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We present an extension of Karmarkar's linear programming algorithm for solving a more general 
group of optimization problems: convex quadratic programs. This extension is based on the 
iterated application of the objective augmentation and the projective transformation, followed by 
optimization over an inscribing ellipsoid centered at the current solution. It creates a sequence 
of interior feasible points that converge to the optimal feasible solution in O(Ln) iterations; each 
iteration can be computed in O(Ln 3) arithmetic operations, where n is the number of variables 
and L is the number of bits in the input. In this paper, we emphasize its convergence property, 
practical efficiency, and relation to the ellipsoid method. 
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Introduction 

Opt imiza t i on  p rob lems  can genera l ly  be d iv ided  into two categories :  combina to r i a l  

op t imiza t ion  p rob lems  and  con t inuous  op t imiza t ion  prob lems .  C o m b i n a t o r i a l  

op t imiza t ion  p rob lems  conta in  discrete  var iab les  while  con t inuous  op t imiza t ion  

p rob lems  have con t inuous  var iables .  These  two categor ies  genera l ly  are qui te  

different  in their  character is t ics ,  and  the a lgor i thms  for solving t hem are very 

divergent .  Therefore ,  quadra t i c  p r o g r a m m i n g  (QP) p lays  a un ique  role in opt imiz-  

a t ion  theory:  in one sense,  it is a con t inuous  op t imiza t ion  that  inc ludes  l inear  

p r o g r a m m i n g  (LP) and  is a f undamen ta l  subrou t ine  for  genera l  non l inea r  p rog ram-  

ming,  but  it may  also be cons ide red  one o f  the most  cha l lenging  combina to r i a l  

op t imiza t ion  prob lems .  

The combina to r i a l  na ture  of  QP is bas ica l ly  e m b e d d e d  in the  exis tence  of  

inequa l i ty  constra ints ,  which  in genera l  make  inequa l i ty -cons t r a ined  op t imiza t ion  

( ICO)  h a r d e r  to solve than  equa l i ty -cons t r a ined  op t imiza t ion  (ECO) .  Na tu ra l ly ,  

most  a lgor i thms,  such as s implex- type  me thods  p r o p o s e d  by Beale  [3], Cot t le  and  

Dantz ig  [5], Lemke  [17] and  Wolfe  [24], g r ad i en t -p ro j ec t i on  (GP) m e t h o d  of  Rosen  

[20] and Hi ld re th  [11], and  act ive-set  m e t h o d  o f  Gil l  and  M u r r a y  [9], solve a 

sequence  o f  E C O ' s  in o rde r  to a p p r o a c h  the op t ima l  so lu t ion  for ICO.  Geomet r i ca l ly ,  
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they move along the boundary of the feasible region to approach the optimal 
(boundary) feasible solution. Unfortunately, when the iterative solution arrives at 
vertices, a combinatorial decision has to be made to reselect the basic variables (or 
active-constraint set). In the worst case, the pivot and GP methods converge in an 
exponential number of iterations, and they are not polynomial-time algorithms. 
Thus, the question arises: does there exist a polynomial-time algorithm for QP? 

Attempting to answer this question, Khachiyan in 1979 published a proof showing 
that a certain LP algorithm [14], called the ellipsoid method, is polynomial. Soon 
after, Kozlov, Tarasov and Khachiyan [16] extended this polynomial approach to 
solving convex quadratic programs in O(L2n 4) arithmetic operations. Unfortunately, 
the ellipsoid method behaves similar to its worst case complexity bound. The solution 
speed of the ellipsoid method does not compete with that of the simplex method 
in solving most real problems, and the method's significance remains theoretical. 

In another attempt, Karmarkar in 1984 introduced a new polynomial-time 
algorithm for LP that sparked enormous interest in the mathematical programming 
community [13]. In contrast to the boundary-seeking nature of the simplex and GP 
methods, Karmarkar's projective method generates a sequence of points in the 
interior of the feasible region of a canonical LP form while converging to the optimal 
solution. Practically, his algorithm is competitive with the simplex method in terms 
of solution time for linear programming. 

In this paper, we present an extension of Karmarkar's LP algorithm for convex 
quadratic programming. In Section 1, we review the optimality conditions and the 
combinatorial properties of convex quadratic programming. In Section 2, we intro- 
duce the interior ellipsoid (IE) method and discuss its solution strategy and conver- 
gence ratio. In Section 3, we modify the IE method using an objective augmentation 
technique and Karmarkar's projective transformation. We show that convexity of 
the objective function is invariant in the projective transformation and the objective 
augmentation. Consequently, the modified IE method is terminated in O(Ln) iter- 
ations. In Section 4, we show that each iteration can be computed as systems of 
linear equations in O(Ln 3) arithmetic operations using the trust region method (see, 
for example, Sorensen [21]). We also discuss this algorithm's relation to the ellipsoid 
method in Section 5: it turns out that they are closely related. 

We have recently learned that Kapoor  and Vaidya [ 12] also independently devised 
a similar extension of Karmarkar's algorithm for convex quadratic programming. 
Both our and Kapoor-Vaidya's methods generate a sequence of interior solution 
points. However, our approach is based on the convexity invariance lemma proved 
in this paper, which establishes a theoretical foundation for solving more general 
convex programming. In addition, our extension replaces a factor O(log(n)) with 
a factor O(L) in the complexity bound, and the factor O(L) can usually be saved 
in practice. In this paper, we emphasize the algorithm's convergence property and 
practical efficiency, rather than its complexity bound and precision requirement. 
The latter issues were well-analyzed in Karmarkar's paper [ 13], Kozlov et al.'s paper 
[16] and Kapoor  and Vaidya's paper [12]. 
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1. Convex quadratic programming 

In this paper,  we solve the following convex quadratic program: 

QP1 minimize f ( x ) = x T Q x / 2 + c x  

subject to x c X = { x ~ R  " : A x = b , x > / 0 }  

where Q c  R "×n, row vector c c  R n, A c  R re×n, b c  R m, Q is a positive semidefinite 

matrix, and superscript v denotes the transpose operation. The dual problem of QPI 

is 

QD1 maximize d(u, y) = y b -  uVQu/2 

subject to (u, y) ~ Y = {(u, y): yA <~ uTQ + c} 

where u c R ~ and row-vector y ~ R m. For all (u, y) c Y and x ~ X 

d(u, y) <~ z* ~<f(x), (1.1) 

where z* designates the optimal objective value of QP1. 
Based on the Kuhn-Tucker  conditions, x* is an optimal feasible solution if and 

only if the following three optimality conditions hold: 

(1) Primal feasibility: x* ~ X. 
(2) Dual feasibility: 3y* , such tha tx*  and y* arefeasibleforQDl: (x*, y*)~ Y. 
(3) Complementary slackness: (~Tf(x*) - y ' A )  diag(x*) = 0. (1.2) 

As a result of  the above conditions, if an optimal feasible solution exists for QP1, 

then there exists a basic optimal feasible solution such that 

where x* = 0 if i c 1,, an index subset of {1, 2 , . . . ,  n} (Cottle and Dantzig [5] and 
Eaves [8]). Generally, the nonzero components of  a basic feasible solution corre- 
spond to solutions of the linear system equations with d as the right-hand vector 

and B as the left-hand matrix, where d is a subvector of 

and B is a principal submatrix of 

Therefore, the combinatorial properties of QP are similar to that of LP. Let the 
coefficients in Q, A, c, and b all be integers. Then the basic feasible solutions of  
(1.3) are vectors of rational numbers, both the numerator  and denominator  of which 

are bounded by 2 L. In other words, for any basic feasible solution, x, 

xi<~2 L for i = l , 2 , . . . , n ,  
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and either x~ --- 0, or x~/> 2 L, where L is the number of bits in the input. For quadratic 

programming, 

L : nZ+  m n  + [loglP[J, 

and P is the product of the nonzero integer coefficients appearing in Q, c, A, and 

b. This fact adds a certain "discreteness" to the problem: many points in the feasible 

polytope that we wish to look at are not arbitrary points in R n, but have entries 
that are rational numbers with bounded numerators and denominators. 

We now assume that there exists an interior feasible solution x ° for QP1 with 

A1 x °~> 2 %. 

We further make an implicit assumption that the optimal solution can be found in 

a bounded polytope, i.e., 

A2 x ~< 2%, 

where e is the vector of all one's. Therefore, for all x c X:  

- 2  zL <~ z*  <~ f ( x  ) ~< 23L. (1.4) 

In general, we say that QP1 is solved if and only if an x c X has been found such 

that 

f ( x )  - z*  <~ m -1, 

where M = 24r. Due to the above "discreteness" fact and two assumptions, if the 

input data are all integers, then the exact optimal feasible solution can be obtained 

by rounding the error from x, as is done in linear programming and convex quadratic 

programming of Kapoor and Vaidya [12], Karmarkar [13], Khachiyan [14] and 

Kozlov et al. [16]. 

2. Interior ellipsoid (IE) method 

We now briefly review some existing algorithms for solving LP and QP. In the 

pivot-type methods, the solution moves from basic solution to basic solution, i.e., 

from vertex to vertex on the boundary of the feasible region, converging to the 

optimal solution point. In the GP or the active-set method, the solution may start 

from the interior of the feasible region. Soon after, the method would generate the 
boundary point, and then would move along the boundary of the feasible region. 

As the iterative solution reached the boundary, a "stalling" phenomenon would 

occur, and a combinatorial decision would have to be made to reform the base or 

the active constraint set at each step. In the worst case, the optimal solution would 

be reached in an exponential number of steps. 

The issue is: how can we avoid hitting the "wrong" boundary? In other words, 

can we develop a mechanism to move the solution in the interior of the feasible 
region while reducing the objective function? 
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A geometric expression derived from the LP affine scaling algorithm (Dikin [7], 
Barnes [2], Kortanek and Shi [15], and Vanderbei, Meketon and Freedman [23]) 
can be drawn as an interior ellipsoid centered at the starting interior point in the 
feasible region. Then, the objective function can be minimized over this interior 
ellipsoid to generate the next interior solution point. A series of such ellipsoids can 
thus be constructed to generate a sequence of interior points converging to the 
optimal solution point that sits on the boundary. If the optimal solution point itself 
is an interior solution (which can happen if the objective is a nonlinear function), 
then the series terminates as soon as the optimal point is encircled by the newest 
ellipsoid. 

The above geometric expression can be represented by the following optimization 
problem: 

QP2.1 minimize f ( x )  

subject to A x  = b, 

lid l(x-xk)ll~/3 <1, 
where D is an invertible diagonal matrix, and x k is the interior feasible solution at 
the kth iteration. The last constraint, ]] D -~ ( x -  x k) U <~/3, corresponds to an ellipsoid 
embedded in the positive orthant {x: x/> 0}. Therefore, {x: A x  = b, ]] D - ~ ( x -  x k) U <~ 
/3} is an algebraic representation of the interior ellipsoid centered at x k in X of 
QPI. The parameter /3 characterizes the size of the ellipsoid, and D affects the 
orientation and the shape of the ellipsoid. In this paper, like in the affine scaling 
method, we choose 

D = diag(xk). (2.1) 

With this D, the ellipsoid constraint can be rewritten as 

I I D - ' x  - ell ~/3 < 1. (2.2) 

Inequality (2.2) implies x > 0, i.e., any feasible solution for QP2.1 is an interior 
feasible solution for QP1. Overall, the algorithm can be described as 

Algorithm 2.1. The I E  method  

At the kth iteration do 
begin 

D = diag(xk); 
let x k+~ be the minimal solution for QP2.1; 
k = k + l ;  

end. 

To solve QP2.1, sometimes, it is more convenient to write QP2.1 into 

QP2.2 minimize f (~ )  =:~TQ~/2+ ~2 

subject to fi,~ =/~, 

I1~- ell ~</3, 
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where 2 = D-ix ,  0 = DQD, ~ = cD, ft  = AD, and/~ = b. Let ~ be the optimal solution 
for QP2.2. Then, x k+l = Dd and ~ meets the following optimality conditions: 

Vf(~) -)~/~ +/z(~ - e) T= 0; (2.3a) 

/ ~  =/~; (2.3b) 

( l ~ - e l l ~ f i  and /x~>0; (2.3c) 

and 

~(/3 -I]~-err)=0. (2.3d) 

Conditions (2.3a) and (2.3b) can be written into a matrix form 

( ( )  + /z l  --AT'~ (d'~ = (--~Yb/~e) (2.3e) 
a 0 / \ y /  

which can be solved by approximating the multiplier ~ until ~ ( ~ ) >  0 similar to 
the trust region method [21]. Analytically, we have 

)~(Afil T) = Vj~(~) A T. (2.4a) 

Let 

then 

pk = (Vf(CT)-CA) T, (2.4b) 

][Pk]] (2.4c) 
/? 

Vf(a)P k = Vf( xk+')Dp k = 11 pk 112, (2.4d) 

and, if p k #  O, from (2.3a), (2.4b), (2.4c) 

pk 
fi = e - / 3  II)-Z-[I. (2.4e) 

In terms of the original variables and coefficients, 

k DP k 
X k+l = D a  ~- x - ~ ~ ,  (2.5a) 

pk = D(Vf(xk+~)_)~A)T. (2.5b) 

In order to analyze convergence of the IE method, the following three lemmas 
are proved. Lemma 2.1 basically states that if the algorithm "stalls", then it arrives 
at a positive (interior) optimal feasible solution in finite iterations. 
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Lemma 2.1. I f  p k = 0 (i.e, Ix = O) for k < o% then x k+l and ~ are optimal for QP1 and 
QD1. 

Proof. Note from (2.5b) that 

pk =0 

implies 

(Vf(x k+') - ~ A ) D  = 0 

which implies 

(Vf(x k+l) -)3A) = 0, 

and 

(Vf(x k+l) - )gA) diag(x k+l) = O. 

(2.6) 

Therefore, the conclusion in Lemma 2.1 follows from the optimality conditions--(1) 
x k+l is feasible for QP1, (2) (x k+~,~) is feasible for QD1 from (2.6), and (3) 
complementary slackness is satisfied from (2.7). [] 

If Ilpkll>0 for all finite k, the second lemma claims that Ilpkll~0, where 
designates "converges to". 

Lemma 2.2. Let Ilpk[[>0 for all k <oo and the optimal objective value of QP1 be 
bounded from below. Then II P k H ~ 0 (or tx ~ 0). 

Proof. Using (2.5a) and (2.4d), we have 

= f(xk+l) _l¢_u~ll ~Tf(xk+l ) Dpk _ ~  (p k)TDQDpk 
lip II Z - l i P  II 

0 2  
= f (  xk+' ) + fi II pk II + ~ ( P k ) T  DQDp k, (2.8) 

where the Hessian Q is at least positive semi-definite. Therefore, 

fi ]j pk ]j <~f(x k) _ f(xk+~). (2.9) 

Since f ( x  k) is monotonically decreasing and is bounded from below, f ( x  k) must 
converge and f ( x  k) - f ( x  k+l) ~ O, which implies II pk [[ ~ 0. [] 

Let yk+l be )9 in (2.3a) at the kth iteration. Note that yk+l always exists as a 
solution of (2.4a), even though it may not be unique. Therefore, even if x k converges, 
yk does not necessarily converge. 

(2.7) 
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Lemma 2.3. 

y~ are feasible for QD1. 

Proof. We have 

CX3 cx~ CO CO 
Pi = x i ( V f ( x  ) - y  A ) i = 0  for i = l , 2 , . . . , n .  

Suppose y~  is not feasible for QD1, i.e., ::le > 0 and 1 ~ j  ~ n, such that 

(Vf(x ~) -y~'~A)j <~ - e  < O, 

then 3 K > 0  such that, for all o o > k > K ,  

E 
(V f ( x  k+~) -- yk+lA)i < -- ~. 

At the kth ( k >  K)  iteration of the algorithm, 

/ x~(V f ( x  k+') - yk+l A )j~ 
X~ + 1 =  X k \ | I -- /2[ ~ "] ) X k 

hence, 
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I f  HpkH>Oforallk<oo, X X , y , and I[pHko0, thenx and 

(2.10) 

Theorem 2.1. Let the optimal objective value of QP1 be bounded from below and let 
x k and yk converge. Then, Algorithm 2.1 generates solution sequences x k and yk that 
converge to the optimal solutions for both QP1 and QD1. 

ProoL I f p  J'= 0 for k < oo, the conclusion of Theorem 2.1 follows from Lemma 2.1; 
otherwise, from Lemma 2.3, x ~ and yOO are feasible for QP1 and QD1, and from 

Lemma 2.2, II p~ll = o, which implies that complementary slackness is satisfied. Thus, 
x °° and yOO are optimal for QP1 and QD1. 

To evaluate the asymptotic convergence rate of  the IE method, we have 

Theorem 2.2. Let x k+l and yk+l be feasible for QD1. Then 

f(xk+l)-- z* <~ (1 - -~n  ) ( f (xk)--  z*). 

Now, we can derive the following convergence theorem. 

x k+l>x k>x f f>O for a l l k > K .  i J 

Thus, {x~} is a strictly increasing positive series for k > K. Since neither x~ nor 
(Vf(xk)--ykA)j  converges to 0, X~(Vf(xk)--ykA)j  does not converge to 0. This 
contradicts (2.10). Therefore, it must be true that 

Vf(x ~) - y~A >~ O, 

i.e., x °~' and y~  are feasible for QD1. [] 
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Proof.  Since f(x) is a convex function, 

f ( x  k) - f ( x  k+l) >~ Vf(xk+l)(X k -- xk+l). (2.1 1) 

There is also given that yk+l is feasible for QD1, so, from (1.1), 

d (x k+l, yk+l) _ Z* = f ( x  k+l) - V f ( x k + l ) x  k+l +yk+~b - z* <~ O. (2.12) 

From (2.11) and (2.12), 

V (f(xk+l)X k _ yk+l b + d(xk+l, yk+l) _ Z* <~f(x g) -- Z*. (2.13) 

According to (2.4d) and (2.5a), 

Vf(xk+l) xk+~ = Vf(xk+~) xk -- fl II p k [I. (2.14) 

Using H/Slder's inequality and (2.5b), and noting that pk ~> 0, 

n 1 n 

Due to (2.12), (2.13), (2.14), and (2.15), 

f ( x  k+') - z* = V f ( x  k+')X k+' -- yk+' b + d( x k+', yk+,) _ Z* 

<~ V f ( x  k+l)xk--fl ,lpk,, -- yk+'b + (1--~nn) ( d(xk+', y k+')-- Z *) 

<~(1---~n) (V f (xk+')xk--  yk+'b + d(xk+', yk+')-- z* ) 

~ ( 1 - ~ n n ) ( f ( x k ) - z *  ). [2 

Theoretically, the IE method is not a polynomial-time algorithm since there is 
no guarantee that x k and yk will be feasible for QD1 until they converge. Obviously, 
if f ( x  k ) -  z* is reduced at the above ratio for all k, then the iterative solutions 
converge in a number of iterations that grow polynomially with the size of the 
problem. In the following sections, using Karmarkar's projective transformation, 
we propose a modified IE method for QP1 - -  a potential function is reduced at a 
fixed ratio, and each iteration can be computed in a polynomial of  L and n. 

3. Modified interior ellipsoid method 

The original version of Karmarkar's algorithm solves a linear program of the special 
form 

minimize f ( ~ ) =  cx"~ 
A 

subject to Ax=O,  eT .~=n+l ,  ~>1-0, 
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which we call Karmarkar 's  canonical LP form [13]. Here, ~ e R  "+~, A c R  m×{~+~>. 
Let r be the radius of  the sphere centered at e that inscribes the feasible region, 

and R be the radius of  the sphere centered at e that circumscribes the feasible 
region. It is easy to show that r >  1 and R < 1 / ( n +  1), hence, the ratio of  the two 

radii, i.e., 

Thus, when minimizing the objective function, ~:~, with ~ being restricted in the 
inscribing sphere, the linear objective function will be reduced at the ratio of 
( 1 - l / ( n + l ) ) .  However, this reduction should also be true even when j2.(~) is a 

general convex function. This observation led us to develop an objective augmenta- 
tion technique that, coupled with Karmarkar ' s  projective transformation, transforms 

a convex program to a new convex program in the canonical form. Therefore, we 
developed a similar algorithm for solving QP1. 

To describe this algorithm, we will assume for the moment  that the optimal 
objective value of QP1 is known to be zero, i.e., 

Then, we introduce a potential function associated with QP1 (like the one in 
Anstreicher [1], Karmarkar  [13], Todd and Burrell [22] and Ye and Kojima [25]) 

where 0 < x ~ X and f ( x ) >  0. By a simple calculation, we have the equality 

where 

By the assumptions AI and A2, y(x)  ~< 2 2L in the feasible region X. If  P ( x  k) tends 

to -co along some sequence {0 < x ~ c X}, t h e n f ( x  k) converges to zero. The algorithm 
that is described in this section generates a sequence {0 < x k e  X}, such that 

P ( x k ) < ~ P ( x k - l ) - - a  for k = l , 2  . . . . .  

Thus, 

where ce > 0.2. Hence, 
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Therefore, 

f ( x k ) < ~ 2 - 4 L =  M -~ for k ~ 4 5 L ( n +  l ) .  

Now, let us look at the following problem related to QPI: 

QP3.1 minimize f ( ~ ) = ~ r , + , f ( T  z(~)) 

subject to ~ ~ 3( = {2: A D ~ [  n ] - ~,+ ~ b = O, e T ~ = n + 1, 

)~[n]~>0 and £,+1>0}, 

where )~[n] is the vector of the first n components of ~ c R ~+1, D is defined by 
(2.1), and T -~ is the inverse projective transformation T ~: R '~+~ ~ R "  defined by 

x =  T '0~) D.~[n] (3.1) 
Xn+l 

It can be verified that £~ )(  implies T ~(£) ~ X. Conversely, for any x ~ X, an 2~ )( 
can be obtained via T :  R "  ~ R "+~ defined by 

2[ n ] - (nif+ 1) D ~ ' x  (3.2a) 
e T D - ~ x  + 1 ' 

and 

n + l  
xn+l e T D - l x  + 1" (3.2b) 

Particularly, let )~k = T ( x k ) ,  and then 

~ k ~ e .  

In the rest contents of this paper, )~ always designates the variable in X, and 
corresponds to x c X. For example, £k ~__~ x k, ~,~__~ x*,  ~ ~ a, and so on. 

The augmented nonlinear objective function in QP3.1 plays a key role in our 
proposed algorithm. Note that f (£ )  is the product o f f ( x )  (~>0) multiplied by £~+~ 
(>0). Hence, f (~)  >~ 0. Generally, we have 

f()~) - f ( T - ' ( ~ ) )  =f (x ) .  
xn+l 

Especially, 

f (£k)  = f ( e )  =f (xk) ,  

and 

f ( x * )  = ~* * - x , + ~ f ( x  ) - 0 .  

If f (x) is a linear function, then f (2 )  is also a linear function; otherwise, f (£ )  looks 
complicated. But, fortunately, f (~)  is merely a convex function according to the 
following convexity invariance lemma. 
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Lemma 3.1. Let f ( x )  be a convex function in X.  Then f(2~) is a convex function in .~. 

Proof. Let/z, v ~> 0, ~ + v = 1, and u = T-2(~) and v = T-I(~) ,  then for any ~, ~ e 

A at - A ,, ~ . . . .  {D( l~u[n  ] vv[n])'~ 
f ( t x u + v v ) = ( # u , + , ± v v , + , ) J |  ~ - 7  I 

\ ] £ U n +  1 t /dVn+ 1 ] 

= (P. , /~n+l + v ' v n + l ) J /  7 7 - 7  / 
\ #Un+l -i- 1.'Vn+l / 

(mao+m)f(u) + (v~+a) f (v)  

4(e). [] 

Lemma 3.1 led to a very important conclusion: the convexity of  the objective 
function remains invariant in the objective augmentation and the projective transfor- 
mation. Using the IE method, we solve the following sub-optimization problem 
QP3.2 over an interior ellipsoid centered at )~k, instead of solving Q P y l .  Since the 

starting point ~k = e, the interior ellipsoid happens to be an interior sphere in X. 

QP3.2 minimize f(2~) = 2~[n]TO~[n]/(22~n+l)- ~ [ n ]  

subject to A2 =/~, 

H ~ - e [ [ ~ f i <  1, 

where 

and 

(~ = DQD, 

= cD, 

( A D ,  - b ) ,  
A=\ d 

As a result of  Lemma 3.1, the following algorithm is introduced: 

Algorithm 3.1. 
Repeat do 

begin 
D = diag(xk); 
let ~ be the minimal solution for QP3.2; 
xk+l= T- I (~) ;  
k = k + l ;  

end; 
until f ( x  k) <~ 1/M.  
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The next two lemmas are used to prove a theorem for Algorithm 3.1. The first 
lemma confirms that a fixed objective reduction can be made at each step. 

L e m m a  3 .2 .  

/3 1) f (e) .  f(a)<~ ( l - n +  

Proof. If ~*<{~: A ~ = g  and {l~-e[[~</3}, then 

0 - < ? ( a )  <- f ( ;* )  = o, 

and so Lemma 3.2 holds. Otherwise, since )~ is a convex polytope, the intersection 
point of the boundary of {~: e{~ =/~ and [1~- e{{ <~/3} and the line segment between 
e and ~*, should be feasible for QP3.2. Let a' be the intersection point; then a' satisfies 

}}d'-ell = fi, (3.3) 

and 

a'--0~*+(1-e)e for some 0 < 0 < 1 .  (3.4) 

Substituting d' in (3.4) for c~' in (3.3), 

II 0~*+ (1 - 0 ) e  - ell = / 3 ,  

then 

0[l~*-ell--/3. 

Note that 

II~* - ell 2 = II~*ll 2 -  2eTa* + Ilell 2, 
e T ~  * = n + 1, 

and 

Hence, 

I1~* 112`< (eT;*)  2 = (n + 1) 2 

/3 /3 (3.5) 
O > ~ ~ > n +  1 • 

In addition, due to the convexity of f (  • ), 

f (a ' )  <~ Of(~*)+ (1 - O)f(e) = (1 - O)f(e). 

Since a is the optimal feasible solution for QP3.2, ~' is a feasible solution for QP3.2, 

f (~ )  ~< f (d ' )  ~< (I - o)f(e). (3.6) 

Lemma 3.2 thus follows from (3.5) and (3.6). U] 

The second lemma is proved by Karmarkar [13], and it essentially measures the 
second term of the potential function introduced at the beginning of this section. 
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Lemma 3.3. 

n+l /32 
- Y~ ln(di) <~ [] 

i~1 2(1 _/3)2" 

Based on Lemma 3.2 and Lemma 3.3, we can derive: 

Theorem 3.1. In O(Ln)  iterations o f  Algorithm 3.1, f ( x  k) < M -1. 

Proof. It can be verified from (3.1), (3.2), Lemma 3.2, and Lemma 3.3 that 

' [ f(xk+l)"l  ,~l= /xgi+"X ln w ) 
ln(f(~)~ __~1 - - ( n + l )  \ f - (7 ) /  ,= in(a,) 

-<-(n+l) In 1 -  /3 + 
n + l  2(1 - /3 )  ~ 

2(1 _/3)2. 

Let/3 = 0.27-0.36, and then 

P ( x  k+') < P ( x  k ) -0 .2 .  

Therefore, Theorem 3.1 follows directly from the discussion at the beginning of this 
section. 

4. Solving sub-optimization problem 

Now we show that QP3.2, or the optimality conditions (2.3a)-(2.3d) (with new 
meanings o f f ,  A, and /~), can be solved in O(Ln 3) arithmetic operations. To solve 
QP3.2, we can check to see whether or not QP1 has a positive (interior) optimal 
feasible solution (POFS). If QP1 has no POFS, then neither does QP3.1. In this 
case, a unique optimal solution must exist for QP3.2. This is because (1).5(2?)> 0 
for all 27c {£: ,4£=/~ and 1127-ell ~</3}, i.e., 27"~ {2?: A27 =/~ and 1127-ell ~</3} (2)the 
sphere constraint {2?: ,427 =/~ and [[2-eli ~</3} is a strictly convex set, and (3) f(27) 
is a convex function. By the well-known separating theorem, a unique optimal 
solution occurs at the boundary of the feasible region. In other words, there exists 
a unique fixed point (d, fi,/~) that satisfied (2.3a)-(2.3d), where fi is the Lagrange 
multiplier vector for the equality constraints, and/z  is the multiplier for the sphere 
inequality constraint. Furthermore, we can see that the objective function f(27) of 
QP3.2 is almost quadratic, except that 2?n+l appears in the denominator of the 
quadratic term. This makes it possible to solve (2.3a)-(2.3d) by using the multiplier 
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/~ as a pa rame te r  like equat ion (2.3e), as descr ibed in Section 2. To be more  specific, 
we first p rovide  a bound  for  ~. Using (3.1) and (3.2), 

Vi(d)=(aL n] Q+c*, 
\ a.+~ 2(a.+,)  ~ )"  

Thus,  we notice a nice p roper ty  o f f ( a ) :  

Vf(d)d = f ( d ) .  (4.1) 

Mult iplying bo th  sides of  (2.4e) by v f ( d )  f rom the left, 

V f( ~)d = v f( d)e -/3 II Pkll 
o r  

13 II p~ll = v f ( a ) ( e  - ~). (4.2) 

This leads to 

Lemma 4.1. 

~ f ( e ) - f ( a )  f ( a )  < ~ -  
/3(n+1) /3~ 

Proof.  Due  to the convexity o f f (  • ) and (4.1) 

In addit ion,  the opt imali ty  condit ions imply  that  ~ is also the opt imal  solut ion in 

. . . .  Vf(a)x, and subjecting ~ to the constraints  mmlmxzmg the linear objective function,  * ^ * 
of  QP3.2. Hence,  similar to the p roof  of  L e m m a  3.2 

A A A . ~  Vf(a)a <~ ovf(d)~* + (1 - o)vf(a)e <~ of(S*)  + (1 - o)Vf(a)e 

=(l-O)Vf(a)e<~( 1-nil+ 

Therefore ,  f rom (4.1), (4.2) and the above inequali ty 

/3?(d) <~/3vf(a)e/3 II pk I1 = V f ( d ) ( e  - d) <~?(e) -?(d). 
n + l  n + l  

By combining  this inequali ty with (2.4c) in Section 2, we derive the conclus ion in 
L e m m a  4.1. 

Now,  we split (2.3a) into two groups: the first one is the first n equat ions of  (2.3a) 
A A 

Qa[n]A +- ~V _ ~ [  n ] v f r  +/* (d [n ]  -- e) = 0 (4.3a) 
an+l 

and the second one is the last equat ion of  (2,3a) 

- a r [ n ] 0 d [ n ]  ** 
2 (d ,+0  e yA,+,+lx(a,+~-l)=O, (4.3b) 
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where A[n] is the matrix of the first n columns of ft., and /in+l is the last column 
of/~. Let 

and 

a = d , , + l # .  

Then, since (1-/3)  ~< an+~ ~< (1 +/3), Lemma 4.1 imposes a bound for A: 
* A 

(1 +/3) ( f (e)  - f ( a ) )  0 ~  < (1 - /3 ) f (d )  ~< A ~< (4.4) 
/3 (n+l )  /32 

Particularly, (4.3a) and (4.3b) become 

(Q + aI)  c7[ n ] - A[nJ~ '~ = ae - a n + l  ~ T  (4.5a) 

and 

-- aT[ rl]Oa[n ] 
- ( y  A~+I +a)an+l =0, 

2 

respectively. In addition, (2.3b) can be rewritten as 

A [ n ] ~ [ n ] = (  a"+'b / 
t7 + 1 - t / ~ + l / "  

Then, (4.5a) and (4.5c) form a system of linear equations similar to (2.3e): 

p/a[n]\ b2 
t f i , T J = a - + l  b ' +  

where 

Let 

and 

~ +  AI 

(i) (°el cT b 2 = 
b ~ = and . 

- V , + l /  

(1 _/3)2 
h'ni"- M/3(n + 1) 

(4.5b) 

(4.5c) 

(1 +/3)f(x k ) 
a .... - 132 

Then, for any given A 6 [Am~., Amax], we can compute p-lbl and P - ] b  2, and let 
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Then we substitute (4.6) for (4.5b) to compute d,+l by solving a single quadratic 
equation. Thus, 4 will be precisely determined. Finally, we check to see if II 4(1) - e II 
is close to/3. Let h(A) = 114(1)-el l - /3 ,  then h(A) has a u n i q u e  zero point bounded 
in (4.4). Obviously, h(oo) = IIe - e II - [3 = -/3 < 0, which implies h(A~,a×) <~ 0. On the 
other hand, if h(Ami~)~<0, then from Lemma 4.1 we obtain a positive (interior) 
optimal feasible solution x k+l= T- t (4)  for QP1 via (4.4): 

,, < ( 1 - / 3 )  M 1. 
f ( x  k+')  - ^ . _ _  - f ( a ) / a , , + , ~  , , 

Man+ 1 

Generally, we expect h(Amin)i> 0. Overall, the above process can be implemented 
by applying the well-known bisection technique to determine the unique zero a* 
of h(A), as shown in the following procedure: 

Procedure 4.1. 1. Set/3 = 0.31, a~ = Amin, 13 = A . . . . .  and 12 = (11 + 13)/2. 
2. Let A = 12, and then compute the two vectors P - l b l  and p - l f f  in O(n 3) 

arithmetic operations. 
3. Substitute (4.6) for (4.5b) to compute 4,+1 by solving a single quadratic 

equation; hence, 4 will be determined. 
4. If t3--11<-%2 -°(L), then stop and return 4; else update the three points 11, 12 

and 13, as in the well-known bisection technique, and go to 2. 

Remark 4.1. An issue that needs clarifying in Procedure 4.1 is what to do if (4.5b) 
has non-real solutions. In fact, from the uniqueness of the optimal solution for 
QP3.2 and the boundness of I in (4.4), h(A) has a unique zero in [Amin, 1 .... ], and 
for any given I ~ [1",  oo), there must exist a solution to 4n+1 in (4.5b), such that 
4,,+~ is real and 14~+l - 11 <~/3. Therefore, if (4.5b) has no real solutions, it must be 
true that I < 1". Essentially, A characterizes the size (13) of the interior ellipsoid 
(sphere) from (2.4c). Consequently, similar to the trust region method, searching 
for 1" is equivalent to searching for the right size of the interior ellipsoid region. 

In the following lemma, we justify that O(L) precision of arithmetic operations 
is adequate to terminate Procedure 4.l. 

Lemma 4.2. 4 resu l t ed  f r o m  P r o c e d u r e  4.1 sa t i s f i es  

[ l i d -  e{{ -/3[ <~ 2-°<L~. 

Proof. Since Procedure 4.1 is performed with A in the bounded interval 
[2 -°~L~, 2°(L~], ( ) + A I  is positive definite. We also assumed that A has full rank. 
Therefore, it can be verified that the condition number of P(A) is bounded [12], or 

IIP(I)-'11-<2 
for some constant k~ > 0. Additionally, 

Ilb'll~<2 k=L and ]]b21}~<2 k=L 
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for some constant k2> 0. Thus, for A3-A~ ~<2 -(2k'+k2+2)L we have 

j & -  a*l  ~< 2-(~<+k2+2)L, 

[]P(Aa)- 'b ' -P(A*l-lb~[[  ~< {IP(Aa) 11[ lIP(M)-P(A*)I]  {]P(A*)-'([ ]lbll{ 

<~IA2-A*II[P(A2)-'II IJP(A*)-' IIbljj 

~ 2  2L 

and similarly 

/ I p ( A 2 ) - l b  2 -  p(A*)-'b211 ~< 2 -2L. 

Furthermore, a(a2)n+~ was obtained via a square-root operation from P(A2)-1b ~ 
and P(A2)-~b 2, and then ~(A2) is obtained via summation of  (4.6), we must have 

II a ( a 9  - a(A*)II <- 2 - ° %  

Therefore, 

lid(A2)-ell = I la(a2)-  a (Z*)+  a ( A * ) -  ell 

> l i d ( A * ) - e l l -  Ila(~t2) - i~(a *) ii 

> fl -- 2--O(L), 

and 

II ~ (a2)  - err = fr a ( a )  - a ( a * )  + a ( a * )  - ell 

~< II a (A*)  - eli + II a (a2)  - ~(A*)I  I 

<~fi+2 -°(L). E] 

Lemma 4.2 established that x k+~ = T-~(c~) resulted from Procedure 4.1 in O ( L n  3) 

arithmetic operations is a valid solution to hold Theorem 3.l, since the range of fi 
can be tolerated from 0.27 to 0.36 to make the potential function reduced by 0.2. 
Actually, we can use a looser line search tolerance to complete Procedure 4.1, i.e., 
set Ih(A)l ~< 0.05 as another criterion to terminate Procedure 4.l. In practice, A (or 
#)  can be determined to minimize the potential function as long as the solution 
~ >  0. Our computational experience indicates that Procedure 4.l is always termi- 
nated in few loops using a reasonable estimation on A (or # )  from (4.4) (or Lemma 
4.1). Moreover, since there is not need to solve QP3.2 exactly, we can use many 
existing iterative algorithms, such as the Newton-type method or the conjugate 
direction method to achieve further practical efficiency (see, for example, Luenberger 
[18]). 
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Directly from Theorem 3.1 and Lemma 4.2, we obtain 

Corollary 4.1. Let the optimal objective value of QP1 be zero. Then QP1 can be solved 
in O(L2n 4) by Algorithm 3.1, coupled with Procedure 4.1. E] 

Furthermore, QD1 can be emerged into QP1 to form 

QPD minimize F ( x , y ) = f ( x ) - d ( x , y ) = x V Q x + c x - y b  

subject to (x ,y )c{ (x ,y ) :  Ax=b,  yA<~xTQ+c,x>~O}. 

In QPD, the optimal objective value is known to be zero (except when QPD is 
infeasible). In addition, the objective function of QPD remains convex quadratic 
and the constraints of QPD remain linear. In fact, let s = xTQ + c -- yA. The objective 
function becomes sx and the potential function becomes 

n 

P(x, s) = (2n + l) ln(sx) - ~ ln(sixi) .  
i 1 

Applying Algorithm 3.1 and Procedure 4.1 to QPD, we derive 

Theorem 4.1. Convex quadratic programming can be correctly solved in O(L2n 4) 
arithmetical operations using Algorithm 3.1 coupled with Procedure 4.1. 

5. Relation to the ellipsoid method 

Let us briefly review how the ellipsoid method solves linear and convex programs 
(Gr6tschel et al. [10], and Papadimitriou and Steiglitz [19]). The ellipsoid was 
designed for convex programming in QD form. Let the optimal solution set of QD 
be Y*, i.e., 

Y*={(y ,y):  (u ,y)~  Y and d(u,y)>~z*}. 

Then, the ellipsoid method generates a sequence of ellipsoids {E k} containing at 
least one solution in Y*. The volume of E k is reduced globally at a fixed ratio. 
More precisely, 

V(Ek) < 
~ 2 -°~k/°). (5.1) 

Therefore, after enough iterations either we must discover a solution, or else we 
must be certain that through successive shrinkings the ellipsoid has become too 
small to contain Y* and conclude Y*=  O. Each update of the ellipsoid requires 
O(Ln 2) arithmetic operations. One can analyze that the overall complexity is 
O(L2n4). 
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We now derive a dual containing ellipsoid in Algorithm 3.1. For all optimal dual 
feasible solution (u*, y*)E Y* with z*=  0, we must have 

y * A < ~ u * T Q + c  and d ( u * , y * ) ~ O .  (5.2) 

Let 

S* = {s* c Rn+~: s* = (u*r Q + c -  y*A,  d(u*,  y*)  ) and s*~>0} 

containing all the optimal dual-slack solutions, and 

Then 

0) 

IIs*L3112 <~ (s* L)e)2 ~< ( f ( x k ) )  z. 

Let S k be the ellipsoid 

S k = { s o  R"+': Jls/)ll ~<f(xk)}. 

Then, we must have 

S* c S k. 

Furthermore, the volume of S k is 

V ( S  k)  - " r r ( f ( x k ) )  n+l _ " l r ( f ( x k ) )  n+l 

det(L)) 1~ x/k 
i ~ l  

(5.3) 

(5.4) 

where rr is the volume of the unit ball in R n+~. In other words, 

In V( S k) = P ( x  k) + ln0r) ,  (5.5) 

i.e., the potential function correctly represents the logarithmic volume of the ellipsoid 
S k (only differs by a constant). Recall the proof  of Theorem 3.1, (5.4), and (5.5), 
we can derive 

Theorem 5.1. Let 

~ f ( x ° )  °+' 
v ( s °) _ 

o 

i~ l  

(~<2o<L"~). 
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Then, for all k, 

177 

S* C S k, 

and 

V(Sk) <~ e xp ( -  ka) ~< 2 -°(k). 
v(s  °) 

Theorem 5.1 indicates that S k contains all the optimal dual-slack solutions (s*) 
and the volume of S k shrinks at the ratio 2 -°(1), comparing to the shrinking ratio 
2 -°(l/n) of the ellipsoid method given in (5.1). However, each iteration of this 
extension of Karmarkar's algorithm costs O(Ln 3) arithmetic operations, and each 
step of the ellipsoid method costs O(Ln 2) arithmetic operations. Therefore, the 
average shrinking ratio of these two algorithms is identical. Kapoor  and Vaidya 
[12] proposed the rank-one updating technique similar to that of Karmarkar's [13] 
to solve sub-optimization problem, which reduces the complexity by a factor n °33. 

On the other hand, we can see the following two differences between the ellipsoid 
method and Karmarkar's algorithm. 

(1) The initial volume of the containing ellipsoid in the ellipsoid method has to 
take the worst case bound n'2  t", but the initial volume of the containing ellipsoid 
in this extension of Karmarkar's algorithm is naturally bounded by the initial 
potential value in the primal space, which is much less than nn2 Ln. 

(2) The step length in the ellipsoid method is limited to a certain size, therefore, 
the theoretical shrinking ratio is strictly true for the ellipsoid method. However, the 
step size fi (or /x) in this extension of Karmarkar's algorithm can be taken larger 
(or smaller) to minimize the potential function, resulting in a much greater reduction 
in the volume of the containing ellipsoid. 

6. Conclusion 

Using Karmarkar's polynomial-time LP algorithm as a base [13], we developed a 
polynomial-time algorithm for convex quadratic programming. More precisely, the 
number of iterations of the algorithm is bounded by O(Ln), and each iteration 
requires O(Ln 3) arithmetic operations, where L is the number of input bits and n 
is the dimension of the problem. 

We also showed that this extension is closely related to the ellipsoid method. The 
potential function, which is used to measure convergence of the primal solutions 
in this extension, correctly represents the logarithmic volume of the dual ellipsoid 
containing all the optimal dual-slack solutions. Like in the ellipsoid method, 
the volume of this containing ellipsoid uniformly shrinks to zero as the algorithm 

iterates. 
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U n l i k e  the  e l l i p so id  m e t h o d ,  this a l g o r i t h m  has  an  eff icient  i m p l e m e n t a t i o n  in 

prac t ice .  O u r  c o m p u t a t i o n a l  e x p e r i m e n t s  s h o w  tha t  e a c h  i t e r a t i on  can  be  c o m p u t e d  

in O ( n  3) a r i t h m e t i c  o p e r a t i o n s .  R e g a r d l e s s  o f  the  size o f  the  p r o g r a m ,  the  to ta l  

n u m b e r  o f  i t e ra t ions  r e q u i r e d  to a ch i eve  6-dig i t  o p t i m a l i t y  a c c u r a c y  is a b o u t  20 fo r  

a g r o u p  o f  Q P  test  p r o b l e m s  (Ye [26]).  
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