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Given an n x n matrix M and an n-dimensional vector q, the problem of finding n-dimensional 
vectors x and y satisfying 

y = M x + q ,  x~>0, y~>0, x~yi=O ( i=1 ,2 , . . . , n )  

is known as a linear complementarity problem. Under the assumption that M is positive semi- 
definite, this paper presents an algorithm that solves the problem in O(n 3 L) arithmetic operations 
by tracing the path of centers, {(x, y) E S: x~y~ = I.* (i = 1, 2 , . . . ,  n) for some/~ > 0} of the feasible 
region S = {(x, y) >~ 0: y = Mx + q}, where L denotes the size of the input data of the problem. 

Key words: Linear complementarity problem, polynomial-time algorithm, path of centers, 
Karmarkar's algorithm. 

1. In trodu c t ion  

Let M be an n × n matrix,  and q c R ' .  The p rob lem of f inding an ( x , y ) c  R 2n 

satisfying 

y - - M x + q ,  (x ,y )>~O,  x~yi=O ( i = l , 2 , . . . , n )  (1.1) 

is known  as a l inear  complementar i ty  p rob lem (abbreviated by LCP), which has 

various impor tan t  appl icat ions  in l inear  and  convex quadrat ic  p rograms ,  b imatr ix  

games and  some other areas of engineer ing  [3, 12, 18, etc.]. Here R" denotes  the 

n -d imens iona l  Eucl idean  space. 

Several computa t iona l  methods have been  developed for solving LCPs 

[3, 12, 24, etc.]. These methods  apply a sequence of pivot ing operat ions  to the system 

of l inear  equat ions  y = M x  + q or a certain artificial system of equat ions  associated 

with the LCP. In  some worst cases, they require an exponent ia l  n u m b e r  of p ivot ing 

operat ions  [1, 4 and  16]. It is wel l -known that  an LCP with an arbitrary matr ix  M 

is NP-complete  [2]. 
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In the field of linear programs, there have been developed many algorithms with 
a polynomially bounded computational complexity [5, 7, 9, 10, 11, 19, 25, 26, etc.]. 
For convex quadratic programs, Kapoor  and Vaidya [8] and Ye and Tse [27] have 

recently proposed polynomially bounded algorithms. These algorithms may be 
roughly classified into three groups: 

1. Ellipsoid algorithms which originated from the first polynomially bounded 
linear programming algorithm by Khachiyan [10] in 1979. 

2. Projective rescaling algorithm by Karmarkar  [9], its variations and extensions 
[5, 8, 26, 27, etc.]. 

3. Algorithms using the idea of tracing the path of  centers of  a polytope 
[7, 11, 19, 25, etc.]. 

The algorithms in the last group are relatively new and are closely related with 
the second group (See [6]). Among these algorithms, the ones given by Gonzaga 
[7] and Vaidya [25] in the last group for solving linear programs have attained the 
O(n3L) computational complexity in terms of the number  of  arithmetic operations. 

The idea on which the algorithms of the last group are based have been studied in 
more general framework including convex minimization problems and linear com- 

plementarity problems by Megiddo [15], Sonnevend [20] and Tanabe [23]. 
In the previous paper  [11], the authors have proposed an algorithm that solves 

linear programs in O(n4L)  arithmetic operations by using Newton's  method as a 
numerical tool to trace the path of  centers simultaneously in the primal and dual 
feasible regions. In the present paper  we modify and extend their algorithm to a 

class of LCPs with positive semi-definite matrices. The main emphasis will be laid 
on the theoretical computational  complexity of  the algorithm. We do not refer to 
a practically efficient implementation of the algorithm, which should be studied in 
the future though. 

Let R~ and R 2 .  denote the nonnegative orthant {x c Rn : x ~> 0} of R n and the 
positive orthant {xc  Rn: x > 0 }  of R n, respectively. We employ the symbol S for 
the set of  all the feasible solutions of  the LCP, Sint its interior and Sop the set of  all 
the solutions of  the LCP; 

2~. = M x + q } ,  S = { ( x , y ) ~ R +  . y  

Sint=S ~ 2n 2,~ . = M x + q } ,  R++ = {(x, y) c R++. y 

Scp={(x,y)  ~ S: xiy, = 0  ( i =  1 , 2 , . . . ,  n)}. 

Throughout the paper, we impose the following assumptions on the LCP: 

Assumptions. (i) n I> 2. ( I f  n = 1 then the LCP could be solved trivially.) 

(ii) All the elements of  the n x n matrix M and the vector q are integers. 
(iii) The matrix M is positive semi-definite, i.e., x T M x  >~ 0 for every x c R n. 

We may further assume without loss of  generality that 
(iv) each row of the matrix M has at least one nonzero element. 
To see this, assume on the contrary that all the elements in the ith row of the 
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matrix M are zero. I f  q~ is negative then the LCP has no solution. Otherwise we 
can reduce the size of  the LCP to be solved by eliminating the variables xi and yi. 

We define the size L of the LCP (1.1) by 

n n + l  

L =  [ 2  Y~ l o g ( [ a 0 ] + l ) + l o g ( n 2 ) J + l ,  (1.2) 
i ~ l  j = l  

where aii denotes the ( i , j ) th element of  the n × (n + 1) matrix A = [ M  q] consisting 
of the coefficient matrix M and the constant vector q of  the system of equations of  
the LCP (1.1) and [~:J the largest integer not greater than ~:~ R+. The assumption 
(iv) ensures the inequality n + log(n  2) ~< L, which we will need in Section 6. 

The size L determines the accuracy to be attained in the following sense: I f  

( £ , ~ ) ~ S  and x i Y i < 2  -2L ( i = l , 2 , . . . , n ) ,  (1.3) 

then there exists a solution (x*, y*) of  the LCP such that 

x * = 0  for e v e r y i c / ,  
(1.4) 

y * = O  for every j c J, 

where 

I = { i : £ ~ < 2  -L} and J - -{ j : )3~<2-L}.  (1.5) 

Furthermore, using the information (1.3), we can compute the solution (x*, y*)  in 
O(n 3) arithmetic operations. This will be shown in Appendix B. It should be noted 
that (1.3) and (l.5) imply I u J = { 1 , 2 , . . . ,  n}. Hence each (£,)~) satisfying (1.3) 
itself can be regarded as an approximate solution of the LCP. The requirement (1.3) 
may be replaced by a stronger one 

(~ , )3)cS and -~T)3<Z-2L. (1.3)' 

This inequality will be used as a stopping criteria in our algorithm. 
Now we describe an outline of  the algorithm. We first introduce a family of  

systems of equations with the nonnegative parameter  ~:  

H ( l ~ , x , y ) = O  and 2, (x, y) c R+ , (1.6) 

where H : R+ x R2+ " ~ R" x R" is a mapping defined by 

H (  tz, x, y )  = ( X Y e  - I~e, y - M x  - q)  (1.7) 

o1+2" where X denotes the n x n  diagonal matrix for every ( /x, x, y) 6 . .+ , 

diag(xl,  x2, • • •, x , ) ,  Y the diagonal matrix diag(yl ,  Y2, • • •, Y,) and e the n- 
dimensional vector of  ones. Obviously (x, y) is a solution of  the LCP if and only 
if it is a solution of the system (1.6) for /~ = 0. In other words, the LCP (1.1) is 

equivalent to the system of equations 

H(0 ,  x ,y)  0 and ( x , y ) c  2, = R+ . (1.1)' 
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We call each (x, y) c R 2" satisfying the system (1.6) for some /~ > 0 a center (of 

the feasible region S), and define the path of  centers Seen to be the set of  all the centers: 

Scen= {(x, y) c R2": H( tt, x, y) =O for s o m e / x > 0 }  

= {(x, y) c Sint : XYe =/ze for some/x  > 0}. 

When Sint ~ 0 and Assumption (iii) is satisfied, the system (1.6) has a unique solution 
for each/x > 0 and the path SoCn of centers forms a smooth curve in the set Sint. We 
can also characterize solutions of the system (1.6) in terms of the logarithmic barrier 
function method. These facts have been indicated and studied partially by Megiddo 
[15]. We will give a complete proof  for these facts in Appendix A. 

Geometrically the path Seen of centers runs through the interior Sin t of the feasible 
region S to a solution of the LCP which lies in the boundary of S. Starting from a 

known initial point in a neighborhood of the path Soen, we trace the path Scan until 
we attain a sufficiently small parameter  ~. The idea of this approach has been 
suggested by Megiddo [15]. 

Generally, we are not able to trace the path S ~  accurately because it runs 
nonlinearly through the interior S~nt of the feasible region S. We are forced to stray 
from the path Sc~ even if a given initial point lies on the path. As a measure for 
the deviation of each (x, y) ~ S~t from the path S ~ ,  we employ the quantity 

min IIH(~,x,y)ll = min I[XYe-l.~el] 
~ R +  /~ER+ 

= I I X Y e - ( x ~ y / n ) e l l  . 

It should be noted that the first equality follows from the definition (1.7) of  the 
mapping H and (x ,y)e  S~,t, and the second because the point (xVy/n)e is an 

orthogonal projection of the point XYe onto the line {~e:/z  c R}. Obviously an 
(X~ y)C Sin t lies on the path S ~  if and only if IIXYe-(xTy/n)ell  = 0. We want to 
control our approximation of the path so that the deviation IIXYe--(xTy/n)ell 
converges zero at least linearly as the error xTy for the complementari ty slackness 

tends to zero. This leads to the definition of the c~-center neighborhood S ~  (c~) of 

the path Scan : 

S ~  (c~) = {(x, y) ~ Si~t: IlXYe - (xTy/n)ell <~ (xTy/n)o~}. (1.8) 

Here ~ is a positive number  whose value will be specified in the succeeding 
discussion. 

For the time being, we assume that an initial point (x ~, y~) satisfying 

(x',yl)cSo~.(o~) and (x1)T y I ~ 2 0 ( L )  (1.9) 

is known in advance. In Section 2, we present an algorithm which starts from this 
point and generates a sequence {(x k, yk)} = S~n (~). For some positive constant ~7, 
each iteration decreases the error (x k )Vyk at least linearly with the ratio (1 - ~7/n °5 ), 
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so that the algorithm stops within O(n °5 L) iterations when an approximate solution 
07, 33) satisfying (1.3)' is obtained. Each iteration solves a linear system induced 
from a local linearization of the system (1.6) to compute a new point in Seen(a). 
This requires O(n 3) arithmetic operations. Thus, the total number of the arithmetic 
operations over all the O(n°SL) iterations amounts to O(n3SL). 

Sections 3, 4 and 5 are devoted to reducing the total computational complexity 
to O(n3L) by incorporating the rank one update technique [7, 9 and 25] into the 
algorithm given in Section 2. The modified algorithm with the O(n 3 L) computational 
complexity described there could be stated directly without requiring Section 2 but 
it is rather complicated. So the simpler O(n3SL) algorithm in Section 2 will be 
helpful to understand the structure of the O(n3L) algorithm. 

In Section 6, we show that any given LCP satisfying the Assumptions (i), (ii) and 
(iii) can be converted into an artificial linear complementarity problem, LCP' which 
satisfies not only the same assumptions but also has a known initial point from 
which the algorithms given in Sections 2 and 3 can start. It will be shown there that 
an application of the algorithms to LCP' either yields a solution of the original LCP 
or decides that the LCP has no solution. 

2. The O(n3"SL) algorithm 

We first present a procedure which is used repeatedly in the O(n3SL) algorithm, 
Algorithm I described below for tracing the path Sce n of centers to solve the LCP (1.1). 
Given a point (x, y) c Sint and a parameter ix > 0 as inputs, the procedure generates 
a new point (2, 37)~ R 2n as an output in O(n 3) arithmetic operations. 

The procedure can be interpreted as a Newton iteration to the system (1.6) of 
equations for a fixed parameter ix > 0. If we write the Jacobian matrices of the 
mapping on the left hand side of (1.6) with respect to x and y by DxH(ix, x ,y)  
and DyH(ix, x, y) respectively then the Newton direction at (x, y) is defined as a 
solution (Ax, ay) of the system of linear equations: 

or 

DxH( ix, x, y)Ax + DyH( ix, x, y)Ay = H( ix, x, y), 

YAx + XAy = X Y e - i x e  and Ay = MAx, (2.1) 

where 

X = d i a g ( x a , . . . , x , )  and 

By a simple calculation, we obtain 

A x = ( M + X  - 1 Y ) - ' ( Y e - I X X  le)  

Then the new point (2, 37) will be given by 

(2, 37) = (x, y) - (ax, Ay). 

Y = d i a g ( y a , . . . , y , ) .  (2.2) 

and Ay = MAx. (2.3) 

(2.4) 



6 M. Kojima et al. / A polynomial-time algorithm for LCPs 

It is easily verified that 

~ = M 2 + q  for any (x, y) ~ S and any /x > 0. (2.5) 

Furthermore, if the input point (x, y) lies in a sufficiently small a-center neighbor- 
hood Seen(a) of the path Soen of centers and if we choose a suitable value for the 
input parameter/~ > 0 then the new point (2,)7) remains in the a-center neighbor- 
hood Seen (a) .  More precisely we have the following theorem: 

Theorem 1. Let a be a positive number such that a ~ 0.1, and 6 = a / (1 - c~ ). Suppose 
that 

(x,y)~Sc~n(c~) and t z = ( 1 - 6 / n l / 2 ) x T y / n .  

Then the point (2, fi) defined by (2.3) and (2.4) satisfies 

(2, .~) C Seen (a) ,  (2.6) 
2~rfi~< (1-6/(6n~/Z))xTy.  (2.7) 

The theorem above will be derived as a corollary of a more general theorem, 
Theorem 2 in the succeeding section, whose proof  will be given in Section 4. 

Remark. The results in Theorem 1 could be strengthened slightly. In fact, if we 
gave a proof  directly to Theorem 1, we could replace the upper bound for a by 
a ~< 0.2 and the inequality (2.7) by 

gT fi <~ (1 - 3 / (2  n 1/2))xTy. (2.7)' 

The direct proof  of Theorem 1 would be similar to but simpler than the proof of 
Theorem 2 which will be given in Section 4. 

Now we are ready to describe an algorithm: 

Algorithm 1. We assume that an initial point (x ~, y l )  ~ Sint satisfying (1.9) is known 
in advance. (We will show how to prepare such an initial point in Section 6.) 

Step 0: Let a be a positive constant such that a ~< 0A, and 6 = c~/(1 - a) .  Let k = 1. 
Step 1: If ( x k ) T y g < 2  -2L then stop. Otherwise go to Step 2. 
Step 2: Let/~ = (1 - 8 / n  1/2)(x k ) T y k / n  and (x, y) = (x k, yk ). Define the diagonal 

matrices X and Y by (2.2). 
Step 3: Compute the Newton direction (Ax, Ay) by (2.3) and the new point 

(xk+~, yk+~) = (2,)7) by (2.4). 

Step 4: Let k =  k + l .  Go to Step 1. 
In view of Theorem 1, the sequence {(x k, yk)}  generated by the algorithm lies in 

the a-center neighborhood and the value (x  k )vyk  decreases at least linearly with 
the global convergence ratio ( 1 -  6 / (6n l /2 ) )  along the sequence. Hence Algorithm 
1 stops in O(n°SL) iterations. On the other hand, each iteration requires O(n 3) 
arithmetic operations to compute a new point. Therefore O(n35L) arithmetic 
operations are required until the algorithm finds at Step 1 an approximate solution 
(~, ~) = (x k, yk ) of the LCP satisfying (1.3)'. As we have stated, an exact solution 
of the LCP can be computed in O(n 3) additional arithmetic operations (see 
Appendix B). 
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3. The O(n3L) algorithm 

In order  to improve  the computa t iona l  complexi ty ,  we will mod i fy  Algor i thm 1 so 
that  it requires O(n  zS) ar i thmetic  opera t ions  on the average  per  i terat ion and that  
it still mainta ins  the l inear convergence  with the global  convergence  rate (1 - ~7/n°5 ) 
for  some ~/> 0; hence the modif ied algori thm, Algor i thm 2 be low will attain the 
O(n3L)  computa t iona l  complexi ty.  For  this purpose ,  we in t roduce  approx ima t ions  
2( and Y" of  the d iagonal  matr ices X and Y into the Newton  equat ions  (2.1) as 
follows: 

Y A x + X A y  = X Y e - t z e  and Ay = Max,  (3.1) 

where  

X = d iag(xl ,  x 2 , . . . ,  xn ), Y = d iag(y l ,  Y 2 , . . . ,  Yn ), 
(3.2) 

) (  = d iag(xl ,  x2, - • •, xn ), 17- = diag()7~, )72, •. •, )7, ). 

We call (Ax, Ay) the modif ied Newton  direction. It follows immedia te ly  f rom (3.1) 

that  

A x = ( M + X  -1 Y)  lf(-l(XYe-t_te) and A y = M A x .  (3.3) 

The new point  (~, ~) is given by 

(~, y)  = (x, y)  - (dx,  Ay). (3.4) 

(x, y)  c R++ Thus,  the modif ied Newton  p rocedure  accepts  /z > 0, (x, y ) ~  Sin t and ~ ~ 2, 
as inputs and  generates  the new point  (~, y)  as an output ,  which always satisfies 
the system of  equat ions 

= Mff + q for  any (x, y)  c Si,t and  any /~  > 0. (3.5) 

Concern ing  the modif ied Newton  procedure  we have the fol lowing result: 

Theorem 2. Let a , ~  and 6 be constants such that O < a < ~ O . 1 , 6 = a / ( 1 - a )  and 
0 <~ ~ <~ 6. Suppose that the inputs tz ~ R+, (x, y)  c Sint, (-~,)7) c R]+ to the modified 
Newton procedure satisfy 

(x ,y)~Scen(a) ,  

/z = (1 - 6/n l /2 )xVy /n ,  

£ i / x i c [ ( l + f l )  1 , ( l + f l ) ]  ( i = l , 2 , . . . , n ) ,  

)7 i /y i6 [ (1+ /3 )  1 , ( l + f l ) ]  ( i = l , 2 , . . . , n ) .  

Then the new point (,2, y) given by (3.3) and (3.4) satisfies 

(x, y) c Sce.(~), 

ffT~<~ (1 - 6/(6nl/2))xVy. 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 
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The proof  of this theorem will be given in the next section. If we take fl -- 0 then 
the assertion of Theorem 2 is exactly the same as that of Theorem 1. Hence we can 
derive Theorem 1 from Theorem 2 as a corollary. Theorem 2 shows the possibility 
of using the modified Newton procedure instead of using the Newton procedure to 
get the same order O(n°SL) of the total iterations as Algorithm 1. The modified 
procedure will be used repeatedly, as a core of Algorithm 2, together with a device 
which saves a certain amount of the arithmetic operations to compute the modified 
Newton direction. 

The algorithm starts with an initial point (x ~, y~) satisfying (1.9). Let 

J~ = diag(xll, x~ , . .  1 1 . , x~) ,  Y=diag(y l , y~2 , . . . , yn ) .  (3.12) 

We also set/~ = M + 3 ~  -~ I? and compute its inverse /}-1, which will be used later 
for computing the modified Newton direction by (3.3). This work requires O(n 3) 
arithmetic operations. The matrices J~, I?,/~ i wild be updated and stored throughout 
the iterations. 

Let k ~  > 1. Suppose that we have obtained the (x k, yk) ~ Scen(~ ) and the matrices 
J~, Y and/~--1 = ( M  + 3~ -~ Y)-1 at the end of the ( k -  1)th iteration. At the beginning 
of the kth iteration, we set 

tX=(1--6/nl /2)(xk)Tyk/n ,  ( x , y )=(xk ,  yk), 
(3.13) 

X = diag(x~, x 2 , . . . ,  xn ), Y = diag(yl, Y2, . . . ,  Yn ). 

We then update the diagonal matrices .~ and Y so that they satisfy the assumption 
(3.8) and (3.9) of Theorem 2: for every i = 1, 2 , . . . ,  n, if 

x i / x i C : [ ( l + f l )  1, ( 1 + / 3 ) ]  (3.14) 

or 

)7, /y,~[(1+/3)  1, ( a+f l ) ]  (3.15) 

then update Yi and 37~ by 

~ = x, and )7i = y,. (3.16) 

Here/3 denotes a positive number which we have specified in Theorem 2. It should 
be noted that the number of arithmetic operations required to compute /x and to 
update the diagonal matrices J( and Y is bounded by O(n). 

When some of the diagonal elements of the matrices X and I7" have been changed 
by (3.16), we no more have the identity/~--1 = (M + ~ - 1  ~) --1 ; hence we need update 

the matrix/~ ~ before computing the modified Newton direction (Ax, ay) by 

Ax = IB ~ f ( - i  ( X Y e -  Ixe) and Ay = MAx. (3.17) 

Let A k denote the set of the indices i for which (3.14) occurs, and F k the set of 
the indices i for which (3.15) occurs. Then we see that the matrix ( M + X  -~ I?) 
whose inverse we want to compute differs from the matrix/~ which corresponds to 
the old (M + J~ ~Y) only in the columns with the indices i c A k w  Ilk. Hence we 
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apply a sequence of rank-one updates to the matrix/} i to transform it to the inverse 
of the matrix ( M + . (  "-~ Y). The number of rank-one updates required amounts to 
the cardinality ]A k k.J F k ] of the index set A k w F k. Thus, ]A k w F k I × O(//2 ) arithmetic 
operations are required to update the matrix/~-~. 

Now we are ready to compute the modified Newton direction (Ax,/iy) by using 
(3.17) and the new point (x k+~, yk+l) by 

(xk+,, yk+l) = (X k, yk  ) _ (~IX, ~IT)" (3.18) 

For these computation, O(rt 2) arithmetic operations are required. Since all the 
assumptions of Theorem 2 are satisfied at (x ,y)= (xk, yk), its conclusions (3.10) 
and (3.11) hold at (2,)7) = (x k+~, yk+~), i.e., 

(xk+l  yk+l) e Scen (t;l~), 

(xk+,)Tyk+~ ~< (1 -- 6/(6n'/2))(x k )ryk. 

Summarizing the above discussions, we obtain the algorithm and the theorem 
below. 

Algorithm 2. We assume that an initial point (xl, y 1) satisfying (1.9) is known in 
advance. 

Step 0: Let or, /3 and ~ be constants such that 0~<a~<0.1, t 3 = a / ( 1 - a )  and 
0 < / 3 ~  <& Define the diagonal matrices )(  and Y by (3.12). Compute /~-1= 
(M+3~ 1 I2)-1. Let k = 1. 

Step 1 : If (x k )Tyk  ~ 2--2L then stop. Otherwise go to Step 2. 
Step 2: Define/z, (x, y), X and Y by (3.13), i.e., 

/x - (1 - a/ n'/Z )(x g )Wyk / n, 

X = diag(xl, x2, . .  •, x, ), 

Step 3: For every i, if 

,2,/xi ~ [(1 +/3) -a, (1 +/3)] 

or 

f i / Y i ~ { ( l _ ~ / 3 )  1 (1-]-/3)] 

(x, y) = (x k, yk ), 

Y = diag(yl, Y2, . . . ,  Yn ). 

((3.14)) 

((3.15)) 

occurs then update the diagonal elements £i of Jq and );i of I2 by (3.16), i.e., 

£i ~- Xi and Yi = Yi. 

Update the matrix B 1 so that it represents the inverse of the matrix (M +3~ 1 17"). 
Step 4: Compute the modified Newton direction (Ax,/iy) by (3.17), i.e., 

A x = B - 1 X - ~ ( X Y e - t x e )  and Ay=MAx,  

and the new point (x k+~, yk+~) by (3.18), i.e., 

(xk+l, y~+~ ) = (x ~, yk ) _ ( / ix , / iy ) .  

Step 5: Let k = k + l .  G o t o S t e p  1. 
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T h e o r e m  3. Algorithm 2 generates a sequence {(x k, yk)} satisfying 

(xk, yk)~Scen(a)  and (xk)Tyk<~(1--6/(6n~/2))(Xk--~)Ty k-1 

for k = 2, 3 , . . . ,  and terminates in O(n °5 L) iterations. 

In the discussions above we have also observed that the kth iteration requires 
O(n) arithmetic operations for computing /x by (Y13), O(n) for updating X and 

(see (3.14), (3.15) and (3.16)), [ A k u F k [ × O ( n  2) for updating /3 ~, and O(n:)  
for computing the modified Newton direction (Ax, Ay) by (3.17) and the new point 
(xk+l, yk+l ) by (3.18). Hence the total number of operations in the kth iteration is 
bounded by 

O(n 2) + IA w rk l×  O(n2). 

In addition, we need O(n 3) arithmetic operations to compute the initial /~-1. 
Therefore, if we denote the total number of iterations by k* then the total number 
of arithmetic operations throughout the iterations is bounded by 

O ( n B ) + k * x O ( n 2 ) + I  ~ 

It should be noted that the second term k*xO(n  2) is bounded by O(n2~L). In 
Section 5, we prove that the term in brackets [. ] is bounded by k* x O(n °5) = O(nL). 
This will establish that the total number of arithmetic operations required in 
Algorithm 2 is bounded by O(n3L). 

4.  P r o o f  o f  T h e o r e m  2 

Throughout this section, we use the same symbols a, /3, 6, /x, (x, y), X, Y, (~, y), 
(y,)3), (2~, ~) and (Ax, Ay) as in Theorem 2 and the previous section. In addition, 
we use the following symbols throughout this section. 

~ = x T y / n ;  ff =.~V f i /n;  

A X  = diag(Ax~, Ax2, . . . , ax ,  ); 

A Y =  diag(Ay~, Ay2, •. •, Ay, ); 

.~ = d i a g ( . ~ ,  : ~ 2 , . . . ,  ~, ) = X - AX; 
(4.1) 

~ = diag(yl, Y2, • • •, Y, ) = Y -  A Y; 

/~ = ( ~ 7 - 1 )  1/2 = diag(Y~/2/)T]/2 . . . .  , y~/2/)7~/2); 

a = ()~Y)- ' /2  ( X Y e  - /xe);  

HAll =max{[[az]]: zc  R", IIz/I-- 1} fo r  eve ry  n x n matrix a .  

We need five lemmas to prove Theorem 2. 
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L e m m a  1. I f  p, r and u in R"  satisfy 

p + r - = u ,  pTr>~O 

then 

Ilpll ~ Ilull, Ilrll ~ Ilull, 

Ilpll Ilrll ~ II u112/2, 

lip II + IL rll ~ 21/2 II u II, 

11 

Proof .  I t  f o l l ows  f r o m  the  a s s u m p t i o n  t ha t  

II u II 2 = lip + rll 2 

= Ilpll 2+ 2p Tr+ Ilrll = 

~> 11Pl12+ Ilrll 2 . 

Th is  i m p l i e s  tha t  Ilpll ~ Ilull and  Ilrll ~ ILull-We also have  

Ilpll Ilrll <~ (llpll~+ II r112)/2 <~ Ilu112/2, 

a n d  

(llpll + II rll) 2~< Ilpll z+ Ilrll=+ 211ell II rll <~ 21lull 2 [ ]  

Lemma 2. (a)  [ I (XY)o  II ~ (1 + t~) Lpq ~,o for  any p c R. 

(b)  11(2~) ~ It ~ (1 + ~)31ol fro for  any p ~ R. 

Here ~ = xT y /n .  

Proof. Let  p e r  be  f ixed.  S ince  ( x , y )  CSce.(C~), the  de f i n i t i on  (1.8) o f  So~n(~) 

i m p l i e s  tha t ,  fo r  eve ry  i = 1, 2, . . . ,  n, 

(1 - a)~'<~ xiy, <~ (1 + c~)¢ 

I f  p >~ 0 then ,  fo r  eve ry  i = 1, 2 , . . . ,  n, 

(x,y,)p <~ (1 + c~)°ff p ~< (1 + 6) Ipl ffP. 

T h e  las t  i n e q u a l i t y  h o l d s  b e c a u s e  0 < ~ <~ 6. I f  p < 0, fo r  eve ry  i = 1, 2 , . . . ,  n, 

(x,y,)p <~ (1 - c~)°~ "° = (1 + 6) b°l fro 

( the  las t  e q u a l i t y  h o l d s  b e c a u s e  ~ = a / (1 - a ) ) .  S ince  X a n d  Y are  d i a g o n a l  m a t r i c e s ,  

we  have  

I I (xg )  ~ II = max{(x ,y i  )p : i = 1, 2 . . . .  , n} 

<~ (1 + 6)q"lCo. 
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Hence we have shown (a). From the assumptions (3.8) and (3.9) of Theorem 2 and 
0<~/3<~3, we see 

II ( •X-1 )P H ~ (1 +/3)JPP ~< (1 + 3)Ipl. 

Similarly 

I1( YY- ' )~  II ~ (1 + 3)tpl. 

By the inequalities above and (a), we obtain 

11(2f),ll<~ll(XY)~illl(~x-1)Pllll(f~Y 1)~11~(1+3)3~ ~ ~. [] 

Lemma 3. Ila[[ ~2a(1 + 6)3/2~ '/2. Here lJ = ( X Y ) - ' / 2 ( X Y e - t z e )  and ~= (xTy)/n. 

Proof. By the definition, we have 

11~711 = II(Xf~)-l/2(xYe- ~e)ll 

<~ 11(27)- ' /2 II ] ] X Y e - r , e + ( ~ - t z ) e [ I  

<~ II( xC[) -'/2 [[ [ l lXYe - ffell + Iff -~zl II ell] 

~</l(x f9 -'/2 II [ ~ g +  (3/n'/=)ffll ell] 

(by the assumptions (3.6) and (3.7) of Theorem 2) 

<~ (1 + 6)3/2 ~'-'/2 [ce~ + 6~'] 

(by Lemma 2 and Ilell = n '/~) 

<~23(1+3)3/2~ 1/2 (since 0<c~<~6). [] 

Lemma 4. (a) lID 1 AXell + [ID,a Yell ~< 21/2 [[ ff[[. 
(b) Ilax~a Yell <~ llfi[12/2. 
(c) I lx - ' z~x l l<~23( l+3)4<0.4 .  
(d) I[Y-1AyH<~23(l+~)4<0.4. 

(See (4.1) for the definitions of D, AX, A y.) 

Proof. Multiplying the first equality of the modified Newton equations (3.1) by the 
matrix ( . ~ ) - 1 / 2  from the left, we have 

D 1Ax + DAy = (X17")-1/2 (XYe  - I~e) = a. 

We also see from the second equality of (3.1) and Assumption (iii) that 

(1~ -1 A x  ) T ( I~Ay  ) : AxT Ay = AxT MAx >10. 

Applying Lemma 1 with p = D -1 Ax and r = DAy, we obtain the inequalities (a), and 

lID 1axl/~< I[ff[[ , IlDayl[ ~ I[~Tll, 
(4.2) 

l id '~axll IlAayll ~< Ila[I=/2. 
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It follows from the last inequality that 

IlaXa Yell = IllS-l ax15a rell <~ IIzS-' axl111~Sayll ~ Ila112/2. 

Thus, we have shown (b). We also see 

I Ix- '  axll ~ IIx-1211112911-'/211t5-' axll 

~< (1 + a)[(1 + a)3/V~' /q  II ~11 

(by (3.8), Lemma 2 and (4.2)) 

<~26(1+¢~) 4 (by Lemma 3) 

<0.4 (because 0~<6 = a / ( 1 - a ) < 0 . 1 2 ) .  

Thus, we have shown (c). The inequality (d) can be proved similarly. 

Lemma 5. (a) IIJ?l?e-~el] <0.82~. 
(b) 1(-~l<O.82~Un 1/2. 

(See (4.1) for the definitions of X, Y, ~ and ~) 

[] 
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Proof. First we observe 

X Y e  = X Y e  - ( YAXe + XA Ye) + AXA Ye 

= X Y e - ( ' Y A X e +  X A Y e ) + ( ( ' Y -  Y ) A X e + ( X - X ) A Y e ) +  A X a Y e  

=t t e+( (  Y -  Y ) A X e +  (X  - X ) A  Ye)+ AXA Ye. 

The last equality follows from the fact that (Ax, Ay) = (AXe, AYe) is a solution of 
the modified Newton equations (3.1). Hence 

II X'?e - ~e If < II (( 9 -  Y)AXe  + ( X  - X ) A  Ye)II + II a X a  Ye II 

~< i i ( j~) l /2[ I~  l(~z__ Y ) l S - ' a X e + 2 - ' ( ~ - x ) 1 5 a Y e ] l l  

+llaXAYell ( s i n c e / ) = ( x Y - ' )  ' / : )  

11(2~7)'/211[119-1(9 - Y)l1115 'axellll  

+ 112 ' ( 2 - x ) l l  IItSa Yelll + IlaXaYell 

~< (1 + 6)3/2 ~'1/2 (6 II/) -1 aXell + a II/Sa Ye II)÷ II a112/2 

(by Lemma 2 and 4, and the Assumptions (3.8) and (3.9)) 

(1 ÷ ¢~)3/2ffl/2(~21/2 IIt~ll ÷ IIt~112/2 (by Lemma 4) 

<~(2÷23/2)(~2(1÷~)3ff (by Lemma 3) 

= (2+23 /2 )o l2 (1_a  ) sff ( s i n c e 6 = a / ( 1 - a ) )  

<~0.82~" (sinceO<a~<O.1).  
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Thus, we have shown the inequality (a). The inequality (b) follows immediately 

from (a) and 

I ~-~*1 = leTX?e/n --tzeTe/nl 

= [eT[X?e-- tze] /n]  

~< Ilell [IXYe-t*ell/n 

= II X '?e- t*el l /n  l/2. [] 

Now we are ready to prove Theorem 2. In view of (c) and (d) of Lemma 4, we 

see that 

and 

X 1 x = X - I ( x - A x ) = e - X  l A x > 0  

y l y = y - l ( y _ A y ) = e _ y  l a y > 0  ' 

respectively. This implies (2, 37) ~ R2++. Taking account of (3.5), we obtain (2, 37) c Sint. 
Now we shall show (2, 37)c Scen(c~). By (b) of Lemma 5, we have 

(~>/x - 0.828~'/n 1/2 

>~[1-6/n'/2-O.82a/n1/2]~ (by (3.7)) 

~>0.85~" (since 0 < ~ < 0 . 1 , 3 = a / ( 1 - c ~ ) < 0 . 1 2  and n>~2). (4.3) 

On the other hand, we see, 

I I ~ e - ( e l l  ~ I I ~ ? e -  ~ell 

~<0.82c~ (by (a) of Lemma 5) 

<~ a (  (by (4.3)). 

Thus, we have shown (& 37) 6 Scen(C~). 
Finally, by (b) of Lemma 5, we obtain 

[<~/z + 0.828~'/n 1/2 

( 1 -- 3 /? ' / , /2  _[_ 0.823/n ,/2 )~. 

(since I* =(1-3/n'/2)~ and a = oU(1-o~)>  o~) 

~< ( 1  - 3/(6n'/2))~, 

which shows (3.11). This completes the proof  of Theorem 2. 
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5. Evaluation of the total arithmetic operations 

15 

As we have stated at the end of Section 3, in order to prove that the total number  
of arithmetic operations required by Algorithm 2 is bounded by O(n 3 L), we need 

only show 

k* 

E I A k u F k l < k * x O ( n ° 5 ) .  (5.1) 
k = l  

Recall that k* denote the total number of  iterations, Ak the set of  indices i for 
which (3.14) occurs at the kth iteration, and fig the set of indices i for which (3.15) 

occurs at the kth iteration. The method of  the proof  here is based on the one given 
in section 5 of  [7]. In fact, we shall utilize the following lemma whose assertion 
and proof  are closely related with Lemma 5.1 and Theorem 5.2 of [7] and their proof. 

Lemma 6. Let 0 < e < 1 and 0 < [3. Let  {x k (k  c K)} c R~+ be a finite sequence such 

that 

where 

II(x k) l ( x k * l - - X k ) l l ~  , (5.2) 

• k K = { 1 , 2  . . . .  , k*}  and X k = d l a g ( x l , x 2 , . . . , x , , ) . k  k 

For every j = 1, 2, . . . ,  n, let Kj be a subsequence o f  K such that 1 c Kj and that 

x ~ / x f ~ [ ( l + f l )  1, (1 +[3)] (5.3) 

whenever f~ and k are consecutive indices in Kj. Then 

n 
IKj] < n + e l ( l -  e) log(1 +[3)] anl /2k*.  

j = l  

Here Igjl denotes the cardinality o f  the subsequence K 2. 

Proof. We first establish the inequality 

k* 

i K j L < l + [ ( l _ e ) l o g ( l + [ 3 )  ] 1 y~ ,, k+l tlXj - x ~ l / x ~ )  (5.4) 
k = l  

for every j =  1 , 2 , . . . ,  n. Let j e { 1 , 2 , . . . ,  n} be fixed. By the assumption (5.2) on 
the sequence {x k }, we have 

Ixk+l-x~l<<-~x~j for every k = 1, 2,.  . . ,  k*. 

Hence 

Ixk +1; - x~; I /xe  -< (1 - ~)-1 [ix~+, - x~ I/x~ ] for every k = 1, 2 , . . . ,  k*. 
(5.5) 
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Let/~ and/~ be consecutive indices in the subsequence K~. According to the property 
imposed on the subsequence Kj, the inequality (5.3) holds. Hence we see 

log(1 +fl)~< Ilog x ~ - l o g  x~[ 

= [xy (1/{:) d{: 
3 x~ 

k 1 

<- x max(Ix?'-xf/x; Ix +l-xfl/x?'  ~ ' j 
k=k 

k 1 
~< y~ ( l _ e ) - i  k+l k k ]xj - x j  I/xj. (5.6) 

k=t~ 

The last inequality follows from (5.5). Since the inequality (5.6) holds for every pair 
of consecutive indices /~ and k7 in Kj, taking the summation of those inequalities, 
we obtain the inequality (5.4). 

Finally, from the inequality (5.4), we have 

IK~l~n+[(1-e)log(l+/3)] ' ~ ~ (Ix;+'-x~'l/x k) 
j = l  j = l  k = l  

k* 

~ < n + [ ( 1 - e ) l o g ( l + f i ) ] - '  Y~ ~ ( X ~ + I - - x ~  IX k ) 
k = l j = l  

k* 

~ n + [ ( 1 - e ) l o g ( l + / 3 ) ]  -a E n'/2[l(Xk) l(xk+'--xk)ll 
k = l  

<~ n + e[(1 - e) log(1 +fl)]-'nl/2k* (by the assumption (5.2)). [] 

Now we are ready to prove (5.1). Since 

k* k* k* 

Z IA~or~l<~ E IA~I + E Irkl, 
k = l  k = l  k ~ l  

it suffices to show that 

k* 

2 ]Akl<~k*xO(n°s) (5.7) 
k = l  

and 

k* 

Z Irkl~ k*xO(n°5). (5.s) 
k = l  

To show the inequality (5.7), we construct a subsequence K~ of {1, 2 , . . . ,  k*} for 
each j =  1 , 2 , . . . ,  n as follows: Let Kj ={1}, and add k c { 2 , 3 , . . . ,  k*} to K~ if and 
only if j ~ A k. Then, in view of (c) of Lemma 4 and the construction of the index 
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set Kj ( j =  1 , 2 , . . . ,  n), we see that the sequence {xk: k =  1 , 2 , . . . ,  k*} satisfies all 
the hypothesis of Lemma 6 with e = 0.4 and that 0 < fl <~ t~ -- c~/(1 - a )  <~ 0.12. Thus, 
we obtain 

k* 

E IAk[ = ~ IKjl-n<~k*×O(n°S). 
k = l  j = l  

The inequality (5.8) can be shown similarly by using (d) of Lemma 4. This completes 
the proof. 

Remark. Although we have not evaluated the computational complexity of 
Algorithms 1 and 2 in bit operations, we conjecture that it is enough to keep all the 
elements of the kth iterate (x k, yk) in rational numbers with denominator 2 °(L). 
Then a similar bit analysis as in Section 8 of the paper [19] by Renegar would 
suggest that Algorithms 1 and 2 have the total bit computational complexity 
O ( n  45 L 2 (log L)(log log L)) and O(n 4 L 2 (log L)(log log L)), respectively. 

6. An artificial problem having a trivial initial point 

In this section we show how to prepare an initial point (xl, y 1) from which 
Algorithms 1 and 2 start. For this purpose, we shall construct an artificial linear 
complementarity problem, LCP' which not only satisfies Assumptions (i), (ii) and 
(iii) in Section 1 but also has a trivial initial point. 

Let 

n n + l  

L= ~. ~. log(laol+ l)+log(n2), 
i - - l j = l  

where a~j denotes the ( i , j ) th element of the n x (n + 1) matrix A = [M q]. By the 
definition (1.2) of L, 

L = [ L ] + I  and L-I<~i<~L. (6.1) 

Define 

qo=2L(n+l)/n 2, q'=(qo, q)~R l+n, 

2] 
It is easily verified that all the elements of the vector q' and the matrix M'  are 
integers. We consider the artificial linear complementarity problem, LCP': Find an 

(x', y ' )  = (Xo, x, Y0, Y) such that 

t t t / ~ 2 ( l + n )  y ' = M x + q ,  ( x ' , y ' ) c ~ . ÷  , 

xiYi : 0  ( i = 0 ,  1 , . . . ,  n). 

The LCP' obviously satisfies Assumptions (i), (ii) and (iii). 
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We use the symbols S', S[~t, S'en and S'en(a) for the feasible region of the LCP', 
its interior, the path of centers of S' and its a-center neighborhood, respectively. 
If  we denote the (i , j)th element of the (1 + n)× (n +2) matrix A ' =  [M'  q'] by a~, 
the size L' of the LCP' is given by 

L ' =  Y~ Y~ log( la ,~[+ l )+ log( l+n)  2 +1. 
. i=l j=l 

Taking account of the inequality n + log n2<~/2<~ L, which follows from Assumption 
(iv) in Section 1, we obtain 

L ~< L' <~ 4L. (6.2) 

Define 

x01=2 2c, x'=(2C/n2)e, 

Y~= qo--eT xl = 2 L ( n + l ) / n z - ( 2 £ / n 2 )  eTe =2C/n2, 

yl = (x~)e + mxl  + q = (22C)e + (2 c~ n 2)me + q, 

(X", y,1) = (X~, X', y~, y l ) .  

Lemma 7. 
(a) O<(15/16)x(22L)e<~22c(1-1/n4)e<~y1 

~< 22c(1 + 1 / n 4) e ~< (17/16) x (22L) e. 

(b) (xtl y,1) C S;n t. 

Proof. We see 

( 2£/ n2) Me + q = (2L/ n2)[ Me + (n22-C)q] 

and, by the definition (6.1) of L, 

_(2i/n2)e<~ Me+(n22 L)q<~ (2L/n2)e. 

Hence 

- (22L/n4)e <~ (2C/n 2)Me + q <~ (22E/n4)e. 

Thus, (a) follows from the definition of yl  and n I>2. Since x ' l > 0  and y~>0  are 
obvious by the definition, we have (x', y ' ) >  0. By the definition we also see y , l=  
M'x'~+q'. Hence we obtain (b). [] 

The theorem below shows that (x '1, y,l ) can serve as an initial point for applica- 
tions of Algorithms 1 and 2 to the LCP'. 

Theorem 4. 
(a) ( x ' l ) T y ' l ~ 2 3 L ~ 2 3 L ' .  

(b) (X'l,y'l)CSoen(O.1). 
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Proof. By the definition, we have 

1 1 xoYo = 23L/n2, (6.3) 

and by Lemma 7, for i = 1, 2 , . . . ,  n, 

(15/16) x 23c/n2 <~ 23c(1 - 1/n4) /n  2 <~ x~y~ 
(6.4) 

23£ ( 1 q- 1/n 4 ) /n  2 ~< (17/16) x 239 n 2. 

Letting ff = (x  ' l )Ty' l / (1  + n),  we then see 

(15/16) × 23c/n 2 <~ ~" ~< (17/16) x 23c/n 2. (6.5) 

Hence, by (6.1) and (6.2), we obtain (a). From (6.3), (6.4) and (6.5), we also see 

[xiy~-~l  =min  2 Ix~ 1 Yi --t.1.'1 
i = 0  / x c R  i = 0  

<~ Ixiy~--23C/n212 
i 

[i~1123C/n612] 1/2 (by (6.3)and (6.4)) 

~<23£/n 5-5 

<~ (23£/n55)C/[(15/16) x23Qn 2] (by (6.5)) 

<~ (16/15)[1/(n35)]~ 

<0.1~" (byn~>2). 

Thus, we have shown (b). [] 

In view of the theorem above, we can apply Algorithm 2 to the LCP' from the 
initial point (x '1, y'~ ) to compute an approximate solution (x0, x, )30, 33) ~ S~nt such 
that 

~,33i<~2 -2t' ( i = 0 , 1 , 2 , . . . , n )  (6.6) 

in O((1 + n)°SL ') = O(n°SL) iterations, requiring O((1 + n) 3 L') = O(n 3 L) arithmetic 
operations. Furthermore, using the information (6.6) on the approximate solution, 
we can compute an exact solution ()7o, ff, 37o,37) of the LCP' in additional 
O((1 q- n) 3) = O(n 3) arithmetic operations. (See Appendix B.) If Xo = 0 then ()7,)7) 
turns out to be a solution of the LCP (1.1). Otherwise, the theorem below ensures 
that the LCP has no solution. Therefore we can conclude that the application of 
Algorithm 2 to the LCP' solves the LCP in O(n 3 L) arithmetic operations. 



20 M. Kojima et al. / A polynomial-time algorithm .for LCPs 

If we apply Algorithm 1 to the LCP' instead of Algorithm 2, a total of 
O((1 + n) 3.5 L') = O(n35 L) arithmetic operations will be required to solve the LCP. 

Theorem 5. Suppose that the L C P  (1.1) has a solution. Then Xo = 0 for  any solution 

(~o, x, rio, fi) o f  the LCP' .  

Proof. Since the LCP has a solution, we can find a solution (~,)7) in the set of basic 
feasible solutions of the system of equations y - M x  = q, (x, y)  >~ O. We then see that 
each coordinate of :~ is bounded by 2C/n 2, i.e., ~ <  (2C/nZ)e. For every coordinate 
of the basic feasible solution (~,)7) can be represented as the ratio A 1 / A  2 of the 
determinants dl and A 2 of some n × n submatrices of [E - M  q] such that 1 ~< ]32[ 
and O<~]all<~2L/n 2. See, for example, [21]. Here E denotes the n × n  identity 
matrix. Let £o = 0 and )7o = q0 - e'rx. It follows from ~ ~< (2L /n2)e  and the definition 
of qo that )7o> 0. Obviously the point (£',)7') = (Xo, x,)7o,)7) satisfies the other 
requirements of the LCP', so that it is a solution of the LCP'. Let (ff',)~')= 
(2o, ff,)7o, )7) be an arbitrary solution of the LCP'. To show 2o=0,  we utilize the 
identity 

(~,)T 7 = (~,)Ty,+ ( ~ , ) v T +  (~, _ ~,)T M'  (~' - 2 ' )  

given by Mangasarian [ 14]. This identity can be verified directly by using (2')Tp'  = 0. 
Since (£ ' )v)7 '=0 and M '  is positive semi-definite, we have (£')v)~'+(2')v)7'~<0. 
Hence, by (Y',)7')~>0, (ff',)7')~>0 and )7o>0, we obtain ~o=0. [] 

7. Conclusions 

We have presented two algorithms, Algorithms 1 and 2 that solve an LCP satisfying 
Assumptions (i), (ii) and (iii) in O ( n ° S L )  iterations, where L denotes the size of 
the input data of the LCP (see (1.2)). An essential idea behind the algorithms is 
"tracing the path of centers of the feasible region by using Newton's method", 
which has been successfully utilized by several authors to develop polynomial-time 
algorithms for linear programs. Algorithm 1 requires O(n 3) arithmetic operations 
per iteration; hence it has the O(n3SL) computational complexity in terms of 
arithmetic operations. Algorithm 2 is rather complicated mainly because it incorpor- 
ates the rank-one update procedure to save O(n °s) arithmetic operations on the 
average per iteration, but it attains O(n3L) computational complexity. 
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Appendix A. A characterization of centers in terms of the logarithmic barrier 

function method 

Consider the following quadratic programming problem (QP): 

Minimize x Xy 

subject to (x, y) c S, 

where S = { ( x , y ) :  y - M x  = q, x~>0, y>~0}. The QP is equivalent to the LCP in the 
sense that (x, y) is a solution of the LCP if and only if it is a minimal solution of 
the QP with the objective value 0. We now apply the logarithmic barrier function 
method to the QP to replace the nonnegativity condition (x, y)~> 0 by additional 
logarithmic barrier function terms to the objective function. 

L(/~): Minimize xVy - I~ ~ log xj - ~ ~ log yj 
j ~ l  j 1 

subject to (x, y) c Si.t. 

The following two theorems characterize a point in the path See. of centers, i.e., a 
solution of the system (1.6) with ~ > 0, in terms of the problem L(~) .  

Theorem A.1. Let ~ > O. I f  (x, y) satisfies the system (1.6) of equations then it is a 

minimal solution of L(l~ ). 

Proof. The objective function of the problem L(/~) can be rewritten as 

[xjyj - i ~ log(xyj )]. 
j = l  

Since each term x jy j - l x  log(xjyj) in brackets [. ] attains the minimum under the 
condition (x~, yj ) > 0 if and only if XJYJ --/x, the desired result follows. [] 

Theorem A.2. Let I~ > O. Let the LCP satisfy Assumption (iii) in Section 1. Suppose 
that (x, y) is a minimal solution of L(ix ). Then it is a solution of the system (1.6). 

Proof. We first observe that (x,y)  satisfies the Karush-Kuhn-Tucker  optimality 
condition (see, for example, [13]) with a Lagrangian multiplier vector u c R n : 

y - ~ X - l e + M X u = O ,  x - / x y - l e - u = O  and y - M x = q .  

We shall show that u -- 0. Then the condition above is equivalent to the system (1.6). 
Multiplying the diagonal matrices 

X = d i a g ( x l , x z , . . . , x , )  and Y = d i a g ( y ~ , y a , . . . , y , )  

to the first and the second equalities above, respectively, we obtain 

X y - p ~ e + X M  Tu=O and X y - / ~ e -  Yu--O, 
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which imply  

X ( M T + X  -l Y)u  = 0. 

By Assumpt ion  (iii) and  (x, y ) > 0 ,  we see that  the n x n matr ix  X ( M T + X  -1 Y)  is 

nonsingular ,  so that  we can conclude that  the Lagrange mult ipl ier  vector  u is 
zero. [] 

Theorem A.3. Let the LCP satisfy Assumption (iii) and Sin t ¢ •. Then the problem 
L(I~ ) has a unique minimal solution for ever), i ~ > O. 

Proof. Let tx > 0 be fixed. The p rob lem L(tx) can be rewrit ten as 

Minimize xT(Mx+q) - - t z  ~ l o g x i - - / z  ~ logyj  
j = l  j = l  

subject  to (x, y)  e Sint. 

Since the objective funct ion to be minimized is a strictly convex funct ion on a 

nonempty  convex constraint  set S~nt, a min imal  solut ion is unique if it exists. In 
order  to see the existence of  a solution to this p rob lem,  we need only prove  that  
the set S~nt(w) of  all the feasible solutions of  the p rob lem L ( # )  with the objective 
value not greater  than  ~o is nonempty ,  closed and bounded  for  some sufficiently 
large w. The  closedness of  the set S~,lt(w) can be verified easily. By the assumpt ion  
Si,t # 0, the set o f  all the solutions to the LCP is bounded .  (See [14].) Hence  so is 

the set 

{(x, y) c S: x-r(Mx + q) <~ 0}. 

Since the funct ion x--> xV(Mx+ q) is convex by Assumpt ion  (iii), the set 

{(x, y) c S: xT (Mx + q) <~ w} 

is bounded  for  every w ~> O. This implies that  the min imum of  the quadrat ic  funct ion 
xT (Mx + q) over the subset  

S(r) : {(x, y)  c S: II(x, Y)II = r} 

of  S grows at least l inearly in r for  sufficiently large r. Hence  the min imum of  the 
objective funct ion of  the p rob lem L(/x), which differs only the logar i thmic barr ier  
terms 

--/z ~ l o g x j - - / z  ~ l o g y  i 
j--I j = l  

f rom the quadrat ic  funct ion xT(Mx+q) ,  over  the set S(r) diverges as r tends to 
the infinity. This ensures that  the set Si.t(w) is b o u n d e d  for  any w. Finally, we see 
by the assumpt ion  Sint ¢ 0 that  the set Sint (~o) is n o n e m p t y  for  sufficiently large w. [] 
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Theorem A.4. Let the L C P  satisfy Assumptions (iii) in Section 1, and Sint ~ ~0. Let  

(x(/~),y(/~)) denote the solution o f  the system (1.6). Then (x(/~),y(/~)) is C 1 (con- 

tinuously differentiable) at every i ~ > O. 

Proof. It is easily verified under Assumptions (iii) that the Jacobian matrix of the 
mapping H with respect to (x, y) is nonsingular and C 1 at every solution (x, y) of  

the system (1.6) with g > 0. Thus, the desired result follows from the well-known 
implicit function theorem (see, for example, [17]). [] 

Appendix B. Computing an exact solution of the LCP 

We shall assume that an approximate solution (£,)~) ~ S of the LCP (1.1) satisfying 
the relation (1.3) and show how we compute an exact solution by using this 
information. We employ the notation z for the 2n-dimensional variable vector (x, y) 
and A for the n x 2n matrix [E - M ] ,  where E denotes the n x n identity matrix. 
Then the feasible region S of the LCP (1.1) can be represented as the set of solutions 
of the system of equations 

R+ . (B.1) A z = q , z = ( x , y ) c  2, 

Lemma B. Suppose ~ c S. Le t /~  = {k: ~k < 2-L}. Then there is a vertex z* o f  S such that 

z* = 0 for  all k ~ I£. (B.2) 

Proof. By Cramer 's  rule, we know that each element of  a basic feasible solution of 

the system (B.1) can be represented as the ratio ~11/32 of the determinants of  some 
n × n subrnatrix of [A q]. From the definition (1.2) of  L, we see the absolute value 
of the determinant a of  any n × n submatrix of [A q] is bounded by 2L/n 2. See, 
for example, [21]. This implies that, for any basic feasible solution v, 

v~=0 i fv~<nZ2  L 

or equivalently 

vi>ln22 -L i f v i > 0  (B.3) 

holds. Since v is a vertex of S if and only if it is a basic feasible solution of 
(B.1), (B.3) is true for any vertex of S. On the other hand, the point ~ can be 
represented as the sum of the convex combination of some vertices v 1, v 2, . . . ,  v p 
of  S and some unbounded direction u of  S such that 

p p 

g= ~ c jv;+u,  ~ c j = l ,  
j = l  j ~ l  

cj~>0 ( j =  1 , 2 , . . . , p ) .  
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See, for example, [22, Theorem 2.12.6]. In view of Caratheodory 's  theorem [20, 
Theorem 2.2.12], we may assume that p ~< 1 + n. Hence we can find an index r such 
that c~/> 1/(1 + n). We shall show that z* - v r satisfies (B.2). Assume on the contrary 

that 

Then 

v ~ > 0  for s o m e k ~ / £ .  

v ~ n 2 2  -L 

because v r is a vertex of S so that (B.3) holds with v = v r. Since all the components 
of  the vectors v 1, v 2, . . . ,  v p and u are nonnegative, we obtain 

P 

Zk = ~ CjVJ+Uk>~CrVrk>~(1/ ( l+n))n22-L>2 -L (since 2~<n). 
j = l  

This contradicts k c/£.  

Suppose that ~=  (£, 3~) c S satisfies the condition (1.3). For every ~ S, define 

K ( ~ ) = { k :  ~k<2 -L} 

and 

K(~)  c = {k: Yk ~> 2-L}. 

As we will see below, we can move from 2 to a point ~e  S in O(n 3) arithmetic 
operations such that K ( E ) c  K(~) and that the set of  columns of the matrix A with 
indices in K(~)  c is linearly independent. We now consider the system of equations 

2 n  A z = q ,  z c R +  , 
(B.4) 

z k = 0  for e v e r y k e K ( g ) .  

Applying Lemma B, we see that this system of  equations has a solution z* = (x*, y* ), 
and by the assumption (1.3) and K ( ~ ) c  K(5)  that (x*, y*) is an exact solution of 
the LCP satisfying (1.4). On the other hand, since the columns of  the matrix A 
associated with indices in K(ff) c is linearly independent,  tile solution z * =  (x*, y*)  
is unique and can be computed in O(n 3) arithmetic operations. 

Now we shall show how to move from the point ~ e S to a point g ~ S such that 
K ( f )  c K(~)  and that the set of  columns of the matrix A with indices in K(~) ° is 
linearly independent. Let ff = ~. We consider the polyhedral set P(ff) consisting of 

the solutions z = (x, y) of  the system 

A z = q ,  z ~ R  2n, 
(B.5) 

zk=~k for e v e r y k e K ( ~ ) .  

By applying the Gaussian elimination to the homogeneous system 

A u  = 0, (B.6) 
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we compu te  a so lu t ion  u sat isfying uj = 0 ( j  c K ( ~ ) )  and  uk > 0 for  some k c K ( ~ )  c 

i f  it exists,  and  a max ima l  index  subset  K o f  K (~)~ such tha t  the  set o f  the co lumns  

of  the  mat r ix  A with the indices  in K is l inear ly  i nde pe nde n t .  This requires  O(n  3) 

a r i thmet ic  opera t ions .  I f  K = K ( ~ )  ° then  ~ i tself  is a des i red  po in t  in S. Otherwise  

we have a so lu t ion  u of  the  system (B.6) sat isfying UJ = 0 ( j  c K ( ~ ) )  and  uk > 0 for  

some k c  K ( ~ )  c. In  this case we can move f rom ~ t oward  the d i rec t ion  - u  to ob ta in  

a po in t  z c P(~)  such tha t  ]K(z)]  < [K(~)] by  app ly ing  a ra t io  test to the so lu t ion  

of  the  n o n h o m o g e n e o u s  sys tem (B.5) with the  so lu t ion  u of  the  h o m o g e n e o u s  system 

(B.6). Here  ]K] denotes  the number  of  e lements  in an index  set K. Then,  rep lac ing  

by  z, we pe r fo rm pivot  opera t ions  to the  h o m o g e n e o u s  system (B.6) to genera te  

a new so lu t ion  u such that  uj = 0 ( j  c K ( ~ ) )  and  Uk > 0 for some k c K ( ~ )  c if  it exists,  

and  repea t  the  same p r o c e d u r e  unti l  we find a po in t  2 c  S sat isfying the des i red  

p roper ty .  This i te ra t ion  te rmina tes  in at most  n steps since 0<~ [ K ( z )  I < IK(~)[ <~ n. 

The to ta l  n u m b e r  of  p ivo t  opera t ions ,  each  o f  which  requires  O(n  2) a r i thmet ic  

opera t ions ,  is b o u n d e d  by  n. Each rat io  test  requires  O(n )  a r i thmet ic  opera t ions .  

Therefore ,  the total  n u m b e r  o f  a r i thmet ic  ope ra t ions  amoun t s  to O(n3) .  

Remark .  To es t imate  the bi t  compu ta t i ona l  complex i ty  for  compu t ing  such a ~ 6 S, 

we assume that  each e lement  of  2 has been  rep resen ted  in a ra t iona l  n u m b e r  wi th  

a d e n o m i n a t o r  2 °~L~ and  a numera to r  2 °eL). Then  we can execute  each  i te ra t ion  

above  such that  each e lement  of  z is a ra t iona l  n u m b e r  with a d e n o m i n a t o r  2 °(L~. 

I f  we assume,  in add i t ion ,  that  all the e lements  of  z genera ted  at each  i te ra t ion  

have numera to r s  2 °~L), we can conc lude  that  the  to ta l  n u m b e r  o f  bi t  ope ra t ions  

amoun t s  to O ( n 3 L ( l o g L ) ( l o g l o g L ) )  because  each p ivo t ing  o p e r a t i o n  requires  

O(n  2 L( log  L) ( log  log L))  bi t  opera t ions  and  each rat io  test  O (nL( log  L) ( log  log L))  

bi t  opera t ions .  See also the R e m a r k  at the end of  Sect ion 5. 
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