section, and by U, »{g1) the quantization
constructed in Part 1.

Proposition 9.7. The quantized universal enveloping algebras Ux(g:), Unlgy)
are isomorphic.

Proof. If g is finite-dimensional, then M, is an equicontinuous g-module. Let
F : Me—A° be the functor defined by F(V) = Hom(M,®M_,V), V € M. The
tensor structure on I can be defined as in Part I.

Let 0 € Hom(1, M;®M, ) be the canonical element. Consider the morphism
x : F—F, defined as follows. For any V € M, v € F(V), define xv(v) € F(V) as
the composition xy (v) = {1&v)e(o®1). It is obvious that x is an isomorphism of
additive functors.

Claim. x is an isomorphism of tensor functors.

Proof. The statement is equivalent to the identity
(1ov®w)oB340(1Riy ®i_)o(o®1)
= (i1 ®181)oy30(18vR1QW)o (0®1R0®1)oi _, (9.11)

which should be satisfied in Hom(M_, M} ®V®W) for any V,W € M?, v € ﬁ(V),
w € F(W). Using the identity (1@v@1@w)oyes = 7Y23,40(1®1RvQwW), we re-
duce (9.11) to the identity
B40(1®i4®i_)o(0®1)
= (11 91010181)ovy23 40(0®1Qc®1)oi_. (9.12)
in Hom(M_, M @M @M _@M,®M_). Moving (334 from left to right and inter-
changing 83, with i} ®1®1®1®1, we see that (9.12) is equivalent to the identity:
(101, ®i_)o(o®1)
= (i1 019180181)08; v23,10(c 1@ ®@1)oi _ (9.13)

in Hom(M_, Mi®M, @M, @M_@M_). It is clear that v 230(1®0) = o®1 in
Hom(M_, M_®M}®M,). Therefore, using the relations 'yggywﬁf) = Y237.a » and
By =1, we reduce (9.13) to

<1®’L'+)00' = (ii@l@l)oyggo((?@cr) (914)
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in Hom(1, M} ®M_ ®M,). Since i} oy =i}, we can rewrite (9.14) as

(1®i4)oo = (i1 ®1®1)oy2 30(0®0). (9.15)
Using the equality y12,30(0®1) = 1®0, we reduce (9.15) to

(1®iy)o = (i ®1®1)o(1®r®1)o0. (9.16)

To prove this equality, we compute the image of 1 € 1 under right-hand side
of (9.16). In this calculation, we can ignore the action of the associator because for
any representations Vi, Va2, V3 of g the associator acts trivially on the g-invariants in
V1®@Vo©@Vs. The calculation yields that 1 goes to (1®4.4.)(o(1)), which proves (9.16).
The claim is proved.

Let M C M¢ be the full subcategory of discrete g-modules, and Uy(g) =
End(F| ) be the quantization of g constructed in Part L. It is easy to show that the
homomorphism of topological Hopf algebras EndF—U(g) defined by restriction
from M€ to M is an isomorphism, since both algebras are canonically isomorphic
to U(g)[[h]]. This means that the morphism y defined above induces an isomor-
phism of topological Hopf algebras Uy(g), Un(g). It is easy to check that this
isomorphism maps U (gy) onto Uy (g, ), which proves the proposition. O

Appendix: computation of the product in Uy(a) modulo A3

To illustrate the construction of quantization of Lie bialgebras, here we compute
the product in the quantization Uy(a) of a Lie bialgebra & modulo h%. In the text
below we always assume summation over repeated indices.

Let {a;,i € I} be a basis of a, and {b*} be the topological basis of a* dual to
{a;}. Let us write down the commutation relations for the Lie algebra g = a®a™:

laia;] = cbiag, [B6] = £70F, [aib’] = fFay — o] bk, (A1)

Let 13 € M3 be the functional on M7 defined by 17 (z14) = e(z), z € U{a).
Let {(M1)n} be the filtration of M} which was defined in Chapter 7.
For z € U(a), let ¢, : M_—M}&®M_ be the g-intertwiner such that

Yl =10zl mod (M]);.

For z,y € U{a), we defined the quantized product z = yoz to be the element of
U(a)[[R]] such that the operator 1), is the composition

Yo . 1&1y . . 3!
M. ——— M{OM_ —— MIQ(M[QM_ ) ———

i ®1

~ ~ ® ~
(MIOMSM_ — s M GM_. (A2)
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We want to compute the product azoa, modulo h*. We fix elements p; € M,

i € I, such that p;{14) = 0, p;(p'1L) = 5{ . These elements are uniquely defined
modulo (M} )a.
Let w! € M_ be the vectors such that

Yo, 1- =11 ®apl_ + piow' mod (MI)@M_. (A3)
We must have b1, 1 = 0 for all , so 11.®ba,1_ + b p;@w; = 0. But Pp;(1y) =
pi(—bI1y) = =6, s0 we get w' = blayl_ = —fika,1 .
Thus we get
Yo, 1- = 15®a,1- ~ f¥p;@arl. mod (MI),@M_. (A4)

Using (A4), we get
Yo, 0rl- = (0,21 4+ 1®ar )b, 1. =
1" ®ara,l_ ~ f;karp@ak — f;&pi@)arakl” mod (M} )2®&M_. (A5)

We have ' ‘ 1 4
arpi(V14) = —pila,b/1y) = pi(cl bP14) = ¢, (A6)

Thus, substituting (A8) into (A5), we get

Yo, 0,1 =17 @000l — ;’“cii/}j(@aklw - f;kpi@)a,ﬂakl‘ mod (]\4:_)2®M_.

(A7)
In particular, we have
(189, W0, 1- = 1101 ®aga,1
”Ciifsk]fr@Pj@akL - ;kli(gpi@apakl— - f;kpi®11®akaql_+
Fcl, fl pipj®asl- + fF fe pi@p®aras] -
mod (M )2 ®MIQM_ + MI&(M]),@M_. (A8)
The definition of an associator implies
hZ
o= 1+ —“{tlg, tgg] -+ O(hg) (AQ)

24

(see [Dr2], [Dr4]). This means that the part of the h?-coefficient of (b;llVng which
belongs to a*®@a*®a a is 57ck0 @b Qay.
Now let us apply ! to both sides of (A8). We want to compute the answer

in the form 17 ®1,®u+ ..., v € M_[[h]]. To do this, we only need to use the last
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two terms on the r.h.s. of (A8) and the a*®a-part of the quadratic term of ®. The
calculation gives

-

H1®Ya, e, 1- = 15.015.0u mod (M) @MIQM_ + MI&(MI)1&M_,

h?, . ; .
U = agapl_ + éz(f;kféscilc;?amas + f;”féscflaranas)l_. (A10)

This shows that

000y = G0y -+

2

51( ;kfégcilcgamas + f;;n éscglaranas) + O(h%). (A11)

This formula is analogous to the formula deduced by Drinfeld [Dr3] (equation 1.1).

Remark. It is easy to see that this formula contains only acyclic monomials. In
the second paper we will show that this is true for all coeflicients of the quantization.
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