
Mathematical Programming 51 (1991) 203-222 203
North-Holland

Polynomial-time algorithms for linear
programming based only on primal
scaling and projected gradients of a
potential function

Robert M. Freund
Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 8 August 1988
Revised manuscript received 12 April 1989

This paper presents extensions and further analytical properties of algorithms for linear programming
based only on primal scaling and projected gradients of a potential function. The paper contains extensions
and analysis of two polynomial-time algorithms for linear programming. We first present an extension
of Gonzaga's O(nL) iteration algorithm, that computes dual variables and does not assume a known
optimal objective function value. This algorithm uses only affine scaling, and is based on computing the
projected gradient of the potential function

q ln(xTs)-- ~ ln(xj)
j ~ l

where x is the vector of primal variables and s is the vector of dual slack variables, and q = n +~fn. The
algorithm takes either a primal step or recomputes dual variables at each iteration. We next present an
alternate form of Ye's O(~/n L) iteration algorithm, that is an extension of the first algorithm of the
paper, but uses the potential function

q ln(xVs)- ~ ln (x j) - ~ ln(s~)
j - i j-1

where q = n +,fn. We use this alternate form of Ye's algorithm to show that Ye's algorithm is optimal
with respect to the choice of the parameter q in the following sense. Suppose that q = n + n r where t/> 0.
Then the algorithm will solve the linear program in O(nrL) iterations, where r - max{t, 1 - t} . Thus the
value of t that minimizes the complexity bound is t = 1/2, yielding Ye's O(v/n L) iteration bound.

Key words: Linear program, polynomial time bound, affine scaling, interior-point algorithm.

1. Introduction

T h e c u r r e n t i n t e r e s t in i n t e r i o r m e t h o d s fo r l i n e a r p r o g r a m m i n g a n d its e x t e n s i o n s

s t e m s f r o m t h e s e m i n a l w o r k o f K a r m a r k a r [9] , w h o p r e s e n t e d a n a l g o r i t h m fo r

l i n e a r p r o g r a m m i n g t h a t r e q u i r e s a t m o s t O(nL) i t e r a t i o n s . T h e w o r k p e r i t e r a t i o n

i n v o l v e s s o l v i n g a l e a s t - s q u a r e s p r o b l e m , w h i c h r e q u i r e s O (n 3) o p e r a t i o n s ; h o w e v e r ,

b y s o l v i n g t h e l e a s t - s q u a r e s p r o b l e m i n e x a c t l y in O (n 2) o p e r a t i o n s b y p e r f o r m i n g

204 R.M. Freund / Polynomial-time LP algorithms

rank-1 updates, Karmarkar gave a clever argument that reduces the overall com-
plexity bound to O(n3'SL) iterations. Todd and Burrell [14] suggested that
Karmarkar's algorithm could be implemented with a standard line-search at each
iteration, with a substantial potential for decreasing the actual iteration count, at
the cost of an increase in the complexity bound by x/~ to O(n4L) operations.
Anstreicher [2] has shown a safeguarded line-search that retains the overall com-
plexity bound of O(n3 5L) iterations, but it is not clear whether this method is more
or less efficient in practice than a standard line-search. Karmarkar's algorithm and
all of its projective transformation variants and extensions (Todd and Burrell [14],
Anstreicher [1], Gay [6], Rinaldi [13], Ye [17] and [5], for example) all retain the
O(nL) iteration count. Gonzaga [8] has presented an O(nL) iteration count algorithm
that uses a potential function but does not perform projective transformations.

Renegar [12] was the first to develop an interior method for solving a linear
program with an O(~/~ L) iteration count. The algorithm works by tracing the central
trajectory (see Megiddo [10] and Bayer and Lagarias [4]) with Newton steps. Other
central trajectory path-following algorithms with the O(x/-ff L) iteration count have
been developed since then (see Gonzaga [7], Monteiro and Adler [11], Vaidya [16]
and Todd and Ye [15], among others). If the initial feasible solution to the linear
program is not near the central trajectory, the problem is artificially augmented at
the start so that the initial solution is near the central trajectory, and so the algorithm
can be initiated. Because the iterates must stay close to the central trajectory, the
use of a line-search does not appear as promising for increasing the performance
as it does for projective transformation-based algorithms. Nevertheless, the worst-
case complexity bound on the iteration count for a central-trajectory path-following
algorithm is a x/~ improvement over the bound for a projective transformation
algorithm.

Recently, Gonzaga [8] presented an O(,/-ff L) iteration potential function based
interior-point algorithm for linear programming that is based only on primal scaling
and projected gradients of the potential function. However, Gonzaga's algorithm
requires prior knowledge of the optimal value. In [18, 19], Ye augmented Gonzaga's
approach and developed an interior-point algorithm that has the advantage of the
central trajectory methods (an O(x/~ L) iteration count) along with the advantages
of the projective transformation methods (the method can be initiated directly from
any interior solution and the use of a standard line-search appears promising).

In this paper we present extensions and further analysis of both Gonzaga's
algorithm [8] and Ye's algorithm [19]. In Section 3, we present an extension of
Gonzaga's algorithm for linear programming that does not make the restrictive
assumption of a known optimal objective function value. Performance of the
algorithm is measured with the potential function

F(x , s) = q ln(xVs) - ~ In(x:)
j=l

where x is the vector of primal variables and s is the vector of dual slack variables,

R.M. Freund / Polynomial-time LP algorithms 205

and q = n +x/~. At each iteration, the algorithm either takes a primal step or

recomputes the dual feasible solution. Primal iterates decrease the potential function

by at least 0.18, whereas dual iterates decrease the potential function by at least

0.2x/-n. This leads to an overall iteration bound of O(nL) iterations.

In Section 4, we modify the algorithm of Section 3 to obtain an alternate form

of Ye's algorithm [19]. Performance of the algorithm is measured with the pr imal-

dual potential function

G(x, s)= q I n (x T s) - ~ l n (x j) - ~ In(s/)
j = l j = l

where again q = n +,¢~. Like the algorithm of Section 3, at each iteration this

algorithm either takes a primal step or recomputes the dual feasible solution. Both

primal and dual iterates decrease the potential function by at least 0.02, and this

leads to an overall iteration bound of O(,/-~ L) iterations.
The analysis of Section 4 suggests that the factor of ~-~ plays a very important

role in the potential function parameter q = n + v/-n. This is examined from a com-
plexity point of view in Section 5, where it is shown that q = n + ~/~ is optimal in

the following sense. Suppose that q = n + n t, where t/> 0. Then the algorithm will

solve the linear program in O(nrL) iterations, where r = max{t, 1 - t}. Thus the value

of t that minimizes the complexity bound is t = l , which yields the O (~ L) iteration

bound of Ye's algorithm of Section 4.

Section 5 contains concluding remarks.

2. Notation, assumptions, and preliminaries

I f x or s is a vector in Nn, then X or S refers to the n x n diagonal matrix with

diagonal entries corresponding to the components of x or s. Let e be the vector of

ones, e = (1, 1 , . . . , 1), where typically the dimension of e is n. I f x c R n, then Ilxllp
refers to the p-norm of x, where 1 ~< p ~ oe.

Our concern is with solving a linear program of the form

LP: minimize crx

subject to A x = b,

X~>0,

where for convenience, we assume that A is m x n with rank m. We assume (i) that
LP has a strictly positive feasible solution ~ > 0, and (ii) that the set of optimal
solutions of LP is nonempty and bounded. The dual of LP is given by

LD: minimize bT~

subject to AT~ - + s = c,

s~>0.

206 R.M. Freund / Polynomial-time LP algorithms

The second assumption above is equivalent, via a theorem of the alternative, to the
assumption that there exists a solution (#, g) to LD with g> 0.

Let ff be a strictly positive feasible solution to LP, and consider the rescaled
primal and dual pair

LP)~: minimize c-r.~z

subject to AXz = b,

z~>0,

LD.~: maximize bTer

subject to)~ATer + t = Xe,

t>~0.

Note that x is feasible for LP if and only if z =){ - ix is feasible for LPX, and that
(7r, s) is feasible for LD if and only if (7r, t) = (~',){s) is feasible for LD)(. If ~ and
(~, g) are primal and dual feasible, then the duality gap between eVff and ~-Vb is
given by eT2 -- ~'Tb = ~Tg. We will consider two types of potential functions for LP.

The first is a primal potential function, given by

F(x, s) = q l n (xTs) - ~ ln(xj) (2.1)
j - -1

where x c P = { x ~ " l A x = b , x > ~ O } and s c D = { s ~ R n l s ~ O and ATzr+s=c for

some ~" ~ W"} and q is a given parameter. Note that the dual slack variables enter
F(x, s) through the duality gap term only. The primal-dual potential function is
given by

n

G(x, s) = q ln(xVs) - Y~ ln(xj) - ~ ln(sj). (2.2)
j = l j - -1

This type of potential function was first introduced in Todd and Ye [15], and forms
the basis of Ye's algorithm [19].

It is elementary to verify that scaling LP to LP)~ translates the primal potential
function F(x, s) by an additive constant

ln(~j),
j = l

and that this scaling leaves the primal-dual potential function G(x, s) unchanged.
Suppose L is the bit-size of a given instance of LP, and suppose we have an

algorithm for LP that reduces the primal potential function F(x, s) by an amount
greater than or equal to ~ at each iteration, where 6 > 0 is a fixed quantity. Then
as in Gonzaga [8], the algorithm can be used to solve LP in O((q/~)L) iterations,
as long as the initial values (x °, s °) of (x, s) satisfy F(x °, s °) <<-O((q/6)L). This is
because in order to round to an optimal solution to LP, we need (xTs)~< 2 -L, and
the bound on the reduction of In xTs through the potential function F(x, s) is
proportional to 3, and inversely proportional to q. However, if instead we use the
primal-dual function G(x, s) we have:

R.M. Freund / Polynomial-time LP algorithms 207

Proposition 2.1 (see also Ye [19]). I f an algorithm for solving LP reduces the

primal-dual potential function G(x, s) by an amount greater than or equal to ~ at

each iteration, where 6 > 0 is a fixed quantity, then the algorithm can be used to solve

LP in O [((q - n) / 6) L] iterations, so long as the initial feasible primal-dual values

(x °, s °) satisfy G(x °, s °) <~ O[((q - n) /6)L] .

The proof of Proposition 2.1 follows from the inequality in the following remark:

Remark 2.1. If x > 0 and s > 0 are vectors in •', then

n ln(xTs) - ~ ln(xfl - ~ ln(sj)/> n ln(n).
j : l j = l

Proof. Let t = Xs. Then

n ln(xXs)-- ~ ln(xj)-- ~ ln(sj)= n ln(eXt)-- ~ In(tfl.
j=l j-1 j-1

However,

(t~/eTt)<-(1/n)"
j--1

because the vector t = e is a maximizer of the product term. Thus,

ln(tJeTt)<~ - n In(n)
j=l

whereby,

. ln(n) n l n (e ' t) - l n (t j) = n l n (x T s) - l n (x j) - - I n %) .
j - -1 j = l j --1

(2.3)

[]

Proof of Proposition 2.1. After O (L (q - n) / ~) iterations of the algorithm, the
current primal-dual iterates (~, g) satisfy

and so

G(~, g) <~ - (q - n)L,

q ln(xTs) -- ~ ln (~ j) - ~ ln(~) <- - (q - n)L.
j = l j = l

However, by combining the above with inequality (2.3), we obtain

(q - n) ln(gT~) <~ --(q -- n) L - n ln(n),

and so ln(~Tg) ~< -L , whereby ~ and ~ can be rounded to optimal primal and dual
solutions. []

3. An extension of Gonzaga's algorithm for LP that converges in O(nL) iterations

In this section we consider an extension of Gonzaga's algorithm [8] for linear
programming which uses the primal potential function F(x, s) of (2.1). In [8],

208 R.M. Freund / Polynomial-time LP algorithms

Gonzaga presented an O(nL) iteration algorithm based on a primal potential function
where the optimal objective function value is presumed known. Herein, we remove
this restrictive assumption, and demonstrate a primal-dual property underlying

Gonzaga's methodology that will be used in primal-dual potential function based
algorithms in Sections 4 and 5 of this paper.

Let us assume that ~ and (g', g) are primal and dual feasible solutions, and that
> 0. Because scaling does not affect the potential function, we assume that ~ = e,

and so the current duality gap is eTg. Letus now compute the projection ofVxF(e, g),
the gradient of F(x, s) at (e, g) in the x=coordinates, onto the null space of A. The
gradient of F(x, s) in the x-coordinates at (e,. ~7)is given by

g = VxF(e, ~)= (e~s) ~ - e (3.0)

and its projection onto the null-sace of A is given by

e]

If we replace (eTg) in the above expression by the unknown quantity A, we: obtain
the direction function

where A is a positive scalar.
From (3.0) and (3.1), the projected gradient is d(eTg). Gonzaga's algorithm [8]

is motivated by demonstrating that II d (eTa) t1~ I> 1. Herein, we alter this condition

to analyze the consequences of the condition [ld (eXg) 112 >~ 0.8, where the number 0.8
was fairly arbitrarily chosen, and in fact any fixed scalar in the range (0, 1) would
do. If d(eTg) satisfies Nd(eTg)ll2>~o.8, then the potential function F(x, s) can be
reduced by at least a constant amount of 0.18 by taking a step in the direction
--d(eTg), from the current point ff = e, as the next proposition shows.

Proposition 3.1. Let d= d(erg). I f Ildll~>0.8, then

F(e-0 .38d/ Ildll~, g) ~ F(e, g)-0.18.

Proof. Let us consider F(e-ad/lld[12, ~), where 0<~ a < 1. Then

F(e - ad/II dilL, g) - F(e, ~)

= q ln((eTg) - asTd/II dl12) - ~ ln(1 - a~/II dill) - q ln(e T~)
j = l

_ _ _ _ lntl-ll 7 . q in 1 (e~) l l d l l J J:,

R.M. Freund / Polynomial-time LP algorithms 209

By the local propert ies of the logari thm funct ion given in the Appendix in Proposi t ion

A.I., we have

F(e-~d/lldll2, g)- F(e, g)
(- q d a o

-< \(eTe)lldll2) +Zj=i ~ / I I rill2 + j=l ~ (~/II d112)=2(1 - ~)

OL __ q OL

-11•12 ~ g + e d-~ 2 (l _ a)

- - a g T d a 2

Ilgll2 2(1-c~)
where g is the gradient of F(x, s) at (e, g) in the x-coordinates (see (3.0)). However ,
not ing that gTd = dWd = II d1122, this last expression becomes

(a)2 (3.2) F(e- ad/II dl12, s) - F(e, g) <~ - a II dl12 + 2(1 - o~)"

U p o n setting a = 0.38 and noting that Ildl12~ > 0.8, we obtain F(e-ad/lld[12, g)-
F(e, g)<~-0.18. []

In order to analyze the case when II dll: < 0.8, we proceed as follows. Noting that

d(A)=[I-AT(AA T) 1A]((q) c-e) ,

we expand and rewrite this expression as

AT(AAT)-IA(c-~e)+(~)(e+d(A))=c (3.3)

and define

,rr(A)=(aa T) ~A(c-~e) (3.4)

and

s(A) = (~) (e + d (Z l)) . (3.5)

Then rr(A) and s(Zl) satisfy ATcr(Zl) + s (A) = c and so are dual feasible if s(A) t>0.
Fur thermore , f rom (3.5), s(A) >1 0 if II d(a)112--< 1 and A > 0. Thus, if II d (eTg)[[2 < 0.8,
then s(eTg)>-O and rr(eTg), s(eTg) are dual feasible. Next note f rom (3.1) that
lim~o]l d(zl)112 = +oo, unless [I - AT(AAX)-IA]c = 0, in which case cTx is constant
on the feasible region o f LP and ~ = e solves LP. Thus, by the continui ty of d(A)
in the range A c (0, oo), if [[d(eTg)l[2 < 0.8, there exists a value zl e (0, eVg) such that

Ild(~i)ll2= 0.8. I f we set ¢? = ~-(z[) and ~7= s(z~), we then obtain a 0.2ff-ff decrease
in F(x, s) if q/> n +~;-n, as the next lemma demonstrates .

210 R.M. Freund / Polynomial-time LP algorithms

Lemma3.1 (changeindualvariables) . Suppose q ~ n + x/-ff. Suppose lid(eTa)J12<0.8,
and that cTx is not constant on the feasible region of LP. Let A ~ (0, eTg) satisfy
IId(z~)ll2--o.8 and let ~r = ~(,~) and ~= s(A). Then (~r, ~) is feasible for LD and

F(e, ~) - F(e, g)<~ -0.2x/n.

Proof. Note that from (3.5),

eT ~ = eTS(~) = A [eTe + eTd(z~)]"
q

However, eTe = n, and eTd (zl) <~ 11 d (Z[)I11 ~<'Sll d (zi)[12 = 0.8,/-ff, so that

r ~ - - eTs
e ~ - - (n + O . 8 ~ / n) ~ - - (n + O . 8 x / n) .

q q

Therefore

q /

Next note that

 eT,, / /
F (e , g) - F (e , 2) = q l n [- ~ s) < ~ q l n ~<qln 1

q / q /

<~ - 0.2~-~. []

Summarizing Proposition 3.1 and Lemma 3.1, we have:

Remark 3.1. Assume q = n + ~/-n. Then:
(a) If Ild(eTg)ll2~>o.8, we can decrease F(x, s) by 0.18 by taking a step in the

primal in the direction --d(eTg).

(b) If IId(eTg)ll2<o.8, we can decrease F(x, s) by 0.2,£-~ by replacing g by
s = s(zl), where zl~ (0, eTg), and IId(~)ll=-- 0.8.

This leads to the following extension of Gonzaga's algorithm for solving LP. Let
(A, b, c) be the data for the LP, let £ and (#, ~) be initial primal and dual solutions,
where 2 > 0, and let /x > 0 be the optimality tolerancee. We have:

Algorithm 1. (A, b, c, 2, g, ~ , /z)
Step O. Initialize.

Set q=n+,,/-n, T=0.8.
Step 1. Test for optimality.

If £Tg ~</~, stop.

Step 2. Rescale.
Set A = AX, ~= Xc, T= X~.

R.M. Freund / Polynomial-time LP algorithms

Step 3. Compute direction function.

I f I I d (e T f) l l 2 ~ > % g o to Step 5. Otherwise go to Step 4.
Step 4. Recompute dual variables.

Solve for z[~ (0, eT?) such that z[is the smallest value

IId(~)l12 = ~'.
Set

7 = (~) (e + d (, ~)) and ~'=(fi , fi, x) - l f i , [~ - - (~) e] .

Set ~- = -k and g =)~-1 ?, and go to Step 1.
Step 5. Take step in primal variable space.

Set d = d(eT?). Set S= e-O.38d/lldll 2.
Set 2 =)~ , and return to Step 1.

211

of A for which

Note that in Algorithm 1, that at Step 2 T is the scaled version of the current dual
slack g; (#, g) is feasible in LD, and (~-, {) is feasible in LDX, and e is feasible in
LP)~. At the end of Steps 4 and 5, respectively, the dual and primal variables are
then rescaled to the original problems LD and LP, respectively. Note also that the
value of y = 0.8 was chosen somewhat arbitrarily; instead, one could replace 0.8 by
any constant y ~ (0, 1). The step length in Step 5 would have to be adjusted, however.

Next, note that after the algorithm leaves Step 4, the next direction function d (A)
will be the same as the current direction function. Thus, there is no need to re-solve
the least squares problem in Step 3 at the next iteration. Furthermore, at the next
iterate, we will have IId(eT?)]]2~>0.8 in Step 3, so we could just go straight to
Step 5 directly.

Note that at Step 5, we could replace Y= e-O.38d/I]dl] 2 by Y= e - a d where a
is determined by a line-search that (inexactly) minimizes the potential function
F (e - ad, t-) over the range a c (0.38/Ildll2, oo). Also, the choice of A in Step 4 could
be chosen by a line-search of A with the potential function F(e, (A /q) [e+d(a)])
where A c (0, eT?).

Finally, note that the algorithm need not be started with a dual feasible solution.
In fact, it need only be started by a lower bound B on the primal objective value.
One would then replace the expression for d(A) in Step 3 by

e 1
as the two expressions are equivalent. Also, one would replace eTf by cT2--B in
Steps 3, 4 and 5. The algorithm must eventually compute feasible dual variables,
unless B is the optimal value of LP.

212 R.M. Freund / Polynomial-time LP algorithms

Finally, note that solving for z[in Step 4 is equivalent to solving a quadratic form
in the quantity (l /A) and so can be done exactly (within roundoff error) by using
the quadratic formula. This is reminiscent of the dual-variable update procedure
presented in Anstreicher [1], that also solves for a vector of appropriate norm in
order to update dual variables.

From Remark 3.1, and the invariance of the potential function F(x, s) (modulo
an additive constant) under scaling, we have:

Lemma 3.2. I f (x °, s °) are the initial values of ~ and g in Algorithm 1 and F(x °, s °) <~
O(nL), then Algorithm 1 solves LP in O(nL) iterations.

Proof. From Remark 3.1, each iteration reduces the potential function F(x, s) by
at least 6=0.18, and q=n+~/-n<~2n, so q = O (n) . Thus after O(nL) iterations,

Algorithm 1 solves LP. []

4. An alternate form of Ye's O(~/n L) iteration algorithm

In this section, we modify the ideas and the algorithm presented in Section 3, by
using the primal-dual potential function G(x,s) of (2.2) with q=n+~/-n. Our
principal motivation for this algorithm is the work of Ye [19]. The resulting algorithm
is an alternate form of Ye's algorithm [19] which attains Ye's O(v/-n L) iteration
bound. This algorithm's control logic for when to take primal versus dual steps at
each iteration is slightly different from Ye's algorithm. Except for this minor
difference, the two methods are identical.

We begin the analysis by returning to the analysis developed at the start of Section
3. We assume that £ and (#, g) are our primal and dual feasible solutions, that ff > 0
and that the LP has been rescaled so that ~ = e, so that the current duality gap is
eXg. We compute the direction function d(A) as in (3.1), and compute d = d(eT£)
which is the projected gradient of G(x, s) in the x-coordinates, at (x, s) = (e, g).
Then if [] d (e-rg)II 2 ~> 0.22, we can achieve a constant decrease in the potential function
G(x, s) by taking a step in the direction -d(eXg) from the current primal feasible

point e, as Proposition 4.1 shows.

Proposition 4.1. Let d= d(eTg). Then if IId11~>~0.22,
G(e-~d/Ildll~, G(e, g)-0.02.

Proof. The proof is exactly the same as for Proposition 3.1. At the end of the proof
we use a =~ to obtain the result. []

If IId(eT)ll:<0.22, however, we seek to modify our dual solution. Note that at
A = eTg,

R.M. Freund / Polynomial-time LP algorithms 213

is "close" to a scaled version of the vector e because Ild(zl)l12<0.22. Thus, s(A) is
nicely centered, as the next two lemmas demonstrate.

Lemma 4.1. If s=(A/q)((e+d)), where Ildl12<0.22, then Ils-(eTs/n)e[12<~
0.565(eXs/n).

Proof. If s = (A/q)((e+ d)), then

eTs = ~ (n A- eTd) >Zl (n -- lid 110 ~>__a (n -,/-gild 112) ~>a__ (n - 0.22~/-~) ~>_A (0.78n).
q

T h u s

q \ 0 .78n /

Next note that

Thus,

q q q q

s - (?) e = A - - (e + d) - (A ~ (n + e T d ~ e A [d - (~) e]
q \ q / \ ~ / = q •

(?) 044
s - e 2 - q Ildl[2+ -qEtldll2+[Idll2] <~ q

Combining (4.1) and (4.2) yields the desired result. []

(4.1)

(4.2)

Lemma 4.2.

j = l

If s=A/q(e+d), where [Idl12<0.22, then

ln(sj) ~> n I n (?) - 0 . 3 6 7 .

Proof. Let
from Lemma 4.1.

Thus, from Proposition A.1 of the Appendix,

ln(r j)~ > ~ (r j - 1) - j ~ 1 (r j -1)2 _
j=~ j=l .= 2(1-0 .565)

Next note that

~ ln(sfl=~ l n (r j) + n l n (?) > ~ n l n (?) -0.367.
j = l j = l

r = (n/eVs)s. Then eZr = n and [[r- ell2 = (n/eTs)[[s- (eTs/n)e[[2 ~ 0.565,

lit-ell 2_ (0.565) 2
0.87 0.87

[]

- - ~ -0.367.

Suppose that [1 d (eT:~)[12 < 0.22. Just as in Section 3 (but with 0.8 replaced by 0.22),
we seek a value of zl ~ (0, eTg) for which [[d(Zl)[[2 = 0.22. Because lima~o[]d(A)[]2 =
+ ~ unless cTx is constant on the feasible region of LP (and so ~ = e solves LP),
then such a value ~ must indeed exist. We then set £= s(zl) and ~ = ~r(A) where
s(A) and ~(A) are given by (3.4) and (3.5). The note that g and ~ are feasible for
the dual LD. The next lemma demonstrates that replacing g by ~ results in a fixed
decrease in the potential function G(x, s) of at least 0.02, if q = n +x/-ff.

214 R.M. Freund / Polynomial-time LP algorithms

Lemma 4.3 (potential function decrease from change of dual variables). Suppose

q = n +,,~-if, and 11 d (eT£)]] 2 < 0.22, and that cXx is not constant on the feasible region
o f LP. Let zle (0, eTg) satisfy]]d(A)112=0.22 and let ~= s(~) and ,k = ~r(~). Then,

(~r, ~) is feasible for LD, and

G(e, 7) - G(e, g) <- -0.02.

Proof. As in Section 3, it is straightforward to check that AT7~ + g = c, and [] d (z~)112 =
0.22 implies that g> 0, so (~?, g) is dual feasible. Now we compute

However, from Lemma 4.2, we have
/ T ' \

j - i , , . . j - - 1 i

Combining (4.3), (4.4) and (4.5) yields
/ ~ T ~ \

However,

R.M. Freund / Polynomial-time LP algorithms 215

Intuitively, the proof of Lemma 4.3 works for two reasons. First, g is "close" to
the vector (eTg/n)e, as shown in Lemmas 4.1 and 4.2. Thus, the barrier function

n ~j=l ln(~) is well-controlled. Second, by requiring that we adjust z[downward from
eTg to a point where IId(z~)ll~--0.22, we guarantee that eTg is sufficiently less
than e T g.

Summarizing Proposition 4.1 and Lemma 4.3, we have:

Remark 4.1. Suppose q = n + ~-n Then
(a) If Ild(eTg)l12>~0.22, we can decrease G(x, s) by 0.02 by taking a step in the

primal variables in the direction --d(eTg).
(b) If II d(eTe) 112 < 0 .22 , w e can decrease G(x, s) by 0.02 by replacing g by g = s(Z~)

where z[c (0, eTg) satisfies IId()l12-- 0.22.

This leads to the following algorithm for solving LP, which is an alternate form
of Ye's algorithm [19]. Let (A, b, c) be the data for the LP, let)7 and (g-, g) be initial
primal and dual solutions, where)7 > 0 and let /x > 0 be the optimality tolerance.
We have:

Algorithm 2. (A, b, c, x, s, 7r,/x).
Step O. Initialize.

Set q = n + v/~, 3, = 0.22.
Step I. Test for optimality.

If gTg ~< tZ, stop.

Step 2. Rescale.
Set A = AJ~, g= 37c, ~-= J~g.

Step 3. Compute direction function.

If IId(eT?)ll2>~ 3,, go to Step 5. Otherwise go to Step 4.
Step 4. Recompute dual variables.

Solve for ~ c (0, eTf) such that zl is the smallest value

IId(zi)[l= = 3,.
Set

T= (~) (e+ d(~)) and 7~ = (/TI/TiT)-IA [g-- (~) e l .

Set ~-= ~ and g =) (17, and go to Step 1.
Step 5. Take step in primal variable space.

Set d = d(eT~'). Set a = 1-1/x/1+23, .

Set i = e -~d / l l a l l 2 .
Set)7 = 3~, and return to Step 1.

Note that in Step 5, a = ~ because 3' = 0.22.

of A for which

216 R.M. Freund / Polynomial-time LP algorithms

Regarding the complexity of Algorithm 2, we have:

Theorem 4.1 (complexity of Algorithm 2). I f (x °, s °) are the initial values of ~ and
in Algorithm 2 and G(x °, s °) <~ O(V~ L), then Algorithm 2 solves LP in O(v~ L)

iterations.

Proof. The proof is an immediate consequence of Proposition 2.1. From Remark
4.1 and the invariance of the potential function G(x, s) under scaling, we have that
at each iteration G(x, s) is reduced by at least 8 = 0.02. Because q = n +~/-~, then
(q - n) = v ~ , and so by Proposition 2.1, Algorithm 2 converges in O(V~L)
iterations. []

The algorithm of Ye [19] was the first algorithm with a complexity bound of
O(x/~ L) iterations that does not explicitly require a condition that the iterates lie
near the central trajectory. Algorithm 2 is an alternate form of Ye's algorithm [19]
for linear programming. Note that both algorithms compute the same primal and /or
dual directions at each iteration. And both algorithms work on the same principal
for when to take a primal versus a dual step at each iteration, namely: either the
projected gradient of the potential function is sufficiently large, or the current iterate
is sufficiently centered. The mechanics of deciding between the primal and the dual
step are slightly different, however. In Algorithm 2, this choice depends only on
the norm of d(eX~).

Note Algorithm 2 is almost the same as Algorithm 1, but with a different value
of y in Step 0 and consequently a different step length a in Step 5. The smaller
value of y in Algorithm 2 suggests that it will update dual variables less frequently
than in Algorithm 1, and so will control the influence of the duality gap d = gx£
on the projected gradient direction d(A) less exactly. Perhaps this is a contributing

factor to the improved complexity bound.
Most of the remarks that follow Algorithm 1 at the end of Section 3 are also valid

for Algorithm 2. If the algorithm recomputes dual variables in Step 4, one can then
proceed directly to Step 5 because d(eT£)/> y at the end of Step 4 and there is no
need to recompute the least-squares solution of Step 3. As in Algorithm 1, one can
augment Steps 4 and 5 by a line-search of the potential function G(x, s). Also, one
need not start the algorithm with a dual feasible solution. In fact, only a lower
bound on the optimal objective value is needed (see Section 3 for details).

5. On the optimality of q = n + ~/n in Algorithm 2

In Section 4 we have presented an O(x/n L) iteration algorithm for LP which is an
alternate form of Ye's algorithm [19], by choosing the value q=n+,J-~ in the
primal-dual potential function G(x, s) of (2.2). In this section, we consider modify-
ing Algorithm 2 in two ways: by setting q = n+n r, where t~>0, and by setting
y = 0.22n -k where k i> 0. We will prove:

R.M. Freund / Polynomial-time LP algorithms

Theorem 5.1 (complexity of Algorithm 2 with q = n + nt).

Algorithm 2 and 3" is chosen by

_ ~'0.22, t~>½,
3"-- ~0.22n t-1/2, t<~½,

then the complexity of Algorithm 2 is O(nrL) iterations, where r = max{t, 1 - t}.

217

I f q = n + n t is used in

Remark 5.1. The value of t that minimizes the complexity bound of the number
of iterations is t =½, and so Algorithm 2 with q = n + v ~ and 3' =0.22 is optimal in

this measure. A different discussion of the suggested optimality of q = n + ~ (in a
different context) can be found in Todd and Ye [15].

Remark 5.2. Algorithm 2 can be executed with q-= n + 1, with a complexi ty of

bound O(nL) iterations, by setting t = 0 and 3/= 0.22/~/~. This improves the com-

plexity bound of Gonzaga [8], whose results imply an O(n2L) iteration bound if
q = n + 1 for a primal potential function as in (2.1).

We will first prove Theorem 5.1 for the case t~>½. The case t<~½ is a bit more
involved.

Proof of Theorem 5.1 for t/> ½. Suppose Algorithm 2 is implemented with q = n + n '

and y=0 .22 . Then if the algorithm takes a primal step (Step 5), Proposition 4.1

ensures that the potential function G(x, s) decreases by at least 6 = 0.02, as this
result is independent of the value of q.

Suppose instead that Algorithm 2 takes a dual step (Step 4). By rescaling if
necessary, we assume that the current primal and dual slack vectors are (2, g) = (e, g)

and let g be the recomputed dual slack vector. Retracing the proof of Lemma 4.3,
we reach line (4.7) which states

G(e, ~) - G(e, 5) <<- - (q - n) (q - n - 0 . 2 2 v ~) + 0.367 (5.1)
q

= nt(nt-O'22"f-ff)+0.367
n + n t

0 . 7 8 n 2t
~< 4-0.367. (5.2)

n q - n t

I f t ~< 1, the denominator above is bounded from above by 2n, so G(e, g) - G(e, 5)
-0 .39n2 ' -1+0.367<~-0 .39+0.367~<-(0 .02) . I f t~>l, the denominator above is
bounded from above by 2n', so G(e, g) - G(e, g) ~< -0 .39n ' + 0.367 ~< -(0.02) if t/> 1.
In either case, we obtain a dual improvement of at least ~ = 0.02. Thus the overall
complexity of the algorithm, from Proposition 2.1, is O(n 'L) . []

We now proceed to piece together the proof Theorem 5.1 in the case t<~½. By
rescaling if necessary, we assume that the current primal and dual slack vectors are
(2, g) = (e, g). We first analyze a primal step.

218 R.M. Freund / Polynomial-time LP algorithms

Proposition 5.1 (primal step improvement). Let d=d(eT~) . Suppose Ildll2>~ 7 =
0.22n t-~/2. Then by setting a = 1-1/lx/T-+2y, we obtain

G(e - ad / l[d l]2 , ~) <~ G(e, g)-0.02n 2' ~.

Proof. The proof proceeds identically to that of Proposition 3.1, which is of the
same form (with 0.8 replaced by y = 0.22nt-~/2). Tracing the proof of Proposition
3.1 to line (3.2) we obtain

2

G(e_ad/lldll2, g)_G(e,g)<~_o~lldll2_~ o~
2 (l - a) "

However, lid]J2/> 3' = 0.22n '-1/2. Substituting this value of 3' in Proposition A.2 of
the Appendix, we obtain

G(e-~d/J ld l l2 , g)-G(e,g)<~-O.O2n 2~ '. []

We now analyze a dual step improvement. We proceed by modifying Lemmas
4.1 and 4.2.

Lemma53 . I f s= A/ q(e+ d), where Iid112<3'<1, then

s - (~) e 2 < (12-~Yy) (~) . []

Lemma 5.2. I f s = A / q(e + d), where Iid112<3'<½, then

j=l 2 (1 - f l) ' w h e r e / 3 = l - y "
[]

The proofs of Lemmas 5.1 and 5.2 are identical to the proof of Lemmas 4.1 and
4.2, with 3' substituted for 0.22 in Lemmas 4.1 and 4.2, and/3 substituted for 0.565
in Lemma 4.2.

We now are in a position to prove a result regarding potential function improve-
ment if we take a dual step.

Lemma 5.3 (dual step improvement). Suppose q = n + n' where O<~t<~½. Suppose
]l d(eTg) 112 < 3, = 0.22n'-1/2, and that cTx is not constant on the feasible region of LP.
Let ,~ ~ (0, e X g) satisfy]]d(Z~)l]2= 3, and let ~ = 7r(~) and g= s(zl). Then (~r, ~) is
feasible for LD, and

G(e, ~) - G(e, g) ~ -0.02n 2~-1.

Proof. Parallelling the proof of Lemma 4.3, we obtain

G(e, ~) - G(e, g) = q In ~ -j-~l ln(~) + j ~ ln(~). (5.3)

R.M. Freund / Polynomial-time LP algorithms 219

Combining the above with inequality (4.5) and Lemma 5.2, we obtain

where / 3 = 2 7 / (1 - 7) . However, / 3 2 / [2 (1 - / 3)] = 2 7 2 / [(1 - 7) (1 - 3 7)] and 7 =
0.22n ~-l/z <~ 0.22, so that

Combining (5.4), (5.5) and (5.6) yields

G (e , ~) - G (e , g) < ~ - O . 3 9 n 2t 1+0.365n2'-a~-(O.O2)n2~-1 . []

Proof of Theorem 5.1 for t <~ 3. From Proposition 5.1 and Lemma 5.3, we have that
we can achieve a decrease in G(x , s) of at least 6 = 0.02n 2t-1. Thus, the overall
complexity of the algorithm, from Proposition 2.1, is O(ntn l -2 tL) = O (n l - t L) . []

Remark 5.3. The choice of Y in Theorem 5.1 obviously influences the complexity
bound. One can easily verify that the potential function improvement in a primal
step is 0(72). Thus, a large value of 7 is desirable. However, if y > O(n t-w2) and

t <½, then a potential function improvement in a dual step cannot be guaranteed.
The formula for T in Theorem 5.1 is the largest (and best) value of T with respect
to minimizing the complexity bound of the algorithm in this manner.

Next, notice that exactly as in the proof Lemma 4.3, we have that

220 R.M. Freund / Polynomial-time LP algorithms

6. Concluding remarks

Algorithm Complexity. The overall complexity of Algorithm 2 is O(n3SL)
operations, because at each of the ~ L iterations an m × m system of equations
must be solved, which requires O(/13) operations. However, by solving the system
inexactly using partial updates, it is possible to reduce the overall complexity by a
factor of x/n to O(naL) iterations, see Anstreicher and Bosch [3]. However, it is
unclear whether this modification will be useful in practice, as it may limit the use
of a line-search of the potential function.

Problems in arbitrary form. Algorithms 1 and 2 are stated for LP problems in
standard form. For problems in other forms, the implementation of the algorithms
is still straightforward. Suppose that we wish to solve

minimize c T x

subject to A x = b,

G x - v = h ,

v>~O.

This is a quite general form and encompasses problems with upper and lower
bounds, etc., by creating G, h with appropriate submatrices of the identity matrix,
etc. The primal-dual potential function then is

H(v, s) = q In(vTs)- ~ In(vj)- ~ In(sj)
j=l j -1

where (rr, s) must satisfy dual interior feasibility, namely

A TTr + GT s = c,

s > 0 .

Scaling is done with the primal slack variables. If (~, ~3) are primal feasible, the LP
is rescaled to

minimize

subject to

¢T x

Ax = b,

(l-a Gx - t = V- lh ,

t~O,

and the projection of the gradient of H(v , s) in the rescaled space is then computed.

Appendix

Proposition A.1 (see Karmarkar [9] and Todd and Ye [15]).
(i) l n (l + x) < ~ x f o r x > - l .

(ii) I f I x l ~ a < l , then l n (l + x) > ~ x - x 2 / [2 (1 - ~)] .

Proof .

For (ii) note that if Ix[< 1,

x 2 x 3 x 4
l n (l + x) = x - - - + - - - - - + . • •

2 3 4

x 2 ix l 3 4

2 2 2

x 2
- -X - - ~ X

2(1-Ixl)

R.M. Freund / Polynomial-time LP algorithms

(i) Follows from concavity of the log function.

X 2
[]

2 (l - a) "

221

Propos i t ion A.2 (see Freund [5, Proposition 4.1]) .

f (a) = - 7 a + a2/[2(1 - a)],

where 7<~0.22, then with ~ = 1 - 1 / , / 1 + 2 7 ,

f (8) ~< -0.023,2/(0.22) 2.

If

Proof . Direct substitution shows f (~) = - 1 - 7 + ` / 1 + 2 7 . However, the function
(1 + y _ ~ , y) / y 2 is decreasing in 7. Therefore, if y~<0.22,

f (~) = l + y - l qT+2y< 1.22-,,/1+2(0.22) 0.02 []
,]/2 ,]/2 (0.22)2 -- -- (0.22)2.

References

[1] K.M. Anstreicher, "A monotonic projective algorithm for fractional linear programming," Algorith-
mica 1 (1986) 483-498.

[2] K.M. Anstreicher, "A standard form variant, and safeguarded linesearch, for the modified Karmarkar
algorithm," Yale School of Organization and Management (New Haven, CT, 1987).

[3] K.M. Anstreicher and R.A. Bosch, "Long Steps in a O(n3L) algorithm for linear programming,"
Yale School of Organization and Management (New Haven, CT, 1989).

[4] D.A. Bayer and J.C. Lagarias, "The nonlinear geometry of linear programming, I. Affine and
projective scaling trajectories, II. Legendre transform coordinates and central trajectories," Transac-
tions of the American Mathematical Society (1987), forthcoming.

[5] R. Freund, "Projective transformations for interior point methods, part I: Basic theory and linear
programming," MIT Operations Research Center working paper OR 179-88 (1988).

[6] D. Gay "A variant of Karmarkar's linear programming algorithm for problems in standard form,"
Mathematical Programming 37 (1987) 81-90.

[7] C.C. Gonzaga, "An algorithm for solving linear programming problems in O(n3L) operations,'"
Memorandum UCB/ERL M87/10, Electronics Research Laboratory, University of California
(Berkeley, CA, 1987).

[8] C.C. Gonzaga, "Polynomial affine logarithms for linear programming," Report ES-139/88, Univer-
sidade Federal do Rio de Janeiro (Rio de Janeiro, Brazil, 1988).

[9] N. Karmarkar, "A new polynomial time algorithm for linear programming," Combinatorica 4 (1984)
373-395.

[10] N. Megiddo, "Pathways to the optimal set in linear programming," Research Report RJ 5295, IBM
Almaden Research Center (San Jose, CA, 1986).

222 R.M. Freund / Polynomial-time LP algorithms

[11] R.C. Monteiro and I. Adler, "An O(n3L) primal-dual interior point algorithm for linear program-
ming," Department of Industrial Engineering and Operations Research, University of California
(Berkeley, CA, 1987).

[12] J. Renegar, "A polynomial time algorithm, based on Newton's method, for linear programming,"
Mathematical Programming 40 (1988) 59-94.

[13] G. Rinaldi, "The projective method for linear programming with box-type constraints," Instituto
di Analisi dei Sistemi ed Informatica del CNR, Viale Manzoni 30, 00185 (Rome, Italey, 1985).

[14] M.J. Todd and B. Burrell, "An extension of Karmarkar's algorithm for linear programming using
dual variables," Algorithmica 1 (1986) 409-424.

[15] M.J. Todd and Y. Ye, "A centered projective algorithm for linear programming," Technical Report
763, School of ORIE, Cornell University (Ithaca, NY, 1987).

[16] P. Vaidya, "An algorithm for linear programming which requires O(((m+ n)nZ+(m + n)1Sn)L)
arithmetic operations," AT&T Bell Laboratories (Murray Hill, NJ, 1987).

[17] Y. Ye, "Interior algorithms for linear, quadratic, and linearly constrained convex programming,"
Ph.D. Thesis, Department of Engineering Economic Systems, Stanford University (Stanford, CA,
1987).

[18] Y. Ye, "A class of potential functions for linear programming," Presented at the Joint Summer
Research Conference: Mathematical Developments Arising from Linear Programming Algorithms,
Bowdoin College (Brunswick, ME, 1988).

[19] Y. Ye, "A class of potential functions for linear programming," Department of Management
Sciences, The University of Iowa (Iowa City, IA, 1988).

