
Mathematical Programming 44 (1989) 1-26 1
North-Holland

A P O L Y N O M I A L - T I M E A L G O R I T H M F O R A C L A S S O F

L I N E A R C O M P L E M E N T A R I T Y P R O B L E M S

Masakazu K O J I M A

Department of Information Sciences, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku,
Tokyo 152, Japan

Shinji M I Z U N O and Akiko YOSHISE

Department of Industrial Engineering and Management, Tokyo Institute of Technology,
Oh-Okayama, Meguro-ku, Tokyo 152, Japan

Received 27 July 1987
Revised manuscript received 8 February 1988

Given an n x n matrix M and an n-dimensional vector q, the problem of finding n-dimensional
vectors x and y satisfying

y = M x + q , x~>0, y~>0, x~yi=O (i=1 ,2 , . . . , n)

is known as a linear complementarity problem. Under the assumption that M is positive semi-
definite, this paper presents an algorithm that solves the problem in O(n 3 L) arithmetic operations
by tracing the path of centers, {(x, y) E S: x~y~ = I.* (i = 1, 2 , . . . , n) for some/~ > 0} of the feasible
region S = {(x, y) >~ 0: y = Mx + q}, where L denotes the size of the input data of the problem.

Key words: Linear complementarity problem, polynomial-time algorithm, path of centers,
Karmarkar's algorithm.

1. In trodu c t ion

Let M be an n × n matrix, and q c R ' . The p rob lem of f inding an (x , y) c R 2n

satisfying

y - - M x + q , (x ,y)>~O, x~yi=O (i = l , 2 , . . . , n) (1.1)

is known as a l inear complementar i ty p rob lem (abbreviated by LCP), which has

various impor tan t appl icat ions in l inear and convex quadrat ic p rograms , b imatr ix

games and some other areas of engineer ing [3, 12, 18, etc.]. Here R" denotes the

n -d imens iona l Eucl idean space.

Several computa t iona l methods have been developed for solving LCPs

[3, 12, 24, etc.]. These methods apply a sequence of pivot ing operat ions to the system

of l inear equat ions y = M x + q or a certain artificial system of equat ions associated

with the LCP. In some worst cases, they require an exponent ia l n u m b e r of p ivot ing

operat ions [1, 4 and 16]. It is wel l -known that an LCP with an arbitrary matr ix M

is NP-complete [2].

2 M. Kofima et al. / A polynomial-time algorithm for LCPs

In the field of linear programs, there have been developed many algorithms with
a polynomially bounded computational complexity [5, 7, 9, 10, 11, 19, 25, 26, etc.].
For convex quadratic programs, Kapoor and Vaidya [8] and Ye and Tse [27] have

recently proposed polynomially bounded algorithms. These algorithms may be
roughly classified into three groups:

1. Ellipsoid algorithms which originated from the first polynomially bounded
linear programming algorithm by Khachiyan [10] in 1979.

2. Projective rescaling algorithm by Karmarkar [9], its variations and extensions
[5, 8, 26, 27, etc.].

3. Algorithms using the idea of tracing the path of centers of a polytope
[7, 11, 19, 25, etc.].

The algorithms in the last group are relatively new and are closely related with
the second group (See [6]). Among these algorithms, the ones given by Gonzaga
[7] and Vaidya [25] in the last group for solving linear programs have attained the
O(n3L) computational complexity in terms of the number of arithmetic operations.

The idea on which the algorithms of the last group are based have been studied in
more general framework including convex minimization problems and linear com-

plementarity problems by Megiddo [15], Sonnevend [20] and Tanabe [23].
In the previous paper [11], the authors have proposed an algorithm that solves

linear programs in O(n4L) arithmetic operations by using Newton's method as a
numerical tool to trace the path of centers simultaneously in the primal and dual
feasible regions. In the present paper we modify and extend their algorithm to a

class of LCPs with positive semi-definite matrices. The main emphasis will be laid
on the theoretical computational complexity of the algorithm. We do not refer to
a practically efficient implementation of the algorithm, which should be studied in
the future though.

Let R~ and R 2 . denote the nonnegative orthant {x c Rn : x ~> 0} of R n and the
positive orthant {xc Rn: x > 0 } of R n, respectively. We employ the symbol S for
the set of all the feasible solutions of the LCP, Sint its interior and Sop the set of all
the solutions of the LCP;

2~. = M x + q } , S = { (x , y) ~ R + . y

Sint=S ~ 2n 2,~ . = M x + q } , R++ = {(x, y) c R++. y

Scp={(x,y) ~ S: xiy, = 0 (i = 1 , 2 , . . . , n)}.

Throughout the paper, we impose the following assumptions on the LCP:

Assumptions. (i) n I> 2. (I f n = 1 then the LCP could be solved trivially.)

(ii) All the elements of the n x n matrix M and the vector q are integers.
(iii) The matrix M is positive semi-definite, i.e., x T M x >~ 0 for every x c R n.

We may further assume without loss of generality that
(iv) each row of the matrix M has at least one nonzero element.
To see this, assume on the contrary that all the elements in the ith row of the

M. Kojima et al. / A polynomial-time algorithm for LCPs 3

matrix M are zero. I f q~ is negative then the LCP has no solution. Otherwise we
can reduce the size of the LCP to be solved by eliminating the variables xi and yi.

We define the size L of the LCP (1.1) by

n n + l

L = [2 Y~ l o g ([a 0] + l) + l o g (n 2) J + l , (1.2)
i ~ l j = l

where aii denotes the (i , j) th element of the n × (n + 1) matrix A = [M q] consisting
of the coefficient matrix M and the constant vector q of the system of equations of
the LCP (1.1) and [~:J the largest integer not greater than ~:~ R+. The assumption
(iv) ensures the inequality n + log(n 2) ~< L, which we will need in Section 6.

The size L determines the accuracy to be attained in the following sense: I f

(£ , ~) ~ S and x i Y i < 2 -2L (i = l , 2 , . . . , n) , (1.3)

then there exists a solution (x*, y*) of the LCP such that

x * = 0 for e v e r y i c / ,
(1.4)

y * = O for every j c J,

where

I = { i : £ ~ < 2 -L} and J - -{ j :)3~<2-L}. (1.5)

Furthermore, using the information (1.3), we can compute the solution (x*, y*) in
O(n 3) arithmetic operations. This will be shown in Appendix B. It should be noted
that (1.3) and (l.5) imply I u J = { 1 , 2 , . . . , n}. Hence each (£,)~) satisfying (1.3)
itself can be regarded as an approximate solution of the LCP. The requirement (1.3)
may be replaced by a stronger one

(~ ,)3)cS and -~T)3<Z-2L. (1.3)'

This inequality will be used as a stopping criteria in our algorithm.
Now we describe an outline of the algorithm. We first introduce a family of

systems of equations with the nonnegative parameter ~:

H (l ~ , x , y) = O and 2, (x, y) c R+ , (1.6)

where H : R+ x R2+ " ~ R" x R" is a mapping defined by

H (tz, x, y) = (X Y e - I~e, y - M x - q) (1.7)

o1+2" where X denotes the n x n diagonal matrix for every (/x, x, y) 6 . .+ ,

diag(xl, x2, • • •, x ,) , Y the diagonal matrix diag(yl , Y2, • • •, Y,) and e the n-
dimensional vector of ones. Obviously (x, y) is a solution of the LCP if and only
if it is a solution of the system (1.6) for /~ = 0. In other words, the LCP (1.1) is

equivalent to the system of equations

H(0 , x ,y) 0 and (x , y) c 2, = R+ . (1.1)'

4 M. Kojima et al. / A polynomial-time algorithm for LCPs

We call each (x, y) c R 2" satisfying the system (1.6) for some /~ > 0 a center (of

the feasible region S), and define the path of centers Seen to be the set of all the centers:

Scen= {(x, y) c R2": H(tt, x, y) =O for s o m e / x > 0 }

= {(x, y) c Sint : XYe =/ze for some/x > 0}.

When Sint ~ 0 and Assumption (iii) is satisfied, the system (1.6) has a unique solution
for each/x > 0 and the path SoCn of centers forms a smooth curve in the set Sint. We
can also characterize solutions of the system (1.6) in terms of the logarithmic barrier
function method. These facts have been indicated and studied partially by Megiddo
[15]. We will give a complete proof for these facts in Appendix A.

Geometrically the path Seen of centers runs through the interior Sin t of the feasible
region S to a solution of the LCP which lies in the boundary of S. Starting from a

known initial point in a neighborhood of the path Soen, we trace the path Scan until
we attain a sufficiently small parameter ~. The idea of this approach has been
suggested by Megiddo [15].

Generally, we are not able to trace the path S ~ accurately because it runs
nonlinearly through the interior S~nt of the feasible region S. We are forced to stray
from the path Sc~ even if a given initial point lies on the path. As a measure for
the deviation of each (x, y) ~ S~t from the path S ~ , we employ the quantity

min IIH(~,x,y)ll = min I[XYe-l.~el]
~ R + /~ER+

= I I X Y e - (x ~ y / n) e l l .

It should be noted that the first equality follows from the definition (1.7) of the
mapping H and (x ,y)e S~,t, and the second because the point (xVy/n)e is an

orthogonal projection of the point XYe onto the line {~e:/z c R}. Obviously an
(X~ y)C Sin t lies on the path S ~ if and only if IIXYe-(xTy/n)ell = 0. We want to
control our approximation of the path so that the deviation IIXYe--(xTy/n)ell
converges zero at least linearly as the error xTy for the complementari ty slackness

tends to zero. This leads to the definition of the c~-center neighborhood S ~ (c~) of

the path Scan :

S ~ (c~) = {(x, y) ~ Si~t: IlXYe - (xTy/n)ell <~ (xTy/n)o~}. (1.8)

Here ~ is a positive number whose value will be specified in the succeeding
discussion.

For the time being, we assume that an initial point (x ~, y~) satisfying

(x',yl)cSo~.(o~) and (x1)T y I ~ 2 0 (L) (1.9)

is known in advance. In Section 2, we present an algorithm which starts from this
point and generates a sequence {(x k, yk)} = S~n (~). For some positive constant ~7,
each iteration decreases the error (x k)Vyk at least linearly with the ratio (1 - ~7/n °5),

M. Kojima et aL / A polynomial-time algorithm for LCPs 5

so that the algorithm stops within O(n °5 L) iterations when an approximate solution
07, 33) satisfying (1.3)' is obtained. Each iteration solves a linear system induced
from a local linearization of the system (1.6) to compute a new point in Seen(a).
This requires O(n 3) arithmetic operations. Thus, the total number of the arithmetic
operations over all the O(n°SL) iterations amounts to O(n3SL).

Sections 3, 4 and 5 are devoted to reducing the total computational complexity
to O(n3L) by incorporating the rank one update technique [7, 9 and 25] into the
algorithm given in Section 2. The modified algorithm with the O(n 3 L) computational
complexity described there could be stated directly without requiring Section 2 but
it is rather complicated. So the simpler O(n3SL) algorithm in Section 2 will be
helpful to understand the structure of the O(n3L) algorithm.

In Section 6, we show that any given LCP satisfying the Assumptions (i), (ii) and
(iii) can be converted into an artificial linear complementarity problem, LCP' which
satisfies not only the same assumptions but also has a known initial point from
which the algorithms given in Sections 2 and 3 can start. It will be shown there that
an application of the algorithms to LCP' either yields a solution of the original LCP
or decides that the LCP has no solution.

2. The O(n3"SL) algorithm

We first present a procedure which is used repeatedly in the O(n3SL) algorithm,
Algorithm I described below for tracing the path Sce n of centers to solve the LCP (1.1).
Given a point (x, y) c Sint and a parameter ix > 0 as inputs, the procedure generates
a new point (2, 37)~ R 2n as an output in O(n 3) arithmetic operations.

The procedure can be interpreted as a Newton iteration to the system (1.6) of
equations for a fixed parameter ix > 0. If we write the Jacobian matrices of the
mapping on the left hand side of (1.6) with respect to x and y by DxH(ix, x ,y)
and DyH(ix, x, y) respectively then the Newton direction at (x, y) is defined as a
solution (Ax, ay) of the system of linear equations:

or

DxH(ix, x, y)Ax + DyH(ix, x, y)Ay = H(ix, x, y),

YAx + XAy = X Y e - i x e and Ay = MAx, (2.1)

where

X = d i a g (x a , . . . , x ,) and

By a simple calculation, we obtain

A x = (M + X - 1 Y) - ' (Y e - I X X le)

Then the new point (2, 37) will be given by

(2, 37) = (x, y) - (ax, Ay).

Y = d i a g (y a , . . . , y ,) . (2.2)

and Ay = MAx. (2.3)

(2.4)

6 M. Kojima et al. / A polynomial-time algorithm for LCPs

It is easily verified that

~ = M 2 + q for any (x, y) ~ S and any /x > 0. (2.5)

Furthermore, if the input point (x, y) lies in a sufficiently small a-center neighbor-
hood Seen(a) of the path Soen of centers and if we choose a suitable value for the
input parameter/~ > 0 then the new point (2,)7) remains in the a-center neighbor-
hood Seen (a) . More precisely we have the following theorem:

Theorem 1. Let a be a positive number such that a ~ 0.1, and 6 = a / (1 - c~). Suppose
that

(x,y)~Sc~n(c~) and t z = (1 - 6 / n l / 2) x T y / n .

Then the point (2, fi) defined by (2.3) and (2.4) satisfies

(2, .~) C Seen (a) , (2.6)
2~rfi~< (1-6/(6n~/Z))xTy. (2.7)

The theorem above will be derived as a corollary of a more general theorem,
Theorem 2 in the succeeding section, whose proof will be given in Section 4.

Remark. The results in Theorem 1 could be strengthened slightly. In fact, if we
gave a proof directly to Theorem 1, we could replace the upper bound for a by
a ~< 0.2 and the inequality (2.7) by

gT fi <~ (1 - 3 / (2 n 1/2))xTy. (2.7)'

The direct proof of Theorem 1 would be similar to but simpler than the proof of
Theorem 2 which will be given in Section 4.

Now we are ready to describe an algorithm:

Algorithm 1. We assume that an initial point (x ~, y l) ~ Sint satisfying (1.9) is known
in advance. (We will show how to prepare such an initial point in Section 6.)

Step 0: Let a be a positive constant such that a ~< 0A, and 6 = c~/(1 - a) . Let k = 1.
Step 1: If (x k) T y g < 2 -2L then stop. Otherwise go to Step 2.
Step 2: Let/~ = (1 - 8 / n 1/2)(x k) T y k / n and (x, y) = (x k, yk). Define the diagonal

matrices X and Y by (2.2).
Step 3: Compute the Newton direction (Ax, Ay) by (2.3) and the new point

(xk+~, yk+~) = (2,)7) by (2.4).

Step 4: Let k = k + l . Go to Step 1.
In view of Theorem 1, the sequence {(x k, yk)} generated by the algorithm lies in

the a-center neighborhood and the value (x k)vyk decreases at least linearly with
the global convergence ratio (1 - 6 / (6n l /2)) along the sequence. Hence Algorithm
1 stops in O(n°SL) iterations. On the other hand, each iteration requires O(n 3)
arithmetic operations to compute a new point. Therefore O(n35L) arithmetic
operations are required until the algorithm finds at Step 1 an approximate solution
(~, ~) = (x k, yk) of the LCP satisfying (1.3)'. As we have stated, an exact solution
of the LCP can be computed in O(n 3) additional arithmetic operations (see
Appendix B).

M. Kojima et aL / A polynomial-time algorithm for LCPs

3. The O(n3L) algorithm

In order to improve the computa t iona l complexi ty , we will mod i fy Algor i thm 1 so
that it requires O(n zS) ar i thmetic opera t ions on the average per i terat ion and that
it still mainta ins the l inear convergence with the global convergence rate (1 - ~7/n°5)
for some ~/> 0; hence the modif ied algori thm, Algor i thm 2 be low will attain the
O(n3L) computa t iona l complexi ty. For this purpose , we in t roduce approx ima t ions
2(and Y" of the d iagonal matr ices X and Y into the Newton equat ions (2.1) as
follows:

Y A x + X A y = X Y e - t z e and Ay = Max, (3.1)

where

X = d iag(xl , x 2 , . . . , xn), Y = d iag(y l , Y 2 , . . . , Yn),
(3.2)

) (= d iag(xl , x2, - • •, xn), 17- = diag()7~,)72, •. •,)7,).

We call (Ax, Ay) the modif ied Newton direction. It follows immedia te ly f rom (3.1)

that

A x = (M + X -1 Y) lf(-l(XYe-t_te) and A y = M A x . (3.3)

The new point (~, ~) is given by

(~, y) = (x, y) - (dx, Ay). (3.4)

(x, y) c R++ Thus, the modif ied Newton p rocedure accepts /z > 0, (x, y) ~ Sin t and ~ ~ 2,
as inputs and generates the new point (~, y) as an output , which always satisfies
the system of equat ions

= Mff + q for any (x, y) c Si,t and any /~ > 0. (3.5)

Concern ing the modif ied Newton procedure we have the fol lowing result:

Theorem 2. Let a , ~ and 6 be constants such that O < a < ~ O . 1 , 6 = a / (1 - a) and
0 <~ ~ <~ 6. Suppose that the inputs tz ~ R+, (x, y) c Sint, (-~,)7) c R]+ to the modified
Newton procedure satisfy

(x ,y)~Scen(a) ,

/z = (1 - 6/n l /2)xVy /n ,

£ i / x i c [(l + f l) 1 , (l + f l)] (i = l , 2 , . . . , n) ,

)7 i /y i6 [(1+ /3) 1 , (l + f l)] (i = l , 2 , . . . , n) .

Then the new point (,2, y) given by (3.3) and (3.4) satisfies

(x, y) c Sce.(~),

ffT~<~ (1 - 6/(6nl/2))xVy.

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)

8 M. Kojima et al. / A polynomial-time algorithm for LCPs

The proof of this theorem will be given in the next section. If we take fl -- 0 then
the assertion of Theorem 2 is exactly the same as that of Theorem 1. Hence we can
derive Theorem 1 from Theorem 2 as a corollary. Theorem 2 shows the possibility
of using the modified Newton procedure instead of using the Newton procedure to
get the same order O(n°SL) of the total iterations as Algorithm 1. The modified
procedure will be used repeatedly, as a core of Algorithm 2, together with a device
which saves a certain amount of the arithmetic operations to compute the modified
Newton direction.

The algorithm starts with an initial point (x ~, y~) satisfying (1.9). Let

J~ = diag(xll, x~ , . . 1 1 . , x~) , Y=diag(y l , y~2 , . . . , yn) . (3.12)

We also set/~ = M + 3 ~ -~ I? and compute its inverse /}-1, which will be used later
for computing the modified Newton direction by (3.3). This work requires O(n 3)
arithmetic operations. The matrices J~, I?,/~ i wild be updated and stored throughout
the iterations.

Let k ~ > 1. Suppose that we have obtained the (x k, yk) ~ Scen(~) and the matrices
J~, Y and/~--1 = (M + 3~ -~ Y)-1 at the end of the (k - 1)th iteration. At the beginning
of the kth iteration, we set

tX=(1--6/nl /2)(xk)Tyk/n , (x , y)=(xk , yk),
(3.13)

X = diag(x~, x 2 , . . . , xn), Y = diag(yl, Y2, . . . , Yn).

We then update the diagonal matrices .~ and Y so that they satisfy the assumption
(3.8) and (3.9) of Theorem 2: for every i = 1, 2 , . . . , n, if

x i / x i C : [(l + f l) 1, (1 + / 3)] (3.14)

or

)7, /y,~[(1+/3) 1, (a+f l)] (3.15)

then update Yi and 37~ by

~ = x, and)7i = y,. (3.16)

Here/3 denotes a positive number which we have specified in Theorem 2. It should
be noted that the number of arithmetic operations required to compute /x and to
update the diagonal matrices J(and Y is bounded by O(n).

When some of the diagonal elements of the matrices X and I7" have been changed
by (3.16), we no more have the identity/~--1 = (M + ~ - 1 ~) --1 ; hence we need update

the matrix/~ ~ before computing the modified Newton direction (Ax, ay) by

Ax = IB ~ f (- i (X Y e - Ixe) and Ay = MAx. (3.17)

Let A k denote the set of the indices i for which (3.14) occurs, and F k the set of
the indices i for which (3.15) occurs. Then we see that the matrix (M + X -~ I?)
whose inverse we want to compute differs from the matrix/~ which corresponds to
the old (M + J~ ~Y) only in the columns with the indices i c A k w Ilk. Hence we

M. Kojima et aL / A polynomial-time algorithm for LCPs 9

apply a sequence of rank-one updates to the matrix/} i to transform it to the inverse
of the matrix (M + . ("-~ Y). The number of rank-one updates required amounts to
the cardinality]A k k.J F k] of the index set A k w F k. Thus,]A k w F k I × O(//2) arithmetic
operations are required to update the matrix/~-~.

Now we are ready to compute the modified Newton direction (Ax,/iy) by using
(3.17) and the new point (x k+~, yk+l) by

(xk+,, yk+l) = (X k, yk) _ (~IX, ~IT)" (3.18)

For these computation, O(rt 2) arithmetic operations are required. Since all the
assumptions of Theorem 2 are satisfied at (x ,y)= (xk, yk), its conclusions (3.10)
and (3.11) hold at (2,)7) = (x k+~, yk+~), i.e.,

(xk+l yk+l) e Scen (t;l~),

(xk+,)Tyk+~ ~< (1 -- 6/(6n'/2))(x k)ryk.

Summarizing the above discussions, we obtain the algorithm and the theorem
below.

Algorithm 2. We assume that an initial point (xl, y 1) satisfying (1.9) is known in
advance.

Step 0: Let or, /3 and ~ be constants such that 0~<a~<0.1, t 3 = a / (1 - a) and
0 < / 3 ~ <& Define the diagonal matrices)(and Y by (3.12). Compute /~-1=
(M+3~ 1 I2)-1. Let k = 1.

Step 1 : If (x k)Tyk ~ 2--2L then stop. Otherwise go to Step 2.
Step 2: Define/z, (x, y), X and Y by (3.13), i.e.,

/x - (1 - a/ n'/Z)(x g)Wyk / n,

X = diag(xl, x2, . . •, x,),

Step 3: For every i, if

,2,/xi ~ [(1 +/3) -a, (1 +/3)]

or

f i / Y i ~ { (l _ ~ / 3) 1 (1-]-/3)]

(x, y) = (x k, yk),

Y = diag(yl, Y2, . . . , Yn).

((3.14))

((3.15))

occurs then update the diagonal elements £i of Jq and);i of I2 by (3.16), i.e.,

£i ~- Xi and Yi = Yi.

Update the matrix B 1 so that it represents the inverse of the matrix (M +3~ 1 17").
Step 4: Compute the modified Newton direction (Ax,/iy) by (3.17), i.e.,

A x = B - 1 X - ~ (X Y e - t x e) and Ay=MAx,

and the new point (x k+~, yk+~) by (3.18), i.e.,

(xk+l, y~+~) = (x ~, yk) _ (/ ix , / iy) .

Step 5: Let k = k + l . G o t o S t e p 1.

10 M. Kojima et al. / A polynomial-time algorithm for LCPs

T h e o r e m 3. Algorithm 2 generates a sequence {(x k, yk)} satisfying

(xk, yk)~Scen(a) and (xk)Tyk<~(1--6/(6n~/2))(Xk--~)Ty k-1

for k = 2, 3 , . . . , and terminates in O(n °5 L) iterations.

In the discussions above we have also observed that the kth iteration requires
O(n) arithmetic operations for computing /x by (Y13), O(n) for updating X and

(see (3.14), (3.15) and (3.16)), [A k u F k [× O (n 2) for updating /3 ~, and O(n:)
for computing the modified Newton direction (Ax, Ay) by (3.17) and the new point
(xk+l, yk+l) by (3.18). Hence the total number of operations in the kth iteration is
bounded by

O(n 2) + IA w rk l× O(n2).

In addition, we need O(n 3) arithmetic operations to compute the initial /~-1.
Therefore, if we denote the total number of iterations by k* then the total number
of arithmetic operations throughout the iterations is bounded by

O (n B) + k * x O (n 2) + I ~

It should be noted that the second term k*xO(n 2) is bounded by O(n2~L). In
Section 5, we prove that the term in brackets [.] is bounded by k* x O(n °5) = O(nL).
This will establish that the total number of arithmetic operations required in
Algorithm 2 is bounded by O(n3L).

4. P r o o f o f T h e o r e m 2

Throughout this section, we use the same symbols a, /3, 6, /x, (x, y), X, Y, (~, y),
(y,)3), (2~, ~) and (Ax, Ay) as in Theorem 2 and the previous section. In addition,
we use the following symbols throughout this section.

~ = x T y / n ; ff =.~V f i /n;

A X = diag(Ax~, Ax2, . . . , ax ,);

A Y = diag(Ay~, Ay2, •. •, Ay,);

.~ = d i a g (. ~ , : ~ 2 , . . . , ~,) = X - AX;
(4.1)

~ = diag(yl, Y2, • • •, Y,) = Y - A Y;

/~ = (~ 7 - 1) 1/2 = diag(Y~/2/)T]/2 , y~/2/)7~/2);

a = ()~Y)- ' /2 (X Y e - /xe);

HAll =max{[[az]]: zc R", IIz/I-- 1} fo r eve ry n x n matrix a .

We need five lemmas to prove Theorem 2.

M. Kojima et al. / A polynomial-time algorithm for LCPs

L e m m a 1. I f p, r and u in R" satisfy

p + r - = u , pTr>~O

then

Ilpll ~ Ilull, Ilrll ~ Ilull,

Ilpll Ilrll ~ II u112/2,

lip II + IL rll ~ 21/2 II u II,

11

Proof . I t f o l l ows f r o m the a s s u m p t i o n t ha t

II u II 2 = lip + rll 2

= Ilpll 2+ 2p Tr+ Ilrll =

~> 11Pl12+ Ilrll 2 .

Th is i m p l i e s tha t Ilpll ~ Ilull and Ilrll ~ ILull-We also have

Ilpll Ilrll <~ (llpll~+ II r112)/2 <~ Ilu112/2,

a n d

(llpll + II rll) 2~< Ilpll z+ Ilrll=+ 211ell II rll <~ 21lull 2 []

Lemma 2. (a) [I (XY)o II ~ (1 + t~) Lpq ~,o for any p c R.

(b) 11(2~) ~ It ~ (1 + ~)31ol fro for any p ~ R.

Here ~ = xT y /n .

Proof. Let p e r be f ixed. S ince (x , y) CSce.(C~), the de f i n i t i on (1.8) o f So~n(~)

i m p l i e s tha t , fo r eve ry i = 1, 2, . . . , n,

(1 - a)~'<~ xiy, <~ (1 + c~)¢

I f p >~ 0 then , fo r eve ry i = 1, 2 , . . . , n,

(x,y,)p <~ (1 + c~)°ff p ~< (1 + 6) Ipl ffP.

T h e las t i n e q u a l i t y h o l d s b e c a u s e 0 < ~ <~ 6. I f p < 0, fo r eve ry i = 1, 2 , . . . , n,

(x,y,)p <~ (1 - c~)°~ "° = (1 + 6) b°l fro

(the las t e q u a l i t y h o l d s b e c a u s e ~ = a / (1 - a)) . S ince X a n d Y are d i a g o n a l m a t r i c e s ,

we have

I I (xg) ~ II = max{(x ,y i)p : i = 1, 2 , n}

<~ (1 + 6)q"lCo.

12 M. Kojima et al. / A polynomial-time algorithm for LCPs

Hence we have shown (a). From the assumptions (3.8) and (3.9) of Theorem 2 and
0<~/3<~3, we see

II (•X-1)P H ~ (1 +/3)JPP ~< (1 + 3)Ipl.

Similarly

I1(YY- ')~ II ~ (1 + 3)tpl.

By the inequalities above and (a), we obtain

11(2f),ll<~ll(XY)~illl(~x-1)Pllll(f~Y 1)~11~(1+3)3~ ~ ~. []

Lemma 3. Ila[[~2a(1 + 6)3/2~ '/2. Here lJ = (X Y) - ' / 2 (X Y e - t z e) and ~= (xTy)/n.

Proof. By the definition, we have

11~711 = II(Xf~)-l/2(xYe- ~e)ll

<~ 11(27)- ' /2 II]] X Y e - r , e + (~ - t z) e [I

<~ II(xC[) -'/2 [[[l lXYe - ffell + Iff -~zl II ell]

~</l(x f9 -'/2 II [~ g + (3/n'/=)ffll ell]

(by the assumptions (3.6) and (3.7) of Theorem 2)

<~ (1 + 6)3/2 ~'-'/2 [ce~ + 6~']

(by Lemma 2 and Ilell = n '/~)

<~23(1+3)3/2~ 1/2 (since 0<c~<~6). []

Lemma 4. (a) lID 1 AXell + [ID,a Yell ~< 21/2 [[ff[[.
(b) Ilax~a Yell <~ llfi[12/2.
(c) I lx - ' z~x l l<~23(l+3)4<0.4 .
(d) I[Y-1AyH<~23(l+~)4<0.4.

(See (4.1) for the definitions of D, AX, A y.)

Proof. Multiplying the first equality of the modified Newton equations (3.1) by the
matrix (. ~) - 1 / 2 from the left, we have

D 1Ax + DAy = (X17")-1/2 (XYe - I~e) = a.

We also see from the second equality of (3.1) and Assumption (iii) that

(1~ -1 A x) T (I~Ay) : AxT Ay = AxT MAx >10.

Applying Lemma 1 with p = D -1 Ax and r = DAy, we obtain the inequalities (a), and

lID 1axl/~< I[ff[[, IlDayl[~ I[~Tll,
(4.2)

l id '~axll IlAayll ~< Ila[I=/2.

M. Kojima et aL / A polynomial-time algorithm for LCPs

It follows from the last inequality that

IlaXa Yell = IllS-l ax15a rell <~ IIzS-' axl111~Sayll ~ Ila112/2.

Thus, we have shown (b). We also see

I Ix- ' axll ~ IIx-1211112911-'/211t5-' axll

~< (1 + a)[(1 + a)3/V~' /q II ~11

(by (3.8), Lemma 2 and (4.2))

<~26(1+¢~) 4 (by Lemma 3)

<0.4 (because 0~<6 = a / (1 - a) < 0 . 1 2) .

Thus, we have shown (c). The inequality (d) can be proved similarly.

Lemma 5. (a) IIJ?l?e-~el] <0.82~.
(b) 1(-~l<O.82~Un 1/2.

(See (4.1) for the definitions of X, Y, ~ and ~)

[]

13

Proof. First we observe

X Y e = X Y e - (YAXe + XA Ye) + AXA Ye

= X Y e - (' Y A X e + X A Y e) + ((' Y - Y) A X e + (X - X) A Y e) + A X a Y e

=t t e+((Y - Y) A X e + (X - X) A Ye)+ AXA Ye.

The last equality follows from the fact that (Ax, Ay) = (AXe, AYe) is a solution of
the modified Newton equations (3.1). Hence

II X'?e - ~e If < II ((9 - Y)AXe + (X - X) A Ye)II + II a X a Ye II

~< i i (j~) l /2[I~ l(~z__ Y) l S - ' a X e + 2 - ' (~ - x) 1 5 a Y e] l l

+llaXAYell (s i n c e /) = (x Y - ') ' / :)

11(2~7)'/211[119-1(9 - Y)l1115 'axellll

+ 112 ' (2 - x) l l IItSa Yelll + IlaXaYell

~< (1 + 6)3/2 ~'1/2 (6 II/) -1 aXell + a II/Sa Ye II)÷ II a112/2

(by Lemma 2 and 4, and the Assumptions (3.8) and (3.9))

(1 ÷ ¢~)3/2ffl/2(~21/2 IIt~ll ÷ IIt~112/2 (by Lemma 4)

<~(2÷23/2)(~2(1÷~)3ff (by Lemma 3)

= (2+23 /2)o l2 (1_a) sff (s i n c e 6 = a / (1 - a))

<~0.82~" (sinceO<a~<O.1).

14 M. Kojima et al. / A polynomial-time algorithm for LCPs

Thus, we have shown the inequality (a). The inequality (b) follows immediately

from (a) and

I ~-~*1 = leTX?e/n --tzeTe/nl

= [eT[X?e-- tze] /n]

~< Ilell [IXYe-t*ell/n

= II X '?e- t*el l /n l/2. []

Now we are ready to prove Theorem 2. In view of (c) and (d) of Lemma 4, we

see that

and

X 1 x = X - I (x - A x) = e - X l A x > 0

y l y = y - l (y _ A y) = e _ y l a y > 0 '

respectively. This implies (2, 37) ~ R2++. Taking account of (3.5), we obtain (2, 37) c Sint.
Now we shall show (2, 37)c Scen(c~). By (b) of Lemma 5, we have

(~>/x - 0.828~'/n 1/2

>~[1-6/n'/2-O.82a/n1/2]~ (by (3.7))

~>0.85~" (since 0 < ~ < 0 . 1 , 3 = a / (1 - c ~) < 0 . 1 2 and n>~2). (4.3)

On the other hand, we see,

I I ~ e - (e l l ~ I I ~ ? e - ~ell

~<0.82c~ (by (a) of Lemma 5)

<~ a ((by (4.3)).

Thus, we have shown (& 37) 6 Scen(C~).
Finally, by (b) of Lemma 5, we obtain

[<~/z + 0.828~'/n 1/2

(1 -- 3 /? ' / , /2 _[_ 0.823/n ,/2)~.

(since I* =(1-3/n'/2)~ and a = oU(1-o~)> o~)

~< (1 - 3/(6n'/2))~,

which shows (3.11). This completes the proof of Theorem 2.

M. Kojima et al. / A polynomial-time algorithm for LCPs

5. Evaluation of the total arithmetic operations

15

As we have stated at the end of Section 3, in order to prove that the total number
of arithmetic operations required by Algorithm 2 is bounded by O(n 3 L), we need

only show

k*

E I A k u F k l < k * x O (n ° 5) . (5.1)
k = l

Recall that k* denote the total number of iterations, Ak the set of indices i for
which (3.14) occurs at the kth iteration, and fig the set of indices i for which (3.15)

occurs at the kth iteration. The method of the proof here is based on the one given
in section 5 of [7]. In fact, we shall utilize the following lemma whose assertion
and proof are closely related with Lemma 5.1 and Theorem 5.2 of [7] and their proof.

Lemma 6. Let 0 < e < 1 and 0 < [3. Let {x k (k c K)} c R~+ be a finite sequence such

that

where

II(x k) l (x k * l - - X k) l l ~ , (5.2)

• k K = { 1 , 2 , k*} and X k = d l a g (x l , x 2 , . . . , x , ,) . k k

For every j = 1, 2, . . . , n, let Kj be a subsequence o f K such that 1 c Kj and that

x ~ / x f ~ [(l + f l) 1, (1 +[3)] (5.3)

whenever f~ and k are consecutive indices in Kj. Then

n
IKj] < n + e l (l - e) log(1 +[3)] anl /2k*.

j = l

Here Igjl denotes the cardinality o f the subsequence K 2.

Proof. We first establish the inequality

k*

i K j L < l + [(l _ e) l o g (l + [3)] 1 y~ ,, k+l tlXj - x ~ l / x ~) (5.4)
k = l

for every j = 1 , 2 , . . . , n. Let j e { 1 , 2 , . . . , n} be fixed. By the assumption (5.2) on
the sequence {x k }, we have

Ixk+l-x~l<<-~x~j for every k = 1, 2,. . . , k*.

Hence

Ixk +1; - x~; I /xe -< (1 - ~)-1 [ix~+, - x~ I/x~] for every k = 1, 2 , . . . , k*.
(5.5)

16 M. Kojima et al./ A polynomial-time algorithm for LCPs

Let/~ and/~ be consecutive indices in the subsequence K~. According to the property
imposed on the subsequence Kj, the inequality (5.3) holds. Hence we see

log(1 +fl)~< Ilog x ~ - l o g x~[

= [xy (1/{:) d{:
3 x~

k 1

<- x max(Ix?'-xf/x; Ix +l-xfl/x?' ~ ' j
k=k

k 1
~< y~ (l _ e) - i k+l k k]xj - x j I/xj. (5.6)

k=t~

The last inequality follows from (5.5). Since the inequality (5.6) holds for every pair
of consecutive indices /~ and k7 in Kj, taking the summation of those inequalities,
we obtain the inequality (5.4).

Finally, from the inequality (5.4), we have

IK~l~n+[(1-e)log(l+/3)] ' ~ ~ (Ix;+'-x~'l/x k)
j = l j = l k = l

k*

~ < n + [(1 - e) l o g (l + f i)] - ' Y~ ~ (X ~ + I - - x ~ IX k)
k = l j = l

k*

~ n + [(1 - e) l o g (l + / 3)] -a E n'/2[l(Xk) l(xk+'--xk)ll
k = l

<~ n + e[(1 - e) log(1 +fl)]-'nl/2k* (by the assumption (5.2)). []

Now we are ready to prove (5.1). Since

k* k* k*

Z IA~or~l<~ E IA~I + E Irkl,
k = l k = l k ~ l

it suffices to show that

k*

2]Akl<~k*xO(n°s) (5.7)
k = l

and

k*

Z Irkl~ k*xO(n°5). (5.s)
k = l

To show the inequality (5.7), we construct a subsequence K~ of {1, 2 , . . . , k*} for
each j = 1 , 2 , . . . , n as follows: Let Kj ={1}, and add k c { 2 , 3 , . . . , k*} to K~ if and
only if j ~ A k. Then, in view of (c) of Lemma 4 and the construction of the index

M. Kojima et al . / A polynomial-time algorithm fi~r LCPs 17

set Kj (j = 1 , 2 , . . . , n), we see that the sequence {xk: k = 1 , 2 , . . . , k*} satisfies all
the hypothesis of Lemma 6 with e = 0.4 and that 0 < fl <~ t~ -- c~/(1 - a) <~ 0.12. Thus,
we obtain

k*

E IAk[= ~ IKjl-n<~k*×O(n°S).
k = l j = l

The inequality (5.8) can be shown similarly by using (d) of Lemma 4. This completes
the proof.

Remark. Although we have not evaluated the computational complexity of
Algorithms 1 and 2 in bit operations, we conjecture that it is enough to keep all the
elements of the kth iterate (x k, yk) in rational numbers with denominator 2 °(L).
Then a similar bit analysis as in Section 8 of the paper [19] by Renegar would
suggest that Algorithms 1 and 2 have the total bit computational complexity
O (n 45 L 2 (log L)(log log L)) and O(n 4 L 2 (log L)(log log L)), respectively.

6. An artificial problem having a trivial initial point

In this section we show how to prepare an initial point (xl, y 1) from which
Algorithms 1 and 2 start. For this purpose, we shall construct an artificial linear
complementarity problem, LCP' which not only satisfies Assumptions (i), (ii) and
(iii) in Section 1 but also has a trivial initial point.

Let

n n + l

L= ~. ~. log(laol+ l)+log(n2),
i - - l j = l

where a~j denotes the (i , j) th element of the n x (n + 1) matrix A = [M q]. By the
definition (1.2) of L,

L = [L] + I and L-I<~i<~L. (6.1)

Define

qo=2L(n+l)/n 2, q'=(qo, q)~R l+n,

2]
It is easily verified that all the elements of the vector q' and the matrix M' are
integers. We consider the artificial linear complementarity problem, LCP': Find an

(x', y ') = (Xo, x, Y0, Y) such that

t t t / ~ 2 (l + n) y ' = M x + q , (x ' , y ') c ~ . ÷ ,

xiYi : 0 (i = 0 , 1 , . . . , n).

The LCP' obviously satisfies Assumptions (i), (ii) and (iii).

18 M. Kojima et aL / A polynomial-time algorithm for LCPs

We use the symbols S', S[~t, S'en and S'en(a) for the feasible region of the LCP',
its interior, the path of centers of S' and its a-center neighborhood, respectively.
If we denote the (i , j)th element of the (1 + n)× (n +2) matrix A ' = [M' q'] by a~,
the size L' of the LCP' is given by

L ' = Y~ Y~ log(la ,~[+ l)+ log(l+n) 2 +1.
. i=l j=l

Taking account of the inequality n + log n2<~/2<~ L, which follows from Assumption
(iv) in Section 1, we obtain

L ~< L' <~ 4L. (6.2)

Define

x01=2 2c, x'=(2C/n2)e,

Y~= qo--eT xl = 2 L (n + l) / n z - (2 £ / n 2) eTe =2C/n2,

yl = (x~)e + mxl + q = (22C)e + (2 c~ n 2)me + q,

(X", y,1) = (X~, X', y~, y l) .

Lemma 7.
(a) O<(15/16)x(22L)e<~22c(1-1/n4)e<~y1

~< 22c(1 + 1 / n 4) e ~< (17/16) x (22L) e.

(b) (xtl y,1) C S;n t.

Proof. We see

(2£/ n2) Me + q = (2L/ n2)[Me + (n22-C)q]

and, by the definition (6.1) of L,

_(2i/n2)e<~ Me+(n22 L)q<~ (2L/n2)e.

Hence

- (22L/n4)e <~ (2C/n 2)Me + q <~ (22E/n4)e.

Thus, (a) follows from the definition of yl and n I>2. Since x ' l > 0 and y~>0 are
obvious by the definition, we have (x', y ') > 0. By the definition we also see y , l=
M'x'~+q'. Hence we obtain (b). []

The theorem below shows that (x '1, y,l) can serve as an initial point for applica-
tions of Algorithms 1 and 2 to the LCP'.

Theorem 4.
(a) (x ' l) T y ' l ~ 2 3 L ~ 2 3 L ' .

(b) (X'l,y'l)CSoen(O.1).

M. Kojima et al. / A polynomial-time algorithm for LCPs 19

Proof. By the definition, we have

1 1 xoYo = 23L/n2, (6.3)

and by Lemma 7, for i = 1, 2 , . . . , n,

(15/16) x 23c/n2 <~ 23c(1 - 1/n4) /n 2 <~ x~y~
(6.4)

23£ (1 q- 1/n 4) /n 2 ~< (17/16) x 239 n 2.

Letting ff = (x ' l)Ty' l / (1 + n), we then see

(15/16) × 23c/n 2 <~ ~" ~< (17/16) x 23c/n 2. (6.5)

Hence, by (6.1) and (6.2), we obtain (a). From (6.3), (6.4) and (6.5), we also see

[xiy~-~l =min 2 Ix~ 1 Yi --t.1.'1
i = 0 / x c R i = 0

<~ Ixiy~--23C/n212
i

[i~1123C/n612] 1/2 (by (6.3)and (6.4))

~<23£/n 5-5

<~ (23£/n55)C/[(15/16) x23Qn 2] (by (6.5))

<~ (16/15)[1/(n35)]~

<0.1~" (byn~>2).

Thus, we have shown (b). []

In view of the theorem above, we can apply Algorithm 2 to the LCP' from the
initial point (x '1, y'~) to compute an approximate solution (x0, x,)30, 33) ~ S~nt such
that

~,33i<~2 -2t' (i = 0 , 1 , 2 , . . . , n) (6.6)

in O((1 + n)°SL ') = O(n°SL) iterations, requiring O((1 + n) 3 L') = O(n 3 L) arithmetic
operations. Furthermore, using the information (6.6) on the approximate solution,
we can compute an exact solution ()7o, ff, 37o,37) of the LCP' in additional
O((1 q- n) 3) = O(n 3) arithmetic operations. (See Appendix B.) If Xo = 0 then ()7,)7)
turns out to be a solution of the LCP (1.1). Otherwise, the theorem below ensures
that the LCP has no solution. Therefore we can conclude that the application of
Algorithm 2 to the LCP' solves the LCP in O(n 3 L) arithmetic operations.

20 M. Kojima et al. / A polynomial-time algorithm .for LCPs

If we apply Algorithm 1 to the LCP' instead of Algorithm 2, a total of
O((1 + n) 3.5 L') = O(n35 L) arithmetic operations will be required to solve the LCP.

Theorem 5. Suppose that the L C P (1.1) has a solution. Then Xo = 0 for any solution

(~o, x, rio, fi) o f the LCP' .

Proof. Since the LCP has a solution, we can find a solution (~,)7) in the set of basic
feasible solutions of the system of equations y - M x = q, (x, y) >~ O. We then see that
each coordinate of :~ is bounded by 2C/n 2, i.e., ~ < (2C/nZ)e. For every coordinate
of the basic feasible solution (~,)7) can be represented as the ratio A 1 / A 2 of the
determinants dl and A 2 of some n × n submatrices of [E - M q] such that 1 ~<]32[
and O<~]all<~2L/n 2. See, for example, [21]. Here E denotes the n × n identity
matrix. Let £o = 0 and)7o = q0 - e'rx. It follows from ~ ~< (2L /n2)e and the definition
of qo that)7o> 0. Obviously the point (£',)7') = (Xo, x,)7o,)7) satisfies the other
requirements of the LCP', so that it is a solution of the LCP'. Let (ff',)~')=
(2o, ff,)7o,)7) be an arbitrary solution of the LCP'. To show 2o=0, we utilize the
identity

(~,)T 7 = (~,)Ty,+ (~ ,) v T + (~, _ ~,)T M' (~' - 2 ')

given by Mangasarian [14]. This identity can be verified directly by using (2')Tp' = 0.
Since (£ ')v)7 '=0 and M ' is positive semi-definite, we have (£')v)~'+(2')v)7'~<0.
Hence, by (Y',)7')~>0, (ff',)7')~>0 and)7o>0, we obtain ~o=0. []

7. Conclusions

We have presented two algorithms, Algorithms 1 and 2 that solve an LCP satisfying
Assumptions (i), (ii) and (iii) in O (n ° S L) iterations, where L denotes the size of
the input data of the LCP (see (1.2)). An essential idea behind the algorithms is
"tracing the path of centers of the feasible region by using Newton's method",
which has been successfully utilized by several authors to develop polynomial-time
algorithms for linear programs. Algorithm 1 requires O(n 3) arithmetic operations
per iteration; hence it has the O(n3SL) computational complexity in terms of
arithmetic operations. Algorithm 2 is rather complicated mainly because it incorpor-
ates the rank-one update procedure to save O(n °s) arithmetic operations on the
average per iteration, but it attains O(n3L) computational complexity.

Acknowledgement

The authors are grateful to the referees for helpful comments which have improved
the paper. The remarks on bit computational complexity in Section 5 and in Appendix
B have been added according to a suggestion by one of the referees.

M. Kojima et al. / A polynomial-time algorithm for LCPs 21

Appendix A. A characterization of centers in terms of the logarithmic barrier

function method

Consider the following quadratic programming problem (QP):

Minimize x Xy

subject to (x, y) c S,

where S = { (x , y) : y - M x = q, x~>0, y>~0}. The QP is equivalent to the LCP in the
sense that (x, y) is a solution of the LCP if and only if it is a minimal solution of
the QP with the objective value 0. We now apply the logarithmic barrier function
method to the QP to replace the nonnegativity condition (x, y)~> 0 by additional
logarithmic barrier function terms to the objective function.

L(/~): Minimize xVy - I~ ~ log xj - ~ ~ log yj
j ~ l j 1

subject to (x, y) c Si.t.

The following two theorems characterize a point in the path See. of centers, i.e., a
solution of the system (1.6) with ~ > 0, in terms of the problem L(~) .

Theorem A.1. Let ~ > O. I f (x, y) satisfies the system (1.6) of equations then it is a

minimal solution of L(l~).

Proof. The objective function of the problem L(/~) can be rewritten as

[xjyj - i ~ log(xyj)].
j = l

Since each term x jy j - l x log(xjyj) in brackets [.] attains the minimum under the
condition (x~, yj) > 0 if and only if XJYJ --/x, the desired result follows. []

Theorem A.2. Let I~ > O. Let the LCP satisfy Assumption (iii) in Section 1. Suppose
that (x, y) is a minimal solution of L(ix). Then it is a solution of the system (1.6).

Proof. We first observe that (x,y) satisfies the Karush-Kuhn-Tucker optimality
condition (see, for example, [13]) with a Lagrangian multiplier vector u c R n :

y - ~ X - l e + M X u = O , x - / x y - l e - u = O and y - M x = q .

We shall show that u -- 0. Then the condition above is equivalent to the system (1.6).
Multiplying the diagonal matrices

X = d i a g (x l , x z , . . . , x ,) and Y = d i a g (y ~ , y a , . . . , y ,)

to the first and the second equalities above, respectively, we obtain

X y - p ~ e + X M Tu=O and X y - / ~ e - Yu--O,

22 M. Kojima et al. / A polynomial-time algorithm for LCPs

which imply

X (M T + X -l Y)u = 0.

By Assumpt ion (iii) and (x, y) > 0 , we see that the n x n matr ix X (M T + X -1 Y) is

nonsingular , so that we can conclude that the Lagrange mult ipl ier vector u is
zero. []

Theorem A.3. Let the LCP satisfy Assumption (iii) and Sin t ¢ •. Then the problem
L(I~) has a unique minimal solution for ever), i ~ > O.

Proof. Let tx > 0 be fixed. The p rob lem L(tx) can be rewrit ten as

Minimize xT(Mx+q) - - t z ~ l o g x i - - / z ~ logyj
j = l j = l

subject to (x, y) e Sint.

Since the objective funct ion to be minimized is a strictly convex funct ion on a

nonempty convex constraint set S~nt, a min imal solut ion is unique if it exists. In
order to see the existence of a solution to this p rob lem, we need only prove that
the set S~nt(w) of all the feasible solutions of the p rob lem L (#) with the objective
value not greater than ~o is nonempty , closed and bounded for some sufficiently
large w. The closedness of the set S~,lt(w) can be verified easily. By the assumpt ion
Si,t # 0, the set o f all the solutions to the LCP is bounded . (See [14].) Hence so is

the set

{(x, y) c S: x-r(Mx + q) <~ 0}.

Since the funct ion x--> xV(Mx+ q) is convex by Assumpt ion (iii), the set

{(x, y) c S: xT (Mx + q) <~ w}

is bounded for every w ~> O. This implies that the min imum of the quadrat ic funct ion
xT (Mx + q) over the subset

S(r) : {(x, y) c S: II(x, Y)II = r}

of S grows at least l inearly in r for sufficiently large r. Hence the min imum of the
objective funct ion of the p rob lem L(/x), which differs only the logar i thmic barr ier
terms

--/z ~ l o g x j - - / z ~ l o g y i
j--I j = l

f rom the quadrat ic funct ion xT(Mx+q) , over the set S(r) diverges as r tends to
the infinity. This ensures that the set Si.t(w) is b o u n d e d for any w. Finally, we see
by the assumpt ion Sint ¢ 0 that the set Sint (~o) is n o n e m p t y for sufficiently large w. []

M. Kojima et aL / A polynomial-time algorithm ,for LCPs 23

Theorem A.4. Let the L C P satisfy Assumptions (iii) in Section 1, and Sint ~ ~0. Let

(x(/~),y(/~)) denote the solution o f the system (1.6). Then (x(/~),y(/~)) is C 1 (con-

tinuously differentiable) at every i ~ > O.

Proof. It is easily verified under Assumptions (iii) that the Jacobian matrix of the
mapping H with respect to (x, y) is nonsingular and C 1 at every solution (x, y) of

the system (1.6) with g > 0. Thus, the desired result follows from the well-known
implicit function theorem (see, for example, [17]). []

Appendix B. Computing an exact solution of the LCP

We shall assume that an approximate solution (£,)~) ~ S of the LCP (1.1) satisfying
the relation (1.3) and show how we compute an exact solution by using this
information. We employ the notation z for the 2n-dimensional variable vector (x, y)
and A for the n x 2n matrix [E - M] , where E denotes the n x n identity matrix.
Then the feasible region S of the LCP (1.1) can be represented as the set of solutions
of the system of equations

R+ . (B.1) A z = q , z = (x , y) c 2,

Lemma B. Suppose ~ c S. Le t /~ = {k: ~k < 2-L}. Then there is a vertex z* o f S such that

z* = 0 for all k ~ I£. (B.2)

Proof. By Cramer 's rule, we know that each element of a basic feasible solution of

the system (B.1) can be represented as the ratio ~11/32 of the determinants of some
n × n subrnatrix of [A q]. From the definition (1.2) of L, we see the absolute value
of the determinant a of any n × n submatrix of [A q] is bounded by 2L/n 2. See,
for example, [21]. This implies that, for any basic feasible solution v,

v~=0 i fv~<nZ2 L

or equivalently

vi>ln22 -L i f v i > 0 (B.3)

holds. Since v is a vertex of S if and only if it is a basic feasible solution of
(B.1), (B.3) is true for any vertex of S. On the other hand, the point ~ can be
represented as the sum of the convex combination of some vertices v 1, v 2, . . . , v p
of S and some unbounded direction u of S such that

p p

g= ~ c jv;+u, ~ c j = l ,
j = l j ~ l

cj~>0 (j = 1 , 2 , . . . , p) .

24 M. Kojima et aL / A polynomial-time algorithm Jot LCPs

See, for example, [22, Theorem 2.12.6]. In view of Caratheodory 's theorem [20,
Theorem 2.2.12], we may assume that p ~< 1 + n. Hence we can find an index r such
that c~/> 1/(1 + n). We shall show that z* - v r satisfies (B.2). Assume on the contrary

that

Then

v ~ > 0 for s o m e k ~ / £ .

v ~ n 2 2 -L

because v r is a vertex of S so that (B.3) holds with v = v r. Since all the components
of the vectors v 1, v 2, . . . , v p and u are nonnegative, we obtain

P

Zk = ~ CjVJ+Uk>~CrVrk>~(1/ (l+n))n22-L>2 -L (since 2~<n).
j = l

This contradicts k c/£.

Suppose that ~= (£, 3~) c S satisfies the condition (1.3). For every ~ S, define

K (~) = { k : ~k<2 -L}

and

K(~) c = {k: Yk ~> 2-L}.

As we will see below, we can move from 2 to a point ~e S in O(n 3) arithmetic
operations such that K (E) c K(~) and that the set of columns of the matrix A with
indices in K(~) c is linearly independent. We now consider the system of equations

2 n A z = q , z c R + ,
(B.4)

z k = 0 for e v e r y k e K (g) .

Applying Lemma B, we see that this system of equations has a solution z* = (x*, y*),
and by the assumption (1.3) and K (~) c K(5) that (x*, y*) is an exact solution of
the LCP satisfying (1.4). On the other hand, since the columns of the matrix A
associated with indices in K(ff) c is linearly independent, tile solution z * = (x*, y*)
is unique and can be computed in O(n 3) arithmetic operations.

Now we shall show how to move from the point ~ e S to a point g ~ S such that
K (f) c K(~) and that the set of columns of the matrix A with indices in K(~) ° is
linearly independent. Let ff = ~. We consider the polyhedral set P(ff) consisting of

the solutions z = (x, y) of the system

A z = q , z ~ R 2n,
(B.5)

zk=~k for e v e r y k e K (~) .

By applying the Gaussian elimination to the homogeneous system

A u = 0, (B.6)

M. Kojima et al. / A polynomial-time algorithm Jbr LCPs 25

we compu te a so lu t ion u sat isfying uj = 0 (j c K (~)) and uk > 0 for some k c K (~) c

i f it exists, and a max ima l index subset K o f K (~)~ such tha t the set o f the co lumns

of the mat r ix A with the indices in K is l inear ly i nde pe nde n t . This requires O(n 3)

a r i thmet ic opera t ions . I f K = K (~) ° then ~ i tself is a des i red po in t in S. Otherwise

we have a so lu t ion u of the system (B.6) sat isfying UJ = 0 (j c K (~)) and uk > 0 for

some k c K (~) c. In this case we can move f rom ~ t oward the d i rec t ion - u to ob ta in

a po in t z c P(~) such tha t]K(z)] < [K(~)] by app ly ing a ra t io test to the so lu t ion

of the n o n h o m o g e n e o u s sys tem (B.5) with the so lu t ion u of the h o m o g e n e o u s system

(B.6). Here]K] denotes the number of e lements in an index set K. Then, rep lac ing

by z, we pe r fo rm pivot opera t ions to the h o m o g e n e o u s system (B.6) to genera te

a new so lu t ion u such that uj = 0 (j c K (~)) and Uk > 0 for some k c K (~) c if it exists,

and repea t the same p r o c e d u r e unti l we find a po in t 2 c S sat isfying the des i red

p roper ty . This i te ra t ion te rmina tes in at most n steps since 0<~ [K (z) I < IK(~)[<~ n.

The to ta l n u m b e r of p ivo t opera t ions , each o f which requires O(n 2) a r i thmet ic

opera t ions , is b o u n d e d by n. Each rat io test requires O(n) a r i thmet ic opera t ions .

Therefore , the total n u m b e r o f a r i thmet ic ope ra t ions amoun t s to O(n3) .

Remark . To es t imate the bi t compu ta t i ona l complex i ty for compu t ing such a ~ 6 S,

we assume that each e lement of 2 has been rep resen ted in a ra t iona l n u m b e r wi th

a d e n o m i n a t o r 2 °~L~ and a numera to r 2 °eL). Then we can execute each i te ra t ion

above such that each e lement of z is a ra t iona l n u m b e r with a d e n o m i n a t o r 2 °(L~.

I f we assume, in add i t ion , that all the e lements of z genera ted at each i te ra t ion

have numera to r s 2 °~L), we can conc lude that the to ta l n u m b e r o f bi t ope ra t ions

amoun t s to O (n 3 L (l o g L) (l o g l o g L)) because each p ivo t ing o p e r a t i o n requires

O(n 2 L(log L) (log log L)) bi t opera t ions and each rat io test O (nL(log L) (log log L))

bi t opera t ions . See also the R e m a r k at the end of Sect ion 5.

References

[1] J.R. Birge and A. Gana, "Computational complexity of van der Heyden's variable dimensional
algorithm and Dantzig-Cottle's principal pivoting method for solving LCP's," Mathematical Pro-
gramming 26 (1983) 316-325.

[2] S.J. Chung, "A note on the complexity of LCP: the LCP is strongly NP-complete," Technical
Report 792, Dept. of Industrial Engineering and Operations Engineering, The University of Michigan
(Ann Arbor, Michigan, 1979).

[3] G.B. Dantzig and R.W. Cottle, "Positive (semi-definite) matrices and mathematical programming,"
Report ORC 63-18, (RR) 13, University of Berkeley (California, 1963).

[4] Y. Fathi, "Computational complexity of LCPs associated with positive definite symmetric matrices,"
Mathematical Programming 17 (1979) 335-344.

[5] D.M. Gay, "A variant of Karmarkar's linear programming algorithm for problems in standard
form," Mathematical Programming 37 (1987) 81-90.

[6] P.E. Gill, W. Murray, M.A. Saunders, J.A. Tomlin and M.H. Wright, "On projected Newton barrier
methods for linear programming and an equivalence to Karmarkar's projective method," Mathemati-
cal Programming 36 (1986) 183-209.

26 M. Kojima et al. / A polynomial-time algorithm for LCPs

[7] C.C. Gonzaga, "An algorithm for solving linear programming problems in O(n 3 L) operations,"
in: N. Megiddo, ed., Progress in Mathematical Programming (Springer-Verlag, New York, 1988),
to appear.

[8] S. Kapoor and P.M. Vaidya, "Fast algorithms for convex quadratic programming and multicom-
modity flows," Proceedings of the 18th Annual A C M Symposium on Theory of Computing (Berkeley,
California, 1986) 147-159.

[9] N. Karmarkar, "A new polynomial-time algorithm for linear programming," Combinatorica 4 (1984)
373-395.

[10] L.G. Khachiyan, "A polynomial algorithm in linear programming," Soviet Mathematics Doklady
20 (1979) 191-194.

[1l] M. Kojima, S. Mizuno and A. Yoshise, "A primal-dual interior point algorithm for linear pro-
gramming," in: N. Megiddo, ed., Progress in Mathematical Programming (Springer-Verlag, New
York, 1988), to appear.

[12] C.E. Lemke, "Bimatrix equilibrium points and mathematical programming," Management Science
11 (1965) 681-689.

[13] O.L. Mangasarian, Nonlinear Programming (McGraw-Hill, New York, 1969).
[14] O.L. Mangasarian, "Simple computable bounds for solutions of linear complementarity problems

and linear programs," Mathematical Programming Study 25 (1985) 1-12.
[15] N. Megiddo, "Pathways to the optimal set in linear programming," Proceedings of the 6th Mathemati-

cal Programming symposium of Japan (Nagoya, Japan, 1986) 1-35.
[16] K.G. Murty, "Computational complexity of complementary pivot methods," MathematicaIProgram-

ruing Study 7 (1978) 61-73.
[17] J.M. Ortega and W.C. Rheinboldt, Iterative Solutions of Nonlinear Equations o]'Several Variables

(Academic Press, New York, 1970).
[18] J.S. Pang, I. Kaneko and W.P. Hallman, "On the solution of some (parametric) linear complemen-

tarity problems with application to portfolio selection, structural engineering and actuarial gradu-
ation," Mathematical Programming 16 (1979) 325-347.

[19] J. Renegar, "A polynomial-time algorithm, based on Newton's method, ['or linear programming,"
Mathematical Programming 40 (1988) 59-94.

[20] G. Sonnevend, "An 'analytic center' for polyhedrons and new classes of global algorithms for linear
(smooth, convex) programming," Proceedings of the 12th IFIP Conjerence on System Modeling and
Optimization (Budapest, 1985), to appear in Lecture Notes in Control and InJbrmation Sciences
(Springer-Verlag).

[21] A. Schrijver, Theory t~'Linear and Integer Programming (John Wiley & Sons, 1986).
[22] J. Stoer and C. Witzgall, Convexity and Optimization in Finite Dimensions (Springer, New York,

1970).
[23] K. Tanabe, "Complementarity-enforcing centered Newton method for linear programming: Global

method," Symposium, "New Method for Linear Programming" at The Institute of Statistical
Mathematics (Tokyo, 1987).

[24] L. Van der Heyden, "A variable dimension algorithm for the linear complementarity problem,"
Mathematical Programming 19 (1980) 328-346.

[25] P.M. Vaidya, "An algorithm for linear programming which requires O(((m + n)n 2 + (m + n) 1.5 n)L)
arithmetic operations," AT&T Bell Laboratories, Murray Hill (New Jersey, 1987).

[26] Y. Ye and M. Kojima, "Recovering optimal dual solutions in Karmarkar's polynomial time algorithm
for linear programming," Mathematical Programming 39 (1987) 305-317.

[27] Y. Ye and E. Tse, "A polynomial-time algorithm for convex quadratic programming," Working
Paper, Dept. of Engineering-Economic Systems, Stanford University (California, 1986).

