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Zusammenfassung 

Es wird die Aufgabe der freien Flt~ssigkeitssehwingungen in Beh~ltern geringer Tiefe unter- 
sucht, und zwar fftr ebene und axial-symmetrische Schwingungen. Insbesondere wird die Frage 
beantwortet, weIehen Wert die zweite harmonische Schwingungsfrequenz h6chstens annehmen 
kann, wenn zwar der InhaIt des Beh~lters vorgegeben ist, dagegen nieht seine Gestalt. Im Gegen- 
satz zu einer frtiheren Untersuchung werden jedoch ftir dieses isoperimetrische Problem nur 
konvexe Beh~lter zugelassen. Mathematisch 15.sst sich das Ergebnis etwas weiter fassen: Es wird 
eine obere Schranke ftir den niedrigsten (nicht trivialen) Eigenwert einer Klasse yon Sturm- 
Liouville Aufgaben ermittelt, wobei sich herausstellt, dass zur Abgrenzung dieser Klasse zwei feste 
Punkte im Integrationsintervall eine ausschlaggebende Rolle spielen. 
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1. I n t r o d u c t i o n  

Design of s t ructural  elements for m in imum weight  was one of the early applica- 

tions of var ia t ional  calculus (see, for instance, [1]). The  cus tomary  procedure uses 

only the Euler  equat ion of the problem, which is a necessary condit ion for the s t ructura l  

weight  to be s tat ionary,  but  does not  gua ran ty  a local or global minimum.  As Prager  

and Taylor  [2] have shown, this procedure can, in m a n y  cases, be supplemented  by  

an energetic approach tha t  yields a sufficient condit ion for a global m i n i m u m  of 
s t ructura l  weight. This approach, however,  is only feasible if the constraint  imposed 

on the design concerns a s t ructural  p roper ty  tha t  can be character ized by  a global 
min imum or m a x i m u m  principle. For  example,  let the compliance of a l inearly elastic 

s t ructure  under  given loads be defined as the work tha t  these loads do on the displace- 
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ments they produce. I t  then follows from tile principle of minimum potential energy 
that,  for a structure of prescribed compliance, this compliance can be characterized 
as the global minimum of the strain energy for all kinematically admissible displace- 
ment fields (i.e. fields that  satisfy the kinematical boundary conditions and certain 
continuity and differentiability requirements). 

The energetic approach has been used in minimum-weight design for static elastic 
compliance I3-7], dynamic elastic compliance [8], compliance in stationary creep [9], 
elastic buckling load [10, 11], fundamental natural frequency [12-14], and plastic 
load-carrying capacity [15]. In the last-named field, the energetic approach had 
already been introduced by Drucker and Shield [16]. 

The design constraints treated in these references concern structural properties 
that  are characterized by  classical extremum principles of global type. A practically 
important constraint that  cannot be cast in this mold specifies an upper bound on the 
deflection at a certain point of the structure. The present paper discusses the extent 
to which the energetic approach can be applied to design problems of this kind. For 
tile sake of brevity, the general discussion is restricted to sandwich beams, but one of 
the examples concerns the optimal design of a rod. 

2. Principle of Stationary Mutual Potential Energy 

Consider a statically determinate or indeterminate beam that  is simply supported, 
built in, or free, at the ends x - 0 and x = / ,  and may have intermediate hinges or 
supports at specified cross sections. Let s(x) be the variable bending stiffness of the 
beam and consider two states of loading, denoting their distributed loads by q(x), q(x), 
and typical concentrated loads and couples by Q, Q and C, C. Finally, let u*(x), -u*(x) 
be any kinematicalIy admissible deflections of the beam and O*(x) - u*'(x), O*(x) = 
-u*'(x) and ~*(x) = u*"(x), -~*(x) - u*H(x) the corresponding rotations and curvatures. 
Kinematically admissible deflections will be defined in the usual manner as continuous 
deflections that  satisfy the kinematic conditions at the supports and have continuous 
rotations except, possibly, at hinges. This means that  beams with other intermediate 
cross sections of vanishing bending stiffness are excluded from the discussion because 
additional discontinuities of rotation could develop at these sections. This restriction 
is meaningful because beams of the excluded type are not practical. 

The mutual potential energy for these deflections and the given loads will be 
defined as the functional 

}, (2.1> 
where the integrations extend over the entire beam and the sums include all concen- 
trated loads and couples. Note that  this definition reduces to the customary definition 
of potential energy when the barred quantities are identical with the unbarred 
quantities. Note further that  the mutual potential energy for the true deflections 

u(x), -u(x), rotations O(x), O(x), and curvatures ~(x), ~(x) produced by  the considered 
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systems of loads m a y  be written as 

'f  U [ u , u ;  s] = - ~ sz-~dx 

'{/ } 
- 2 

' / /  } = - 2   udx+  u+2 0 . (2.2) 

We shall now prove tha t  the functional U[u*, u*; s] is s ta t ionary  at u* = u, 
u* : u. Indeed, it follows from (2.1) and the first equali ty of (2.2) tha t  

U[u*, u * ;  s] - U[u, u; s] = ~ s ~* -~* dx + s ~ -~ dx 

- / q u *  d x - / q u *  d x - ~ Q u * - ~ - Q u * - ~  C-O* - ~  O*} . (2.3) 

On the other hand, using the principle of virtual work, one readily shows tha t  

/ s  (~* -- ~) (-~* --~) dx : / s  ~* ~* dx + / s  ~ ~dx 

Use of (2.4) in (2.3) furnishes the ident i ty  

g [ u * ,  u * ;  s ]  - U [ u ,  u;  s] = ~ s (~*  - ~) (-~* - -~) d ~  , (2.51 

which applies to any kinematically admissible deflections u*, ~* with rotations 0", 0" 

and curvatures n*, ~*, and the true deflections u, u with rotat ions 0, ffand curvatures 

Applied to the neighborhood u* = u + 8 u, u* = u + 8 u of the true deflections, 
(2.5) furnishes the following first and second-order relations 

8U = 0 ,  (2.6) 

~2U = ~ s b~ O-~ dx , (2.7) 

where 8 n = (8 u)", ~ ~ = (8 u)". The first of these relations shows tha t  U[u*, u*; s] 
is s ta t ionary at u* = u, u* - u. Because, however, the integral on the right of (2.7) 
is not, in general, restricted in sign, we cannot  assert tha t  U[u*, u*; s] has a min imum 
or max imum at u* - u, ~* = ~. 

The principle of s ta t ionary mutual  potential  energy is readily extended to elastic 
plates and shells, and to three-dimensional elastic bodies. 
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3. Appl icat ion to Opt imal  Des ign  for Given Deflect ions  or Rotat ions  

According to the third equali ty in (2.2), the deflection U(Xo) tha t  the loads 
q, Q, C produce at the cross section x 0 of the beam equals - 2  U[u, -u; sl, when the 
second system of loads is reduced to a concentrated unit  force Q at x = x0, and 
similar s tatements  can be made for arbi t rary linear combinations of deflections or 
rotations at specified cross sections. The principle of s ta t ionary  mutual  potential 
energy can therefore be used in optimal design for given static deflections or rotations 
in very much the same way  in which the principle of minimum potential  energy has 
been applied in [2] through [71 to optimal design for given static compliance. As a 
rule, however, the first principle furnishes only a sufficient condition for the structural  
weight to be stationary, whereas the second principle provides a sufficient condition 
for a global min imum of structural  weight. 

For brevity,  most  of the following discussion will be restricted to minimum- 
weight design of a sandwich beam of given constant  core dimensions and continuously 
variable thickness of the identical cover sheets. Since the core weight is not  subject to 
variation, minimizing the structural  weight is then equivalent to minimizing the 
integral of the bending stiffness over the entire beam. The given loads q, Q, C are to 
produce the prescribed deflection u 0 at the cross section x 0. In  addition to this state 
of loading, we consider a second state tha t  only involves the concentrated unit force 
at x 0 . 

Let s and s* be the bending stiffnesses of two designs that  satisfy the constraint 
on the deflection at Xo, and denote by  u, u* and u, u* the deflections of these designs 
under the first and second states of loading, respectively, and by  ~, ~* and ~, ~* the 
corresponding curvatures. Since both designs satisfy the constraint  on deflection, 

g[u*,  u*; s*~ - U[u, u ;  s] = 0 .  (3.1) 

On the other hand, since the deflections u, u are kinematically admissible for the 
design s*, it follows from (2.5) applied to this design tha t  

U[u, u; s*l - U[u*, u* ;  s*l = s* (~* - ~) (~* - ~) d x .  (3.2) 

Substi tuting U[u*, u*; sl from (3.1) into (3.2) and using the definition (2.1), we obtain 

f ( s *  - s) dx : f s *  - - d x .  (3.3) 

Restricting the design s* to the neighborhood of the design s, and writing 
s* = s + b s, u* -- u + b u, etc., we deduce from (3.3) tha t  

~ = const. (= c ~, say) (3.4) 

is a sufficient condition for f ~ s dx to vanish to first order, i.e., for the structural  
weight to be s ta t ionary for all designs s + ~ s tha t  satisfy the constraint on the 
deflection at x 0. That  this condition is also necessary for s ta t ionary weight is readily 
shown by  variational calculus (see, for instance, [17, 181). 
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If  M = s ~ and M -- s ~ are the bending moments  for the optimal design s(x) 
in the two states of loading, (3.4) is equivalent to M 7~/s ~ = c ~ or 

1 
s = (M M) 'j2 . (3.5) 

c 

The constant  c in (3.5) must  be determined from the condition that  the deflection at 
x 0 should have the value u 0. Using the principle of virtual  work and (3.5), we have 

0 - o  =]'EM  /sl ax = @ M  ax. (3.6) 

Substi tution of c from (3.6) into (3.5) finally yields 

s = . . . . .  (M M) x/~ ; ( M  M)112 dx .  (3.7) 
O u0 2 

In using (3.7), we must  keep in mind tha t  the load Q has unit  intensity; the only 
reason why  it has not been suppressed in (3.7) is the desire to bring out the dimensional 
correctness of this equation. 

I t  is readily shown that,  for a statically determinate beam, the design s satisfying 
(3.4) in addition to the constraint on deflection corresponds to a global minimum of 
structural  weight. Indeed, for a statically determinate beanl, the bending moments  
do not  depend on the choice of bending stiffness: M = Jar*, M = M*. Accordingly, 

s a - - s * ~ * ,  s n  s * ~ * .  (3.8) 

The first of these equations m a y  be writ ten as (s* - s) n + s* (~* - ~) = 0 or 

( s ,  - s)  
~* - ~ . . . . . . . .  . (3.9) 

S* 

Substi tuting this and the analogous equation for ~* - ~ into (3.3) and using (3.4), 
we obtain the inequality 

( ; (s* - s)2 dx>~O (3.10) - s)  d .  = j  ...... ...... , 

which shows that ,  for a statically determinate beam, any design s* tha t  satisfies the 
constraint  on deflection cannot  be lighter than the design s that ,  in addition, satisfies 
(3.4). 

While the preceding discussion has for brevi ty  been restricted to beams, the 
general method applies equally well to other simple structures, for example, rods or 
plates. 

4.  E x a m p l e s  

A) A simply supported sandwich beam of the span  2 l under the uniformly 
distr ibuted load q is to be designed for min imum weight subject to the constraint  



518 Richard  T. Shield and Will iam Prager  ZAMP 

t ha t  the deflection at  the  center  of the  span (x -- 0) has the  value  u 0. Here, 

1 1 - -  
M = -  2 N ( Z ~ - ~ I ,  ~ - 2 Q ( I - I ~ I I "  (4.11 

Subs t i tu t ion  of (4.1) into (3.7) 
op t imal  design 

and  performance of the  in tegra t ion  furnishes the  

1 q15/2 
(s 1 / 2 - - 7 1  ( 1 - r ~ l ) ( z +  Ixl/,~ ~ (4.2/ s(x) = 15 u0 

which represents  a global  m in imum of s t ruc tura l  weight  because the  beam is s ta t ica l ly  
de te rmina te .  

B) A sandwich beam of the  length 4 l t ha t  is bui l t  in a t  bo th  ends carries the  
uni formly  d i s t r ibu ted  load q; it  is to be designed for min imum weight  subject  to the  
cons t ra in t  t ha t  the  deflection at  the  center  of the  span (x = 0) is to have the value %.  
The  beam is to have the cons tan t  bending  stiffnesses s 1 in - I  < x < 1 and s 2 in 
- 2 l ~ x < - / a n d / < x  ~<21. 

In view of the  s y m m e t r y  wi th  respect  to the  center  of the  span, we have u'(O) ~ 0 
in addi t ion  to u'(l) = 0. Thus u"(x),  and hence M(x) ,  has a zero in 0 ~< x ~< 2 l, say  at  
x = a. Similarly,  M(x)  has a zero in this  in terval ,  say  at  x b. Accordingly,  

1 - -  l -  
M =  2 q (a2 -  x2)' M = - -  2 Q(b x) in 0 ~ < x ~ 2 1 .  (4.3) 

The arguments  tha t  furnished the op t ima l i t y  condi t ion (3.4) for a sandwich beam 
of cont inuously  va ry ing  bending  stiffness yield the  op t ima l i t y  condit ion 

/ ~ i  ~i dxi == independen t  of i (= c 2, say) (4.4) 
zi J 

when tile bending  stiffness is segmentwise  constant .  In  (4.4), l i denotes  the length  of 
the  i - th  segment,  x i is the  abscissa of the  t yp i ca l  cross section of this  segment,  and  
~i = ~(xi), ~ = ~(x,). 

When tile curvatures  in (4.4) are expressed in terms of the  bending moments  
M~ = M(x~) and M~ = M(x~), use of (4.3) furnishes the  o p t i m a l i t y  condit ions 

~ r  1 i;/21 q 14 (12 ~2 fl _ 6 (x 2 4 fl @ 3) = c 2 l s1, 

/ ~ M 2 M 2 d x 2 =  q~814 (120~2fl - 180~ 2 -  28 f l  + 4 5 ) = c 2 1 s ~ ,  

where c~ = a/l, fl = b/l. 
Because u'(0) = u'(2 l) = 0, the  value of ~ mus t  be de te rmined  in such a manner  

t ha t  
21 

/ 1 /:'Xl + i f dx2 0 (4.6) X dx = dx I M 2 = . 
81 . 2d  0 
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Subs t i tu t ing  (4.3) into (4.6) and  solving for Sl/S2, we ob ta in  

sl/s 2 = (3 or ~ -- 1)/(7 --  3 ~2) . (4.7) 

When  x and M in (4.6) are replaced b y  ~ and M, the  same procedure  yields 

Sl/S 2 = (2 fl - 1)/(3 -- 2 fl) . (4.8) 

E l imina t ion  of Sl/S ~ from (4.7) and (4.8) furnishes 

l 
fl = 6 (3 a2 + 2 ) .  (4.9) 

9 2 Equa t ing  the  values of sl/s,, t ha t  follow from (4.5) and  (4.7) and  using (4.9), 
we obta in  

( (3c~2 1) ~2 1 8 , ? , _ 1 2 ~ + 5  

The real  roots  of (4.10) are found to correspond to ~ 2 = / 3 -  (2/3), which yield 
Sl/S z = / 3 / 3  and fl = V~3/2 b y  (4.7) and (4.9), respect ively.  

The value of s 1 m a y  final ly be ob ta ined  from the deflect ion const ra int ,  which m a y  
be wr i t ten  as 

_ _  S 1 ~ - -  / 1 
Ma M 1 dx 1 -- t M2 M2 dX2 $2 . !  = 2 Q U 0 S 1 . (4.11) 

One finds s I -- 0.480 q 14/Uo and hence s 2 = 0.831 q 14/Uo b y  (4.7). 

5. Generalizations 

In the  following, some general izat ions of t i le results  of Section 3 will be i l lus t ra ted  
b y  examples .  

A) Constraint on Rotation of Cross Section. Haug,  S t ree ter  and  Newell  El9] have  
described a s i tua t ion  in which imposi t ion of a cons t ra in t  on the  ro ta t ion  of a cross 
section x x 0 is meaningful .  To make  the discussion in Section 3 cover this  t y p e  of 

constraint ,  one only replaces the  unit  load  Q at  x o b y  a uni t  couple C a t  x o. Consider, 
for instance,  a cant i lever  sandwich beam of length  1 t ha t  is bui l t  in a t  x = l and  carries 
the  uni formly  d i s t r ibu ted  load  q. If  [ u'(0) [ is to have the value 0o, the  op t ima l  design s 

is found from (3.7) b y  replacing (~u o b y  (7 0 o and using 

1 
M =  2- q x2, M = C .  (5.1) 

Thus,  

s/x) = q 12 x/(4 00) . (5.2) 

B) Other Types  of Cross Section. For  the  sandwich sect ion considered th roughou t  
the preceding discussion, s t a t i ona ry  s t ruc tu ra l  weight  requires f 6 s dx = O. On the  
other  hand,  for a solid beam with  rec tangula r  section of f ixed wid th  b and var iab le  
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height 2 h, the weight per unit  length is proport ional  to s 118. Stat ionary weight 
therefore requires f s -~13 ~ s d x  = O, and it follows from (3.3) tha t  

s21 s ~ ~ - c~ (5 .3 )  

is a sufficient condition for s ta t ionary weight. Proceeding as in the derivation of (3.7), 
we obtain 

S= (m -M-)8/4 / (M j~)l/4 dx (5.4) 
y +to d 

as the design of s ta t ionary structural  weight. For  the example in Section 5A, this 
yields 

q(l x) sl~ 
s(x)  (5.5)  

3 00 

I t  can be shown that  this design represents, in fact, a global minimum of structural  
weight. 

The discussion is readily extended to cross sections with two variable dimensions. 
Consider, for example, a sandwich beam with a core of fixed width b and variable 
height 2 h and identical cover sheets of width b and variable thickness t < h. As t 
and h va ry  independently,  the variat ion of the weight per unit length is proportional 
to d t + fi ~ h, where fl ~ 1 is the ratio between the specific weights of core and cover 
sheets. The variat ion of the bending stiffness, however, is proport ional  to h 2 d t + 2 t h ~ h 
and (3.3) furnishes 

f (h~ ~t + 2 l h ~h) -~ dx = o .  (5 .6)  X 

If  this is to be equivalent to f d w d x  = 0, we must  have 

h2 ~ - ~ =  c ~ , 2 h t ~ ~ = fl c 2 . (5.7) 

These are sufficient conditions for the structural  weight to be stat ionary.  Elimination 
of n -~/c ~ from these conditions yields 

t ,= fl h i2 .  (5.8) 

Since this means that  the weight per unit  length is proport ional  to s lla, the optimal 
design of the uniformly loaded cantilever beam with prescribed tip rotation is again 
given by  (5.5). 

C) To illustrate minimum weight design for given bound on the displacement in 
either one of two alternative states of loading, we consider a rod of the length I tha t  is 
fixed at x = l and free at x - 0. The absolute value of the axial displacement at x = 0 
is not  to exceed the given value u 0 under either one of the following alternative loads: 
(1) a concentrated tensile load O at x - 0, and (2) a uniformly distributed tensile load 
of intensity q. 

If only one of the two loads is relevant, the optimal design of this statically 
determinate rod is given by  the formula 

s(x) [(N dx (5.9) = , 
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which corresponds to (3.7). Here, N and N are the axial forces under the relevant load 
and under the unit axial load Q at x = 0, and s(x) E A(x), where E is Young's 
modulus and A(x), the cross-sectional area at x. For the given states of loading, the 
axial forces are 

N 1 Q, N 2 = q x  , N Q. (5.10) 

Accordingly, if only the concentrated load 0 is relevant for the optimal design, we 
have the optimal axial stiffness 

s 1 = Q1/u o . (5.11) 

For this design, the tip displacement caused by the load q has the absolute value 

[Ul(0) [ = f N~ dx - 
q l 

j 81 2 (? Uo, (5.12) 

and the assumption that  only Q is relevant requires that  this value be smaller than Uo, 
that  is, that  q l < 2 Q. If, on the other hand, only the distributed load is relevant, 
(5.9) yields the optimal design 

2 q la/2 
~ = 3 - - o  x~,  (5.13) 

and the tip displacement of this design caused by (2 has the absolute value 

]%(0)] = / ~ L d x =  ql3 Q Uo. (5.14) 

The assumption that  only q is relevant requires that  this value be smaller than Uo, 
that  is, that  q 1 > 3 Q. Thus, both states of loading are relevant for the optimal 
design if 

2 Q  < q l  < 3 Q .  (5.15) 

For loadings in this range, it can be shown as in [31 that  the optimality condition 
N N = c ~ s 2, which corresponds to (3.5), must be replaced by the condition 

(2 N 1 -- # N2) N == s 2 , (5.16) 

where the nonnegative constants 2, # must be determined from the condition that  
each loading produces a tip deflection of the absolute value %: 

U o = / N L  dx = / N ~ _  dx.  (5.17) 

Setting x/l = ~, #/2 ~ and ql  = fl 0, where 2 < fi < 3 by  (5.15), we write 
(5.16) in the form 

s (2 P Q)1,2 (1 + c~ fl ~)1/2. (5.18) 
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S u b s t i t u t i n g  (5.18) in to  (5.17) an d  pe r fo rming  the  in teg ra t ions ,  one ob ta ins  

fl % (~. 9 O) 1~2 = (1 + ~ ;~)1~2 1 2 Q l  

= ~ 7 E ( l + ~ ) ~ J z  1! E ( 1 + ~ ) ~ - 1 1  . ( 5 . 1 9 )  

Taking ,  for ins tance ,  1 + ~ fl = 9, we o b t a i n  ~ = 10/3 f rom the  second pa r t  of this  
c o n t i n u e d  e q u a t i o n  a n d  hence/5  = 8/e  = ] 2/5, which is in  the  range  (2.3). Us ing  these  
va lues  in  the  first pa r t  of (5.19), an d  s u b s t i t u t i n g  the  re su l t ing  va lue  of ~t Q Q in to  
(5.18), we f ind the  o p t i m a l  design 

Q l 1 + 8 , (5.20) 
s = 2 u 0  

which cor responds  to q l 12 Q/5. 
D) M i n i m u m - w e i g h t  des ign for a s ingle sys t em of loads b u t  two or more  cons t r a in t s  

on def lect ion or r o t a t i on  can  be t r e a t ed  in a s imi lar  m a n n e r .  Consider,  for ins tance ,  
a can t i l ever  sandwich  b e a m  of f ixed core d imens ions  a n d  var iab le  th ickness  of the  
iden t ica l  face sheets  t h a t  is bu i l t  in  at  x = l a n d  carries the  t r ansve r se  load Q at  x -- 0. 
I f  u0 a n d  00 are g iven  u p p e r  b o u n d s  on t ip def lect ion a n d  t ip  ro ta t ion ,  respect ively,  
b o t h  cons t r a in t s  are found  to be r e l evan t  for 5/3 < 0o l/uo < 2. The  op t ima l  des ign 
has  the  b e n d i n g  st iffness 

:: {(2 ~ Ez c +  ~ ~ x ] p  (5.21) 

where  ~ is a u n i t  couple,  Q a un i t  load, a n d  the  posi t ive  c o n s t a n t s  ~, # m u s t  be  chosen 
in such a m a n n e r  t h a t  t ip  def lect ion an d  r o t a t i o n  have  the  prescr ibed  va lues  u 0 a n d  00. 
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Z u s a m m e n f a s s u n g  

Es wird ein Prinzip der stationSoren gegenseitigen potentiellen Energie aufgestellt fi~r zwei 
Belastungssysteme eines elastischen Balkens ver~inderlicher Biegesteifigkeit. Aus diesem Prinzip 
wird einc hinreichende Bedingung far station~ires Gewicht eines Sandwichbalkens abgeleitet, wenn 
die von einer Belastung an einem bestimmten Querschnitt erzeugte Durchbiegung vorgeschrieben 
ist. Far statisch bestimmte Balken wird gezeigt, dass diese Bedingung ein globales Minimum des 
Gewichts sicherstellt. Anwendungsbeispiele und Erweiterungen werden besprochen. 
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Der Einflul3 verschiedener Kriiftearten auf die Stabilit~it 
linearer Systeme 

Von  K u r t  Magnus,  I n s t i t u t  B fur  Mechan ik  der  T e c h n i s c h e n  H o c h s e h u l e  Mfinchen,  

D e u t s c h l a n d  

l-lerrn Professor Dr. Hans Ziegler zum sechzigsten Geburtstag gewidmet 

1. P r o b l e m s t e l l u n g  

Zur  B e s t i m m u n g  der  Stabil i t~it  v o n  B e w e g u n g e n  l ineare r  S y s t e m e  f inden  sich im 

S c h r i f t t u m  i iberaus  v ie le  Ver fahren .  Es  sei h ier  an  die a lgeb ra i schen  K r i t e r i e n  v o n  

H e r m i t e ,  R o u t h ,  H u r w i t z ,  Cremer  u n d  B i lha r z  sowie an  d i e  v611ig ~iquivalenten  

g e o m e t r i s c h e n  K r i t e r i e n  v o n  N y q u i s t ,  L e o n h a r d ,  Micha i low u n d  N e u m a r k  e r inner t .  

Diese  Kr i t e r i en  lassen bei  gee igne te r  A r t  de r  A n w e n d u n g  den Einf luss  e inze lne r  

S y s t e m p a r a m e t e r  e r k e n n e n  und  h a b e n  sich desha lb  r ech t  gu t  bew~ihrt. J e d o c h  w i r d  

eine phys ika l i s che  I n t e r p r e t a t i o n  der  E rgebn i s se  u m  so schwier iger ,  je h6he r  die 

0 r d n u n g  der  zu  u n t e r s u c h e n d e n  S y s t e m e  ist. 


