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This paper presents extensions and further analytical properties of algorithms for linear programming 
based only on primal scaling and projected gradients of a potential function. The paper contains extensions 
and analysis of two polynomial-time algorithms for linear programming. We first present an extension 
of Gonzaga's O(nL) iteration algorithm, that computes dual variables and does not assume a known 
optimal objective function value. This algorithm uses only affine scaling, and is based on computing the 
projected gradient of the potential function 

q ln(xTs)-- ~ ln(xj) 
j ~ l  

where x is the vector of primal variables and s is the vector of dual slack variables, and q = n +~fn. The 
algorithm takes either a primal step or recomputes dual variables at each iteration. We next present an 
alternate form of Ye's O(~/n L) iteration algorithm, that is an extension of the first algorithm of the 
paper, but uses the potential function 

q ln(xVs)-  ~ ln (x j ) -  ~ ln(s~) 
j - i  j-1 

where q = n +,fn.  We use this alternate form of Ye's algorithm to show that Ye's algorithm is optimal 
with respect to the choice of the parameter q in the following sense. Suppose that q = n + n r where t/> 0. 
Then the algorithm will solve the linear program in O(nrL) iterations, where r -  max{t, 1 - t} .  Thus the 
value of t that minimizes the complexity bound is t = 1/2, yielding Ye's O(v/n L) iteration bound. 

Key words: Linear program, polynomial time bound, affine scaling, interior-point algorithm. 

1. Introduction 

T h e  c u r r e n t  i n t e r e s t  in  i n t e r i o r  m e t h o d s  fo r  l i n e a r  p r o g r a m m i n g  a n d  its e x t e n s i o n s  

s t e m s  f r o m  t h e  s e m i n a l  w o r k  o f  K a r m a r k a r  [9] ,  w h o  p r e s e n t e d  a n  a l g o r i t h m  fo r  

l i n e a r  p r o g r a m m i n g  t h a t  r e q u i r e s  a t  m o s t  O(nL)  i t e r a t i o n s .  T h e  w o r k  p e r  i t e r a t i o n  

i n v o l v e s  s o l v i n g  a l e a s t - s q u a r e s  p r o b l e m ,  w h i c h  r e q u i r e s  O ( n  3) o p e r a t i o n s ;  h o w e v e r ,  

b y  s o l v i n g  t h e  l e a s t - s q u a r e s  p r o b l e m  i n e x a c t l y  in  O ( n  2) o p e r a t i o n s  b y  p e r f o r m i n g  
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rank-1 updates, Karmarkar gave a clever argument that reduces the overall com- 
plexity bound to O(n3'SL) iterations. Todd and Burrell [14] suggested that 
Karmarkar's algorithm could be implemented with a standard line-search at each 
iteration, with a substantial potential for decreasing the actual iteration count, at 
the cost of an increase in the complexity bound by x/~ to O(n4L) operations. 
Anstreicher [2] has shown a safeguarded line-search that retains the overall com- 
plexity bound of O(n3 5L) iterations, but it is not clear whether this method is more 
or less efficient in practice than a standard line-search. Karmarkar's algorithm and 
all of its projective transformation variants and extensions (Todd and Burrell [14], 
Anstreicher [1], Gay [6], Rinaldi [13], Ye [17] and [5], for example) all retain the 
O(nL)  iteration count. Gonzaga [8] has presented an O(nL)  iteration count algorithm 
that uses a potential function but does not perform projective transformations. 

Renegar [12] was the first to develop an interior method for solving a linear 
program with an O(~/~ L) iteration count. The algorithm works by tracing the central 
trajectory (see Megiddo [10] and Bayer and Lagarias [4]) with Newton steps. Other 
central trajectory path-following algorithms with the O(x/-ff L) iteration count have 
been developed since then (see Gonzaga [7], Monteiro and Adler [11], Vaidya [16] 
and Todd and Ye [15], among others). If the initial feasible solution to the linear 
program is not near the central trajectory, the problem is artificially augmented at 
the start so that the initial solution is near the central trajectory, and so the algorithm 
can be initiated. Because the iterates must stay close to the central trajectory, the 
use of a line-search does not appear as promising for increasing the performance 
as it does for projective transformation-based algorithms. Nevertheless, the worst- 
case complexity bound on the iteration count for a central-trajectory path-following 
algorithm is a x/~ improvement over the bound for a projective transformation 
algorithm. 

Recently, Gonzaga [8] presented an O(,/-ff L) iteration potential function based 
interior-point algorithm for linear programming that is based only on primal scaling 
and projected gradients of the potential function. However, Gonzaga's algorithm 
requires prior knowledge of the optimal value. In [ 18, 19], Ye augmented Gonzaga's 
approach and developed an interior-point algorithm that has the advantage of the 
central trajectory methods (an O(x/~ L) iteration count) along with the advantages 
of the projective transformation methods (the method can be initiated directly from 
any interior solution and the use of a standard line-search appears promising). 

In this paper we present extensions and further analysis of both Gonzaga's 
algorithm [8] and Ye's algorithm [19]. In Section 3, we present an extension of 
Gonzaga's algorithm for linear programming that does not make the restrictive 
assumption of a known optimal objective function value. Performance of the 
algorithm is measured with the potential function 

F(x ,  s) = q ln(xVs) - ~ In(x:) 
j=l 

where x is the vector of primal variables and s is the vector of dual slack variables, 
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and q = n +x/~. At each iteration, the algorithm either takes a primal step or 

recomputes the dual feasible solution. Primal iterates decrease the potential function 

by at least 0.18, whereas dual iterates decrease the potential function by at least 

0.2x/-n. This leads to an overall iteration bound of O(nL) iterations. 

In Section 4, we modify  the algorithm of Section 3 to obtain an alternate form 

of Ye's algorithm [19]. Performance of the algorithm is measured with the pr imal-  

dual potential  function 

G(x, s )= q I n ( x T s ) -  ~ l n ( x j ) -  ~ In(s/) 
j = l  j = l  

where again q = n +,¢~. Like the algorithm of Section 3, at each iteration this 

algorithm either takes a primal step or recomputes the dual feasible solution. Both 

primal and dual iterates decrease the potential function by at least 0.02, and this 

leads to an overall iteration bound of O(,/-~ L) iterations. 
The analysis of  Section 4 suggests that the factor of  ~-~ plays a very important 

role in the potential function parameter  q = n + v/-n. This is examined from a com- 
plexity point of  view in Section 5, where it is shown that q = n + ~/~ is optimal in 

the following sense. Suppose that q = n + n t, where t/> 0. Then the algorithm will 

solve the linear program in O(nrL) iterations, where r = max{t, 1 - t}. Thus the value 

of  t that minimizes the complexity bound is t = l ,  which yields the O ( ~  L) iteration 

bound of Ye's algorithm of  Section 4. 

Section 5 contains concluding remarks. 

2. Notation, assumptions, and preliminaries 

I f  x or s is a vector in Nn, then X or S refers to the n x n diagonal matrix with 

diagonal entries corresponding to the components  of  x or s. Let e be the vector of  

ones, e = (1, 1 , . . . ,  1), where typically the dimension of  e is n. I f  x c R n, then Ilxllp 
refers to the p-norm of  x, where 1 ~< p ~ oe. 

Our concern is with solving a linear program of the form 

LP: minimize crx 

subject to A x  = b, 

X~>0, 

where for convenience, we assume that A is m x n with rank m. We assume (i) that 
LP has a strictly positive feasible solution ~ > 0, and (ii) that the set of  optimal 
solutions of  LP is nonempty  and bounded.  The dual of  LP is given by 

LD: minimize bT~ 

subject to AT~ - + s  = c, 

s~>0. 
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The second assumption above is equivalent, via a theorem of the alternative, to the 
assumption that there exists a solution (#, g) to LD with g>  0. 

Let ff be a strictly positive feasible solution to LP, and consider the rescaled 
primal and dual pair 

LP)~: minimize c-r.~z 

subject to AXz = b, 

z~>0, 

LD.~: maximize bTer 

subject to )~ATer + t = Xe, 

t>~0. 

Note that x is feasible for LP if and only if z = ){ - ix  is feasible for LPX, and that 
(7r, s) is feasible for LD if and only if (7r, t) = (~',){s) is feasible for LD)(. If ~ and 
(~, g) are primal and dual feasible, then the duality gap between eVff and ~-Vb is 
given by eT2 -- ~'Tb = ~Tg. We will consider two types of potential functions for LP. 

The first is a primal potential function, given by 

F(x, s) = q l n (xTs ) -  ~ ln(xj) (2.1) 
j - -1  

where x c P = { x ~ " l A x = b , x > ~ O }  and s c D = { s ~ R n l s ~ O  and ATzr+s=c for 

some ~" ~ W"} and q is a given parameter. Note that the dual slack variables enter 
F(x, s) through the duality gap term only. The primal-dual potential function is 
given by 

n 

G(x, s) = q ln(xVs) - Y~ ln(xj) - ~ ln(sj). (2.2) 
j = l  j - -1  

This type of  potential function was first introduced in Todd and Ye [15], and forms 
the basis of Ye's algorithm [19]. 

It is elementary to verify that scaling LP to LP)~ translates the primal potential 
function F(x, s) by an additive constant 

ln(~j), 
j = l  

and that this scaling leaves the primal-dual potential function G(x, s) unchanged. 
Suppose L is the bit-size of a given instance of LP, and suppose we have an 

algorithm for LP that reduces the primal potential function F(x, s) by an amount 
greater than or equal to ~ at each iteration, where 6 > 0 is a fixed quantity. Then 
as in Gonzaga [8], the algorithm can be used to solve LP in O((q/~)L) iterations, 
as long as the initial values (x °, s °) of (x, s) satisfy F(x °, s °) <<-O((q/6)L). This is 
because in order to round to an optimal solution to LP, we need (xTs)~< 2 -L, and 
the bound on the reduction of In xTs through the potential function F(x, s) is 
proportional to 3, and inversely proportional to q. However, if instead we use the 
primal-dual function G(x, s) we have: 
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Proposition 2.1 (see also Ye [19]). I f  an algorithm for solving LP reduces the 

primal-dual potential function G(x, s) by an amount greater than or equal to ~ at 

each iteration, where 6 > 0 is a fixed quantity, then the algorithm can be used to solve 

LP in O [ ( ( q - n ) / 6 ) L ]  iterations, so long as the initial feasible primal-dual values 

(x °, s °) satisfy G(x  °, s °) <~ O[((q - n) /6)L] .  

The proof of Proposition 2.1 follows from the inequality in the following remark: 

Remark 2.1. If  x > 0 and s > 0 are vectors in •', then 

n ln(xTs) - ~ ln(xfl - ~ ln(sj)/> n ln(n). 
j : l  j = l  

Proof. Let t = Xs. Then 

n ln(xXs)-- ~ ln(xj)-- ~ ln(sj)= n ln(eXt)-- ~ In(tfl. 
j=l j-1 j-1 

However, 

(t~/eTt)<-(1/n)" 
j--1 

because the vector t = e is a maximizer of the product term. Thus, 

ln(tJeTt)<~ - n  In(n) 
j=l 

whereby, 

. ln(n)  n l n ( e ' t )  - l n ( t j )  = n l n ( x T s )  - l n ( x j )  - -  I n % ) .  
j - -1  j = l  j --1 

(2.3) 

[] 

Proof of Proposition 2.1. After O ( L ( q - n ) / ~ )  iterations of the algorithm, the 
current primal-dual iterates (~, g) satisfy 

and so 

G(~, g) <~ - ( q  - n)L, 

q ln(xTs) -- ~ ln (~ j ) -  ~ ln(~) <- - ( q  - n)L. 
j = l  j = l  

However, by combining the above with inequality (2.3), we obtain 

(q - n) ln(gT~) <~ --(q -- n ) L -  n ln(n), 

and so ln(~Tg) ~< -L ,  whereby ~ and ~ can be rounded to optimal primal and dual 
solutions. [] 

3. An extension of Gonzaga's algorithm for LP that converges in O(nL) iterations 

In this section we consider an extension of Gonzaga's algorithm [8] for linear 
programming which uses the primal potential function F(x, s) of (2.1). In [8], 
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Gonzaga presented an O(nL) iteration algorithm based on a primal potential function 
where the optimal objective function value is presumed known. Herein, we remove 
this restrictive assumption, and demonstrate a primal-dual property underlying 

Gonzaga's methodology that will be used in primal-dual potential function based 
algorithms in Sections 4 and 5 of  this paper. 

Let us assume that ~ and (g', g) are primal and dual feasible solutions, and that 
> 0. Because scaling does not affect the potential function, we assume that ~ = e, 

and so the current duality gap is eTg. Letus  now compute the projection ofVxF(e, g), 
the gradient of F(x,  s) at (e, g) in the x=coordinates, onto the null space of A. The 
gradient of  F(x, s) in the x-coordinates at (e,. ~7)is given by 

g = VxF( e, ~)= ( e~s) ~ - e  (3.0) 

and its projection onto the null-sace of A is given by 

e ] 

If  we replace (eTg) in the above expression by the unknown quantity A, we: obtain 
the direction function 

where A is a positive scalar. 
From (3.0) and (3.1), the projected gradient is d(eTg). Gonzaga's algorithm [8] 

is motivated by demonstrating that II d (eTa) t1~ I> 1. Herein, we alter this condition 

to analyze the consequences of the condition [ld (eXg) 112 >~ 0.8, where the number 0.8 
was fairly arbitrarily chosen, and in fact any fixed scalar in the range (0, 1) would 
do. If d(eTg) satisfies Nd(eTg)ll2>~o.8, then the potential function F(x, s) can be 
reduced by at least a constant amount of  0.18 by taking a step in the direction 
--d(eTg), from the current point ff = e, as the next proposition shows. 

Proposition 3.1. Let d= d(erg). I f  Ildll~>0.8, then 

F( e-0 .38d/  Ildll~, g) ~ F( e, g)-0.18. 

Proof. Let us consider F(e-ad/lld[12, ~), where 0<~ a < 1. Then 

F(e - ad/II dilL, g) - F(e, ~) 

= q ln((eTg) - asTd/II dl12) - ~ ln(1 - a~/II  dill) - q ln(e T~) 
j = l  

_ _  _ _ lntl-ll   7 .  q in  1 ( e~ ) l l d l l J  J:, 
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By the local propert ies  of  the logari thm funct ion given in the Appendix  in Proposi t ion 

A.I., we have 

F(e-~d/lldll2, g)- F(e, g) 
( - q d a  o 

-< \(eTe)lldll2) +Zj=i ~ / I I  rill2 + j=l ~ (~/II  d112)=2(1 - ~) 

OL __ q OL 

-11•12 ~ g + e  d-~ 2 ( l _ a )  

- - a g T d  a 2 

Ilgll2 2(1-c~) 
where g is the gradient  of  F(x, s) at (e, g) in the x-coordinates  (see (3.0)). However ,  
not ing that  gTd = dWd = II d1122, this last expression becomes 

(a)2 (3.2) F(e- ad/II dl12, s) - F(e, g) <~ - a  II dl12 + 2(1 - o~)" 

U p o n  setting a = 0.38 and noting that  Ildl12~ > 0.8, we obtain F(e-ad/lld[12, g)- 
F(e, g)<~-0.18. [] 

In order  to analyze the case when II dll: < 0.8, we proceed as follows. Noting that  

d(A)=[I-AT(AA T) 1A]((q) c-e) ,  

we expand  and rewrite this expression as 

AT(AAT)-IA(c-~e)+(~)(e+d(A))=c (3.3) 

and define 

,rr(A)=(aa T) ~A(c-~e) (3.4) 

and 

s(A) = ( ~ ) ( e + d ( Z l ) ) .  (3.5) 

Then  rr(A) and s(Zl) satisfy ATcr(Zl) + s ( A )  = c and so are dual feasible if s(A) t>0. 
Fur thermore ,  f rom (3.5), s(A) >1 0 if  II d(a)112--< 1 and A > 0. Thus, if II d (eTg)[[2 < 0.8, 
then s(eTg)>-O and rr(eTg), s(eTg) are dual  feasible. Next  note  f rom (3.1) that 
lim~o]l d(zl)112 = +oo, unless [ I  - AT(AAX)-IA]c = 0, in which case cTx is constant  
on the feasible region o f  LP and ~ = e solves LP. Thus, by the continui ty of  d(A)  
in the range A c (0, oo), if [[d(eTg)l[2 < 0.8, there exists a value zl e (0, eVg) such that  

Ild(~i)ll2= 0.8. I f  we set ¢? = ~-(z[) and ~7= s(z~), we then obtain a 0.2ff-ff decrease 
in F(x, s) if  q/> n +~;-n, as the next  lemma demonstrates .  
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Lemma3.1 (changeindualvariables) .  Suppose q ~ n + x/-ff. Suppose lid(eTa)J12<0.8, 
and that cTx is not constant on the feasible region of  LP. Let A ~ (0, eTg) satisfy 
IId(z~)ll2--o.8 and let ~r = ~( ,~ ) and ~= s( A ). Then ( ~r, ~) is feasible for LD and 

F( e, ~ ) -  F( e, g)<~ -0.2x/n. 

Proof. Note that from (3.5), 

eT ~ = eTS(~) = A [eTe + eTd(z~)]" 
q 

However, eTe = n, and eTd (zl) <~ 11 d (Z[)I11 ~<'Sll d (zi)[12 = 0.8,/-ff, so that 

r ~ - -  eTs 
e ~ - - ( n + O . 8 ~ / n ) ~ - - ( n + O . 8 x / n ) .  

q q 

Therefore 

q / 

Next note that 

 eT,, / / 
F ( e , g ) - F ( e ,  2 ) = q l n [ - ~ s ) < ~ q l n  ~<qln 1 

q / q / 

<~ - 0.2~-~. [] 

Summarizing Proposition 3.1 and Lemma 3.1, we have: 

Remark 3.1. Assume q = n + ~/-n. Then: 
(a) If Ild(eTg)ll2~>o.8, we can decrease F(x, s) by 0.18 by taking a step in the 

primal in the direction --d(eTg). 

(b) If IId(eTg)ll2<o.8, we can decrease F(x, s) by 0.2,£-~ by replacing g by 
s =  s(zl), where zl~ (0, eTg), and IId(~)ll=-- 0.8. 

This leads to the following extension of Gonzaga's algorithm for solving LP. Let 
(A, b, c) be the data for the LP, let £ and (#, ~) be initial primal and dual solutions, 
where 2 > 0, and let /x > 0 be the optimality tolerancee. We have: 

Algorithm 1. (A, b, c, 2, g, ~ , /z)  
Step O. Initialize. 

Set q=n+,,/-n,  T=0.8.  
Step 1. Test for optimality. 

If £Tg ~</~, stop. 

Step 2. Rescale. 
Set A = AX,  ~= Xc, T= X~. 
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Step 3. Compute direction function. 

I f  I I d ( e T f ) l l 2 ~  > % g o  to Step 5. Otherwise go to Step 4. 
Step 4. Recompute dual variables. 

Solve for z[~ (0, eT?) such that z[ is the smallest value 

IId(~)l12 = ~'. 
Set 

7 = ( ~ ) ( e + d ( , ~ ) )  and ~'=(fi ,  fi, x ) - l f i , [ ~ - - ( ~ ) e ] .  

Set ~- = -k and g = )~-1 ?, and go to Step 1. 
Step 5. Take step in primal variable space. 

Set d =  d(eT?). Set S= e-O.38d/lldll 2. 
Set 2 = )~ ,  and return to Step 1. 

211 

of A for which 

Note that in Algorithm 1, that at Step 2 T is the scaled version of the current dual 
slack g; (#, g) is feasible in LD, and (~-, {) is feasible in LDX, and e is feasible in 
LP)~. At the end of Steps 4 and 5, respectively, the dual and primal variables are 
then rescaled to the original problems LD and LP, respectively. Note also that the 
value of y = 0.8 was chosen somewhat arbitrarily; instead, one could replace 0.8 by 
any constant y ~ (0, 1). The step length in Step 5 would have to be adjusted, however. 

Next, note that after the algorithm leaves Step 4, the next direction function d (A) 
will be the same as the current direction function. Thus, there is no need to re-solve 
the least squares problem in Step 3 at the next iteration. Furthermore, at the next 
iterate, we will have IId(eT?)]]2~>0.8 in Step 3, so we could just go straight to 
Step 5 directly. 

Note that at Step 5, we could replace Y= e-O.38d/I]dl] 2 by Y= e - a d  where a 
is determined by a line-search that (inexactly) minimizes the potential function 
F ( e -  ad, t-) over the range a c (0.38/Ildll2, oo). Also, the choice of A in Step 4 could 
be chosen by a line-search of A with the potential function F(e, (A /q ) [e+d(a ) ] )  
where A c (0, eT?). 

Finally, note that the algorithm need not be started with a dual feasible solution. 
In fact, it need only be started by a lower bound B on the primal objective value. 
One would then replace the expression for d(A) in Step 3 by 

e 1 
as the two expressions are equivalent. Also, one would replace eTf by cT2--B in 
Steps 3, 4 and 5. The algorithm must eventually compute feasible dual variables, 
unless B is the optimal value of LP. 
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Finally, note that solving for z[ in Step 4 is equivalent to solving a quadratic form 
in the quantity ( l /A)  and so can be done exactly (within roundoff error) by using 
the quadratic formula. This is reminiscent of the dual-variable update procedure 
presented in Anstreicher [1], that also solves for a vector of appropriate norm in 
order to update dual variables. 

From Remark 3.1, and the invariance of the potential function F(x, s) (modulo 
an additive constant) under scaling, we have: 

Lemma 3.2. I f  (x °, s °) are the initial values of ~ and g in Algorithm 1 and F(x °, s °) <~ 
O(nL), then Algorithm 1 solves LP in O(nL) iterations. 

Proof. From Remark 3.1, each iteration reduces the potential function F(x, s) by 
at least 6=0.18,  and q=n+~/-n<~2n, so q = O ( n ) .  Thus after O(nL) iterations, 

Algorithm 1 solves LP. [] 

4. An alternate form of Ye's O(~/n L) iteration algorithm 

In this section, we modify the ideas and the algorithm presented in Section 3, by 
using the primal-dual potential function G(x,s) of (2.2) with q=n+~/-n. Our 
principal motivation for this algorithm is the work of Ye [ 19]. The resulting algorithm 
is an alternate form of  Ye's algorithm [19] which attains Ye's O(v/-n L) iteration 
bound. This algorithm's control logic for when to take primal versus dual steps at 
each iteration is slightly different from Ye's algorithm. Except for this minor 
difference, the two methods are identical. 

We begin the analysis by returning to the analysis developed at the start of Section 
3. We assume that £ and (#, g) are our primal and dual feasible solutions, that ff > 0 
and that the LP has been rescaled so that ~ = e, so that the current duality gap is 
eXg. We compute the direction function d(A) as in (3.1), and compute d =  d(eT£) 
which is the projected gradient of G(x, s) in the x-coordinates, at (x, s ) =  (e, g). 
Then if [] d (e-rg)II 2 ~> 0.22, we can achieve a constant decrease in the potential function 
G(x, s) by taking a step in the direction -d(eXg) from the current primal feasible 

point e, as Proposition 4.1 shows. 

Proposition 4.1. Let d= d(eTg). Then if IId11~>~0.22, 
G(e-~d/Ildll~, G(e, g)-0.02. 

Proof. The proof  is exactly the same as for Proposition 3.1. At the end of the proof  
we use a =~ to obtain the result. [] 

If  IId(eT )ll:<0.22, however, we seek to modify our dual solution. Note that at 
A = eTg, 
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is "close" to a scaled version of  the vector e because Ild(zl)l12<0.22. Thus, s(A) is 
nicely centered, as the next two lemmas demonstrate. 

Lemma 4.1. If s=(A/q)((e+d)), where Ildl12<0.22, then Ils-(eTs/n)e[12<~ 
0.565(eXs/n). 

Proof. If s = (A/q)((e+ d)), then 

eTs = ~ (n A- eTd) >Zl (n -- lid 110 ~>__a (n -,/-gild 112) ~>a__ (n - 0.22~/-~) ~>_A (0.78n). 
q 

T h u s  

q \ 0 .78n /  

Next note that 

Thus, 

q q q q 

s - ( ? ) e = A - - ( e + d ) - ( A ~ ( n + e T d ~ e  A [ d - ( ~ ) e ]  
q \ q / \ ~ /  = q  • 

(?) 044  
s -  e 2 - q  Ildl[2+ -qEtldll2+[Idll2] <~ q 

Combining (4.1) and (4.2) yields the desired result. [] 

(4.1) 

(4.2) 

Lemma 4.2. 

j = l  

If s=A/q(e+d),  where [Idl12<0.22, then 

ln(sj) ~> n I n ( ? ) - 0 . 3 6 7 .  

Proof. Let 
from Lemma 4.1. 

Thus, from Proposition A.1 of the Appendix, 

ln( r j )~  > ~ ( r j - 1 ) - j ~  1 ( r j -1 )2  _ 
j=~ j=l .= 2(1-0 .565)  

Next note that 

~ ln(sfl=~ l n ( r j ) + n l n ( ? ) > ~ n l n ( ? )  -0.367. 
j = l  j = l  

r = (n/eVs)s. Then eZr = n and [[r-  ell2 = (n/eTs)[[s- (eTs/n)e[[2 ~ 0.565, 

lit-ell 2_ (0.565) 2 
0.87 0.87 

[] 

- - ~  -0.367. 

Suppose that [1 d (eT:~)[12 < 0.22. Just as in Section 3 (but with 0.8 replaced by 0.22), 
we seek a value of zl ~ (0, eTg) for which [[d(Zl)[[2 = 0.22. Because lima~o[]d(A)[]2 = 
+ ~  unless cTx is constant on the feasible region of LP (and so ~ = e solves LP), 
then such a value ~ must indeed exist. We then set £=  s(zl) and ~ = ~r(A) where 
s(A) and ~(A) are given by (3.4) and (3.5). The note that g and ~ are feasible for 
the dual LD. The next lemma demonstrates that replacing g by ~ results in a fixed 
decrease in the potential function G(x, s) of at least 0.02, if q = n +x/-ff. 
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Lemma 4.3 (potential function decrease from change of dual variables). Suppose 

q = n +,,~-if, and 11 d (eT£)]] 2 < 0.22, and that cXx is not constant on the feasible region 
o f  LP. Let zle (0, eTg) satisfy ]]d(A)112=0.22 and let ~= s(~) and ,k = ~r( ~ ). Then, 

( ~r, ~) is feasible for  LD, and 

G(  e, 7) - G(  e, g) <- -0.02. 

Proof. As in Section 3, it is straightforward to check that AT7~ + g = c, and [] d (z~)112 = 
0.22 implies that g>  0, so (~?, g) is dual feasible. Now we compute 

However, from Lemma 4.2, we have 
/ T ' \  

j - i  , , . . j  - -  1 i 

Combining (4.3), (4.4) and (4.5) yields 
/ ~ T ~ \  

However, 
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Intuitively, the proof of Lemma 4.3 works for two reasons. First, g is "close" to 
the vector (eTg/n)e, as shown in Lemmas 4.1 and 4.2. Thus, the barrier function 

n ~j=l ln(~) is well-controlled. Second, by requiring that we adjust z[ downward from 
eTg to a point where IId(z~)ll~--0.22, we guarantee that eTg is sufficiently less 
than e T g. 

Summarizing Proposition 4.1 and Lemma 4.3, we have: 

Remark 4.1. Suppose q = n + ~-n Then 
(a) If Ild(eTg)l12>~0.22, we can decrease G(x, s) by 0.02 by taking a step in the 

primal variables in the direction --d(eTg). 
(b) If  II d(eTe) 112 < 0 .22 ,  w e  can decrease G(x, s) by 0.02 by replacing g by g = s(Z~) 

where z[ c (0, eTg) satisfies IId( )l12-- 0.22. 

This leads to the following algorithm for solving LP, which is an alternate form 
of Ye's algorithm [19]. Let (A, b, c) be the data for the LP, let )7 and (g-, g) be initial 
primal and dual solutions, where )7 > 0 and let /x > 0 be the optimality tolerance. 
We have: 

Algorithm 2. (A, b, c, x, s, 7r,/x). 
Step O. Initialize. 

Set q = n + v/~, 3, = 0.22. 
Step I. Test for optimality. 

If gTg ~< tZ, stop. 

Step 2. Rescale. 
Set A =  AJ~, g= 37c, ~-= J~g. 

Step 3. Compute direction function. 

If IId(eT?)ll2>~ 3,, go to Step 5. Otherwise go to Step 4. 
Step 4. Recompute dual variables. 

Solve for ~ c  (0, eTf) such that zl is the smallest value 

IId(zi)[ l= = 3,. 
Set 

T= ( ~ )  ( e+  d(~) )  and 7~ = (/TI/TiT)-IA [ g-- ( ~ )  e l .  

Set ~-= ~ and g = ) (  17, and go to Step 1. 
Step 5. Take step in primal variable space. 

Set d =  d(eT~'). Set a = 1-1/x/1+23, .  

Set i =  e -~d / l l a l l 2 .  
Set )7 = 3~, and return to Step 1. 

Note that in Step 5, a = ~ because 3' = 0.22. 

of A for which 
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Regarding the complexity of Algorithm 2, we have: 

Theorem 4.1 (complexity of Algorithm 2). I f  (x °, s °) are the initial values of ~ and 
in Algorithm 2 and G(x °, s °) <~ O(V~ L), then Algorithm 2 solves LP in O(v~ L) 

iterations. 

Proof. The proof  is an immediate consequence of Proposition 2.1. From Remark 
4.1 and the invariance of  the potential function G(x, s) under scaling, we have that 
at each iteration G(x, s) is reduced by at least 8 = 0.02. Because q = n +~/-~, then 
( q - n ) = v ~ ,  and so by Proposition 2.1, Algorithm 2 converges in O(V~L)  
iterations. [] 

The algorithm of Ye [19] was the first algorithm with a complexity bound of 
O(x/~ L) iterations that does not explicitly require a condition that the iterates lie 
near the central trajectory. Algorithm 2 is an alternate form of Ye's algorithm [19] 
for linear programming. Note that both algorithms compute the same primal and /or  
dual directions at each iteration. And both algorithms work on the same principal 
for when to take a primal versus a dual step at each iteration, namely: either the 
projected gradient of the potential function is sufficiently large, or the current iterate 
is sufficiently centered. The mechanics of deciding between the primal and the dual 
step are slightly different, however. In Algorithm 2, this choice depends only on 
the norm of d(eX~). 

Note Algorithm 2 is almost the same as Algorithm 1, but with a different value 
of y in Step 0 and consequently a different step length a in Step 5. The smaller 
value of y in Algorithm 2 suggests that it will update dual variables less frequently 
than in Algorithm 1, and so will control the influence of the duality gap d = gx£ 
on the projected gradient direction d(A) less exactly. Perhaps this is a contributing 

factor to the improved complexity bound. 
Most of the remarks that follow Algorithm 1 at the end of Section 3 are also valid 

for Algorithm 2. If  the algorithm recomputes dual variables in Step 4, one can then 
proceed directly to Step 5 because d(eT£)/> y at the end of Step 4 and there is no 
need to recompute the least-squares solution of  Step 3. As in Algorithm 1, one can 
augment Steps 4 and 5 by a line-search of the potential function G(x, s). Also, one 
need not start the algorithm with a dual feasible solution. In fact, only a lower 
bound on the optimal objective value is needed (see Section 3 for details). 

5. On the optimality of  q = n + ~/n in Algorithm 2 

In Section 4 we have presented an O(x/n L) iteration algorithm for LP which is an 
alternate form of Ye's algorithm [19], by choosing the value q=n+,J-~ in the 
primal-dual potential function G(x, s) of (2.2). In this section, we consider modify- 
ing Algorithm 2 in two ways: by setting q =  n+n r, where t~>0, and by setting 
y = 0.22n -k where k i> 0. We will prove: 
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Theorem 5.1 (complexity of  Algorithm 2 with q = n +  nt). 

Algorithm 2 and 3" is chosen by 

_ ~'0.22, t~>½, 
3"-- ~0.22n t-1/2, t<~½, 

then the complexity of  Algorithm 2 is O(nrL) iterations, where r = max{t, 1 - t}. 

217 

I f  q = n + n t is used in 

Remark 5.1. The value of  t that minimizes the complexity bound of the number  
of  iterations is t =½, and so Algorithm 2 with q = n + v ~  and 3' =0.22 is optimal in 

this measure. A different discussion of the suggested optimality of  q = n + ~ (in a 
different context) can be found in Todd and Ye [15]. 

Remark 5.2. Algorithm 2 can be executed with q-= n +  1, with a complexi ty  of  

bound O(nL) iterations, by setting t = 0 and 3/= 0.22/~/~. This improves the com- 

plexity bound of Gonzaga  [8], whose results imply an O(n2L) iteration bound if 
q = n + 1 for a primal potential  function as in (2.1). 

We will first prove Theorem 5.1 for the case t~>½. The case t<~½ is a bit more 
involved. 

Proof of Theorem 5.1 for t/> ½. Suppose Algorithm 2 is implemented with q = n + n '  

and y=0 .22 .  Then if the algorithm takes a primal step (Step 5), Proposition 4.1 

ensures that the potential function G(x, s) decreases by at least 6 = 0.02, as this 
result is independent  of  the value of q. 

Suppose instead that Algorithm 2 takes a dual step (Step 4). By rescaling if 
necessary, we assume that the current primal and dual slack vectors are (2, g) = (e, g) 

and let g be the recomputed dual slack vector. Retracing the proof  of  Lemma 4.3, 
we reach line (4.7) which states 

G(e, ~) - G(e, 5) <<- - ( q  - n) (q - n - 0 . 2 2 v ~ ) +  0.367 (5.1) 
q 

= nt(nt-O'22"f-ff)+0.367 
n + n  t 

0 . 7 8 n  2t 
~< 4-0.367. (5.2) 

n q - n  t 

I f  t ~< 1, the denominator  above is bounded from above by 2n, so G(e, g) - G(e, 5) 
-0 .39n2 ' -1+0.367<~-0 .39+0.367~<-(0 .02) .  I f  t~>l, the denominator  above is 
bounded from above by 2n', so G(e, g) - G(e, g) ~< -0 .39n '  + 0.367 ~< -(0.02) if t/> 1. 
In either case, we obtain a dual improvement  of  at least ~ = 0.02. Thus the overall 
complexity of  the algorithm, from Proposition 2.1, is O(n 'L) .  [] 

We now proceed to piece together the proof  Theorem 5.1 in the case t<~½. By 
rescaling if necessary, we assume that the current primal and dual slack vectors are 
(2, g) = (e, g). We first analyze a primal step. 
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Proposition 5.1 (primal step improvement). Let d=d(eT~) .  Suppose Ildll2>~ 7 =  
0.22n t-~/2. Then by setting a = 1-1/lx/T-+2y, we obtain 

G( e - ad / l[ d l]2 , ~) <~ G( e, g)-0.02n 2' ~. 

Proof. The proof  proceeds identically to that of Proposition 3.1, which is of  the 
same form (with 0.8 replaced by y = 0.22nt-~/2). Tracing the proof  of Proposition 
3.1 to line (3.2) we obtain 

2 

G(e_ad/lldll2,  g)_G(e,g)<~_o~lldll2_~ o~ 
2 ( l - a ) "  

However, lid]J2/> 3' = 0.22n '-1/2. Substituting this value of 3' in Proposition A.2 of 
the Appendix, we obtain 

G(e-~d/J ld l l2 ,  g)-G(e,g)<~-O.O2n 2~ '. [] 

We now analyze a dual step improvement. We proceed by modifying Lemmas 
4.1 and 4.2. 

Lemma53 .  I f  s= A/  q(e+ d), where Iid112<3'<1, then 

s - ( ~ ) e  2 < (12-~Yy) ( ~ )  . [] 

Lemma 5.2. I f  s = A / q( e + d), where Iid112<3'<½, then 

j=l 2 ( 1 - f l ) '  w h e r e / 3 = l - y "  
[] 

The proofs of Lemmas 5.1 and 5.2 are identical to the proof  of Lemmas 4.1 and 
4.2, with 3' substituted for 0.22 in Lemmas 4.1 and 4.2, and/3 substituted for 0.565 
in Lemma 4.2. 

We now are in a position to prove a result regarding potential function improve- 
ment if we take a dual step. 

Lemma 5.3 (dual step improvement). Suppose q = n  + n' where O<~t<~½. Suppose 
]l d(eTg) 112 < 3, = 0.22n'-1/2, and that cTx is not constant on the feasible region of LP. 
Let ,~ ~ (0, e X g) satisfy ]]d(Z~)l]2= 3, and let ~ = 7r( ~ ) and g= s(zl). Then ( ~r, ~) is 
feasible for LD, and 

G( e, ~) - G( e, g) ~ -0.02n 2~-1. 

Proof. Parallelling the proof  of Lemma 4.3, we obtain 

G(e, ~ ) -  G(e, g) = q In ~ -j-~l ln(~) + j ~  ln(~). (5.3) 
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Combining the above with inequality (4.5) and Lemma 5.2, we obtain 

where / 3 = 2 7 / ( 1 - 7 ) .  However, / 3 2 / [ 2 ( 1 - / 3 ) ] = 2 7 2 / [ ( 1 - 7 ) ( 1 - 3 7 ) ]  and 7 = 
0.22n ~-l/z <~ 0.22, so that 

Combining (5.4), (5.5) and (5.6) yields 

G ( e , ~ ) - G ( e , g ) < ~ - O . 3 9 n  2t 1+0.365n2'-a~-(O.O2)n2~-1 . [] 

Proof of  Theorem 5.1 for t <~ 3. From Proposition 5.1 and Lemma 5.3, we have that 
we can achieve a decrease in G(x ,  s) of  at least 6 = 0.02n 2t-1. Thus, the overall 
complexity of the algorithm, from Proposition 2.1, is O(ntn l -2 tL)  = O ( n l - t L ) .  [] 

Remark 5.3. The choice of Y in Theorem 5.1 obviously influences the complexity 
bound. One can easily verify that the potential function improvement in a primal 
step is 0(72).  Thus, a large value of 7 is desirable. However, if y >  O(n t-w2) and 

t <½, then a potential function improvement in a dual step cannot be guaranteed. 
The formula for T in Theorem 5.1 is the largest (and best) value of T with respect 
to minimizing the complexity bound of the algorithm in this manner. 

Next, notice that exactly as in the proof  Lemma 4.3, we have that 
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6. Concluding remarks 

Algorithm Complexity. The overall complexity of Algorithm 2 is O(n3SL) 
operations, because at each of the ~ L iterations an m × m system of equations 
must be solved, which requires O(/13) operations. However, by solving the system 
inexactly using partial updates, it is possible to reduce the overall complexity by a 
factor of x/n to O(naL)  iterations, see Anstreicher and Bosch [3]. However, it is 
unclear whether this modification will be useful in practice, as it may limit the use 
of a line-search of the potential function. 

Problems in arbitrary form. Algorithms 1 and 2 are stated for LP problems in 
standard form. For problems in other forms, the implementation of the algorithms 
is still straightforward. Suppose that we wish to solve 

minimize c T x 

subject to A x  = b, 

G x - v = h ,  

v>~O. 

This is a quite general form and encompasses problems with upper and lower 
bounds, etc., by creating G, h with appropriate submatrices of the identity matrix, 
etc. The primal-dual potential function then is 

H(v, s) = q In(vTs)- ~ In(vj)- ~ In(sj) 
j=l  j -1  

where (rr, s) must satisfy dual interior feasibility, namely 

A TTr + GT s = c, 

s > 0 .  

Scaling is done with the primal slack variables. If (~, ~3) are primal feasible, the LP 
is rescaled to 

minimize 

subject to 

¢T x 

Ax = b, 

( l-a Gx  - t = V- lh ,  

t~O, 

and the projection of the gradient of H(v ,  s) in the rescaled space is then computed. 

Appendix 

Proposition A.1 (see Karmarkar [9] and Todd and Ye [15]). 
(i) l n ( l + x ) < ~ x f o r x > - l .  

(ii) I f  I x l ~ a < l ,  then l n ( l + x ) > ~ x - x 2 / [ 2 ( 1 - ~ ) ] .  



Proof .  

For (ii) note that if Ix[ < 1, 

x 2 x 3 x 4 
l n ( l + x ) = x - - - + - - - - - + .  • • 

2 3 4 

x 2 ix l  3 4 

2 2 2 

x 2 
- -X  - - ~ X  

2(1-Ixl)  

R.M. Freund / Polynomial-time LP algorithms 

(i) Follows from concavity of the log function. 

X 2 
[] 

2 ( l - a ) "  
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Propos i t ion  A.2 (see Freund [5, Proposition 4.1]) .  

f ( a )  = - 7 a  + a2/[2(1 - a)],  

where 7<~0.22, then with ~ = 1 - 1 / , / 1 + 2 7 ,  

f ( 8  ) ~< -0.023,2/(0.22) 2. 

If 

Proof .  Direct substitution shows f ( ~ ) = - 1 - 7 + ` / 1 + 2 7 .  However, the function 
(1 + y _ ~ , y ) / y 2  is decreasing in 7. Therefore, if y~<0.22, 

f ( ~ ) =  l + y -  l qT+2y<  1.22-,,/1+2(0.22) 0.02 [] 
,]/2 ,]/2 (0.22)2 -- -- (0.22)2.  
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