
Mathematical Programming 44 (1989) 247-269 247
North-Holland

A N E X T E N S I O N O F T H E S I M P L E X A L G O R I T H M F O R

S E M I - I N F I N I T E L I N E A R P R O G R A M M I N G

E.J. A N D E R S O N and A.S. LEWIS

Engineering Department, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

Received 18 March 1986
Revised manuscript received 13 April 1987

We present a primal method for the solution of the semi-infinite linear programming problem
with constraint index set S. We begin with a detailed treatment of the case when S is a closed
line interval in ~. A characterization of the extreme points of the feasible set is given, together
with a purification algorithm which constructs an extreme point from any initial feasible solution.
The set of points in S where the constraints are active is crucial to the development we give. In
the non-degenerate case, the descent step for the new algorithm takes one of two forms: either
an active point is dropped, or an active point is perturbed to the left or right. We also discuss
the form of the algorithm when the extreme point solution is degenerate, and in the general case
when the constraint index set lies in R ~'. The method has associated with it some numerical
difficulties which are at present unresolved. Hence it is primarily of interest in the theoretical
context of infinite-dimensional extensions of the simplex algorithm.

Key words: Linear programs, semi-infinite programs, extreme points, simplex algorithm.

I. Introduction

There are a n u m b e r of well- tr ied methods available for the solut ion of semi-infini te

p rogramming problems. Hett ich [9] gives a review of these methods and a fuller

t rea tment of the whole subject of semi-infini te l inear p rog ramming can be found in

Glashoff and Gus ta fson [5]. In this paper we describe an algori thm which is markedly

different to the usual techniques . Our method works directly with extreme points

of the feasible set for the pr imal semi-infini te l inear program. It is in this sense a

simplex-l ike algorithm, and so has considerable intr insic interest in the context of

at tempts to extend the s implex algori thm to more general in f in i te -d imens iona l l inear

programs. In part icular , a n u m b e r of authors have cons idered the possibil i ty of a

con t inuous t ime simplex method (see Perold [14] and the references therein) . Any

such method must be able to deal effectively with the semi-infini te problems we

investigate in this paper, since these are special cases of the general con t inuous t ime

l inear program. Thus our invest igat ion into the difficulties inheren t in the construc-

t ion of a simplex-like a lgor i thm for semi-infini te l inear p rog ramming is relevant to

a much broader class of problems. :'~

One of the aims in ex tending the simplex algori thm to infinite-dimen'sldnal 'f io~ar,

programs is to avoid making an explicit d i s c r e t i z a t i o n o f t he problem. O u r degree

of success in achieving this in the semi-infinite cas~e~is r epo r t ed in this paper, It is

248 E.J. Anderson, A.S. Lewis/Semi-infinite programming

however inevitable that some discretization is used in the numerical implementation
of the algorithm, for instance in checking that a trial solution is feasible for the

problem.
In addition to the algorithm's theoretical interest, it avoids some of the difficulties

encountered by standard solution techniques. The resolution of the numerical

problems raised by the implementat ion of the algorithm could thus prove to be of
some practical interest. Moreover, the new method serves as a powerful illustration
of the approach to general linear programming problems described by Nash [13].

We consider the semi-infinite program when the index set of the constraints, S,
is taken as a polyhedral subset of ~P. The semi-infinite program then has the form

SIP1 : minimize cTx

subject to a(s)Tx>~b(s) for all s~S,
x c ~n,

where a and b are continuous functions from R ~ to •" and R respectively. A dual

problem for SIP1 can be formulated as follows:

maximize fs b(s) dw(s) SIPI*:

subject to fs a(s) dw(s) = e,

w>~O, wcM[S],

where M[S] is the space of regular Borel measures on S (see Rudin [16]).
The algorithm described here is a primal algorithm; it approaches the optimal

solution through a sequence of solutions each of which are feasible for SIP1.

Consequently we shall not make any direct use of the dual problem and the exact
form in which it is posed will not be important. A key element in our approach is
an analysis of the extreme point structure of the primal problem. The plan of the
paper is as follows. We begin by giving in the next section some fundamental
definitions and results for the general abstract linear program, which we shall later
specialize to the semi-infinite case. A characterization of the extreme points is given

in Section 3 for the case S = [0, 1] ~ ~. In Section 4 we show how an improved
extreme point solution can be obtained from any feasible solution, and in the

following section an optimality check is given. This optimality check is the basis of
t he improvement step described in Section 6, for the non-degenerate case.
Degeneracy is an important phenomenon for the semi-infinite program, and we
discuss in Section 7 the structure of the feasible set near a degenerate extreme point.
This leads to a method for making improvement steps in the degenerate case. We
finish by describing the form that the algorithm takes when S is a polyhedral subset
of NP, and by discussing the relationship of this new method with more well-known

techniques.

E.J. Anderson, A.S. Lewis / Semi-infinite programming 249

The algorithm that we describe here has been introduced in outline in Anderson

[1]. This present paper completes the description given there, and adds to it a

treatment of the degenerate case and the case where the constraint index set is of

more than one dimension. We have yet to make a full-scale implementation of the

algorithm, so that we are only able to give limited numerical results.

2. The general linear program: Results and definitions

We begin by reviewing the framework for general linear programming described by

Nash [13]. Let X and Z be real vector spaces and X+ a convex cone in X. X+ is

called the positive cone in X and defines a partial order "~>" on X by

x1>y forx , y c X if and only if x - y e X + .

We write 0 for the zero element of a vector space, so that for x c X, x >~ 0 if and

only if x c X÷. For e* ~ X*, the dual of X, denote the image of x under e* by (x, c*).

Let A : X ~ Z be a linear map, and let b ~ Z. We consider the linear program

LP: minimize <x, c*)

subject to A x = b ,

x>~O, x ~ X .

The feasible region of LP is the set {x e X: Ax = b and x >/0} and ~: ~ X is called

an extreme point of LP if ~ is an extreme point of the feasible region of LP.

The first result we need gives a simple algebraic characterization of the extreme

points of LP. For any ~: e X we define the following set:

B(4:) = { x e X : ~h >0 , h ~ with ~:+hx>~ 0 and ~ : - h x ~ > 0}.

Notice that B(~) is a subspace of X. We denote the null space of the map A by
N (A) . The following lemma, due to Nash, is straightforward to establish.

Lemma 1. ~ e X is an extreme point of LP if and only if B (~) ~ N (A) = { 0}.

If s c is an extreme point of LP, we can form the direct sum of B(s c) and N (A) .
We denote this subspace by D(~). ~: is called degenerate if

D(~) = B (() G N (A) ~ X.

It is not hard to check that this definition corresponds to the usual one when the
linear program is finite,

The definitions above can be used to establish an important characterization of

the optimal extreme points for LP. Suppose that ~: is an extreme point of LP and

let PN(a): D(~) ~ N (A) be the natural projection. Define the reduced cost for ~ to
be a map c~ : D(~) ~ ~ given by

<X, C~) = (PN(A)(X) , C*) for x e D(sC). Pro~. Ovo ~;~= ""

A proof of the following result can be found in Nasfi;:[~$]; ~' : ! ~ ! - ,!"'~'r

250 E.J. Anderson, A.S. Lewis / Semi-infinite programming

Lemma 2. I f ~ is an extreme point of LP, then ~ is an optimal solution of LP i f and
only if c~ is positive on D(() , i.e. (x, c~) >~ 0 for each x EX+ c~ D(() .

In the next section we show how these definitions and results specialize to the

semi-infinite linear program.

3. The semi-infinite linear program

We consider the semi-infinite linear program SIP1 with S = [0, 1] c E. We will assume
that the components a~, a 2 , . . . , an, of the function a, and the function b, are all

members of C~[0, 1]. In order to put SIP1 into the form LP, we introduce a slack
variable z c C°[0, 1]. The problem then becomes

SIP2: minimize cTx

subject to a(s)Tx - z(s) = b(s) for all s c [0, 1],

xc0~", z~>0, z c Ca[0, 1].

In the notation of Section 2, we have

X = ~° x C°[0 , U,

z = c~[o , 1],

a(x; z) = a (') T x - z (') ,

((x; z), c*)= c~x,

and

X+={(x; z): z~>0}.

Now we shall consider a specific (~:; ~), feasible for SIP2. We call the set
{s ~ S: ((s) = 0} the active points. We shall assume that there are only a finite number

of active points which we denote by {sl, s2, . . . , sk}. At the active points the slack
function if, which is greater than or equal to zero throughout [0, 1], attains a strict
local minimum with value 0. We shall need to keep track of the order of these zeros
of ~ and so we define d(i) to be the smallest non-negative integer j such that
(cJ+l)(si) ~ 0. I f s~ is in the interior of the line segment [0, 1], then d(i) will be odd.

We shall assume that d(i) is defined (i.e. is less than ~) for each i = 1, 2 , . . . , k.
We now set about characterizing the extreme points of S1P2 using the results of

Section 2.

Lemma 3. The subspace B((; ~) is given by

B((; ~) ={(x; z) 6 ~" x C~[0, 1]: z(J)(si) =0, j = 0 , . . . , d(i), i= 1 , . . . , k}.

E.J. Anderson, A.S. Lewis / Semi-infinite programming 251

Proof. It is easy to see that there exists a A > 0 with ~ + Az/> 0 and ~ ' -Az >~ 0 on
[0, 1] if and only if

sup{Iz(s) l /~(s): s ~ [0, 1], s # s, , s2,. • •, Sk}< oo.

NOW Iz (s) l /~(s) is continuous everywhere in [0, 1] except possibly at Sl, s2 , sk.
By l 'Hgpi ta l ' s rule, Ilim z (s) /~ (s) l < oo if and only if zV)(s~) = O, j = 0 , . . . , d (i) ,
i = 1 , . . . , k, and this establishes the result. []

~ k
Let m = k ~i=l d(i) . We define the m x n m a t r i x A b y

,4 = (a(s ,) , a ' (s O , . . . , a(d°))(sO, a(s2) , a(sk) , a(a(k)~(sk)) T, (1)

SO that the rows of J, are the values of a and its derivatives at the active points.
We then obtain the following characterization of extreme points:

Theorem 4. (~; ~') is an extreme point o f SIP2 i f and only i f the columns o f /~ are
linearly independent, or equivalently

span{aq)(&): j = 0 , . . . , d(i) , i = 1 , . . . , k } = R ".

Proof. (x; z)6 B(~:; ~)c~ N (A) if and only if a (s) T x - - z (s) = 0 , for s ~ [0, 1], and

z(J)(si) =0, j = 0 , . . . , d(i) , each i = 1 , . . . , k. Thus by Lemma 1, (~; ~') is extreme if
and only if

{x: a(J~(si)Vx = O, j = 0 , . . . , d (i) , each i = 1 , k} = {0},

i.e. if and only if the columns of A are linearly independent. []

4. Purification

In this section we will consider the problem of how to construct an extreme point

of SIP2. This will be a necessary first step in any solution algorithm which is based
on extreme points. We will make the following assumption concerning the problem
SIP2:

{x: cVx<~O and a(s)Tx>~O, so[O, 1]}={0}. (2)

Assumption (2) will hold in particular if the feasible region is bounded. Under this
assumption we can generate an extreme point of SIP2 by applying the purification
algorithm described below to any feasible starting point. We shall return to the

question of finding an initial feasible solution in Section 6. The algorithm proceeds
at each step by moving in such a way as to maintain all the previous zeros of the
slack variable, until a new zero is obtained.

252 E.J. Anderson, A.S. Lewis / Semi-infinite programming

0. Take (~ ; f~) feasible for SIP2, and set r = 1.
Iteration r

1. Let { s ~ , . . . , sk} be the active points corresponding to (~r; f~), and define d(i)

as in Section 3, for i = 1 , . . . , k.

2. Define a subspace Tr ~ ~" by setting T r ~- ~,a if k = 0, and

Tr = { x : afJ)(si)Tx -~ 0 , j = 1 , . . . , d(i) , each i = 1 , . . . , k},

otherwise. I f 7",- {0}, STOP: (scr; fir) is an extreme point.
3. Set g '= - -PT, (C) (where PT~ is the orthogonal projection onto 7",). I f g ' = 0,

pick a nonzero g r arbitrarily in Tr.

4. Set/3, =sup{--[a(s)Tg~/fr(S)] : S C [0, 1], S ~ S l , . . . , Sk}.
5. Set ~r+~=('+(1 / f l~)gr , and f i , + ~ (.) = a (.) w (' + ~ - b (.) .

6. Increase r by 1 and return to step 1.

Theorem 5. The above algorithm terminates at an extreme point in at most n iterations.

Moreover, the cost at this point is not greater than the cost at the initial point (cT~).

Proof. Let us denote (1 / / ~ r) by ar. Notice that

o~ r : s u p { a ~ : ((r fir) d- G(gr; a(")Tgr) is feasible for SIP2},

and this supremum is attained. By definition, cTgr~ O, SO the cost cannot increase
at any step, and by assumption (2), C~r < CO. Also notice that

B(~:r; fir) (~ N (A) = {(x; a (.)Tx): X C Tr}.

By the definition of B(~:'; ~'r), there is a h > 0 such that

f , (s) ~ h a (s) g r > ~ O f o r s c [0 , 1] ,

so Cer > 0. Clearly T,+I --- Tr. But by the characterization of ar given above,

(gr; a(')Ygr)~ ~ (~ r + , f i r+ ,) ,

so g r~ T,+I. Thus Tr+l ~ T~ strictly, and since each Tr is a subspace of ~n, the

algorithm terminates at an extreme point in at most n steps. []

This procedure is a special case of a more general purification algorithm described

in Lewis [12]. It has been implemented on a microcomputer , and an example of
the output is shown in Figure 1. The graphs show the slack variable fir(S) at each
iteration for the one-sided Ll-approximat ion problem

7
EXI: minimize ~ (1 / i) x i

i=1

7 4
subject to ~ xis ~-1 >1 - Y s 2~ for s ~ [0, 1].

i=1 i~0

EJ. Anderson, A.S. Lewis / Semi-infinite programming

15 ~ 5

0 1 0 1

253

3'

1 0 1

oo, ,

0 1 0 1 0.008~
0 1

Fig. 1. Purification algorithm applied to EX1.

The start ing point is x = s c~ = (10, 0, 0, 0, 0, 0, 0) r, and the a lgor i thm terminates after

6 steps at an extreme point , with k = 3 , d (1) = 2 , d (2) = 1, and d (3) = 1.

5. Degeneracy and the reduced cost

We consider next the p r o b l e m of checking whe ther or not an ex t reme point of SIP2
is opt imal , and if not, of how to make an i m p r o v e m e n t to it. Using the f r a m e w o r k
of Section 2, we shall calculate the reduced cost co r responding to a non-degenera te

ext reme point .

254 12..1.. Anderson, A.S. Lewis / Semi-infinite programming

Lemma 6. (~; ~') is a non-degenerate extreme point o f SIP2 i f and only if,4 is invertible.

Proof. Suppose that ((; ~') is extreme, and (x; z) ~ D(~; if). Then for some (u; v) c
B(~:; O, we have (x - u ; z - v) c N (A) . Thus v#)(si)=O, j = l , . . . , d (i) , each i =
1 , . . . , k, and a (s) V (x - u) = z(s) - v(s). Hence we have

aO)(si)Tu=a~)(si)rx--zU)(si), j = l , . . . , d (i) , f o r e a c h i = l , . . . , k . (3)

((; ~') is non-degenerate if and only if (3) is solvable for u, for every x and z, or in
other words for every right hand side. This is equivalent to A being invertible. D

For any z c C°[0, 1], we define a vector 2 by

2 = (z (s ,) , . . . , z (" (" (s ,) , . . . , z (sk) , . . . , z("("))(sk)) w.

Thus As c =/~. If (~:; O is an extreme point then this relationship determines its value
once sl, s 2 , . . . , Sk, d(1), d(2) , d (k) are given. With this notation we can write
(3) as Au = A x - 2 , so for non-degenerate ((; ~') we obtain u = x - 3, 12, since A is
invertible. Thus the projection map onto N (A) is given by PN(A)(X; Z)=
(A lz; a (.)Trip-12), and so the reduced cost c~, o is defined by

<(x; z), c~:o)= (PN(~)(x; z), c*)
= C T~Z~-- 1 2 .

We define n scalars A~j by

c T / d ~ - I = (/ ~ ' 1 , 0 , • • • , / ~ ' l , d (1) , • " • , Y~k,O,''', ak, d(k)) (4)
; T .

We then obtain the following optimality check:

Theorem 7. A non-degenerate extreme point (~; ~') is optimal if and only if for each
i = 1 , . . . , k, A~.o~>0 and,~d =0, j = 1 , . . . , d(i) .

Proof. By Lemma 2, (so; ~') is optimal if and only if

k d(i)
Y~ AjC'(s,) i> 0

i - 1 j = 0

for all z~>0 on [0, 1]. Now suppose that)tp,o<0 for some p. By constructing a
polynomial z, non-negative on [0, 1] and satisfying

z(J)(si)=l, j=O, i=p,

= 0, otherwise,

it may be seen that ((; if) cannot be optimal. If, on the other hand, ,~p.q ~ 0 for some
p and some q > 0 then by constructing a non-negative z satisfying

zU)(si)= |, j = 0 , i=p,

=M, j = q , i=p,

= 0, otherwise,

E.J. Anderson, A.S. Lewis / Semi-infinite programming 2 5 5

with IM] very large, it is again clear that (~; if) cannot be optimal. The result
follows. []

6. The local structure of the feasible region, and descent steps

In this section we will consider a local description of the feasible region by a finite
number of implicitly defined inequality constraints. Using this description and the
optimality check described in Theorem 7, we show how a non-degenerate extreme
point (£; if) may be moved to a strictly improved extreme point (if it is not already
optimal).

We shall consider first the simplest case, with (£; if) not necessarily extreme,
{sl , Sk}~ (0, 1), and d (i) = l for each i= 1 , . . . , k. The feasible region in a
neighbourhood of (~:; ~) may then be described by k inequality constraints. The
following result is a special case of the 'Constraint Reduction Lemma' of Hettich
and Jongen [10]. We denote the open ball {x: IIx-~ll < ~} by N~(~).

Theorem 8. For some 6 > 0 there exist functions w l , . . . , Wk ~ C~[N~(sc)] such that
for all x ~ N~(~), (x; a (.)Tx -- b(")) is feasible for SIP2 if and only if wi(x) >10 for
each i= 1 , . . . , k.

Proof. For 6 sufficiently small and any x c N~(~), the slack variable a(.) V x - b (.)
has a unique local minimum close to s~. We define wi(x) as the value of this local
minimum. More precisely, by the Implicit Function Theorem, for a sufficiently small
neighbourhood N~ (~:) we can define functions thi: N~(~) ~ (0, 1) satisfying thi(s c) = si,
for each i = l , . . . , k b y

a'(4~,(x))T x = b'(4~,(x)).

Now for x sufficiently close to ~, the global minimum of a(.)Tx-- b (') on [0, 1]
will occur at thl(x) for some 1 ~< l<~ k. This is because, for x sufficiently close to ~,
the points ~bi(x) remain local minima of a(.)Tx - b(-), and other local minima will
have larger values. We now define functions w~: N~(~:)~R by

wi(x) = a(chi(x))Tx- b(6,(x)) for each i = 1 , . . . , k.

For x sufficiently close to ~, a(s)Tx--b(s)>-0 on [0, 1] if and only if w~(x)>~ 0 for
each i = 1 , . . . , k. The result follows. []

Let us now suppose that (~; ~) is a non-degenerate extreme point, still with
{ s l , . . . , Sk}C (0, 1) and d(i) = 1, each i = 1 , . . . , k, and that the optimality check
described in Theorem 7 fails. The optimality check is in two parts, and we consider
the two cases separately.

A _ 1
Case1: hj.o<Oforsomej. Denot ingther thuni tvector inRnbyer , l e t g = A e:~_~,

so that g has the property that a(s~)Vg = 3~, and a'(s~)Tg = 0, each i = 1 , . . . , k. Thus

256 E.J. Anderson, A.S. Lewis / Semi-infinite programming

for e > 0 sufficiently small we have 4~i(~+eg)=s~, and w i (~ + e g) = e 6 o in the
nota t ion of Theorem 8, so ~ + eg is feasible. Moreover , eTg = h~,o<0, so g is a

descent direction. Moving as far as possible in this direction, our new poin t will be
~' = ~ + ag, where

1 / a = f l = s u p ~ . S ~ [0 , 1] , S # S l , . . . , S k , (5)

just as in the purif icat ion algori thm. This step m a y be thought of as increasing the
slack at the active po in t sj, and is ana logous to the p ivot in classical l inear p rogram-
ming. I f the new point is not a l ready extreme, we can app ly the purif icat ion algori thm.

Case 2: Aj.l # 0 for some j. In this case we consider per turbing the posi t ions of
the active points. Define r ~ Nk by r = (s l , • • •, Sk) T. For t ~ Nk define

3`(t) = (a(f l) , a ' (t 0 , . . . , a(tk), a ' (tk)) T, (6)

/~(t) = (b(t l) , b ' (t l) , . . . , b(tk), b'(tk)) f. (7)

Since 3`(z) is invertible by assumpt ion , for some 61>0 , ,4(t) is invertible for
t c N~,(r). For such t define x (t) as (3`(t))- l /~(t) . Not ice that x (z) = ~:, and for some

62> 0, x (t) is feasible for t ~ N~(r) because 4~(x(t)) = t~, and Wg(X(t)) = 0, for each
i = 1 , . . . , k. As 3`(t)x(t) =/~(t) we obtain

o3, ox of,
- - x (t) + 3 ` (t) - - = - - f o r e a c h i = 1 , . . , k,
Oti Oti Oti "

and so

Not ice that the only non-zero c o m p o n e n t in ((03`/ati) ~- (Ob/Oti))[, is a(2)(sg)T~ -
b(2)(si) = ~'(2)(si), as ~'(l~(si)= 0. F rom this we deduce that

t i(cVx(t))[, = -h i , l((2)(s~) for each i = 1 , . . . , k.

We thus have the derivat ive of the cost with respect to movemen t s in t -space (the

space paramet r iz ing the active points) .
We can now use the above gradient in format ion to pe r fo rm a search in ~k (t_space).

We can either choose to move all the active points s imul taneous ly at each step, or
to move only one at a time. The former opt ion will give s teeper descent steps, but

the latter may be easier computa t iona l ly since at each step only two rows of 3`(t)
will change, al lowing a more efficient calculat ion o f (3` (0) ~. This is the me thod
which has been implemented .

Having chosen the descent direct ion (h, say) in t-space, we can pe r fo rm a
const ra ined line search, minimizing eTx(r + ah) over a ~> 0. In general , as we increase
a, x (r + a h) will eventual ly become infeasible. I f this happens before a local
m i n i m u m of eTx (¢+ ah) is reached then we need to calculate the precise value of
a for which it occurs. Ei ther a new point becomes active, or a(2~(t~)Tx(z+ ah) - b(t~)

E.J. Anderson, A.S. Lewis / Semi-infinite programming 257

becomes zero for some i. Cons ider the first possibili ty. To find the exact x(t) for
which the new point becomes active, we solve:

a(Snew)TX(~'+ o~h) -- b (s n e w) ,

a'(s~ew)T x (z + o~h) = b'(s,~ew),

(two nonl inear equat ions in two unknowns , s the new active point , a s sumed to
lie in (0, 1), and a, the step length) using N e w t o n - R a p h s o n for instance. The second
possible reason for infeasibil i ty is dealt with similarly, and is s t ra ightforward.

At this poin t we can summar ize the steps of the a lgor i thm as follows:

1. Find an initial feasible solution, (~:0; ~o)-
2. Use the purif icat ion a lgor i thm to find an initial ext reme point , (~1; (1). Set r = 1.

Iteration r
3. Set ~- = (s l , s2 sk) T, with coefficients the active points for (¢r; ~'r)- Calcula te
f rom (1) and £ f rom (4). We assume that A is o f full rank.

4. I f hi,o< 0 for some j, set g = A - 1 % - 1 , and x = ~:r+ ag, where a is de te rmined
f rom (5). Set z(.) = a (.) X x - b (.) . Apply the purif icat ion a lgor i thm to (x; z) (if
necessary) to obta in a new improved ext reme point , (~r+l; ~'r÷~)- Increase r by 1.

G o to 3.
5. I f Aj.1 ¢ 0 for some j, set h = ej and write x(t) for A(t)-~b(t) , where A(t) and

/~(t) are defined by (6) and (7). Now carry out a cons t ra ined line search to find 4,
the choice o f a which minimizes cXx(~-+ ah) subject to x(~-+ c~h) remaining feasible

(see the remarks in the above paragraph) . Set ~r+l = X(~'+ ~h). Increase r by 1. G o
to 3.

At step 1, the choice of initial feasible solut ion may be obvious. I f not, it can be
found using a phase 1 p rocedure which solves the semi-infinite p rog ram (posed
over Rn+l)

minimize xo

s u b j e c t t o xo+a(s) fx>~b(s) for all s ~ [0 ,1] ,

XoC~, X ¢ ~ n,

s topping as soon as a feasible solution is reached in which x 0 ~ 0.
U p to now we have assumed that {sl Sk} c (0, 1), and that ~(2)(s~) > 0, for

i = 1 k. We suppose now that this last condi t ion does not hold, so that d(1) > 1
for some l. As previously observed, d(I) must be odd, so for i l lustrat ion consider
the case d(I) = 3. We need to consider a variety of different descent steps. One way

to keep t rack of changes in the objective funct ion is to observe that, for (x; z) any
other feasible solution,

c ~ x - c ~ = d (x - ~)

-= 2~2,

258 E.J. Anderson, A.S. Lewis / Semi-infinite programming

where A is defined by (4). Hence if x is obtained by some perturbation maintaining
all the active points except st unchanged then the change in the objective function

is given by

c T x - cT~: = ,~,0z(s~) +)~,lz '(s~) + ,~,2z~2)(s~) + ;t~,3 z~3)(st) • (8)

Consider the effect of splitting the active point s~ into two new active points at

sl + 61 and s/+ 62. Thus we define x(61, 62) by

a~)(s,)Vx(6,, 62) = b~)(s,), j = 0 d(i) , i S 1,

a(i)(st + 6p)Tx(61, 62) = b~)(st + 6p), j = 0, 1, p = 1, 2,

for sufficiently small 61 # 62, and

a(J)(s i)Tx(~l , 61) = b(J)(si) , j = 0 , . . . , d(i) , i ~ I,

a~J)(s~ + 6~)Tx(6~, 61) = b~J)(st + 60, j = O, 1, 2, 3.

x(61, 62) is then continuous in (61, 6z), with x(0, 0) = ~:. Assuming that the corre-
sponding slack variable has a Taylor expansion for small (s - s~), ~1, 62 of order of

magnitude O(6), we have

a (s) ~ x (6 ~ , ~) - b (s) = K (s - s, - 6 0 ~ (s - s, - 6~) ~ + O (~) ,

for some constant K, since the slack has double roots at st + 6~, s~ + 62. Equating
coefficients of (s - s~) 4 we obtain

K =I(a(4) (s l)T~- b(4)(Sl))

= ~ ') (s ,) .

Thus, from (8), we obtain that the change in the objective function when we make

this perturbation is given by

cTx(61 , 62) -- cT~ = ~4~'(4)(Sl)(- 12~/.3(61 + ~2) "~- 2"~/,2(~2 -b 4~1 ~2 -b ~2)

-2A,., 6~6~(6, + 6~) + a,,o~6~)+ 0(8').

Using this formula and (8) we obtain the following as possible descent steps

(without loss of generality we take 1 = k):

(a) Ak.O<0; as Case 1 above.
(b) Ak.2<0; let g = A-le,_~. Then ~:+ eg is an improved solution, for small e > 0.

This move increases ((2)(Sk), and as in Case 1 above, we need to move as far as

possible in this direction and then possibly purify to obtain a new extreme point.
(c) Ak,3 ¢ 0; move Sk, keeping d (k) = 3.
(d) Ak,3 = 0 and Ak,2 > 0 ; replace {sl, s 2 , . . . , Sk} with { s l , . . . , Sk-~, Sk--6, Sk+ 6},

and take d (k) = d (k + l) = 1.

(e) Ak.3----Ak,2 = 0 and Ak,~ # 0; move Sk, keeping d (k) = 3.
The other situation which we need to consider is when one of the active points

is 0 or 1. Suppose for example that Sl = 0 and d(1) = 1. The only case which causes

E.J. Anderson, A.S. Lewis / Semi-infinite programming 259

difficulty is when A~,~ < 0: Case 2 above indicates that we should decrease s~, which
is not possible. We can however move by increasing the derivative of the slack at

0. Define g by

aO)(si)Tg=O, j = O , . . . , d (i) , i = 2 , . . . , k ,

a(sOTg = O,

a'(sl)Tg = 1.

Then for e > 0 sufficiently small, f + e g is feasible, and since cTg = A~.~ <0 , g is a

descent direction.
Thus we have shown that whenever the optimality check fails an improved extreme

point can be found, using one of the methods outlined above. Hence we have derived
a descent method for the primal semi-infinite problem analogous to the simplex
algorithm. We have no general result guaranteeing that the method will converge
to an optimal solution, but the descent steps described above have beeen imple-
mented in an algorithm to solve SIP2 on a microcomputer , and in practice the
method works well, in the absence of degeneracy. The question of local convergence
is considered in the following section. We illustrate this by describing the perform-
ance of the algorithm for two small examples.

First consider the problem EXI introduced in Section 4. The non-degenerate

extreme point found by the purification algorithm (see Section 4) is used as an
initial point. Figure 2 shows graphs of the slack variable at various stages of the
solution procedure. Notice that during the course of the calculation the active point
at 0 is split into two new active points, one at 0 and one in (0, 1). The algorithm

terminates at the opt imum (to a given tolerance).

0 1 0 1

I Itera'don 15 [f~ Iteration 12 O.O05J ^ (optimum)

Fig. 2. Changes in slack variable for the algorithm applied to EX1.

2 6 0 E.J. Anderson, A.S. Lewis / Semi-infinite programming

Our second example is the following well known test problem (due to Roleff [15]):

minimize ~ (1/i)xi
i ~ l

subject to ~ xisi-l>~tan(s) for all s o [0 , 1].
i - - I

This problem arises from the one-sided Ll-approximat ion of tan(s) on [0, 1] by
polynomials of degree less than n. Coope and Watson [3] observe that it is extremely
ill-conditioned for n > 6. The problem was solved for various values of n by the
new algorithm. The results are shown below.

n =3: initial x = (2 , 0, 0)T; 4 iterations (2 purification steps, 2 further descent
steps); optimal value = 0.649042; optimal x = (0.089232, 0.422510, 1.045665)T; active

points {0.333, 1}.
n = 6: initial x = (2, 0, 0, 0, 0, 0)T: 12 iterations (6 purification steps, 6 further

descent steps); optimal value=0.61608515; optimal x = (0, 1.023223, -0.240305,
1.220849, -1.387306, 0.940948)T; active points {0, 0.276, 0.723, 1}.

n = 9: the cases n = 6, 7, 8 and 9 were solved sequentially, each time using the
previous solution as the initial x for the next problem. The cases n = 7, 8 and 9

took respectively 8, 6 and 10 iterations. For n---9, optimal value=0.61563261;
optimal x = (0.000033, 0.998329, 0.029955, 0.089219, 1.055433, -2.459376, 3.653543,
-2.728758, 0.919029)T; active points {0.055, 0.276, 0.582, 0.860, 1}.

In both of the above examples the algorithm was terminated when an extreme
point was reached for which the reduced cost coefficients satisfied Ai.o> - 1 0 -3 and
IAijl < 10 -3, j --- 1 , . . . , d(i), each i = 1 , . . . , k. It happens that in these examples all

the descent steps, after finding an initial extreme point, are of the second type.
These steps are performed by moving only one active point at a time: the reduced

cost is recalculated at each iteration, allowing the search to be performed by bisection.
More accurate results could be obtained by reducing the tolerance in the termination
criterion, at the expense of increasing the number of iterations required.

One of the main practical difficulties with the new algorithm is that we often have
to check that a new ((; () is feasible for the problem. For example, this occurs
frequently during the line search in step 5 of the algorithm. In order to do this we

need to find all the local minima of the slack variable (. Naturally, any algorithm
for the solution of SILP will need to include a subroutine to accomplish this. In
our implementation the local minima are simply recalculated at each step, using a
grid search followed by Newton-Raphson. The same technique is used in the

calculation of fir in step 4 of the purification algorithm, and in the calculation of
ce in (5).

There is clearly some scope for refinement in the numerical implementation of
these local minima computations. For example in the intial stages of the line search
we could afford to compute these minima less accurately, while in the later stages
we could use the local minima of a (.) V (- b (.) as first approximations to the
corresponding local minima of a (.) T ~ ' - b (.), for ~' close to ~.

E.J. Anderson, A.S. Lewis / Semi-infinite programming

7. The degenerate case

261

In this section we shall analyse the notion of degeneracy and consider the problem
of constructing a descent step from a degenerate extreme point. As will be seen,
degeneracy corresponds roughly to too many points being active, and in general is
likely to be a common phenomenon in this problem. Nevertheless there are classes
of problem for which we can be sure that it does not occur. Consider for instance
the problem

minimize cTx

subject to ~ xjs ~-1>I b(s) for all s e [0, 1],
i=l

XC•,

where b(-) has the property that b(n)(•) has no roots in [0, 1]. It follows by repeated
application of Rolle's theorem that any feasible slack can have at most n roots in
[0, 1] (counted by multiplicity), and so any extreme point will be non-degenerate.

In finite linear programming, degenerate extreme points are dealt with by perform-
ing a sequence of degenerate pivots. One way of thinking of this procedure is that
the problem is perturbed slightly and a sequence of small descent steps are made
before a genuine descent direction is found. In the primal semi-infinite linear program
such a perturbation approach will not necessarily succeed in resolving the
degeneracy, because degenerate extreme points group together in manifolds on the
boundary of the feasible region. This is expressed in the result below. We again
consider feasible (~:; ~) for SIP2, with active points {s~ , . . . , sk} c (0, 1), and ~(=)(s~) >
0 for each i = l , . . . , k. We consider subsets I of { 1 , . . . , k}, and we make the
following regularity assumptions:

(a) {a(s~): i e I} is linearly independent for any I with II[<~ n, and
(b) {a(si), a'(si): i e I} spans A n for any I with 21I 1/> n.
Now, using the notation of Theorem 8, let us partition the feasible points in a

small neighbourhood N~(~:) into subsets in the following fashion. For any I c
{ 1 , . . . , k} define EI c_ N~(£) by

x e E 1 i f a n d o n l y i f w~(x)=0, i e I ,

>0 , i ~ L

Theorem 9. There exists a 8 > 0 such that for all x ~ N~(~), (x; a(.) T x - b (,)) is an
extreme point of SIP2 if and only if x c E~ for some I with 21I I >~ n. Also, each E1 is
a manifold of dimension max{0, n - III}.

Proof. Observe that E~ is just the set of feasible x close to £ with active points near
{s,: i c I}. The result follows from Theorems 8 and 4. Since

w,(x) = a(4,,(x))Tx - b(4),(x)),

262 E.J. Anderson, A.S. Lewis / Semi-infinite programming

it follows that

v w,(x) = V¢,(x)(a'(¢,(x))~x- b'(¢,(x))) + a(¢,(x)),

so that Vw;(() = a(si) (using ~;(~:) = s;). The assertion concerning the dimension of
Et follows, since the dimension of span{Vwi(~:): i c I} is therefore III. []

To illustrate the sets E;, consider the problem

minimize xl

subject to x~+x2s+x3s2>~b(s) for all so[0 , 1].

This problem consists of minimizing the intercept at 0 of parabolas lying over the
curve y = b(s). In Figure 3, three feasible parabolas are illustrated, corresponding
to three feasible points ((1; (~), ((2; (2), and (so3; ~'3). In x-space the feasible region
is the convex hull of three curved lines of degenerate extreme points, emanating

als)T~ z
ais)T~ 3

I ' o sf~
I I I
i t I /
l I I I

I I I

', \ . ' i /
\x ~ ~ I / y=bis)

" . , ~ I~. / , / " -'-.~, ,, / ', .~¢

!

I

E{,,2,3} =,[~, } ~ . ~ ~ "E{2,3}

Fig. 3. Three feasible parabolas and the feasible region.

E.J. Anderson, A.S. Lewis / Semi-infinite programming 263

from the degenerate extreme point ~:1 (see Figure 3). A detailed investigation of the
local structure of the feasible region may be found in Jongen and Zwier [11].

The simplest case is when (~; if) is a non-degenerate extreme point with active
points { S l , . . . , Sn/2} C2- (0, 1), and each d(i) = 1. In this case Theorem 9 shows that
the extreme points in a neighbourhood of (~:; ~') are those (x; a (.)Tx - b(.)) with

x lying in the manifold E~I /2/. Thus any extreme point sufficiently close to
(~:; ~) will have active points {tl, • • . , tn/2}, where ti is close to si for each i. It follows
that if the optimal solution is of this form then the new algorithm will be locally
convergent since it reduces to an unconstrained, coordinate-wise search for a local

minimum in t-space (the space parametrizing the active points). Of course, conver-
gence could be improved by using a more sophisticated search strategy such as a
Newton method when we are sufficiently close to the optimum. Such two-phase
approaches are well-known in semi-infinite programming (see for instance Hettich

[8] and [9]).
The essence of the descent step in Case 2 of Section 6 is that we can move the

active points around independently whilst retaining feasibility. Degeneracy causes
two difficulties. Firstly the reduced cost is no longer defined on the whole of
X = Nn x C~[0, 1], and so no longer provides a simple optimality check, and secondly

we can no longer move the active points independently. Degeneracy may be roughly
thought of as too many points becoming active: ensuring feasibility by fixing the
value of the slack and its derivative at all active points is no longer possible as it
was in the non-degenerate case.

Let us look again at the local structure of the feasible region, but instead of using
the Implicit Function Theorem to infer the existence of the unknown functions wi,

let us work in a larger space of points x together with associated active points
specified by (t l , . . . , tk), a point in R k. Define F c _ R n+k by

F = {(x, t): a(h)Tx >! b(h) , a ' (h)Tx = b ' (h) , i = 1 , . . . , k}.

Theorem 10. Suppose (s¢; ~') is feasible for SIP2, with aetive points { sl , . . . , Sk } C (0, 1),
and ~(2)(si) > 0 for each i = 1 , . . . , k. Define "re R k by ~- = (S l , . . . , Sk). Then there is

a ~ > 0 such that for all (x; t) c N~(~:; 7), (x; a (.) T x - b (.)) is feasible for SIP2 /f

and only i f (x; t) c F.

Proof. This is essentially a restatement of Theorem 8. []

Still treating ~: as a fixed point, we now consider the finite problem:

RP: minimize cTx

subject to (x; t) E F.

By Theorem 10, (~:; ~-) is a local minimum for RP if and only if (¢; ~') is a local

minimum and hence optimal for SIP2. The tangent space to F at (¢; r) , which we
shall denote M, is given by

M = { (x ; t): a(s i)Xx=O and a' (s i)Vx+~2~(s i)h =0, i = 1 , . . . , k}.

264 E.J. Anderson, A.S. Lewis / Semi-infinite programming

We can make a descent step by moving a small distance in the direction - PA4 (c; 0)
(where PM is the orthogonal projection onto M) , followed by a restoration step to
return us to the feasible region, F. These will be accomplished using standard
techniques from the projected gradient algorithm (see for instance Gill, Murray and

Wright [4]). I f PM(C; 0)= 0 then we have

k k

t z ia(s i)+ ~, v i a ' (s i) = c and ~,j~(2)(sj)=O f o r j = l , . . . , k ,
i~l i--I

for some tz, ~'~ ~k. Since ~'~2)(sj)>0 by assumption, we have ~,~=1 tx ia(s i)= c. I f
/zi i> 0, for i = 1 , . . . , k, then (so; ~-) satisfies the first order (Kuhn-Tucker) optimality
conditions for RP, and the projected gradient algorithm terminates. Interpreted as
a measure on the points s ~ , . . . , Sk, /X is in this case a feasible solution to the dual

problem for SIP2,

SIP2*: maximize o lb (s) doJ (s)

fo' subject to a (s) d~o(s) = c,

~o~>0, o~ c M[0, 1],

and is complementary slack with s e, so that both s c and /x are optimal for their
respective programs (see Nash [13]). Suppose /z is not non-negative. The standard

projected gradient algorithm would then drop the constraint corresponding to the
most negative component of /z , /zj say, and move in the direction of the negative
cost vector projected onto the subspace determined by the remaining active con-
straints. In this case, dropping the constraint associated with /xj means increasing
the value of the slack at tj. Thus we are no longer interested in the precise value of
tj and we can simplify calculations by working in the smaller set

F ' = { (x ; t): a(ti)Tx~b(ti) and a'(ti)Wx~b'(ti), i # j } .

As a final point, notice that the treatment we gave of the non-degenerate case
made use of the fact that we can write

{(x; t): a(t i)Tx = b(ti) , a ' (t i)Tx = b'(t i) , i = 1 , . . . , k}

= { (~ (t) - l & t) ; t): t ~ Rk},

so that moving in the set F is in this case straightforward. It remains to be seen
whether the special structure of F allows an analogous simplification of calculations
in the degenerate case.

8. Higher dimensions

We finally return to the problem SIP1 when S is a polyhedral subset of ~P. We shall
suppose that al , • • •, aT, b c C2[S]. With the addition of a slack variable, the problem

becomes

SIP3:

E.J. Anderson, A.S. Lewis / Semi-infinite programming 265

minimize crx

s u b j e c t t o a(s)Tx-z(s)=b(s) for a l l s c S ,

X C ~ n, z c C 2 [S] , Z ~ 0 ,

where S c •P is a compac t set defined by

S = { s : dfs<~fj, j = 1 , . . . , q}.

We consider a (so; () feasible for SIP3, and denote the active points {s c S: ~'(s) = 0}
by { s ~ , . . . , s k} (assumed to be a finite set). For each i = 1 , . . . , k, let J(i) be the set
of indices of those constraints on S which are active at s i, i.e. J(i) = {j: T i djs =fj}.
We write ~s for the vector (O~/Os~,..., a~/Osp), ~,, for the cor responding Hess ian
matr ix , and a, for the matr ix (aa/Os~,..., aa/OSp).

We shall consider only the case where ~ satisfies the second order sufficient
condi t ions for a local m i n i m u m at each s i, with strict c o m p l e m e n t a r y slackness:

For i = 1 , . . . , k, there is a / x i ~ R q such tha t

/zj > 0, j cJ (i) ,

- 0 , j~:J(i),
(9)

~s(Si) T'~- 2 ~zjdj = 0, and
j~J(i)

~ss(S i) is posi t ive definite on {s: d Ts = O, j c J (i)} .

In the one-d imens iona l case where S = [0, 1] this cor responds to the si tuat ion when

d (i) = l for s ~ (0 , 1) and d (i) = 0 for s i = 0 or 1.
N o w for each i = 1 , . . . , k, define m(i) to be the d imens ion of the subspace

{s: dfs = O, j ~ J(i)}. By (9) we can choose a basis {gi l , i • . . ,g in(o} for this space,
satisfying i T i i i (gj) (~.~(s)gt = 6jl. Write G~ for the matr ix (g~, g~(i)). We then obta in

the fol lowing analogue of L e m m a 3:

L e m m a l l . For (x; z) ~ " x C2[S], (x; z)~ B(~; ~) if and only if

z (s i) = 0 and z~(si)Gi=O for e a c h i = l , . . . , k . (10)

Proof . I f (x;z)cB(~; ~) then ~(s i)q- . '~z (s i)~o for some h > O , so z(si)=O and

~ + h z must satisfy the first order condi t ions for a local m i n i m u m at each s ~,

i = 1 , . . . , k. Thus for some 3" c Eq,

~,(s~)~+;~zs(s') T+ 2 ~4=0.
jEJ(i)

So f rom (9), for l = 1 , 2 , . . . , re(i),
i i AZs(S)g,= E (tzj- yj)aji''Tg;

jGJ(i)

=0.

Hence z~(s~)G~ = 0 , for each i = 1 , . . . , k, so (10) is satisfied.

266 E,J. Anderson, A.S. Lewis / Semi-infinite programming

Conversely, suppose (x; z) satisfies (10). Then z~(s~) v is perpendicular to the

space spanned by {g~, - . - , g[,(o}, and SO 7~s(si)T :~j~J(i) yJ4i for some 7 !J. Hence

~(s ')~+Azs (s ') T+ Z (~ : ~) 4 : 0 ,
jGJ(i)

and it is not hard to check that (± /~z satisfies the second order sufficient condit ions

for a local min imum at each s ~, for h sufficiently small. So ~'(s)± ,~z(s)>~ 0 for s ~ S,

for .~ sufficiently small. []

We now define .4 and 2 in an analogous fashion to the one-dimensional case by:

A = (a(s') , a ~ (s ') G , , . . . , a(sk), a,(sk)Gk) T,

: (z (s ') , z~(s~)G, , z(s~), z~(s~)G~) T.

The analogue of Theorem 4 is then:

Theorem 12. ((; ~) is an extreme point of SIP3 if and only i f the columns of /~ are
linearly independent.

ProoL (x; z) c B(~:; if) c~ N (A) if and only if a(si)Tx = 0, and G~a~(s~)Tx = 0, each

i = 1 , k, i.e. if and only if Ax = 0, whence the result. []

The purification algori thm described in Section 4 will operate in exactly the same

fashion, if we take

Tr = {x: a(si)Vx = O, G~a~(si)Tx = 0 for each i = 1 , . . . , k},

providing that the slack fir satisfies (9) at each step.

Just as in the one-dimensional case, we find that an extreme point ((; ~') is

non-degenera te exactly when .4 is invertible, and in this case the associated reduced

cost is defined by

((x; z), c~)) = cTA-'2.

Write cT.4 -~ = (A1,0, A1.1 , h~.,,(1) hk.0, • • . , hk,,,(k)). Then an analogous argu-

ment to the one-dimensional case shows that (~; if) is opt imal if and only if for

each i = 1 , . . . , k, hi.o~> 0 and hi, j =0 , for j = 1 , . . . , re(i).
Condi t ion (9) allows us to describe the feasible region in a ne ighbourhood of

by k inequali ty constraints, exactly as in the one-dimensional case (see Hettich and

Jongen [10]). I f Ai, o < 0 for some i then we can make a descent step by increasing

the value of the slack at s ~. I f on the other hand h~,j # 0 for some i and j > 0, then
we can make a descent step by moving s ~ in the direction :~ g~, Consider for example

the effect of moving the active point s ~ to t ~ ~o. Define

A(t) = (a(t), a~(t)G1, a(s z) , a~(sk)Gk) v,

b(t) = (b(t), b~(t)G~, b (sZ) , . . . , b~(sk)Gk) v,

E,J. Anderson, A.S. Lewis / Semi-infinite programming 267

and 2 similarly. Define x(t) as fi~(t)-~f)(t), which is well defined for t sufficiently

close to s ~, and let the corresponding cost be c(t) = cTx(t). Since ,4(t)x(t) = b(t) ,
we have

Xt(S i) ~- A(s l) - I (b t (s 1) -- At(s l)x(s1)) ,

and so the rate o f change of cost is given by

P' ~' 1 ^ i Ct (S1) = cTA-1(b,(s) - A t (s)~)

/ bs(s l) - -a ' (s l)T~ 1
NT[b~s (S ') -a~ (s l)T~] I

= - (, ~ , . o , . . . , Ak, m(k))(~fis'), ~ , (s ') a ~ , 0 , . . . , O) T.

From the definition o f the g~, we therefore have that c,(s~)g) = -h~,s, so for A~,j ~ 0
we can make a descent step by moving s ~ in the direction ±g) . Notice that this will

T 1 not violate any of the active constraints on s ~ since dj gj - 0 f o r j c J(1) , by definition.

An example. Cons ider the problem

minimize x3

subject to xlsl + x2s2 + x3 >t --~[(Sl - 1)2 + s2][sl + (2 - s2)]

for all 0 ~ si, s2 <~ 2.

In the above notat ion we have: c = (0, 0, 1) T, a(s) = (sl , s2, 1) T, dl = (o~), d2 = (_°0,

d3 = (1), d4 -~ (01) ' f l = 0 , f2 = 0, f3 = 2, f4 -= 2. W e consider the point ~: = (0, 0, 0) T, with

cost 0 and slack variable given by

~ (s , , s2) = -~[(s~ - 1)2 + s2J[s, + (2 - s2)].

We obtain the active points s I = (~) and s 2 = (0), with J(1) = {2} and J(2) = {1, 4}. It

may be checked that ff satisfies (9) at s I and s 2, and that ~,s(s ~) = 1 6 ~(1 J2). We require
{gl} to be a basis for {s: d~s =0}, satisfying (gl~)T~,(s~)g] = 1, SO we take 1 g l = (~),
a n d G I = (1). G 2 is n u l l .

N o w ,4 = (a (sl), as(sl) G1, a(s2)) T, so

A = o .
2

A is invertible, so (~; ~) is a non-degenera te extreme point, with a reduced cost

given by Al,O = 1, ~tx.~ = - 1 , h2,o = 0. We make a descent step by moving s ~ in the
direction - g l = - (~). We find that to minimize the cost in this search direction, we

wish to move s ~ to (o°). This corresponds to ~ =~(3, 1, - 2) , which is easily seen to

be opt imal with cost --~.

268

9. Discussion

E.J. Anderson, A.S. Lewis / Semi-infinite programming

The usual methods for the solution of semi-infinite programming problems are

essentially dual methods. Approximate solutions are generated which are infeasible
for the primal problem. In fact an approximate problem is solved where the index
set of the constraints, S, is replaced by a finite subset { S l , . . . , sN}. This set is either

a grid approximation to the original set S or it is a subset of size n which is updated
iteratively using an exchange (perhaps multiple exchange) method. In this latter
case the algorithm can be thought of as the simplex algorithm applied to the dual
problem. However, in either case this first phase of the algorithm must be followed
by a second phase in which a more or less exact solution is found using Newton's
method (say) to solve a set of nonlinear equations which take into account the kind

of derivative information which is at the heart of the primal algorithm described
here (see for instance Hettich [9]).

A number of difficulties are associated with these standard methods. Firstly, since
they are dual methods, if the algorithm is terminated before the opt imum is reached
then the resulting solution will not be feasible, which may be a disadvantage.
Secondly, if the set S is replaced by a grid approximation then the resulting finite

linear program must be solved by special variants of the simplex algorithm if
numerical instability is to be avoided, and convergence of the solution as the grid
is refined may be slow. Similar difficulties occur with exchange methods (see Hettich
[8] and [9]). Thirdly, finding an initial approximation to the solution for phase 2
of the algorithm requires the clustering of points in the output of phase 1 into a

reduced set of points (approximations to the active points at the optimum, see
Glashoff and Gustafson [5]). Unfortunately the clustering procedure may present
difficulties, as has been observed in, for instance, Watson [17]. Finally, if the initial
approximation for phase 2 is insufficiently accurate then the algorithm may not

converge, and we will have to return to phase 1. For further details, see Gustafson
and Kortanek [6]. These difficulties are well-known and have led to the adoption
of various globally convergent methods (see for example Watson [17], Coope and
Watson [3]).

We have not at tempted any sophistication in the choice of a descent direction
for improvement steps of the second kind. As we observed previously, if the optimal

solution is non-degenerate then the algorithm reduces to an unconstrained search
sufficiently close to this optimum, and so by employing a suitable search strategy
such as a Newton method, we can ensure superlinear convergence. I f the optimal
solution is degenerate on the other hand, a standard second phase technique may
be necessary to give rapid convergence. In either case the new method has the
advantages that it maintains feasibility and avoids the clustering difficulties which
constitute one of the main disadvantages associated with standard two phase
techniques.

The main obstacle to the practical use of the new method is in the degenerate
case. It is clear, for example, that the method would be unsuitable for standard

E.J. Anderson, A.S. Lewis / Semi-infinite programming 269

Chebychev approx imat ion problems, where the opt imal solut ion can be seen to be

always degenerate: the wel l -known exchange method for this p rob lem is extremely

effective (and in fact may be viewed as working with a sequence of non-degenera te

dual extreme points). The work we have done on degeneracy is impor tan t f rom a

theoretical po in t of view, and gives a bet ter unde r s t and ing of the na ture of this

impor tan t p h e n o m e n o n , bu t it still leaves cons iderable imp lemen ta t ion difficulties.

Our own small-scale imp lemen ta t ion does no t deal effectively with degeneracy. One

of the pr inc ipa l at tractions of the new method is that feasibili ty is main ta ined .

However, as in the projected gradient algori thm, it is hard to see how to achieve

this s imply in the degenerate case without the computa t iona l ly unat t ract ive projec-

t ion and restorat ion steps described in Section 7. Unt i l this difficulty is resolved the

method remains pr imari ly of theoretical interest.

References

[1] E.J. Anderson, "A new primal algorithm for semi-infinite linear programming," in: [2] pp. 108-122.
[2] E.J. Anderson and A.B. Philpott, Infinite Programming, Proceedings (Springer-Verlag, Berlin, 1985).
[3] I.D. Coope and G.A. Watson, "A projected lagrangian algorithm for semi-infinite programming,"

Mathematical Programming 32 (1985) 337-356.
[4] P.E. Gill, W. Murray and M. Wright, Practical Optimization (Academic Press, London, 1981).
[5] K. Glashoff, and S.-A. Gustafson, Linear Optimization and Approximation (Springer-Verlag, New

York, 1983).
[6] S.-A. Gustafson and K.O. Kortanek, "Numerical treatment of a class of semi-infinite programming

problems," Naval Research Logistics Quarterly 20 (1973) pp. 477-504.
[7] R. Hettich, Semi-Infinite Programming, Proceedings of a Workshop (Springer-Verlag, Berlin, 1979).
[8] R. Hettich, "A comparison of some numerical methods for semi-infinite programming," in: [7] pp.

112-125.
[9] R. Hettich, "A review of numerical methods for semi-infinite optimization," in: A.V. Fiacco and

K.O. Kortanek, eds., Semi-Infinite Programming and Applications, Proceedings of an international
symposium (Springer-Verlag, Berlin, 1983) pp. 158-178.

[10] R. Hettich, and H.Th. Jongen, "Semi-infinite programming: conditions of optimality and applica-
tions," in: J. Stoer, ed., Optimization Techniques, Part 2 (Springer-Verlag, Berlin, 1978) pp. 1-11.

[11] H.Th. Jongen and G. Zwier, "On the local structure of the feasible set in semi-infinite optimization,"
in: B. Brosowski and F. Deutsch, eds., Parametric Optimization and Approximations (Birkhauser
Verlag, Basel, 1985) pp. 185-202.

[12] A.S. Lewis, "Extreme points and purification algorithms in general linear programming," in: [2]
pp. 123-135.

[13] P. Nash, "Algebraic fundamentals of linear programming," in: [2] pp. 37-52.
[14] A.F. Perold, "Extreme points and basic feasible solutions in continuous time linear programming,"

SIAM Journal on Control and Optimization 19 (1981) pp. 52-63.
[15] K. Roleff, "A stable multiple exchange algorithm for linear SIP," in: [7] pp. 83-96.
[16] W. Rudin, Real and Complex Analaysis (McGraw-Hill, New York, 1966).
[17] G.A. Watson, "Lagrangian methods for semi-infinite programming problems," in: [2] pp. 90-107.

