Mathematical Programming 44 (1989) 213-219 213
North-Holland

A PROBABILISTIC ANALYSIS OF THE SWITCHING
ALGORITHM FOR THE EUCLIDEAN TSP

Walter KERN
Mathematisches Institut, Universitdt zu Koln, D-5000 Kéln 41, FR Germany

Received 4 July 1986
Revised manuscript received 25 January 1988

The well-known switching algorithm proposed by Lin and Kernighan for the Euclidean Travelling
Salesman Problem has proved to be a simple efficient algorithm for medium size problems (though
it often gets trapped in local optima). Although its complexity status is still open, it has been
observed to be polynomially bounded in practice, when applied to uniformly distributed points
in the unit square. In this paper this polynomial behaviour is derived theoretically. (However, we
will come up with a bound of Q(n'®) with probability 1~ ¢/n, whereas in practice the algorithm
works slightly better.)

1. Introduction

Suppose we are given n points, labelled 1,..., n in the plane. A tour is then any
sequence (permutation) o = (o, ..., 0,) of the n points. The length of a tour o is
the sum of all distances of consecutive points:

L(o)= Y d(o;, 0i41) (With 0, =0,).
i=1

With these notations, the Euclidean Travelling Salesman Problem can be stated as
follows: Given a set of n points, labelled by 1, ..., n, find a tour of minimal length.
This problem is (well-) known to be NP-complete and several heuristics have been
developed for solving it. Apart from the cutting plane approach taken by several
authors (e.g. Grotschel, Fleischmann, Padberg, to mention just three of them), there
are two well-known “‘probabilistic” algorithms. The first of them is based on
partitioning the set of points, constructing subtours in each part and to connect
them to a tour (cf. [2] for further information). The second one, due to Lin and
Kernighan (cf. [3]) is based on a switching procedure (described below) which
improves a given current solution step by step until a “local” optimum is reached.
It is this method we will be concerned with in the following.

Suppose we are given a tour o =(o,,...,0,). If i<j then we will say that the
tour &, defined by

0':(0'1,---,0'i~1=0}',0}1,---,0},0}+1,---,(Tn)

is obtained from o by switching i and j (cf. Fig. 1). This switching operation naturally
defines a neighbourhood N (o) of o, consisting all & obtainable form o by switching
some i and j.

W. Kern / A probabilistic analysis

e e o

Fig. 1

Now the algorithm of Lin and Kernigham—denoted by ALK for short—simply
works as follows:

INIT: Choose an initial solution o

LOOP: If there is any ¢ € N(o) such that L(g) < L(c), then replace o by & and

return to LOOP. Else STOP.

There are two major problems with this algorithm. First, one can show that, in
general, it does not yield an optimal solution, but can get “trapped in a local
optimum”. Usually, one tries to overcome this difficulty by running ALK several
times with randomly chosen initial solutions. The second problem is, that nothing
is known about its complexity so far. However, if the points are uniformly distributed,
say, in the unit square, then experimental results show that the running time is
polynomially bounded in . 1t is this result, we are going to derive theoretically in
Section 2. More precisely, we will show that, if ALK is applied to a random problem
as above, then its running time is O(n'®) with probability 1— ¢/ n for some constant
c>0. :

We would like to note that, during the last years, another approach has been
taken to provide the algorithm from getting trapped in a local solution. This approach
is well known as ““Simulated annealing” or “Metropolis algorithm™. Essentially, the
idea is to allow the algorithm to switch from o to ¢ even if L(&)> L{o), however,
with a decreasing probability for such “bad” switches. It would be an interesting
question, whether our result can be used to derive polynomial bounds for the
Simulated annealing version. Anyway, experimental results of this method are very
encouraging (cf. [5,1]) and have revived the interest in the original algorithm of
Lin and Kernighan. Therefore, we found it worthwhile to write this paper.

2. A probabilistic analysis of the algorithm

Suppose we are given an instance of the Euclidean TSP, defined by n points 1,..., n
in the unit square. Let
d¥= 7),0€ N(a) and L(o)# L(d)}.

Since the algorithm, given any (current) solution o, will either stop or find a better
solution & by switching after at most n” steps, we see that its running time T will
be bounded by n’Lo/d*, where L, is the length of the initial solution. In particular,
Lo= nx/2, thus

T<v2n%/d*.

W. Kern |/ A probabilistic analysis 215

Unfortunately, d* may be arbitrarily small, and therefore, no polynomial bound
can be derived from this. However, as we will see, in case the n points are uniformly
distributed in [0, 1]%, there exists ¢ > 0 such that d* = n'° with probability =1 —¢/n.
This, of course, implies that with probability =1 —¢/n, the algorithm stops after
executing at most O(n'®) elementary steps.

To derive this, let us first note, that d* can be defined as follows: Let d denote
the euclidean distance function. Furthermore, given a quadruple of points (i, j, k, 1},
let

F(i, j, k,) =d(i, 1) =d(j,)+d(j, k) —d(i, k).
Then, obviously,
d* =min|F(i, j, k, 1|,

the minimum being taken over all quadruples (i, j, k,) of distinct points of 1,..., n
such that F(i,j, k, 1) #0.

Now, let i, j and k be fixed. For £ >0, let A,(i, J, k} denote the set of all points
x €[0, 17 satisfying |F(i, j, k, x)| < e.

Lemma 2.1. There exists a constant K > 0 such that the area of A_(i, j, k) is bounded
by KNe/d(i, j).

Proof. It is easy to see (by applying a distance preserving transformation moving
i and j to (0, —d) and (0, d), resp., where d = d(i, j)/2, that it suffices to prove the
following: B

Let i=(0,—d) and j=(0,d) with0=d = 1/\/2 and consider the following curve
(cf. Fig. 2):

I': dx,i)—d(x,j)=c¢ with —2d <c<2d.

Finally let B,(c) denote the set of all points x € [0, \/2]2 lying between the two curves
I'. and I'.;.. Then there exists a constant K >0 such that the area of B.(c) is
bounded by K\/e/d for all c<(0,2d).

In order to prove this, we proceed with the following.

Claim 1. There exists a constant L>0 such that for every c<[0,2d] and every
xe T, [0,V2]* the following holds:

Let 6= L\/e/d, and let p(x) denote the path consisting of the two line segments
[x, x+ 8e,] and [x+ 8es, x + Se,— e,], where e; denotes the ith unit vector in B>, i.e.
p(x) denotes the path starting at x and then moving first up and then to the left each
time by an amount of 8. Then p(x) meets ', ..

Proof. Let us start by rewriting the equation for I', explicitly (recall that i =(0, —d)
and j=(0,d)):

I, x/xf+(x2+d)2—~/xf+(xz—d)2:C-

216 W. Kern / A probabilistic analysis

C=

A
—

c=0
Fig. 2
Now let us investigate how ¢ varies with x. We have
ac X b 1
—= =—xC s
oxi Vit (ntd) Jxit(n-d) Jotntd) o+ (n-d)
ac x,+d u=d (otd)(—0)+2dVxi+(x,td)

05, Vt(atd)l Yot(a-dF JotntdNot(n—d)?

It is easy to see, that dc/dx; =<0 and dc/dx,=0 (cf. also Fig. 2). Since 0= x,, xzsx/i
and d = 1/\/2 all the square roots above are bounded by V7. Thus

ax 1

— | =9x,¢,

%, 7X1

K Y e

P za[2dVxi+ (x,+d) —(x,+d)c].
2

Since x,+d <vx1+(x,+d)>, we get
> g

a —_—
‘| 210d— W+ (ot d)=1x,(2d —c).

2

W. Kern [/ A probabilistic analysis 217
Hence we get

dc dc
__~+___

=2x,d. 1
ax, X, 7 (1)

Now let us fix a point x on I, and let L=V7V2.

Casel: x;,<L- «/s/d. In this case we move from x to the left until we meet x, =0
(thereby increasing ¢ by a negligibly small amount). Then we move up in x,-direction
by an amount of L\/e/d. This yields an increase of ¢ by 2L\/s/ d =g, since dc/ax, =2
at x; =0. Thus we have crossed I'.,. on our way. And hence we will also cross 1.,
by first moving up in x,-direction and then to the left, each time by an amount of
Ie/d.

Case 2: x,= L«/s/d In this case we go from x up in x,-direction by an amount
of Ax,= (L/2)«/£/d and then move to the left by an amount of Ax, = (L/2)\/£/d
All along this way x,= L/Z)«/s/d, and hence (1) shows that the increase in ¢ is

sz/{

= 3L/ We/d)d}(L/2WVe/d = e/ (N2d) = e.

dc
()X2

ac

0%,

Ax,+

< }(L/z)JZ/d

HXG

2

Ac>’—

Thus we must cross over I'.,. on our way, and the more we will cross over I, if
we move up and then to the left by an amount of L\/S/d instead of (L/Z)\/s/d
This finishes the proof of Claim 1.

The rest is easy: Recall that B.(¢) has been defined to be the set of points in the
square [0, \/2]2 lying between I, and I .. From Claim 1 we conclude that all of
B.(g), except possibly a part of area Sx/2L\/e/d, is covered by the paths p(x)
(mentioned in Claim 1), where x runs over I, [0, ~/2]2 (cf. Fig. 3).

4

Fig. 3

218 W. Kern / A probabilistic analysis

This shows that B.(g) has area less than (yc+\/5)Lx/;/d, where y, denotes the
length of I',~ [0, «/5]2. Since I'. is monotone, v, is bounded by 2v2. This finishes
the proof of Lemma 2.1. [

Now let 1,..., n denote independent random variables, which are uniformly
distributed in the unit square. Given any four of them, say i, j, k, I, then

F(,jk=se & 1€A.(ij k).
By Lemma 2.1, we get
Prob(F (i, j, k, 1)< £|d (i, j)) < K~e/d (i,).
This yields, for every d >0,
Prob(F(i,j, k,)< &)< Prob(F(i,j, k, 1)< e|d (i j)=d)+ Prob(d(i,j)<d)
< Ke/d+md>
Choosing d =¢"°, we get
Prob(F(i, j, k, 1)< &)=< ce"/* for some constant ¢> 0.
Summing up over all quadruples (i, J, k, [), we get

Prob(d*<e)=n*ce'?

and hence, for e =n"",

Prob(d*=n"")=1~¢/n,

which, as we noted already, implies that the algorithm stops after at most O(n'®)
steps with probability 1—c¢/n.

Remarks

1. Obviously, a similar analysis can be carried out for the so-called ““k-switching
algorithm” (an obvious extension of the “2-switching algorithm™ considered here).
Furthermore, it can be applied for switching algorithms designed for similar com-
binatorial optimization problem (e.g. minimum FEuclidean perfect matching or
matching- and cutproblems in appropriate classes of random graphs).

2. Itis known that, in contrast to the speed of local search algorithms, the quality
of the solutions they came up with is usually rather poor (cf. [7]). So far, however,
this has been proven only for TSP in general graphs (cf. [6]), allowing edge-
weightings which do not satisfy the triangle inequality. It would be interesting to
compute the average quality of solutions in our case.

3. See [4, Chapter 6] for more about probabilistic analysis of the Traveling
Salesman Problem. For example, it has been shown that Karp’s “‘dissection
algorithm”, mentioned in the introduction has an expected running time of
O(n”log n) with variance O(n*(log n)?). Our approach does not seem to yield
interesting results about average running times.

W. Kern [/ A probabilistic analysis 219

References

[1] E. Bonomi and J.L. Lutton, “The n-city travelling salesman problem: Statistical mechanics and the
metropolis algorithm,” SIAM Review 26 (1984) 551-568.

[2] R.M. Karp, “The probabilistic analysis of some combinatorial search algorithms,” in: J. F. Traub,
ed., Algorithms and Complexity (Academic Press, New York, 1976).

[3] S. Lin, B.W. Kernighan, “An effective heuristic algorithm for the travelling salesman problem,”
Operations Research 21 (1973) 498-516.

[4] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys, The Traveling Salesman Problem
(John Wiley, Chichester 1985).

[5] Th.M. Liebling, Y. Rossier and M. Troyon, ‘“‘Probabilistic exchange algorithms and euclidean
travelling salesman problems,” RO851125, Department of Mathematics EPF Lausanne, Switzerland
(1985).

[6] C.M. Papadimitriou and K. Steiglitz, “Some examples of difficult traveling salesman problems,”
Operations Research 26 (1978) 434-443.

[7]1 C.A. Tovey, “On the number of iterations of local improvement algorithms,” Operations Research
Letters 2 (1983) 231-238.

