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Zusammenfassung

Es wird die Aufgabe der freien Fliissigkeitsschwingungen in Behiltern geringer Tiefe unter-
sucht, und zwar fiir ebene und axial-symmetrische Schwingungen. Insbesondere wird die Frage
beantwortet, welchen Wert die zweite harmonische Schwingungsfrequenz héchstens annehmen
kann, wenn zwar der Inhalt des Behilters vorgegeben ist, dagegen nicht seine Gestalt. Im Gegen-
satz zu einer fritheren Untersuchung werden jedoch fiir dieses isoperimetrische Problem nur
konvexe Behilter zugelassen. Mathematisch lasst sich das Ergebnis etwas weiter fassen: Es wird
eine obere Schranke fiir den niedrigsten (nicht trivialen) Eigenwert einer Klasse von Sturm-
Liouville Aufgaben ermittelt, wobei sich herausstellt, dass zur Abgrenzung dieser Klasse zwei feste
Punkte im Integrationsintervall eine ausschlaggebende Rolle spielen.
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1. Introduction

Design of structural elements for minimum weight was one of the early applica-
tions of variational calculus (see, for instance, [1]). The customary procedure uses
only the Euler equation of the problem, which is a necessary condition for the structural
weight to be stationary, but does not guaranty a local or global minimum. As Prager
and Taylor [2] have shown, this procedure can, in many cases, be supplemented by
an energetic approach that yields a sufficient condition for a global minimum of
structural weight. This approach, however, is only feasible if the constraint imposed
on the design concerns a structural property that can be characterized by a global
minimum or maximum principle. For example, let the compliance of a linearly elastic
structure under given loads be defined as the work that these loads do on the displace-
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ments they produce. It then follows from the principle of minimum potential energy
that, for a structure of prescribed compliance, this compliance can be characterized
as the global minimum of the strain energy for all kinematically admissible displace-
ment fields (i.e. fields that satisfy the kinematical boundary conditions and certain
continuity and differentiability requirements).

The energetic approach has been used in minimum-weight design for static elastic
compliance [3-7], dynamic elastic compliance [8], compliance in stationary creep [9],
elastic buckling load [10, 11], fundamental natural frequency [12-14}, and plastic
load-carrying capacity [15]. In the last-named field, the energetic approach had
already been introduced by Drucker and Shield [16].

The design constraints treated in these references concern structural properties
that are characterized by classical extremum principles of global type. A practically
important constraint that cannot be cast in this mold specifies an upper bound on the
deflection at a certain point of the structure. The present paper discusses the extent
to which the energetic approach can be applied to design problems of this kind. For
the sake of brevity, the general discussion is restricted to sandwich beams, but one of
the examples concerns the optimal design of a rod.

2. Principle of Stationary Mutual Potential Energy

Consider a statically determinate or indeterminate beam that is simply supported,
built in, or free, at the ends x == 0 and x = /, and may have intermediate hinges or
supports at specified cross sections. Let s(x) be the variable bending stiffness of the
beam and consider two states of loading, denoting their distributed loads by ¢(x), g{(x),
and typical concentrated loads and couples by Q, 0 and C, C. Finally, let #*(x), u*(x)
be any kinematically admissible deflections of the beam and 6*(x) = u*'(x), G*(x) =
u*’(x) and %*(x) = u*"(x), %*(x) = w*"(x) the corresponding rotations and curvatures.
Kinematically admissible deflections will be defined in the usual manner as continuous
deflections that satisfy the kinematic conditions at the supports and have continuous
rotations except, possibly, at hinges. This means that beams with other intermediate
cross sections of vanishing bending stiffness are excluded from the discussion because
additional discontinuities of rotation could develop at these sections. This restriction
is meaningful because beams of the excluded type are not practical.

The mutual potential energy for these deflections and the given loads will be
defined as the functional

Ulu*, u*; s] = ;{/sx*;*dx—/qz;*dxw/gu*dx
_ZQZ*_ZEM*~ZC§*—259*}, (2.1)

where the integrations extend over the entire beam and the sums include all concen-
trated loads and couples. Note that this definition reduces to the customary definition
of potential energy when the barred quantities are identical with the unbarred
quantities. Note further that the mutual potential energy for the true deflections

u(x), u(x), rotations 6(x), 6(x), and curvatures x(x), »(x) produced by the considered
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systems of loads may be written as

Ulu, u; s] = —IQ/S%de
—;{/qﬁdx—i-ZQﬁJrzca}

We shall now prove that the functional Ulu*, #*;s] is stationary at u* = «,
u* = u. Indeed, it follows from (2.1) and the first equality of (2.2) that

Ulu*, u*;s] — Ulu, u; s] =% {/sz*%*dxﬁ—/sx%dx
—/qﬁ*dx —/au*dx—ZQﬁ*—Eéu*—Zcé* 4250*}. (2.3)

On the other hand, using the principle of virtual work, one readily shows that

I

Il

/s(x*—%) (;*—;)dx:/sx*;*dx—}—/sxﬁdx
—/qﬁ*dx~/§u* dx—ZQE*—Z@M*~ZC@*—ZE h* (2.4)

Use of (2.4) in (2.3) furnishes the identity
— — 1 —
Ulu*, u*;s] — Ulu, u; s] = 2/3 (o* — 2) (s6* — 2) dux | (2.5)

which applies to any kinematically admissible deflections »*, %* with rotations 6%, %
and curvatures x*, »*, and the true deflections #, # with rotations 8, 8 and curvatures
*, #.

Applied to the neighborhood u* = u + 8 u, u* = u + 6 % of the true deflections,
(2.5) furnishes the following first and second-order relations

U =0, {2.6)
1 —
U = > /s On Ox dx | (2.7)

where 8 % = (8 u)”, 8 x = (6 u)". The first of these relations shows that Uu*, u*; s]
is stationary at #* = u, u* = u. Because, however, the integral on the right of (2.7)
is not, in general, restricted in sign, we cannot assert that Ulu*, »*; s] has a minimum
or maximum at u* = u, u* = u.

The principle of stationary mutual potential energy is readily extended to elastic
plates and shells, and to three-dimensional elastic bodies.
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3. Application to Optimal Design for Given Deflections or Rotations

According to the third equality in (2.2), the deflection u(x,) that the loads
¢, O, C produce at the cross section %, of the beam equals —2 U, %; s], when the
second system of loads is reduced to a concentrated unit force Q at x = «,, and
similar statements can be made for arbitrary linear combinations of deflections or
rotations at specified cross sections. The principle of stationary mutual potential
energy can therefore be used in optimal design for given static deflections or rotations
in very much the same way in which the principle of minimum potential energy has
been applied in {2] through [7] to optimal design for given static compliance. As a
rule, however, the first principle furnishes only a sufficient condition for the structural
weight to be stationary, whereas the second principle provides a sufficient condition
for a global minymum of structural weight.

For brevity, most of the following discussion will be restricted to minimum-
weight design of a sandwich beam of given constant core dimensions and continuously
variable thickness of the identical cover sheets. Since the core weight is not subject to
variation, minimizing the structural weight is then equivalent to minimizing the
integral of the bending stiffness over the entire beam. The given loads ¢, Q, C are to
produce the prescribed deflection #, at the cross section x,. In addition to this state
of loading, we consider a second state that only involves the concentrated unit force Q
at x,.

Let s and s* be the bending stiffnesses of two designs that satisfy the constraint
on the deflection at x,, and denote by «, #* and u, u* the deflections of these designs
under the first and second states of loading, respectively, and by x, »* and %, %* the
corresponding curvatures. Since both designs satisfy the constraint on deflection,

Ufu*, w*; s¥] — Ulu, u;s] = 0. (3.1)

On the other hand, since the deflections #, # are kinematically admissible for the
design s*, it follows from (2.5) applied to this design that

Ulu, u; s¥] — Ulu*, u*; s*] = ;/s* (se* — ) (%* — %) dx . (3.2)

Substituting Ulu*, #*; s] from (3.1) into (3.2) and using the definition (2.1}, we obtain
/(s*—s)xzdx:/s*(x*wx)(;*—x)dx. (3.3)

Restricting the design s* to the neighborhood of the design s, and writing
s*=s54+08s, u* =u+ du, etc., we deduce from (3.3) that

% % = const. (= ¢?, say) (3.4)

is a sufficient condition for { & s dx to vanish to first order, ie., for the structural
weight to be stationary for all designs s 4+ 4 s that satisfy the constraint on the
deflection at x,. That this condition is also necessary for stationary weight is readily
shown by variational calculus (see, for instance, (17, 18]).
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If M =52 and M = s x are the bending moments for the optimal design s(x)
in the two states of loading, (3.4) is equivalent to M #/s® = c? or
i —
s = (M M)V, (3.5)
¢
The constant ¢ in {3.5) must be determined from the condition that the deflection at
%o should have the value #,. Using the principle of virtual work and (3.5), we have

0 :/[M MJs) dx = c/(M Myve dx . (3.6)
Substitution of ¢ from (3.6) into (3.5) finally yields

§ = L]‘{ﬁM)m/n(M ]\7)112 ax . 3.7

In using (3.7), we must keep in mind that the load @ has unit intensity; the only
reason why it has not been suppressed in (3.7) is the desire to bring out the dimensional
correctness of this equation.

It is readily shown that, for a statically determinate beam, the design s satisfying
(3.4) in addition to the constraint on deflection corresponds to a global minimum of
structural weight. Indeed, for a statically determinate beam, the bending moments
do not depend on the choice of bending stiffness: M = M*, M = M*. Accordingly,

S = s¥u*, sx=-s*n*. (3.8)

The first of these equations may be written as (s* — s) % + s* (x* — %) = 0 or
{3.9)

Substituting this and the analogous equation for »* — % into (3.3) and using (3.4),
we obtain the inequality

/(s* - 5) dx :/ (S*; S)2 dx =0, (3.10)

%

which shows that, for a statically determinate beam, any design s* that satisfies the
constraint on deflection cannot be lighter than the design s that, in addition, satisfies
(3.4).

While the preceding discussion has for brevity been restricted to beams, the
general method applies equally well to other simple structures, for example, rods or
plates.

4. Examples

A) A simply supported sandwich beam of the span 2/ under the uniformly
distributed load ¢ is to be designed for minimum weight subject to the constraint
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that the deflection at the center of the span (v = 0) has the value #,. Here,

1 — 1 —
M:—vé»q(ﬂ—xz), M:—EQ(Z~'9¢‘). (4.1)
Substitution of (4.1) into (3.7) and performance of the integration furnishes the
optimal design

- A2 _ _ 12

W = g5, BY2 DA @ (4.2)
which represents a global minimum of structural weight because the beam is statically
determinate.

B) A sandwich beam of the length 4 / that is built in at both ends carries the
uniformly distributed load ¢; it is to be designed for minimum weight subject to the
constraint that the deflection at the center of the span (x = 0) is to have the value %,.
The beam is to have the constant bending stiffnesses s; in —/ < » <</ and s, in
—2l<x < —land ]l < x <21

In view of the symmetry with respect to the center of the span, we have »'(0) =0
in addition to «'(!) = 0. Thus #”(x), and hence M (x), has a zeroin 0 < x <{ 2/, say at
% = a. Similarly, M(x) has a zero in this interval, say at x = b. Accordingly,

1 —

M= gl@—ay, M=— Q-2 in 0 <x <21, (4.3)

N =

The arguments that furnished the optimality condition (3.4) for a sandwich beam
of continuously varying bending stiffness yield the optimality condition

1 —

- /%l »; dx, = independent of i (= ¢2?, say) (4.4)

i

when the bending stiffness is segmentwise constant. In (4.4), /; denotes the length of
the ¢-th segment, x, is the abscissa of the typical cross section of this segment, and
%; = n(x;), i = ;(xz)

When the curvatures in (4.4) are expressed in terms of the bending moments
M, = M(x,) and M, = M(x,), use of (4.3) furnishes the optimality conditions

gQn \ )
S 1z p 6w -4t 3 =l (4.5)

/ M, 117[1 dx,

_ 04
/MzMzde: (5498 (1202 f — 1802 — 28 f + 45) = c21s2,

where o = a/l, f = b/l.
Because #'(0) = #'(21) = 0, the value of « must be determined in such a manner
that

2]

17 1
/xdx~/M1dx1+~/M2dx2=O. (4.6)
S1 . S

0
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Substituting (4.3) into (4.6) and solving for s,/s,, we obtain
$fse = (32 — 1)J(7T— 303 . (4.7)
When » and M in (4.6) are replaced by » and M, the same procedure yields

Sifss= 28— 1G-26) . (4.8)

Elimination of s,/s, from (4.7) and (4.8) furnishes
1
= 6 (3aZ+ 2). 4.9)

Equating the values of s?/s2 that follow from (4.5) and (4.7) and using (4.9),
we obtain

302 -1 2 18t — 122+ 5
( (Ba ) ) _ o o + (4.10)

(7 — 3 02) 18 at — 84 o2 + 107
The real roots of (4.10) are found to correspond to o2 = /3 — (2/3), which yield
$1/sp = V/3/3 and § = )/3/2 by (4.7) and (4.9), respectively.
The value of 5; may finally be obtained from the deflection constraint, which may
be written as

1 —

/M1 M, dx, + & / M, My dwy = Q gy (4.11)
Sa |

One finds s; = 0.480 ¢ /4/u, and hence s, = 0.831 ¢ I*/u, by (4.7).

5. Generalizations

In the following, some generalizations of the results of Section 3 will be illustrated
by examples.

A) Constraint on Rotation of Cross Section. Haug, Streeter and Newell [19] have
described a situation in which imposition of a constraint on the rotation of a cross
section x = x, is meaningful. To make the discussion in Section 3 cover this type of
constraint, one only replaces the unit load 6 at x, by a unit couple C at x,. Consider,
for instance, a cantilever sandwich beam of length / that is built in at x = / and carries
the uniformly distributed load ¢. If |4(0) | is to have the value 6, the optimal design s

is found from (3.7) by replacing Q «, by C 0, and using

1 - —
M:2~qx2, M=C. (5.1

Thus,
s(x) = q 2 x/(4 0,) . (5.2)

B) Other Types of Cross Section. For the sandwich section considered throughout
the preceding discussion, stationary structural weight requires [ § s dx = 0. On the
other hand, for a solid beam with rectangular section of fixed width & and variable
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height 2 /4, the weight per unit length is proportional to sY8. Stationary weight
therefore requires [ 572§ s dx = 0, and it follows from (3.3) that

§¥% 5 7 == (5.3)

is a sufficient condition for stationary weight. Proceeding as in the derivation of (3.7),
we obtain

(M M)sm —
s — @1; /(M M) dy (5.4)

as the design of stationary structural weight. For the example in Section 5A, this
yields

g x)=

s(x) = —————

75, (5.5)

It can be shown that this design represents, in fact, a global minimum of structural
weight.

The discussion is readily extended to cross sections with two variable dimensions.
Consider, for example, a sandwich beam with a core of fixed width & and variable
height 2 % and identical cover sheets of width b and variable thickness ¢ € 4. As ¢
and % vary independently, the variation of the weight per unit length is proportional
todt+ B h, where § < 1 is the ratio between the specific weights of core and cover
sheets. The variation of the bending stiffness, however, is proportional to 423¢ -+ 2¢hd A
and (3.3) furnishes

/(hzét—i—Zthdh)x;dx:O. (5.6)

If this is to be equivalent to [ § w dx = 0, we must have

Wxn=1c, 2htxx=Pfc. (5.7)
These are sufficient conditions for the structural weight to be stationary. Elimination
of » x/c? from these conditions yields

t=ph2. (5.8)

Since this means that the weight per unit length is proportional to s'3, the optimal
design of the uniformly loaded cantilever beam with prescribed tip rotation is again
given by (5.5).

C) To illustrate minimum weight design for given bound on the displacement in
either one of two alternative states of loading, we consider a rod of the length / that is
fixed at x = / and free at x = 0. The absolute value of the axial displacement at x = 0
is not to exceed the given value #, under either one of the following alternative loads:
(1) a concentrated tensile load Q at x = 0, and (2) a uniformly distributed tensile load
of intensity ¢.

If only one of the two loads is relevant, the optimal design of this statically
determinate rod is given by the formula

s(x) = (%Z){IZ / (N N2 dx (5.9)
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which corresponds to (3.7). Here, N and N are the axial forces under the relevant load
and under the unit axial load Q at x = 0, and s(x) = E A(x), where E is Young’s
modulus and A4(x), the cross-sectional area at x. For the given states of loading, the
axial forces are

N,=Q, Ny=gqgx, N=0. (5.10)

Accordingly, if only the concentrated load @ is relevant for the optimal design, we
have the optimal axial stiffness

;= Qllu, . (5.11)

For this design, the tip displacement caused by the load ¢ has the absolute value
[N q!

| 24,(0) | :/ ?1% dx = 20 " (5.12)

and the assumption that only Q is relevant requires that this value be smaller than #,,
that is, that ¢/ < 2 Q. If, on the other hand, only the distributed load is relevant,
(5.9) yields the optimal design

2 gpr
sy = o L7 an (5.13)

’

3 u,

and the tip displacement of this design caused by Q has the absolute value
N 3
|5(0) | = / L dx = .WZQ, Uy . (5.14)
7

S

The assumption that only ¢ is relevant requires that this value be smaller than u,,
that is, that ¢/ > 3 Q. Thus, both states of loading are relevant for the optimal
design if

2Q0<ql<30Q. (5.15)

For loadings in this range, it can be shown as in [3] that the optimality condition
N N = ¢?s2, which corresponds to (3.5), must be replaced by the condition

AN, + u Ny N =s2, (5.16)

where the nonnegative constants 4, ¢ must be determined from the condition that
each loading produces a tip deflection of the absolute value u,:

N N
uoz/——de -/J dx . (5.17)
S N

Setting x/l =&, u/l=o and ¢l =g Q, where 2 < f < 3 by (5.15), we write
(5.16) in the form

s=(AQ QM +af s, (5.18)
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Substituting (5.18) into (5.17) and performing the integrations, one obtains

o 3 1ty

Gol FOOM= (0 apre 1

I

i{§u1+amw11u1+amM—1ﬁ- (5.19)

Taking, for instance, 1 + o § = 9, we obtain « = 10/3 from the second part of this
continued equation and hence § = 8/ = 12/5, which is in the range (2.3). Using these
values in the first part of (5.19), and substituting the resulting value of A Q Q into
(5.18), we find the optimal design

s= 2l (1es )" 5:20)
2 uy l
which corresponds to ¢ 7 = 12 Q/5.

D) Minimum-weight design for a single system of loads but two or more constraints
on deflection or rotation can be treated in a similar manner. Consider, for instance,
a cantilever sandwich beam of fixed core dimensions and variable thickness of the
identical face sheets that is built in at x = / and carries the transverse load Q at x = 0.
If u, and 6, are given upper bounds on tip deflection and tip rotation, respectively,
both constraints are found to be relevant for 5/3 < 0, {/u, << 2. The optimal design
has the bending stiffness

s = {Qx[AC +p Q] (5.21)

where C is a unit couple, 6 a unit load, and the positive constants 4, g must be chosen
in such a manner that tip deflection and rotation have the prescribed values #, and §,.

References

[1] J. L. LAGRANGE, Sur la figure des colonnes, Miscellanea Taurinensia, Vol. 5, 1773 = Oeuvres
de l.agrange, Vol. 2 (Gauthier-Villars, Paris 1868), pp. 125-170.
[2] W.Pracer and J. E. TAYLOR, Problems of Optimal Stvuctural Design, J. appl. Mech. 35, 102
(1968).
[3] W.Pracer and R.T. SHIELD, Optimal Design of Multi-purpose Structuves, Internat. J. Solids
Structures 4, 469 (1968).
[4] C.Y.SHevand W. PRAGER, Minimum-weight Design with Piecewise Constant Specific Stiffness,
J. Optimiz. Theory Applicat. 2, 179 (1968).
[5] W.PRAGER, Optimality Criteria in Structuval Design, Proc. Nat. Ac. Sci. 67, 794 (1968).
[6] G.A. HEGEMIER and W. PRAGER, On Michell Trusses, Internat. J. Mech. Sci. 77, 209 (1969).
[71 'W.PRAGER, Optimality Critevia Devived from Classical Extremum Principles, in: An Introduc-
tion to Structuval Optimization, University of Waterloo (Waterloo, Ontario, Canada, 1969),
p- 165-178.
[8] L. J. IcErMAN, Optimal Structural Design for Given Dynamic Deflection, Internat. J. Solids
Struct. 5, 473 (1969).
[91 W.PRAGER, Optimal Structural Design for Given Stiffness in Stationary Crveep, Z. angew. Math.
Phys. 79, 252 (1968).
[10] J. E. Tavror, The Strongest Column — An Energy Approach, ]J. appl. Mech. 34, 486 (1967).
[11] J.E. Tavror and C. Y. L1u, Optimal Design of Columns, AIAA J. 6, 1497 (1968).
[12] J. E. TavrLor, Minimum-mass Bar for Axial Vibvation at Specified Natural Frequency,
ATAA J. 5, 1911 (1967).



Vol. 21, 1970 Die Stabilitat lincarcr Systeme 523

[13] J. E. TavvLoRr, Optimum Design of a Vibvating Bar with Specified Minimum Cross Section,
ATAA J. 6, 1379 (1968).

[14] C.Y. SuEU, Elastic Minimum Weight Design for Specified Fundamental Frequency, Internat.
J. Solids Struct. 4, 953 (1968).

[15] C.Y.Suevu and W. PrRAGER, Optimal Plastic Design of Civculay and Annulay Sandwich Plates
with Piecewise Constant Cross Section, J. Mech. Phys. Solids 77, 11 (1969).

[16] D. C. DruckERr and R. T. SHIELD, Design for Minimum Weight, Proc. 9th Internat. Congr.
appl. Mech., Brussels 1956, Vol. 5, 212-222.

[17] R. L. BARNETT, Minimum-weight Design of Beams for Deflection, Proc. ASCE 87, EM1, 75
(1961).

[18) E. J. HAugG, Jr. and P. G. KirMSER, Minimum Weight Design with Inequality Constrainis on
Stvess and Deflection, J. appl. Mech. 34, 999 (1967) ; N.C. Huanc and H. T. Tana, Minimum
weight Design of Elastic Sandwich Beams with Deflection Constraints, J. Optimiz. Theory
Applicat. 4, 277 (1969).

[19] E. J. Haug, Jr., T. D. STREETER and R. S. NEwELL, Optimal Design of Elastic Structuval
Elements, Report SY-RI-69, Systems Analysis Directorate, U.S. Army Weapons Command,
Rock Island, 111., 1969.

Zusammenfassung

Es wird ein Prinzip der stationdren gegenseitigen potentiellen Energie aufgestellt fir zwei
Belastungssysteme eines elastischen Balkens verdnderlicher Biegesteifigkeit. Aus diesem Prinzip
wird einc hinreichende Bedingung fiir stationdres Gewicht eincs Sandwichbalkens abgeleitet, wenn
die von einer Belastung an einem bestimmten Querschnitt erzeugte Durchbiegung vorgeschrieben
ist. Fiur statisch bestimmte Balken wird gezeigt, dass diese Bedingung ein globales Minimum des
Gewichts sicherstellt. Anwendungsbeispiele und Erweiterungen werden besprochen.
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Der Einflull verschiedener Kriftearten auf die Stabilitit
linearer Systeme

Von Kurt Magnus, Institut B fiir Mechanik der Technischen Hochschule Miinchen,
Deutschland

Herrn Professor Dr. Hans Ziegler zum sechzigsten Geburtstag gewidmet

1. Problemstellung

Zur Bestimmung der Stabilitit von Bewegungen linearer Systeme finden sich im
Schrifttum iiberaus viele Verfahren. Es sei hier an die algebraischen Kriterien von
Hermite, Routh, Hurwitz, Cremer und Bilharz sowie an die vollig dquivalenten
geometrischen Kriterien von Nyquist, Leonhard, Michailow und Neumark erinnert.
Diese Kriterien lassen bei geeigneter Art der Anwendung den Einfluss einzelner
Systemparameter erkennen und haben sich deshalb recht gut bewéhrt. Jedoch wird
eine physikalische Interpretation der Ergebnisse um so schwieriger, je hoher die
Ordnung der zu untersuchenden Systeme ist,



