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Quadratically constrained minimum cross-entropy problem has recently been studied by Zhang
and Brockett through an elaborately constructed dual. In this paper, we take a geometric program-
ming approach to analyze this problem. Unlike Zhang and Brockett, we separate the probability
constraint from general quadratic constraints and use two simple geometric inequalities to derive
its dual problem. Furthermore, by using the dual perturbation method, we directly prove the
“strong duality theorem” and derive a “dual-to-primal” conversion formula. As a by-product,
the perturbation proof gives us insights to develop a computation procedure that avoids dual
non-differentiability and allows us to use a general purpose optimizer to find an e-optimal solution
for the quadratically constrained minimum cross-entropy analysis.
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1. Introduction

Let {g;},i=1,2,...,n, be a probability distribution function over a given finite
state space and {p, } be an a priori distribution that estimates {g; }, the “cross-entropy”’
or “discrimination information”, between these two distributions is defined by
Y., q:log(g:/p;). When certain estimated values or bounds of the expectation
functions (first order information), biq =Y _, qiby., are given, the “minimum cross-
entropy”’, or “minimum discrimination information (MDI)”, strategy is to choose
the one with the least cross-entropy among all those feasible probability distributions.
It is a well-known result that the minimum cross-entropy strategy is the same as
the “principle of maximum entropy”” when the a priori distribution {p; } is a uniform
one.

Minimum cross-entropy analysis has been applied successfully to various fields
including information theory, pattern recognition, statistical mechanics, thermody-
namics, game theory, and actuarial science. Good examples can be found in
1,2,6,7,10,11].

Recently, Zhang and Brockett [12] extended the minimum cross-entropy analysis
to include the second order information, 3q'H,q + b}.q + c;, where H, is a positive
semi-definite symmetric matrix, in the constraints. Their elaborately devised
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approach was based on the dual form of a linearly constrained minimum-cross
entropy problem as studied in [1, 2]. They took three major steps to derive a dual
problem: (1) approximating the quadratically constrained feasible region by a set
of supporting hyperplanes at points of a dense countable set; (2) finding the dual
of the approximated, linearly constrained minimum cross entropy problem; (3)
taking the limit of the approximate results and simplifying the expression. However,
the dual objective function they obtained was neither concave nor convex over its
feasible domain.

In this paper, we take a new approach to study the quadratically constrained
minimum cross-entropy analysis. In Section 2, we use two simple inequalities to
derive a geometric dual problem with concave objective function and linear con-
straints. The “weak duality theorem™ is also derived. Then, in Section 3, we prove
the “strong duality theorem™ (or “existence theorem”) for the quadratically con-
strained minimum cross-entropy problem. The dual-to-primal conversion is studied
in Section 4. The converting formula constructs an “e-optimal” solution for the
original problem once a proper dual problem is solved. Finally, the computational
issues are discussed in Section 5. The perturbational approach derived in Sections
3 and 4 provides us an opportunity to solve the quadratically constrained minimum
cross-entropy problem by using a general purpose optimizer like MINOS [8]. The
computation procedure is similar to our findings in [4, 5]. Our dual program can
also be transformed to a special form that is similar to Zhang and Brockett’s [12].
But the non-convexity (or non-concavity) property of the objective function in this
form may make it less desirable.

2. Quadratically constrained minimum cross-entropy problem

The quadratically constrained minimum cross-entropy problem to be studied in this
paper has the following form:

Program P
Min g(q)= Y g¢:log(q;/p;) (p;>0 are given) (1)
i=1
st. q=0, ¥ g,=1, and (2)

i—1
g (qg)=2g'Hg+biq+c,<0, k=1,2,...,7r, (3)

where H, is a positive semidefinite, symmetric, n X n matrix, ¢ and b, are n-vectors,
and ¢, is a constant for each k.

Notice that, contrary to Zhang and Brockett [12], we explicitly separated the
probability distribution constraint }.;_, g;=1 from the quadratic constraints set.
This will give us better insights in formulating the dual problem.
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For easy cross-reference, we stick to those notations that had been used extensively
in the geometric programming literature (e.g., [3, 4]). We first express the positive
semi-definite, symmetric matrix H, as H, = A} A,, where A; is an m, X n matrix
and my is the rank of Hy, for k=1,2,...,r. Then define I, to be the n x n identity
matrix, and the index notations

(01={1,2,...,n}, 10[=n, 4)
[kl1={1k—=1[+1,..., 1k—1{+m.}, Jk[ =]k —1{+m, +1
fork=1,...,r, (5)
Ir[=m. (6)
Moreover, we let X denote the column space of the m x n matrix M defined by
M'=(I, A}, by,..., AL D). (7)

Hence each x € X is an m-vector that can be expressed in Cartesian product form
as x=X,_,x, where x°=(xy,...,x9)" and x*=(x_111,..., %), for k=
1,...r. Then it is a simple routine to check that Program P is equivalent to the
following “‘primal’”’ geometric program (PGP):

Program PGP

Min G(x)= ieZ[O] x; log(x;/p;) (p:>0) (8)
st.  x;=0 for ie(0], -%01 x; =1, (9)
Gk(x)—t%.%{]x?-l-x]k[—l-ckéo, k=1,2,...,r, (10)
xeX (11)

In order to construct a geometric dual problem, corresponding to primal vectors
x, we define dual vectors y=X,_,»", where y°=(y,...,»0), and y*=
(Plk—ars1s - - s Yg)'s for k=1,... r. In this way, y is a column vector of size m.
Then consider the arithmetric-geometric inequality used in [3]:

Y piexp(y;)= ] {piexp(yi)/x}7. (12)
ie[0] ic[0]
This inequality is true for any real numbers y;, x;>0,i€[0], and ¥, _;; x;=1. By
taking the logarithm of both sides and simplifying it, we have

L oxyi< L xlog(x/p;) +10g( 2 piexp(y )>. (13)

ie[0] ie[0] ie[0]
With the understanding that 0 xlog 0 =0, the above inequality is true for all y;, x; =
0,i€[0],and ¥, (o, x; = 1; and with equality holding if and only if p; exp(y;) = K X x;,
for i€[0], where K is a constant.
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Next consider the quadratic inequality used in [4]:

Y xz<3 Y (xi+zi) for real numbers x;, z. (14)
ielk] iclk]

Replacing z; by yi/ ¥y, multiplying both sides by yy, adding xye vy to both sides,
and adding then subtracting the term ¢,y on the right hand side, we have

) xiYi+x]k[)’]k[<y]k[{% z x?+x]k[+ck}+{; 2 yzz'/J’]k[‘CkYJk[}-
icl[k] icl[k] ie[k]
(15)

With the understanding that yy=0 only if y, =0 for each i€ [k], this expression
holds for all yj=0and k=1,2,... .
Combining the inequalities (13) and (15) (for k=1,2,...,r), we obtain that

Y xy= Y xlog(x,/p;)+ kZ Vikt {% Z[k] X7+ X0+ C }
i=1 =1 i€

ie[0]

+10g( > P eXP(J’i))JFéI{% > J’?/YJk[*Ck)’]k[}- (16)

ie[0] ic[k]

If x is primal feasible, y; =0 (and y; =0 only if y,=0 for each ie[k], for
k=1,2,...,r),and M'y =0, then we know that 3.,_, x5, =0, and Vi3 Ticpry Xi
X+ e} <0, for k=1,..., r. Consequently,

‘108( Y pi eXp(yi)>+ Y oavu—zi Yy L Yi/vus X X log(x/pi).
ie[0] k=1 k=1ie[k] ie[0]

(17)
Based on this inequality, we can define the “dual program (DGP)” of Program

PGP as follows:

Program DGP
Max V(y)= —log< Y. piexp(y: )) +Y avm—3 L L yi/ym (18)
ie[0] k=1 k=1 ie[k]
s.t. M'y=0, (19)
y]k[/>fo, k=1,2,...,r, (20)

where y € R,, with M, [k], ]k[ and ¢, defined as before.
Notice that we were able to replace the constraint “y; =0 and yj =0 only if

y: =0, for each ie[k]” by a simple constraint *“y; =07, since if yur=0and y; #0
for some i [k], then V(y) would become —c0.
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There are several observations that can be made here. First, as an immediate
consequence of the inequality (17), we can easily show the “weak duality theorem”,
ie.:

Theorem 1. If x is a primal feasible solution of Program PGP and y is a dual feasible
solution of Program DGP, then V(y) < G(x).

Second, we follow the well-established geometric program theory to define a
“canonical program” as a program with a feasible dual solution y* such that yj, >0,
for k=1,...,r Then, since matrix M is defined by equation (7), if we take vector
y" with components (y")°= =Y, _, b, Vi ape1 =" = = Y k1+m, =0, and yJi = 1, for
k=1,...,r equation (19) is automatically satisfied for y*. Therefore, we know that
the following result is true.

Theorem 2. Program DGP is a canonical program that is always consistent.
The third observation is a direct consequence of the first two.
Theorem 3. Program DGP has a finite optimum value, if Program PGP is consistent.

Moreover, just like most geometric duals [4, 5], it is easy to see that V(p) is
concave over the dual feasible region. However, it is not differentiable at the
boundary of the constraints y, =0, for k=1,2,..., r. This issue will be explicitly
addressed in later sections.

3. Existence theorem

Compared to the primal program PGP, its dual program DGP has a concave objective
function with linear constraints. This makes the dual approach very attractive.
However, as we observed in the last section, the dual problem is non-differentiable
at some of its boundary points. This would cause at least two difficulties: (1) applying
Lagrangian theory is difficult without resorting to subgradient techniques as
developed in {9]; (2) developing a dual based solution procedure becomes more
troublesome.

Fortimately, the most recently developed “controlled dual perturbation’ approach
[4,5] can be applied here. We can perturb constraints (20) by a well-controlled
positive amount I, for k=1,2,..., r, and construct the following “perturbed dual”
program:

Program DGP(I)

r

Max V(y)=—10g< Y b eXP(y,-)>+ Yoaym—3s Y Y yi/vw (2D
ie[0) k=1 k=1 ic[k)

st.  M'y=0, (22)
e =h>0, k=1,2,...,1, (23)
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where all notations are defined as before, and those positive /’s are called “perturba-
tions™.

There is one interesting observation that can be made on this perturbed dual
program. Since Theorem 2 indicates that Program DGP is canonical with a feasible
solution ™ such that yj,; >0, for k=1, ..., r, we can always choose a perturbation
vectorI=(l,,..., 1) withyj, > >0,fork=1,..., r.Inthis way, the corresponding
Program DGP(!) is always feasible. Moreover, Program DGP(/) has a concave
differentiable objective function over its linearly contained non-void feasible region.
This will make the dual approach very favorable since any general purpose optimizer
like MINOS can be used to solve it without much difficulty. However, we have to
show that there is no duality gap before we actually devote to the computations.

The following theorem will lead us to this goal:

Theorem 4. If Program DGP has a finite supremum, then program PGP is consistent.
Moreover, for any given £ >0, we can choose a proper perturbation vector I(e)=
(I(e)y, ..., 1(g), ) withl(e), >0, fork=1,..., r such that the perturbed dual program
DGP(Il(g)) has an optimal solution y and the Program PGP has a feasible solution x
satisfying the condition 0= G(x)—V(y)<e.

Proof. Let y* be a feasible solution of Program DGP with yj;,; >0, for k=1,...,r.
We consider Program DGP(I) with I, <yj, for k=1,...r. Since program DGP
has a finite supremum, so does program DGP(!). Now, consider the Lagrangian
defined as

L= V(y)+kZ /\k(y]k[—lk)+')’tMt s (24)
=1

where y (a column vector of size n) and A, k=1,2, ..., r are Lagrange multipliers
of the constraints (22) and (23) respectively.

Because program DGP(/) is differentiable and concave, there exist solutions to
the following Kuhn-Tucker conditions:

8L/dy;i=—(piexp(y:))/ L (piexp(y:))+y'M;=0 for ic[0], (25)
ie[0]
L/ 3y, ==y;/ yyq+y'M; =0 foriclk],k=1,2,...,r, (26)
8L/8y]k[=0k+% Z y,z/y%k[“’Ak‘f"ylM]k[:O fOI‘ k=1,2,...,r, (27)
ie[k]
)\k(y]k[hlk):()a k:1:2>"‘,r5 (28)
A=0, k=1,2,....1, (29)

plus conditions (22) and (23), where M, (a column vector of size n) is the ith
column of matrix M".
If we let

x;=y'M; fori=1,...,m, (30
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then, by definition, we know x € X (the column space of M'). Moreover, by condition
(25), we know x;=0 and Y .oy x; =1, and by condition (26), v;/yy=x;, for ie
[k}, k=1,...,r. Plugging into condition (27), we have
% Z xi2+X]k[+Ck+/\k:O, k:1,2,...,r. (31)
ic[k]

Since A, =0 is given by condition (29), we know (10) is satisfied by this vector x.
Hence Program PGP has a feasible solution x.

To prove the second part of this theorem, let us consider the right hand side of
the Lagrangian defined by (24), since condition (28) holds and x and y are com-
plementary, we have

L=V(y).

On the other hand, if we plug in the value of V(y) given by definition (21) to the
right hand side of (24) and rearrange terms, we have

L=—log( X P exp(yi)>+ Y ¥ My,

ief{0] ie[0]

+k2 y]k[{ck—'lé %k])’?/Y§k[+/\k+7lM]k[}
=1 ic

+3 Y ¥YMyi— ¥ A
k=1 ie[k] k=1
In other words,

V(y)=—10g( rom eXP(yi))+ Y v'My;

ie[0] ie[0]

+ 3 }’]k[{ck‘% ) yx?/yik[—i’/\k—*_'th]k[}
k=1 ie[k]

+y X 'YtMiYi'kz Aiclie- (32)
=1

k=1 ielk]

Now, by (25), we know that p; exp(y;) =x; X}, (o (P €xp(y:)), for each i €[0]. But
Yicro) (7 exp{y:)) is a constant number, hence inequality (13) becomes equality and

Y ¥YMy;= % x,-yi=10g( Y. Piexp y,-)+ 2 x;log(x:/p:). (33)
iel0] ie{0] ic[0] ief0]

In addition, by (26), we have
Y Y yMyi=Y Y v v (34)

k=1 ie[k] k=1 ie[k]

Substituting these values into (32) and noticing (27), we show that

V(y)=G(x)— kél Ak
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By Theorem 1, we further have
k=1

Now substitute the components of the vector y* in inequalities (13) and (15). By
adding these inequalities together and using condition (31), for k=1, ..., r, we have

=1
Substituting for G(x) from (35), we get
0=< ¥ M(yug—lb)sS V@) -V )=sV-V(@yT) (37)
k=1

where V is an upper bound for the dual program as assumed for this theorem.
Now, for any given ¢ >0, if we choose I, such that

L=L(e)=edyl/(V-V(y )+e) forany0<dé<land k=1,2,...,r,
(38)

then there are two possible cases for consideration:

Case 1: f V—V(p")=0, then since I =8yy; and yyu;—h=(1-8)y}>0,
for each k, therefore A, in (37) has to be 0. Consequently, by (35), we have
G(x)—V(y)=0.

Case 2: If V=V(y")>0, by (38), y|u=[(V~V(y")+¢)/ed1k. Plugging into
(37), we obtain

MLV = VO )/06)+(1/8) =11 = V- V).

This implies that Y, _, Ay = 8¢ < e. Therefore, by (35), we have 0< G(x) - V(y) <e.
This completes the proof.

We now are ready to prove the “strong duality theorem” (or “existence theorem”)
for the quadratically constrained minimum cross-entropy problem.

Theorem 5. Program PGP is consistent if and only if its dual Program DGP has a
finite optimum value. In this case, Programs PGP and DGP attain a common optimum
value.

Proof. Combine Theorems 3 and 4, we know Program PGP has a feasible solution
if and only if Program DGP has a finite optimum value. Moreover, for any given
£>0, we can find feasible x and y such that 0< G(x)— V(y)=< e. Hence we have
V(y)< V*= G*=< G(x), where V* and G* are optimum values of DGP and PGP
respectively. Consequently, 0= G*— V¥*< G(x)~ V(y) < ¢, for any £ > 0. Therefore,
G*=V* and we complete the proof.
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4. Dual-to-primal conversion

In this section, we show that an e-optimal solution to the original quadratically
constrained cross-entropy problem (Program P) can be derived by solving Program
(DGP(I(e)) with I(e) properly selected according to equation (38). The first result
is as follows:

Theorem 6. If y is a vector of Lagrange multipliers associated with the constraint set
M'y =0, of Program DGP(I(¢)), then vy is a feasible solution for Program P and

0=<g(y)-Vy)=<e

Proof. Since the first n columns of matrix M form an identity matrix I, by (30),
we conclude that x; = vy,, for i €[0], and G(x) = g(y). By (25), we know ;=0 and
Yicroy ¥i = 1. Moreover, putting the structure of matrix M and equation (30) together,
then substituting for x; (ie[k]) and x); (k=1,..., r) in (31) and noticing the fact
that A, =0, we can conclude that g.(y) =3y Hyy+biy+c.<0 for k=1,2,...,r.
Hence vy is a solution to Program P. Then, by Theorem 4, it is clear that 0=
g(y)— V(p) <e. This completes the proof.

The second result is to express the primal solution vy in terms of dual solutions.
To do so, we define

m= IOg(ig[:o] pi exp(y; )) (39)
The constraint M‘y =0 implies that

y= “él {AL 5+ by, (40)
where 5* is a column vector with elements y; such that ie[k], for k=1,...,r In

other words, 7* is the same as y* but with one less element ik - Hence,
yi=— L {Atk,iyk + byt for ie[0], (41)
k=1

where A}, is the ith row of A} and b, is the ith component of by.
Using the definition (30) in (25), we have p; exp(y;) = y; exp u, for i€[0). Now,
substituting for y; in this expression, we have

Yi=pi exp(—p — kZ {Atk,i.f’k + by for ief0]. (42)
=1
Hence we have the following theorem:

Theorem 7. For any given £>0, if I(e) is defined by equation (38) and y solves
Program DGP(I(g)), then equations (39) and (42) generate an g-optimal solution to
the original quadratically constrained minimum cross-entropy analysis Program P.
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5. Computational issues

As a by-product of the theoretical insights we obtained in previous sections, we can
outline a dual-based computation procedure as follows:

Step 1: Given an £ >0, a dual feasible vector y* with y};;>0, for k=1,...,n,
and a dual upper bound V of V(p).

Step 2: Choose a perturbation vector I(e)=(l(¢),,...,1(g),) according to
equation (38).

Step 3: Find an optimal solution y for the perturbed dual program DGP(i(¢)).

Step 4: Plug in y into equations (39) and (42) to generate an g-optimal solution
vy, then

O=sg(y)-V(y)=se
Step 5: Stop.

There are several observations that can be made here.

1. Compared to the primal program P, the perturbed dual program DGP(I(¢))
is relatively simple since it possesses a concave differentiable objective function and
linear constraints. We may use a commercial nonlinear optimizer, eg., MINOS, to
solve this dual problem. The additional customization of codes is minimal.

2. In Step 1, y* can be easily obtained as we derived for Theorem 2, i.e.,

(y+)0:_z bk7 yiﬁc—lﬁ*l:'..:yﬁrl[ﬁ»mkzo and y?k[zl fork:l:"'ar'
k=1

3. Usually a dual bound V can be estimated easily. If it is not provided, we can
always solve a Program DGP(I) with I, = 8yj, first, then use equations (39) and
(42) to find a corresponding primal solution y* then we know V= g(y*).

4. To compare with Zhang and Brocketts result in [12], let us consider Program
DGP. If we define y, = w; vy, forie[k]and k=1,2,..., r, then the constraint (19)
M'y =0 implies that

.VO = _kél J’]k[{Ascwk + b} (43)
In other words,

yi= ——kél ViAW + b} for ie[0], (44)
where A} ; is the ith row of the matrix A}, b, is the ith component of vector by,
and w" is the column vector in R,,, with components w;, for ie{k].

Consequently, if we follow the notation ) r, exp s;=r"exps, Program DGP
becomes equivalent to
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Program D

Sup ‘103[1" exp(—kZ J’]k[{Atka'*‘bk}):"" D Ck)’]k[“%kz yir 1w |12
=1 k=1 =1
(45)
s.t. y]k[/O and w ERmk for k_'l (46)

This formulation is very close to Zhang and Brockett’s duval program in [12],
except the first part of the objective function is in a “log” form. The reason for this
fact can be attributed to our original formulation of Program P which, unlike [12],
explicitly separates the probability distribution requirement from quadratic con-
straints. But the basic characteristics of these two duals are essentially the same and
there is no difference in computational complexity. For this form (Program D),
although the constraints are even simpler than those of Program DGP, the objective
function is neither convex nor concave. When it comes to applying a routine
nonlinear optimizer that can pause a problem. In this sense, a program of the form
DGP (actually, DGP(I(g))) is preferred.

6. Conclusion

In this paper we have provided a geometric programming approach to the quadrati-
cally constrained minimum cross-entropy problem. A well-controlled dual perturba-
tional method not only showed its theoretical value in proving the weak and strong
duality theorems, but also led to a potential computational procedure that would
allow us to use a general purpose optimizer to solve the problem.
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