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The well-known switching algorithm proposed by Lin and Kernighan for the Euclidean Travelling 
Salesman Problem has proved to be a simple efficient algorithm for medium size problems (though 
it often gets trapped in local optima). Although its complexity status is still open, it has been 
observed to be polynomially bounded in practice, when applied to uniformly distributed points 
in the unit square. In this paper this polynomial behaviour is derived theoretically. (However, we 
will come up with a bound of O(n ~s) with probability 1 -  c/n, whereas in practice the algorithm 
works slightly better.) 

I. Introduction 

Suppose  we are given n poin ts ,  l abe l led  1, . . . ,  n in the p lane .  A tour is then  any 

sequence (pe rmuta t ion)  o- = (o-1 . . . .  , ~n) of  the n points .  The length of  a tour  o- is 

the sum of  all d is tances  of  consecut ive poin ts :  

L(tr)  = ~ d(cri, o%1) (with ~+~  = ~r~). 
i=1 

With  these  nota t ions ,  the  Euclidean Travelling Salesman Problem can be s ta ted  as 

fol lows:  G iven  a set of  n poin ts ,  l abe l led  by  1 . . . . .  n, find a tou r  o f  min ima l  length.  

This p r o b l e m  is (well-) k n o w n  to be N P - c o m p l e t e  and  several  heuris t ics  have been  

deve loped  for solving it. Apa r t  f rom the cut t ing p lane  a p p r o a c h  taken  by  several  

au thors  (e.g. Gr6tschel ,  F le i schmann ,  Padberg ,  to men t ion  jus t  three o f  them) ,  there  

are two we l l -known " p r o b a b i l i s t i c "  a lgor i thms.  The first of  them is b a s e d  on 

par t i t ion ing  the set o f  poin ts ,  cons t ruc t ing  subtours  in each par t  and  to connec t  

them to a tou r  (cf. [2] for  fur ther  in fo rmat ion) .  The second  one,  due  to Lin and  

Kern ighan  (cf. [3]) is ba sed  on a switching p rocedu re  (desc r ibed  be low)  which  

improves  a given current  so lu t ion  step by step unt i l  a " l o c a l "  o p t i m u m  is reached .  

It is this m e t h o d  we will  be  concerned  with  in the  fol lowing.  

Suppose  we are given a tour  o- = ( c r ~ , . . . ,  o-n). I f  i < j ,  then we will say that  the  

tour  &, def ined by  

= ( ~ r l , . . . ,  ~ri_1, ~ ,  ~ - 1 ,  •. •, ~ri, %+1,.  • . ,  ~rn) 

is ob ta ined  f rom o- by switching i a n d j  (cf. Fig. 1). This switching ope ra t ion  na tu ra l ly  

defines a n e i g h b o u r h o o d  N(o-)  of  o-, cons is t ing  all & ob ta inab l e  form ~r by  swi tching 

some i and  j. 
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Fig .  1 

Now the algorithm of Lin and Kern igham--denoted  by ALK for short- -s imply 

works as follows: 
INIT:  Choose an initial solution ~r 
LOOP: I f  there is any o; e N ( ~ )  such that L(&) < L(cQ, then replace ~r by ~ and 

return to LOOP. Else STOP. 
There are two major problems with this algorithm. First, one can show that, in 
general, it does not yield an optimal solution, but can get " t rapped in a local 
opt imum".  Usually, one tries to overcome this difficulty by running ALK several 
times with randomly chosen initial solutions. The second problem is, that nothing 
is known about its complexity so far. However, if the points are uniformly distributed, 

say, in the unit square, then experimental results show that the running time is 
polynomially bounded in n. It is this result, we are going to derive theoretically in 
Section 2. More precisely, we will show that, if  ALK is applied to a random problem 
as above, then its running time is O(n ~8) with probability 1 - c ~  n for some constant 

c > 0 .  
We would like to note that, during the last years, another approach has been 

taken to provide the algorithm from getting trapped in a local solution. This approach 

is well known as "Simulated annealing" or "Metropolis  algorithm". Essentially, the 
idea is to allow the algorithm to switch from cr to ~ even if L ( ~ ) >  L(cr), however, 
with a decreasing probabili ty for such "bad"  switches. It would be an interesting 
question, whether our result can be used to derive polynomial bounds for the 
Simulated annealing version. Anyway, experimental results of  this method are very 

encouraging (cf. [5, 1]) and have revived the interest in the original algorithm of 
Lin and Kernighan. Therefore, we found it worthwhile to write this paper. 

2. A probabilistic analysis of the algorithm 

Suppose we are given an instance of the Euclidean TSP, defined by n points 1 , . . . ,  n 
in the unit square. Let 

d* := min{]L(o-) - L(6)], ~ c  N(cr) and L(~r) ~ L(~)}. 
o -  

Since the algorithm, given any (current) solution o-, will either stop or find a better 
solution ~ by switching after at most rt 2 steps, we see that its running time T will 

be bounded by n2Lo/d *, where L0 is the length of the initial solution. In particular, 

Lo <~ n~/-2, thus 
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Unfor tunate ly ,  d* may  be arbitrari ly small,  and therefore,  no po lynomia l  b o u n d  
can be derived f rom this. However ,  as we will see, in case the n points  are uni formly  
distr ibuted in [0, 1] 2, there exists c > 0 such that  d* >/n -~s with probabi l i ty  ~> 1 - c~ n. 
This, of  course,  implies that  with probabi l i ty  >~ 1 - c / n ,  the a lgori thm stops after 
executing at most  O(n  18) e lementary  steps. 

To derive this, let us first note,  that  d* can be defined as follows: Let d denote  
the eucl idean distance function.  Fur thermore ,  given a quadrup le  of  points  (i,j, k, l), 
let 

F(i,j ,  k, l)= d(i, l ) -  d(j, l)+ d ( z  k ) -  d(i, k). 

Then,  obviously,  

d* = minlF( i, j , k, l)l , 

the m i n i m u m  being taken over  all quadruples  (i,j, k, l) of  distinct points  of  1 . . . .  , n 
such that  F(i,j ,  k, l) ¢ O. 

Now,  let i, j and k be fixed. For  e > 0, let A~(i,j, k) denote  the set o f  all points  
x c [0, 1] 2 satisfying IF(i,j, k, x) I <~ e. 

Lemma 2.1. There exists a constant K > 0 such that the area of A~(i,j, k) is bounded 
by K~/7/ d(i , j ) .  

Proof.  It is easy to see (by applying a dis tance preserving t r ans fo rmat ion  moving  
i a n d j  to (0, - d )  and (0, d) ,  resp., where  d = d( i , j ) /2 ,  that  it suffices to prove  the 
following: 

Let i = (0, - d )  and j = (0, d)  with 0 ~< d <~ l /x /2  and consider  the fol lowing curve 
(cf. Fig. 2): 

F~.: d ( x , i ) - d ( x , j ) = c  w i t h - 2 d < c < 2 d .  

Finally let B~ (c) denote  the set of  all points  x 6 [0, x/2] 2 lying be tween  the two curves 
Fc, and Fc+~.. Then there exists a constant  K > 0 such that  the area  of  B~(c) is 
b o u n d e d  by K~/-e/d for  all c c  (0 ,2d) .  

In order  to prove this, we proceed  with the following. 

Claim 1. There exists a constant L > 0  such that for every c o [ 0 ,  2d]  and every 
x c F, c~ [0, x/2] 2 the following holds: 

Let 6 := Lx/e/d, and let p(x) denote the path consisting of the two line segments 
[x, x + t3e2] and [x + 6e2, x + t~e 2 -  t~el] , where ei denotes the ith unit vector in ~2, i.e. 
p(x) denotes the path starting at x and then moving first up and then to the left each 
time by an amount of& Then p(x) meets F~+~.. 

Proof. Let us start by rewrit ing the equat ion for  Fc explicitly (recall that  i = (0, - d )  
and j = (0, d)) :  

V~: ~/x~ +(x2+ d)2-~/x~ + ( x 2 - d ) 2 = c .  



216 W. Kern / A probabilistic analysis 

J 

Y 
J J 

c=0 

Fig. 2 

N o w  let us investigate h o w  c varies with x. We have 

OC X 1 

ax, ,/x~ + (x~+ d) ~ 

Oc x2 + d 

ax~ 4x~+(x~+d) 2 

x~ 1 

,/x~ + (x~- d) ~-  -x 'C dx~ + (x2 + d)~,/x~ + (x2- d) ~" 

xa-d  (x~+d)(-c)+2d4x~+(x~+d)  ~ 
x / x 2 + ( x 2 - d )  2 x / x 2 + ( x 2 + d ) 2 ~ / x ~ + ( x 2 - d )  2 

It  is easy to s_ee, that Oc/Ox~ <~ 0 and Oc/Ox2 >~ 0 (cf. also Fig. 2_). Since 0 ~< Xl, X 2 ~ 4 2  

and d ~< l /x /2 ,  all the square roots above are bounded  by ~/7. Thus 

~X l C, 

Oc > ~ [ 2 d ~ / x ~ + ( x 2 + d ) ~ _ ( x 2 + d ) c ] .  

Since x2+d<~/x~+(xz+d) 2, we get 

07f- ~> }(2d - c)~/x 2 + (x2 + d) 2 ~> lxl  (2d --  C). 
OX2 
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Hence  we get 

O~x + O~x 2 >~ ~ x , d. (1) 

Now let us fix a po in t  x on Fc and let L = x/Tx/2. 

Case 1: x~ <~ L.  ~/7/d. In  this case we move  f rom x to the left  unti l  we meet  xl = 0 

( thereby increas ing  e by a negl ig ibly  small  amount ) .  Then we move  up  in x2-di rec t ion  

by  an a m o u n t  of  L,/-e/d. This yields an increase  o f  c by 2L , / e /d  >i e, since Oe/ax2 = 2 
at xl = 0. Thus we have c rossed  F~+~ on our  way. A n d  hence  we will  also cross F~+~ 

by first moving  up in x2-d i rec t ion  and then  to the  left, each t ime by  an amoun t  of  

L~/e/ d. 
Case 2: x~ >~ L~/7/d. In  this  case we go f rom x up  in x2-di rec t ion  by  an amoun t  

of  Ax2= (L /2 ) , / e /d  and  then  move to the  left  by  an amoun t  o f  Axl = (L/2)~/~/d. 
All a long this way x~ >~ (L/2)~/-e/d, and hence  (1) shows that  the  increase  in c is 

> {{ (L /247 /d )d}  ( L / 2 ) 4 7 / d  >1 e/(42-d) > ,. 

Thus we mus t  cross over  F,.+~ on our  way,  and  the more  we will cross over  F~i~ if  

we move  up  and then to the left by an a m o u n t  of  L~/~/d ins tead  o f  (L/2)~/e/d. 
This finishes the p r o o f  o f  C la im 1. 

The rest is easy: Recal l  that  Bc(e) has been  def ined to be the  set o f  poin ts  in the 

square  [0, x/2] 2 lying be tween  F,, and F,.+~. F r o m  Cla im 1 we conc lude  that  all o f  

Be(e), except  poss ib ly  a par t  of  a rea  <~x/2L~/-~/d, is covered  by  the pa ths  p(x) 
(men t ioned  in C la im 1), where  x runs over  F~ c~ [0, ~/~]2 (cf. Fig. 3). 

L I 

Pc+E 

L 
/2 
4 

L-~/E / d 

Fig. 3 
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This shows that B~(e) has area less than (y,.+~/2)L~/-~/d, where % denotes the 
length of/-'~ c~ [0, .,/~]z. Since F,. is monotone, Yc is bounded by 2~/2. This finishes 
the proof of Lemma 2.1. E3 

Now let 1 , . . . ,  n denote independent random variables, which are uniformly 
distributed in the unit square. Given any four of them, say i,j, k, l, then 

F( i , j , k , l )<~e  ~ l ~ a ~ ( i , j , k ) .  

By Lemma 2.1, we get 

Prob( F(  i,j, k, l) ~ EId( i,j) ) <~ K~/-~/ d(  i,j). 

This yields, for every d > 0, 

Prob(F(i , j ,  k, l) -<-- e) <~ Prob(F(i , j ,  k, l) <~ e I d ( i , j )  >~ d) + Prob(d( i , j )  < d) 

K ~ / e / d  + 7rd 2. 

Choosing d = e 1/6, we get 

Prob(F(i , j ,  14 1)<~e)~ce ~/3 for some constant c > 0 .  

Summing up over all quadruples (i,j, k, 1), we get 

Prob(d* ~< e) <~ n4ce 1/3 

and hence, for e = n -~,  

Prob(d*/> n -15)/> 1 - c/n,  

which, as we noted already, implies that the algorithm stops after at most O(n '8) 
steps with probability 1 -  c~ n. 

Remarks 

1. Obviously, a similar analysis can be carried out for the so-called "k-switching 
algorithm" (an obvious extension of the "2-switching algorithm" considered here). 
Furthermore, it can be applied for switching algorithms designed for similar com- 
binatorial optimization problem (e.g. minimum Euclidean perfect matching or 
matching- and cutproblems in appropriate classes of random graphs). 

2. It is known that, in contrast to the speed of local search algorithms, the quality 
of the solutions they came up with is usually rather poor (cf. [7]). So far, however, 
this has been proven only for TSP in general graphs (cf. [6]), allowing edge- 
weightings which do not satisfy the triangle inequality. It would be interesting to 
compute the average quality of solutions in our case. 

3. See [4, Chapter 6] for more about probabilistic analysis of  the Traveling 
Salesman Problem. For example, it has been shown that Karp's "dissection 
algorithm", mentioned in the introduction has an expected running time of  
O(n21og n) with variance O(n4(log n)3). Our approach does not seem to yield 
interesting results about average running times. 
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