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Quadratically constrained minimum cross-entropy problem has recently been studied by Zhang 
and Brockett through an elaborately constructed dual. In this paper, we take a geometric program- 
ming approach to analyze this problem. Unlike Zhang and Brockett, we separate the probability 
constraint from general quadratic constraints and use two simple geometric inequalities to derive 
its dual problem. Furthermore, by using the dual perturbation method, we directly prove the 
"strong duality theorem" and derive a "dual-to-primal" conversion formula. As a by-product, 
the perturbation proof gives us insights to develop a computation procedure that avoids dual 
non-ditterentiability and allows us to use a general purpose optimizer to find an E-optimal solution 
for the quadratically constrained minimum cross-entropy analysis. 
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I. Introduction 

Let {qi}, i =  1, 2 , . . . ,  n, be a p robab i l i t y  d i s t r ibu t ion  funct ion  over  a given finite 

state space  and  {pi } be an a pr ior i  d i s t r ibu t ion  tha t  es t imates  {q~ }, the " c r o s s - e n t r o p y "  

or  "d i s c r imina t i on  i n fo rma t ion" ,  be tween  these  two d is t r ibu t ions  is def ined  by  

Y~7-1 q~ log(q~/p~). W h e n  cer ta in  es t imated  va lues  or  b o u n d s  o f  the  expec ta t ion  
n 

funct ions  (first o rder  in fo rmat ion) ,  btkq = ~=1 q~bk, i, are given, the " m i n i m u m  cross- 

en t ropy" ,  or  " m i n i m u m  d isc r imina t ion  i n fo rma t ion  ( M D I ) " ,  s t ra tegy is to choose  

the  one with the  least  c ross -en t ropy  among  all  those  feas ible  p robab i l i t y  d i s t r ibu t ions .  

I t  is a we l l -known resul t  that  the m i n i m u m  cross -en t ropy  strategy is the  same as 

the  "p r inc ip l e  of  m a x i m u m  en t ropy"  when  the a pr ior i  d i s t r ibu t ion  {p~ } is a un i fo rm 

one.  

M i n i m u m  cross -en t ropy  analysis  has been  app l i e d  successful ly  to var ious  fields 

inc lud ing  in fo rma t ion  theory ,  pa t t e rn  recogni t ion ,  s tat is t ical  mechan ics ,  t h e r m o d y -  

namics ,  game theory ,  and  ac tuar ia l  science.  G o o d  examples  can be f o u n d  in 

[ 1 , 2 , 6 , 7 , 1 0 , 1 1 ] .  

Recent ly ,  Zhang  and  Brocket t  [12] e x t e n d e d  the m i n i m u m  c ross -en t ropy  analys is  

to inc lude  the second  o rde r  in fo rmat ion ,  ½q~Hkq + b~q + ck, where  /ark is a posi t ive  

semi-def ini te  symmet r ic  matr ix ,  in the const ra ints .  Their  e l abora te ly  dev i sed  
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approach was based on the dual form of a linearly constrained minimum-cross 
entropy problem as studied in [1, 2]. They took three major steps to derive a dual 
problem: (1) approximating the quadratically constrained feasible region by a set 
of supporting hyperplanes at points of a dense countable set; (2) finding the dual 
of the approximated, linearly constrained minimum cross entropy problem; (3) 
taking the limit of the approximate results and simplifying the expression. However, 
the dual objective function they obtained was neither concave nor convex over its 
feasible domain. 

In this paper, we take a new approach to study the quadratically constrained 
minimum cross-entropy analysis. In Section 2, we use two simple inequalities to 
derive a geometric dual problem with concave objective function and linear con- 
straints. The "weak duality theorem" is also derived. Then, in Section 3, we prove 
the "strong duality theorem" (or "existence theorem") for the quadratically con- 
strained minimum cross-entropy problem. The dual-to-primal conversion is studied 
in Section 4. The converting formula constructs an "e-opt imal"  solution for the 
original problem once a proper  dual problem is solved. Finally, the computational 
issues are discussed in Section 5. The perturbational approach derived in Sections 
3 and 4 provides us an opportunity to solve the quadratically constrained minimum 
cross-entropy problem by using a general purpose optimizer like MINOS [8]. The 
computation procedure is similar to our findings in [4, 5]. Our dual program can 
also be transformed to a special form that is similar to Zhang and Brockett's [12]. 
But the non-convexity (or non-concavity) property of the objective function in this 
form may make it less desirable. 

2. Quadratically constrained minimum cross-entropy problem 

The quadratically constrained minimum cross-entropy problem to be studied in this 
paper has the following form: 

Program P 

Min 

s.t. 

g(q) = ~ qi log(qi/p~) (pi>O a r e  given) (1) 
i = 1  

n 

q1>O, 2 q~=l ,  and (2) 
i = 1  

~ k ( q )  = 1 t t ~qHkq+bkq+ck<~O, k = l , 2 , . . . , r ,  (3) 

where Hk is a positive semidefinite, symmetric, n × n matrix, q and bk are n-vectors, 
and ck is a constant for each k. 

Notice that, contrary to Zhang and Brockett [12], we explicitly separated the 
probability distribution constraint ~n = i=1 qi 1 from the quadratic constraints set. 
This will give us better insights in formulating the dual problem. 
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For  easy cross-reference,  we stick to those nota t ions  that  had  been used extensively 
in the geometr ic  p rog ramming  literature (e.g., [3, 4]). We first express the posit ive 
semi-definite,  symmetr ic  matr ix  Hk as Ilk = AtkAk, where Ak is an mk x n matr ix  

and  mk is the rank of  Hk, for  k = 1, 2 . . . .  , r. Then  define I ,  to be the n x n identi ty 
matrix,  and the index notat ions  

[ 0 ] = { 1 , 2 , . . . , n } ,  ] 0 [ = n ,  (4) 

[k]  = { ] k -  1[+1 . . . .  , ] k -  l [+mk} ,  ]k[  = ] k -  l [ + m k +  1 

for k =  1 , . . . ,  r, (5) 

]r[  = m. (6) 

Moreover ,  we let X denote  the co lumn space of  the m x n matr ix  M defined by 

M t = (In, At1, b~ . . . .  , At ,  br ). (7) 

Hence  each x e X is an m-vec tor  that  can be expressed in Car tes ian  p roduc t  fo rm 
as x = X ~ = o  xk, where x ° = ( x l  . . . .  ,xlot) t, and  Xk=(Xlk_lt+l,...,XlkE) t, for  k =  
1 , . . .  r. Then  it is a s imple  routine to check that  Program P is equivalent  to the 
fol lowing "p r ima l "  geometr ic  p rogram (PGP):  

Program PGP 

Min 

s.t. 

G(x) = Y, x~ log(xffp~) ( p , >  0) (8) 
ic[o] 

xi/>0 for  i 6 [ 0 ] ,  }~ x ~ = l ,  (9) 
i~[o] 

Xi+Xlk~+Ck<~O, k= 1 , 2 , . . . ,  r, (10) 

xeX.  (11) 

In order  to construct  a geometr ic  dual p rob lem,  cor responding  to pr imal  vectors 
k y0 x, we define dual  vectors  Y = X k ~ o Y ,  where  = ( y l , . . . , y l o t )  t, and y k =  

(Ylk-IE+I . . . .  , Y~kt)t, for  k = I , . . . ,  r. In this way, y is a co lumn vector  of  size m. 
Then  consider  the ar i thmetr ic-geometr ic  inequali ty used in [3]: 

P, exp(y i )  >~ [I  {P, exp(y,)/xi} x'. (12) 
ie[o] i~[o] 

This inequal i ty  is true for  any real numbers  y~, x~ > 0, i ~ [0], and ~i~[o~ xi = 1. By 
taking the logar i thm of  bo th  sides and s implifying it, we have 

x~yi<~ ~ xi log(xff p~ )+ log( ~o )" ~[ol ~[ol ~ I pi exp(y~) (13) 

With the unders tanding  that  0 × log 0 = 0, the above inequali ty is true for  all y~, x~ >~ 

0, i c [0], and Zi~tol x~ = 1; and with equali ty holding if and only ifp~ exp(yi  ) = K x x ,  
for  i~  [0], where  K is a constant.  
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Next consider the quadratic inequality used in [4]: 

, (14)  xizi<.5 ~ (xZ+z~) fo r rea l  numbers x,,zi. 
i~[k] i6[k] 

Replacing z~ by Y~/Y]k[, multiplying both sides by Y]k[, adding X]k[Y]k[ to both sides, 
and adding then subtracting the term Cky]k~ on the right hand side, we have 

( 2  )[ } Y g / Y]kt -- cgyJk[ " xiyi+X]k[Y]k[~Y]k[ ½ ~ Xiq-X]k[q-dk -~ 12 E 2 
ie[k] i~[k] Jerk] 

(15) 

With the understanding that Y~k[ = 0 only if y~ = 0 for each i c [k], this expression 

holds for all Ysk~ ~> 0 and k = 1, 2 , . . . ,  r. 
Combining the inequalities (13) and (15) (for k = 1, 2 , . . . ,  r), we obtain that 

xiYi <~ ~. xi log(xi/Pi ) + Y. Y]k~ 12 ~ X2+X]k[+ Ck 
i = l  ie[O] k = l  ic[k] 

Y~/YJk[- (16) 
i~[0] k = l  ic[k] 

If x is primal feasible, Y]k~ >~ 0 (and Y]k[ = 0 only if yi = 0 for each i c [k], for 
= . . ,  m YJk[{~ Z,~[k] X,?+ k 1, 2,.  r), and Mty = O, then we know that }~= 1 xiyi = O, and 

X]k[ + Cg } ~< O, for k = 1 , . . . ,  r. Consequently, 

- l o g (  ~ p i e x p ( y i ) ) +  ~ CkY]k~--12 Y, ~ YZi/Y]k[<~ Y, xilog(xi/pi). 
\ ie-[0] k=l k=l i~[k] i~[0] 

(17) 

Based on this inequality, we can define the "dual program (DGP)"  of Program 

PGP as follows: 

Program DGP 

Max 

s.t. 

V ( Y ) = - l ° g (  ~[o piexp(Yi)) + ~ CkY]k[--12 i ~ 
i ] k = l  k=l i~[k] 

Mty =0,  

y]k[ ~ 0, k = 1 , 2 , . . . ,  r, 

where y c R,,, with M, [k], ]k[ and Ck defined as before. 

Y~/Y]k~ (18) 

(19) 

(20) 

Notice that we were able to replace the constraint "Y]kE ~> 0 and Yjk[ ~ - 0  only if 
Yi = 0, for each i ~ [k]"  by a simple constraint "Y]kr ~ 0", since if Y]kE = 0 and yi ~ 0 

for some i c [k], then V(y) would become - ~ .  
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There are several observations that can be made here. First, as an immediate 
consequence of the inequality (17), we can easily show the "weak duality theorem",  

i.e.: 

Theorem 1. I f  x is a primal feasible solution of Program PGP and y is a dual feasible 
solution of Program DGP,  then V(y) <~ G(x). 

Second, we follow the well-established geometric program theory to define a 
"canonical  program" as a program with a feasible dual solution y+ such that Y~k~ > 0, 
for k ~ I , . . . ,  r. Then, since matrix M is defined by equation (7), if we take vector 

+ + + 
y with components (y+)O= _ ~ ,  . . . . .  k=~ bk, Ylk-~+l = Y]k--l[+mk = 0, and Y~k~ 1, for 
k = 1, . . . ,  r, equation (19) is automatically satisfied for y+. Therefore, we know that 
the following result is true. 

Theorem 2. Program D G P  is a canonical program that is always consistent. 

The third observation is a direct consequence of the first two. 

Theorem 3. Program D G P  has a finite optimum value, if Program PGP is consistent. 

Moreover,  just like most geometric duals [4, 5], it is easy to see that V(y) is 
concave over the dual feasible region. However,  it is not differentiable at the 
boundary of the constraints Y?k~ >~ 0, for k = 1, 2 , . . . ,  r. This issue will be explicitly 
addressed in later sections. 

3. Existence theorem 

Compared  to the primal program PGP, its dual program D G P  has a concave objective 
function with linear constraints. This makes the dual approach very attractive. 
However, as we observed in the last section, the dual problem is non-differentiable 
at some of its boundary points. This would cause at least two difficulties: (1) applying 
Lagrangian theory is difficult without resorting to subgradient techniques as 
developed in [9]; (2) developing a dual based solution procedure becomes more 

troublesome. 
Fortunately, the most recently developed "controlled dual perturbation" approach 

[4, 5] can be applied here. We can perturb constraints (20) by a well-controlled 

positive amount  lk, for k = 1, 2 , . . . ,  r, and construct the following "per turbed dual" 

program: 

Program DGP( I) 

Max V(y) = - l o g  Pi exp(yi) + ~ cky~k~--½ ~ Y~/Y~k~2 (21) 
i ] k - - I  k = l  ie[k] 

s.t. Mty =0 ,  (22) 

yak~>~lk>O, k = 1 , 2 , . . . ,  r, (23) 
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where all notations are defined as before, and those positive lk'S are called "perturba- 

tions". 

There is one interesting observation that can be made on this perturbed dual 
program. Since Theorem 2 indicates that Program D G P  is canonical with a feasible 

solution y+ such that Y~k[ > 0, for k = 1 , . . . ,  r, we can always choose a perturbation 
vector l = ( l ~ , . . . ,  lr ) with Y]-kE > lk > 0, for k = 1 , . . . ,  r. In this way, the corresponding 
Program DGP(I)  is always feasible. Moreover, Program DGP(I)  has a concave 
differentiable objective function over its linearly contained non-void feasible region. 

This will make the dual approach very favorable since any general purpose optimizer 
like MINOS can be used to solve it without much difficulty. However, we have to 
show that there is no duality gap before we actually devote to the computations. 

The following theorem will lead us to this goal: 

Theorem 4. I f  Program D G P  has a finite supremum, then program PGP is consistent. 

Moreover, for  any given e > O, we can choose a proper perturbation vector l ( e ) =  

( l( e )~ . . . .  , l( e )r ) with l( e )k > O, f o r k  = 1 , . . . ,  r, such that the perturbed dual program 

DGP(I (e ) )  has an optimal solution y and the Program PGP has a feasible solution x 

satisfying the condition 0 <~ G ( x )  - V (y )  <~ s. 

Proof. Let y+ be a feasible solution of Program D G P  with y]k[>+ 0, for k = 1 , . . . ,  r. 
We consider Program DGP(I)  with lk <YJk[,+ for k = 1 , . . .  r. Since program DGP 
has a finite supremum, so does program DGP(I) .  Now, consider the Lagrangian 

defined as 

r 

L = V(y)  + ~ Ak(Y]k[-- lk ) 4- 3,tMty,  (24) 
k-1 

where 3' (a column vector of size n) and Ak, k = 1, 2 , . . . ,  r are Lagrange multipliers 
of the constraints (22) and (23) respectively. 

Because program DGP(I)  is differentiable and concave, there exist solutions to 

the following Kuhn-Tucker  conditions: 

O L / O y i = - ( p i e x p ( y , ) ) /  ~ (p~exp(y~))+3"tMi=O for i~[0] ,  (25) 
iE[O] 

cgL/Oyi = -Yi /Yjk[  + 3, tM, = 0 for i c [k], k = 1, 2 , . . . ,  r, (26) 

(27) OL/Oyv, C=Ck+½ S. 2 2 ", y i / y ] k [ + A k + y t M ] k [ = O  f o r k = l , 2 , . ,  r, 
i~ [k]  

Ak(y~kE--Ik) =0, k= l , 2 , . . . , r ,  (2s) 

Ak~>0, k = l , 2 , . . . , r ,  (29) 

plus conditions (22) and (23), where M~ (a column vector of  size n) is the ith 
column of matrix M t. 

I f  we let 

x i = y t M j  for i = l , . .  . ,  m, (30) 
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then, by definition, we know x ¢ X (the column space of M). Moreover, by condition 
(25), we know xi ~>0 and ~ [ o ) x i  = I; and by condition (26), yi/y]k[=x~, for i¢ 
[k], k = 1 , . . . ,  r. Plugging into condition (27), we have 

½ }~ X2+X]kt+Ck+Ak=O, k = l , 2 , . . . , r .  (31) 
ie[k] 

Since Ak t> 0 is given by condition (29), we know (10) is satisfied by this vector x. 
Hence Program PGP has a feasible solution x. 

To prove the second part of this theorem, let us consider the right hand side of 
the Lagrangian defined by (24), since condition (28) holds and x and y are com- 
plementary, we have 

L = V(y). 

On the other hand, if we plug in the value of V(y) given by definition (21) to the 
right hand side of (24) and rearrange terms, we have 

] p~exp(y~) +ie[o] • "YtlVIiYi 

Ys/Y]kf + Ak + TtM]k[ 
k = l  ie[k] 

k = l  iG[k ]  k = l  

In other words, 

V(y)=- log(  ~o p, exp(y~))+ ~ 7tM~y, 
i ] i~[o] 

+ E  Y1~ c k - ~  E 2 2 Y~ / Y]k[ + Ak + TtM]k[ 
k--I  i~[k] 

+ ~ ~ TtMiYi-  ~ Akl k. (32) 
k = l  ie[k] k = l  

Now, by (25), we know that p~ exp(yi ) = x~ x ~]i~[o] (Pi exp(y~ )), for each i c [0]. But 
~i~[o] (Pi exp(y~ )) is a constant number, hence inequality (13) becomes equality and 

ytMsy~= ~ x~y~=log( ~[o Y') ~[o] i~o~ ~ ] p~ exp +i~[o~2 x~ log(xJp~). (33) 

In addition, by (26), we have 

r 

Y~ Y~ 7tM~y~ ~ Y~ (34) = y2i/y]k E . 
k = l  ie[k] k = l  i t [k]  

Substituting these values into (32) and noticing (27), we show that 

r 

V(y) = G(x ) -  E Aflk. 
k=l  
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By Theorem 1, we further have 

o~ C(x)-  V(y) = ~ Aklk. (35) 
k = l  

Now substitute the components of  the vector y+ in inequalities (13) and (15). By 
adding these inequalities together and using condition (31), for k = 1 , . . . ,  r, we have 

0 <~ - ~ AkY~kt-- V(Y+)+ G(x). (36) 
k = l  

Substituting for G(x) from (35), we get 

0~< i Ak(Yfk~--lk) ~< V ( y ) -  V(y+)<~ V -  V(y +) (37) 
k=l 

where V is an upper bound for the dual program as assumed for this theorem. 
Now, for any given e > 0, if we choose Ik such that 

I k=lk (e )=e~y]k~ / (V- -V(y  +)+e)  for a n y 0 < 3 < l  a n d k = l , 2 , . . . , r ,  

(38) 

then there are two possible cases for consideration: 
Case 1: I f  V - V ( y + ) = O ,  then since Ik=Sy~k~ and y~k~--Ik=-(1--8)y~>O, 

for each k, therefore Ak in (37) has to be 0. Consequently, by (35), we have 
G(x) - V(y) = 0. 

Case 2: I f  V -  V ( y + ) > 0 ,  by (38), y~k~=[(V - V(y+)+e)/e6]lk .  Plugging into 
(37), we obtain 

~ d ( ( v -  V(y +))/8~) + ( l / a )  - 1Ilk ~< V -  V(y +). 
k - - I  

This implies that ~ =  ~ aklk ~< /Se < e. Therefore, by (35), we have 0 ~< G(x) - V(y) < e. 
This completes the proof. 

We now are ready to prove the "strong duality theorem" (or "existence theorem")  
for the quadratically constrained minimum cross-entropy problem. 

Theorem S. Program PGP is consistent i f  and only if  its dual Program D G P  has a 
finite optimum value. In this case, Programs PGP and DGP attain a common optimum 
value. 

Proof. Combine Theorems 3 and 4, we know Program PGP has a feasible solution 
if and only if Program D G P  has a finite opt imum value. Moreover, for any given 
e > 0, we can find feasible x and y such that 0 ~< G(x) - V(y) <~ e. Hence we have 
V(y) <- V*<~ G*<~ G(x),  where V* and G* are opt imum values of  DGP and P G P  
respectively. Consequently, 0 ~ G* - V* ~ G(x)  - V(y) ~ e, for any ~ > 0. Therefore, 
G * =  V* and we complete the proof. 
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4. Dual-to-primal conversion 

93 

In this section, we show that an e-optimal solution to the original quadratically 
constrained cross-entropy problem (Program P) can be derived by solving Program 
(DGP(I(e))  with l(e) properly selected according to equation (38). The first result 

is as follows: 

Theorem 6. I f  3/is a vector of Lagrange multipliers associated with the constraint set 
M t y = 0 ,  of Program DGP(I(e)) ,  then 3/ is a feasible solution for Program P and 
0 ~ g ( 3 / )  - v ( y )  ~ e. 

Proof. Since the first n columns of matrix M form an identity matrix I , ,  by (30), 
we conclude that x~ = y~, for i t [ 0 ] ,  and G(x) =g(7) .  By (25), we know %~>0 and 
Y,~t01% = 1. Moreover, putting the structure of matrix M and equation (30) together, 
then substituting for x~ (i c [k]) and xjkt (k = 1 , . . . ,  r) in (31) and noticing the fact 

1 t t that Ak>~0, we can conclude that gk(7)= ~Y Hky+bky+Cg--O for k =  1 , 2 , . . . ,  r. 
Hence y is a solution to Program P. Then, by Theorem 4, it is clear that 0 ~  < 
g(y)  - V(y) <~ e. This completes the proof. 

The second result is to express the primal solution y in terms of dual solutions. 
To do so, we define 

/z = l o g ( ~ o  pi exp(y~)).  (39) 

The constraint M t y  = 0 implies that 

yO = _ ~ {Atkfik + bkY~kt}, (40) 
k = l  

where .~k is a column vector with elements yi such that i c [k], for k = 1 , . . . ,  r. In 
other words, yk is the same as yk but with one less element Ylk~. Hence, 

-- {Ak.iy q- bk, iY]k[} for i ~ [0], (41) 
k = l  

where A t is the ith row of A~ and bk~ is the ith component of bg. k,i 

Using the definition (30) in (25), we have p~ exp(y~) = % exp/x, for i c [0]. Now, 
substituting for yi in this expression, we have 

7i = pi e x p ( - ~  -- {Ak3yt -k + bk,~Y~kt}) for i C [0]. (42) 
k = l  

Hence we have the following theorem: 

Theorem 7. For any given e > 0, if l(e) is defined by equation (38) and y solves 
Program DGP(I(e)) ,  then equations (39) and (42) generate an e-optimal solution to 
the original quadratically constrained minimum cross-entropy analysis Program P. 
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5. Computational issues 

As a by-product  of  the theoretical insights we obtained in previous sections, we can 

outline a dual-based computa t ion  procedure  as follows: 

÷ 
Step 1: Given an e > 0 ,  a dual feasible vector y+ with y3k~> 0, for  k =  1 . . . . .  n, 

and a dual upper  bound  V of  V(y). 
Step 2: Choose  a per turbat ion vector l ( e ) = ( l ( e ) l , . . . ,  l(e)r) according to 

equation (38). 

Step 3: Find an optimal solution y for the per turbed dual program DGP( / (e ) ) .  

Step 4: Plug in y into equations (39) and (42) to generate an e-opt imal  solution 

3,, then 

O ~ < g ( y )  - V ( y )  <~ e. 

Step 5: Stop. 

There are several observations that can be made here. 

1. Compared  to the primal program P, the per turbed dual program DGP( I ( e ) )  

is relatively simple since it possesses a concave differentiable objective funct ion and 

linear constraints. We may  use a commercial  nonl inear  optimizer, eg., M I N O S ,  to 

solve this dual problem. The addit ional customizat ion of  codes is minimal. 
2. In Step 1, y+ can be easily obtained as we derived for Theorem 2, i.e., 

(y+)O= ~ bk, + + = 0  and Y~k~=l f o r k = l , . . . ,  - -  Y ] k - l [ + !  . . . . .  Ylk--l[+mk r. 
k = l  

3. Usually a dual bound  V can be estimated easily. I f  it is not  provided,  we can 

always solve a Program DGP(I )  with Ik = 6y~+kf first, then use equations (39) and 

(42) to find a corresponding primal solution Y*, then we know V<-g(y*).  
4. To compare  with Zhang  and Brocketts result in [12], let us consider  Program 

DGP.  I f  we define yi = wiYlkf, for i c [k]  and k = 1, 2 . . . . .  r, then the constraint (19) 
M~y = 0 implies that 

y O _  i Y J k ~ { A ~ w k + b k }  • (43) 
k = l  

In other words, 

r 

= y]kE{Ak, iW +bk,~} for iC[0] ,  (44) 
k = l  

where A~,i is the ith row o f  the matrix A~, bk, i is the ith componen t  of  vector bk, 
and w k is the column vector  in Rink with components  We, for  i c [k].  

Consequently,  if we follow the notat ion ~ ri exp si = r t exp s, Program D G P  

becomes equivalent to 



Program D 

Sup 

S.C. Fang, J.R. Rajasekera / Minimum cross.entropy analysis 

- l o g  p t e x p  - y]kt{Atkwk +bk}  + Cky~k[--½ 
1 k ~ l  k ~ l  

s.t. ylk~>~O and wk c R , , k  for k = l , . . . , r .  
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y k llwkll 2 

(45) 

(46) 

This formulat ion is very close to Zhang and Brockett 's  dual p rogram in [12], 

except the first part of  the objective funct ion is in a " log"  form. The reason for this 

fact can be attributed to our  original formulat ion o f  Program P which, unlike [12], 

explicitly separates the probabili ty distribution requirement  f rom quadrat ic  con- 

straints. But the basic characteristics of  these two duals are essentially the same and 

there is no difference in computat ional  complexity.  For  this form (Program D),  

a l though the constraints are even simpler than those o f  Program DGP,  the objective 
funct ion is neither convex nor  concave. When  it comes to applying a routine 

nonl inear  optimizer that  can pause a problem. In  this sense, a p rogram of  the form 
D G P  (actually, DGP( / ( e ) ) )  is preferred. 

6. Conclusion 

In  this paper  we have provided a geometric p rog ramming  approach  to the quadrati-  

cally constrained min imum cross-entropy problem. A well-controlled dual perturba- 

t ional me thod  not only showed its theoretical value in proving the weak and strong 

duality theorems, but also led to a potential  computa t iona l  procedure  that would  

allow us to use a general purpose  optimizer to solve the problem. 
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