ON THE ANALYTIC LUNAR AND SOLAR PERTURBATIONS OF A NEAR EARTH SATELLITE

RONALD H. ESTES

Goddard Space Flight Center, Greenbelt, Md., U.S.A.

(Received 19 April, 1973)

Abstract. The disturbing function of the Moon (Sun) is expanded as a sum of products of two harmonic functions, one depending on the position of the satellite and the other on the position of the Moon (Sun). The harmonic functions depending on the position of the perturbing body are developed into trigonometric series with the ecliptic elements l, l', F, D and Γ of the lunar theory which are nearly linear with respect to time. Perturbation of elements are in the form of trigonometric series with the ecliptic lunar elements and the equatorial elements ω and Ω of the satellite so that analytic integration is simple and the results accurate over a long period of time.

Notation

G	- the gravitational constant
M	- the mass of the Earth
m'	- the mass of the Moon
<i>m</i> ″	- the mass of the Sun
r ·	- the geocentric position vector of the satellite
r	$= \mathbf{r} ,$
r	$=\mathbf{r}/r$
r′	- the geocentric position vector of the Moon
<i>r′</i>	$= \mathbf{r}' $
<i>î</i> ′	$=\mathbf{r}'/r'$
r ″	- the geocentric position vector of the Sun
r″	$= \mathbf{r}'' $
<i>î</i> ″	$=\mathbf{r}''/\mathbf{r}''$
a'	- the mean distance of the Moon from the Earth, defined in such a manner that the constant part in the expansion of the lunar parallax equals unity
<i>a</i> ″	- the mean geocentric distance of the Sun
γ'	- the angle between \mathbf{r} and \mathbf{r}'

i	nc ai	Igic	UCLY	veen	L	anu	Ł
---	-------	------	------	------	---	-----	---

the angle hotwan r and r"

γ″
λ, μ, ν, λ', μ',
ν', λ", μ". ν"

g

n

f

е

i

 ${\Omega}$

 $\widetilde{\omega}$

- v'' the rectangular components of \hat{r} , \hat{r}' and \hat{r}'' respectively in the geocentric equatorial coordinate system
- R_c the equatorial radius of the Earth
 - the mean anomaly of the satellite
 - the mean motion of the satellite
 - the true anomaly of the satellite
 - the eccentricity of the satellite orbit
 - the inclination of the satellite orbit
 - the longitude of the ascending node of the satellite
- ω the argument of perigee of the satellite

 $= \omega + \Omega$

Celestial Mechanics 10 (1974) 253–276. All Rights Reserved Copyright © 1974 by D. Reidel Publishing Company, Dordrecht-Holland

254	RONALD H. ESTES
a	- the semimajor axis of the satellite orbit
ба	- the perturbations in a caused by the Moon (primed)/Sun (double primed)
бе	- the perturbations in e caused by the Moon (primed)/Sun (double primed)
δi	- the perturbations in <i>i</i> caused by the Moon (primed)/Sun (double primed)
δg	- the perturbations in g caused by the Moon (primed)/Sun (double primed)
$\delta \Omega$	- the perturbations in Ω caused by the Moon (primed)/Sun (double primed)
δω	- the perturbations in ω caused by the Moon (primed)/Sun (double primed)
3	- the obliquity of the ecliptic
J_{2}, J_{4}	- zonal harmonic coefficients in the Earth's gravitational potential ($J_2 = 1.08219 \times$
	10^{-3} and $J_4 = -2.123 \times 10^{-6}$)
<i>t</i> ₀	- Julian date of January 0.5, 1900 (2415020.0 days)
$t - t_0$	– number of days from January 0.5, 1900
T	- number of Julian Centuries (36 525 days) from January 0.5, 1900
$l_{\mathbb{C}}$	– geocentric mean longitude of the Moon
$\Omega_{\mathbb{C}}$	– geocentric mean longitude of the lunar node
$\widetilde{\omega}_{\mathbb{C}}$	- geocentric mean longitude of the lunar perigee
l_{\odot}	– geocentric mean longitude of the Sun
$arGamma \equiv \widetilde{\omega}_{\odot}$	- geocentric mean longitude of the solar perigee
$l \equiv l_{\mathbb{C}} - \widetilde{\omega}_{\mathbb{C}}$	- argument of the principal elliptic term
$l'\equiv l_{\odot}-\widetilde{\omega}_{\odot}$	- argument of the annual equation
$F \equiv l_{\mathbb{C}} - \Omega_{\mathbb{C}}$	- argument of the principal term in latitude
$D\equiv l_{\mathbb{C}}-l_{\odot}$	- half argument of the variation

1. Introduction

The usual analytical treatment of the secular and long period effects of the Sun and Moon upon a close Earth satellite is based on a trigonometric expansion of the disturbing function with the angular equatorial elements of the Sun and Moon as arguments (Kozai, 1959; Musen *et al.*, 1961; Kaula, 1962; Murphy and Felsentreger, 1966). The disturbing function is then integrated by approximating the equatorial elements as linear functions of time.

The expansion presented in this paper, following Musen and Estes (1971), represents the disturbing function as a sum of products of two harmonic functions, one depending on the position of the satellite and the other on the position of the Moon (Sun) as given by the Hill-Brown lunar theory (Newcomb's solar theory) instead of osculating elements which are not known precisely (Musen and Felsentreger, 1972). The harmonic functions depending on the lunar and solar positions are represented as trigonometric series with the ecliptic elements l, l', F, D, and Γ of the lunar theory which are very nearly linear with respect to time, in contrast to the equatorial node of the lunar orbit which oscillates between two limits with a period of nearly eighteen years. The expansion of perturbations is then in the form of trigonometric series with the ecliptic lunar elements and the equatorial elements ω and Ω of the satellite so that it is easy to include perturbations in the lunar orbit into the disturbing function and the analytic integration is simple and valid for a long time span.

As with other analytic theories of lunar and solar perturbations based on the development of the disturbing function into a trigonometric series, there will appear small divisors for some terms. In particular the time derivatives of the satellite

elements ω and Ω which appear in denominators after integration are calculated from expressions given by Brouwer (1959) so that oblateness produces resonances at some critical inclination angles such as 46.4°, 56.1°, 63.4°, 69.0°, and 73.1°. Such resonances must be treated as special cases.

2. The Lunar and Solar Disturbing Function

The expansion of the lunar disturbing function is

$$R' = Gm' \left\{ \frac{1}{r'} \left[\frac{r}{r'} P_1 \left(\cos \gamma' \right) + \frac{r^2}{r'^2} P_2 \left(\cos \gamma' \right) + \frac{r^3}{r'^3} P_3 \left(\cos \gamma' \right) + \cdots \right] - \frac{r}{r'^2} \cos \gamma' \right\}$$
$$= Gm' \left\{ \frac{r^2}{r'^3} P_2 \left(\cos \gamma' \right) + \frac{r^3}{r'^4} P_3 \left(\cos \gamma' \right) + \cdots \right\},$$
(1)

where P_j (cos γ') are Legendre polynomials and

$$\mathbf{r}\cdot\mathbf{r}'=rr'\cos\gamma'.$$

Then

$$P_{2} (\cos \gamma') = \frac{1}{2} (3 \cos^{2} \gamma' - 1)$$

$$= \frac{3}{2} [\lambda^{2} \lambda'^{2} + 2\lambda \mu \lambda' \mu' + \mu^{2} \mu'^{2} + 2\lambda \nu \lambda' \nu' + 2\mu \nu \mu' \nu' + \nu^{2} \nu'^{2}] - \frac{1}{2}$$

$$= \frac{1}{4} (1 - 3\nu^{2}) [1 - 3\nu'^{2}] + \frac{3}{4} (\lambda^{2} - \mu^{2}) [\lambda'^{2} - \mu'^{2}] + 3\lambda \mu [\lambda' \mu'] + 3\lambda \nu [\lambda' \nu'] + 3\mu \nu [\mu' \nu'],$$

$$\begin{split} P_{3}\left(\cos\gamma'\right) &= \frac{1}{2}\cos\gamma'(5\cos^{2}\gamma'-3) \\ &= \frac{3}{8}\lambda(1-5\nu^{2})[\lambda'(1-5\nu'^{2})] + \\ &+ \frac{3}{8}\mu(1-5\nu^{2})[\mu'(1-5\nu'^{2})] + \\ &+ \frac{1}{4}\nu(3-5\nu^{2})[\nu'(3-5\nu'^{2})] + \\ &+ \frac{5}{8}\lambda(\lambda^{2}-3\mu^{2})[\lambda'(\lambda'^{2}-3\mu'^{2})] + \\ &+ \frac{5}{8}\mu(3\lambda^{2}-\mu^{2})[\mu'(3\lambda'^{2}-\mu'^{2})] + \\ &+ \frac{15}{2}\lambda\mu\nu[2\lambda'\mu'\nu'] + \\ &+ \frac{15}{4}\nu(\lambda^{2}-\mu^{2})[\nu'(\lambda'^{2}-\mu'^{2})], \end{split}$$

and we have, in notation similar to that of Musen and Estes (1971)

$$R' = \frac{Gm'a^2}{a'^3} \{a_{20}C'_{20} + a_{21}C'_{21} + b_{21}S'_{21} + a_{22}C'_{22} + b_{22}S'_{22}\} + \frac{Gm'a^3}{a'^4} \{a_{31}C'_{31} + b_{31}S'_{31} + b_{32}S'_{32} + a_{33}C'_{33} + b_{33}S'_{33} + a_{34}C'_{34} + b_{34}S'_{34}\} + \cdots,$$

$$(2)$$

where

$$\begin{aligned} a_{20} &= \frac{1}{4} \left(\frac{r}{a} \right)^2 (1 - 3v^2), \\ a_{21} &= \frac{3}{4} \left(\frac{r}{a} \right)^2 (\lambda^2 - \mu^2), \qquad b_{21} = \frac{3}{2} \left(\frac{r}{a} \right)^2 \lambda \mu, \\ a_{22} &= 3 \left(\frac{r}{a} \right)^2 \mu v, \qquad b_{22} = 3 \left(\frac{r}{a} \right)^2 \lambda v, \\ a_{31} &= \frac{3}{8} \left(\frac{r}{a} \right)^3 \lambda (1 - 5v^2), \qquad b_{31} = \frac{3}{8} \left(\frac{r}{a} \right)^3 \mu (1 - 5v^2), \\ b_{32} &= \frac{1}{4} \left(\frac{r}{a} \right)^3 \nu (3 - 5v^2), \\ a_{33} &= \frac{5}{8} \left(\frac{r}{a} \right)^3 \lambda (\lambda^2 - 3\mu^2), \qquad b_{33} = \frac{5}{8} \left(\frac{r}{a} \right)^3 \mu (3\lambda^2 - \mu^2), \\ a_{34} &= \frac{15}{2} \left(\frac{r}{a} \right)^3 \lambda \mu v, \qquad b_{34} = \frac{15}{4} \left(\frac{r}{a} \right)^3 \nu (\lambda^2 - \mu^2), \\ C'_{20} &= \left(\frac{a'}{r'} \right)^3 (1 - 3v'^2), \qquad C'_{21} &= 2 \left(\frac{a'}{r'} \right)^3 \lambda' \mu', \\ C'_{22} &= \left(\frac{a'}{r'} \right)^3 \mu' v', \qquad S'_{21} &= 2 \left(\frac{a'}{r'} \right)^3 \lambda' \mu', \\ C'_{31} &= \left(\frac{a'}{r'} \right)^4 \lambda' (1 - 5v'^2), \qquad S'_{31} &= \left(\frac{a'}{r'} \right)^4 \mu' (1 - 5v'^2), \\ S'_{32} &= \left(\frac{a'}{r'} \right)^4 \mu' (3\lambda'^2 - \mu'^2), \\ C'_{33} &= \left(\frac{a'}{r'} \right)^4 \lambda' (\lambda'^2 - 3\mu'^2), \qquad S'_{33} &= \left(\frac{a'}{r'} \right)^4 \mu' (3\lambda'^2 - \mu'^2), \\ C'_{34} &= 2 \left(\frac{a'}{r'} \right)^4 \lambda' \mu' \nu', \qquad S'_{34} &= \left(\frac{a'}{r'} \right)^4 \nu' (\lambda'^2 - \mu'^2). \end{aligned}$$

The solar disturbing function is of the same form with all primes replaced by double primes.

In the equatorial elements of the satellite,

$$\lambda = \cos (f + \omega) \cos \Omega - \sin (f + \omega) \sin \Omega \cos i$$
$$\mu = \cos (f + \omega) \sin \Omega + \sin (f + \omega) \cos \Omega \cos i$$
$$v = \sin (f + \omega) \sin i.$$

Then

$$a_{20} = \frac{1}{4} \left(\frac{r}{a}\right)^2 \left\{ 1 - \frac{3}{2} \sin^2 i + \frac{3}{2} \sin^2 i \cos\left(2f + 2\omega\right) \right\}$$

$$a_{21} = \frac{1}{4} \left(\frac{r}{a}\right)^2 \{\frac{1}{2} \sin^2 i \cos 2\Omega + \frac{1}{2} \cos 2\Omega \cos (2f + 2\omega) - \cos i \sin 2\Omega \sin (2f + 2\omega) + \frac{1}{2} \cos^2 i \cos 2\Omega \cos (2f + 2\omega)\}$$

$$b_{21} = \frac{3}{2} \left(\frac{r}{a}\right)^2 \{\frac{1}{2} \sin^2 i \sin \Omega \cos \Omega + \frac{1}{2}(1 + \cos^2 i) \sin \Omega \cos \Omega \cos (2f + 2\omega) + \frac{1}{2} \cos i (\cos^2 \Omega - \sin^2 \Omega) \sin (2f + 2\omega)\},\$$

$$a_{22} = 3\left(\frac{r}{a}\right)^2 \{\frac{1}{2}\sin i\sin\Omega\sin\left(2f + 2\omega\right) + \frac{1}{2}\sin i\cos i\cos\Omega - \frac{1}{2}\sin i\cos i\cos\Omega\cos\left(2f + 2\omega\right)\},\$$

$$b_{22} = 3\left(\frac{r}{a}\right)^2 \{-\frac{1}{2}\sin i\cos i\sin \Omega + \frac{1}{2}\sin i\cos \Omega\sin(2f + 2\omega) + \frac{1}{2}\sin i\cos i\sin \Omega\cos(2f + 2\omega)\},$$
$$3 (r)^3$$

$$a_{31} = \frac{1}{8} \left(\frac{1}{a}\right) \left\{ \cos \Omega (1 - \frac{3}{4} \sin^2 i) \cos \left(f + \omega\right) + \frac{3}{4} \sin^2 i \cos \Omega \cos \left(3f + 3\omega\right) + \cos i \sin \Omega (\frac{9}{4} \sin^2 i - 1) \sin \left(f + \omega\right) - \frac{3}{4} \sin^2 i \cos i \sin \Omega \sin \left(3f + 3\omega\right) \right\},$$

$$b_{31} = \frac{3}{8} \left(\frac{r}{a}\right)^3 \{\sin \Omega(1 - \frac{3}{4}\sin^2 i)\cos(f + \omega) + \frac{3}{4}\sin^2 i\cos\Omega\cos(3f + 3\omega) + \cos i\cos\Omega(1 - \frac{9}{4}\sin^2 i)\sin(f + \omega) + \frac{3}{4}\sin^2\cos i\cos\Omega\sin(3f + 3\omega)\},\$$

$$\begin{split} b_{32} &= \frac{1}{4} \left(\frac{r}{a} \right)^3 \{ \sin i(3 - \frac{15}{4} \sin^2 i) \sin (f + \omega) + \frac{5}{4} \sin^3 i \sin (3f + 3\omega) \}, \\ a_{33} &= \frac{5}{8} \left(\frac{r}{a} \right)^3 \{ \frac{3}{4} \sin^2 i \cos \Omega (\cos^2 \Omega - 3 \sin^2 \Omega) \cos (f + \omega) + \\ &+ \frac{3}{4} \cos i \sin^2 i \sin \Omega (\sin^2 \Omega - 3 \cos^2 \Omega) \sin (f + \omega) + \\ &+ \frac{1}{4} (1 + 3 \cos^2 i) \cos \Omega (\cos^2 \Omega - 3 \sin^2 \Omega) \cos (3f + 3\omega) + \\ &+ \frac{1}{4} \cos i(3 + \cos^2 i) \sin \Omega (\sin^2 \Omega - 3 \cos^2 \Omega) \sin (3f + 3\omega) \}, \\ b_{33} &= \frac{5}{8} \left(\frac{r}{a} \right)^3 \{ \frac{3}{4} \sin^2 i \sin \Omega (3 \cos^2 \Omega - \sin^2 \Omega) \cos (f + \omega) + \\ &+ \frac{3}{4} \sin^2 i \cos i \cos \Omega (\cos^2 \Omega - 3 \sin^2 \Omega) \sin (f + \omega) + \\ &+ \frac{1}{4} \sin \Omega (1 + 3 \cos^2 i) (3 \cos^2 \Omega - \sin^2 \Omega) \cos (3f + 3\omega) + \\ &+ \frac{1}{4} \cos \Omega \cos i (3 + \cos^2 i) (\cos^2 \Omega - 3 \sin^2 \Omega) \sin (3f + 3\omega) \}, \\ a_{34} &= \frac{15}{2} \left(\frac{r}{a} \right)^3 \{ \frac{1}{4} \cos i \sin i \cos 2\Omega \cos (f + \omega) + \\ &+ \frac{1}{4} \sin i (1 - 3 \cos^2 i) \cos \Omega \sin \Omega \sin (f + \omega) - \\ &- \frac{1}{4} \cos i \sin i \cos 2\Omega \cos (3f + 3\omega) + \\ &+ \frac{1}{4} \sin i (1 + \cos^2 i) \sin \Omega \cos \Omega \sin (3f + 3\omega) \}, \\ b_{34} &= \frac{15}{4} \left(\frac{r}{a} \right)^3 \{ - \frac{1}{4} \sin 2i \sin 2\Omega \cos (f + \omega) + \\ &+ \frac{1}{4} \sin 2i \sin 2\Omega \cos (3f + 3\omega) + \\ &+ \frac{1}{4} \sin 2i \sin 2\Omega \cos (3f + 3\omega) + \\ &+ \frac{1}{4} \sin i (1 - 3 \cos^2 i) \cos 2\Omega \sin (3f + 3\omega) \}, \end{split}$$

Using the well-known formulas of elliptic motion

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{r}{a}\right)^{2} dg = 1 + \frac{3}{2}e^{2},$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{r}{a}\right)^{2} \cos 2f dg = \frac{5}{2}e^{2},$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{r}{a}\right)^{3} \cos f dg = -\frac{5}{2}e - \frac{15}{8}e^{3},$$

$$\frac{1}{2\pi} \int_{0}^{2\pi} \left(\frac{r}{a}\right)^{3} \cos 3f dg = -\frac{35}{8}e^{3},$$

we find for the averaged potential due to the P_2 term

$$[R'_{2}] = \frac{Gm'a^{2}}{a'^{3}} \{ \frac{1}{4}(1 + \frac{3}{2}e^{2})(1 - \frac{3}{2}\sin^{2}i)C'_{20} + \\ + \frac{15}{16}e^{2}\sin^{2}i(\cos 2\omega C'_{20}) + \\ + \frac{3}{8}\sin^{2}i(1 + \frac{3}{2}e^{2})C'_{210} + \\ + \frac{15}{16}e^{2}(1 + \cos^{2}i)(\cos 2\omega C'_{210}) + \\ + \frac{15}{8}e^{2}\cos i(\sin 2\omega S'_{210}) + \frac{15}{4}e^{2}\sin i(\sin 2\omega S'_{220}) - \\ - \frac{15}{4}e^{2}\sin i\cos i(\cos 2\omega C'_{220}) + \\ + \frac{3}{2}\sin i\cos i(1 + \frac{3}{2}e^{2})C'_{220} \},$$
(3)

where

$$C'_{210} = \cos 2\Omega C'_{21} + \sin 2\Omega S'_{21},$$

$$C'_{220} = \cos \Omega C'_{22} - \sin \Omega S'_{22},$$

$$S'_{210} = \cos 2\Omega S'_{21} - \sin 2\Omega C'_{21},$$

$$S'_{220} = \sin \Omega C'_{22} + \cos \Omega S'_{22},$$

and that due to the P_3 term

$$[R'_{3}] = \frac{Gm'a^{3}}{a'^{4}} \{ \frac{15}{16}e(1 + \frac{3}{4}e^{2})(\frac{3}{4}\sin^{2}i - 1)[\cos\omega C'_{310}] + \frac{15}{16}e(1 + \frac{3}{4}e^{2})\cos i(1 - \frac{9}{4}\sin^{2}i)[\sin\omega S'_{310}] - \frac{315}{256}e^{3}\sin^{2}i[\cos 3\omega C'_{310}] + \frac{315}{256}e^{3}\sin^{2}\cos i[\sin 3\omega S'_{310}] + \frac{15}{256}e^{3}\sin^{2}\cos i[\sin 3\omega S'_{310}] + \frac{15}{8}e(1 + \frac{3}{4}e^{2})\sin i(\frac{5}{4}\sin^{2}i - 1)[\sin\omega S'_{32}] - \frac{175}{128}e^{3}\sin^{3}i[\sin 3\omega S'_{32}] -$$

 $-\frac{75}{64}e(1 + \frac{3}{4}e^{2})\sin^{2}i[\cos\omega C'_{330}] + \\+\frac{75}{64}e(1 + \frac{3}{4}e^{2})\cos i\sin^{2}i[\sin\omega S'_{330}] - \\-\frac{175}{256}e^{3}(1 + 3\cos^{2}i)[\cos 3\Omega C'_{330}] + \\+\frac{175}{256}e^{3}(3 + \cos^{2}i)\cos i[\sin 3\omega S'_{330}] + \\+\frac{75}{32}e(1 + \frac{3}{4}e^{2})\sin i(3\cos^{2}i - 1)[\sin\omega S'_{340}] - \\-\frac{75}{16}e(1 + \frac{3}{4}e^{2})\sin i\cos i[\cos\omega C'_{340}] - \\-\frac{525}{128}e^{3}\sin i(1 + \cos^{2}i)[\sin 3\omega S'_{340}] + \\+\frac{525}{64}e^{3}\cos i\sin i[\cos 3\omega C'_{340}]\},$

(4)

where

 $C'_{310} = \cos \Omega C'_{31} + \sin \Omega S'_{31},$ $S'_{310} = \sin \Omega C'_{31} - \cos \Omega S'_{31},$ $C'_{330} = \cos 3\Omega C'_{33} + \sin 3\Omega S'_{33},$ $S'_{330} = \sin 3\Omega C'_{33} - \cos 3\Omega S'_{33},$ $C'_{340} = \cos 2\Omega C'_{34} - \sin 2\Omega S'_{34},$ $S'_{340} = \sin 2\Omega C'_{34} + \cos 2\Omega S'_{34}.$

The satellite elements appearing in these equations and those which follow now designate mean instead of osculating elements.

Primed (double primed) quantities appearing in the disturbing function depend only upon the position of the Moon (Sun). The coordinates of the Moon are obtained analytically from E. W. Brown's theory where if $\lambda_{\mathbb{C}}$ is the true longitude of the Moon measured in the plane of the ecliptic and β is the latitude above the plane of the ecliptic, Brown's tables express a'/r', β and $\delta \lambda \equiv \lambda_{\mathbb{C}} - l_{\mathbb{C}}$ by sums of periodic terms whose arguments are algebraic sums of multiples of l, l', F, D and Γ . Then

$$\begin{aligned} \lambda' &= \cos \lambda_{\mathbb{C}} \cos \beta, \\ \mu' &= \sin \lambda_{\mathbb{C}} \cos \beta \cos \varepsilon - \sin \beta \sin \varepsilon, \\ \nu' &= \sin \beta \cos \varepsilon + \sin \lambda_{\mathbb{C}} \cos \beta \sin \varepsilon, \end{aligned}$$

where

$$\cos \lambda_{\mathbb{C}} = \cos (l' + D + \Gamma + \delta \lambda)$$

= $(l' + D + \Gamma) \cos \delta \lambda - \sin (l' + D + \Gamma) \sin \delta \lambda$,
$$\sin \lambda_{\mathbb{C}} = \sin (l' + D + \Gamma) \cos \delta \lambda + \cos (l' + D + \Gamma) \sin \delta \lambda,$$

$$\sin \delta \lambda = \delta \lambda - \frac{1}{6} (\delta \lambda)^3 + \cdots,$$

$$\cos \delta \lambda = 1 - \frac{1}{2} (\delta \lambda)^2 + \frac{1}{24} (\delta \lambda)^4 - \cdots,$$

$$\sin \beta = \beta \quad {}_{6}\beta \quad {}_{1} \quad {}_{7},$$
$$\cos \beta = 1 - \frac{1}{2}\beta^{2} + \cdots.$$

The coordinates of the sun are obtained in similar fashion from Newcomb's theory which expresses the ecliptic longitude and latitude and the common logarithm of r''/a'' by sums of periodic terms with the same ecliptic elements as the lunar theory. From the relation $r^n = e^{n \ln r}$ we have

$$\binom{a''}{r''}^n = \exp\left\{-\frac{n}{M_0}\log\left(\frac{r''}{a''}\right)\right\}$$

= $1 - \frac{n}{M_0}\left(\log\frac{r''}{a''}\right) + \frac{n^2}{2M_0^2}\left(\log\frac{r''}{a''}\right)^2 - \cdots,$

where M_0 is the logarithmic modulus,

$$\frac{1}{M_0} = 2.302\ 585\ 1$$
.

The series manipulations involved in the above calculations were performed by electronic computer with programs developed by Musen and Estes (1971) for expanding the Earth's tidal potential.

3. The Main Problem

The secular and long period perturbations in the orbital elements are given by the variation equations

$$\frac{d\delta a}{dt} = \frac{2}{na} \frac{\partial[R]}{\partial g},$$

$$\frac{d\delta e}{dt} = \frac{1 - e^2}{na^2 e} \frac{\partial[R]}{\partial g} - \frac{\sqrt{1 - e^2}}{na^2 e} \frac{\partial[R]}{\partial \omega},$$

$$\frac{d\delta i}{dt} = \frac{\cos i}{na^2 \sqrt{(1 - e^2)} \sin i} \frac{\partial[R]}{\partial \omega} - \frac{1}{na^2 \sqrt{(1 - e^2)} \sin i} \frac{\partial[R]}{\partial \Omega},$$

$$\frac{d\delta \Omega}{dt} = \frac{1}{na^2 \sqrt{(1 - e^2)} \sin i} \frac{\partial[R]}{\partial i} + \frac{d\Omega}{de} \delta e + \frac{d\Omega}{di} \delta i,$$

$$\frac{d\delta \omega}{dt} = \frac{\sqrt{1 - e^2}}{na^2 e} \frac{\partial[R]}{\partial e} - \frac{\cos i}{na^2 \sqrt{(1 - e^2)} \sin i} \frac{\partial[R]}{\partial i} + \frac{d\omega}{de} \delta e + \frac{d\omega}{di} \delta i,$$

$$\frac{d\delta g}{dt} = -\frac{1 - e^2}{na^2 e} \frac{\partial[R]}{\partial e} - \frac{2}{na} \frac{\partial[R]}{\partial a} + \frac{d\dot{g}}{de} \delta e + \frac{d\dot{g}}{di} \delta i,$$
(5)

where (Brouwer, 1959)

$$\begin{split} \dot{g} &= n \bigg\{ 1 - \frac{3J_2 R_e^2}{4a^2(1-e^2)^{3/2}} \left(1 - 3\cos^2 i \right) + \frac{3J_2^2 R_e^2}{128a^4(1-e^2)^{7/2}} \times \\ &\times \left[10 - 25e^2 + 16\sqrt{1-e^2} - 6(10 - 15e^2 + 16\sqrt{1-e^2})\cos^2 i + \right. \\ &+ \left(130 - 25e^2 + 144\sqrt{1-e^2}\right)\cos^4 i \right] - \\ &- \frac{45J_4 R_e^4 e^2}{128a^4(1-e^2)^{7/2}} \left(3 - 30\cos^2 i + 35\cos^4 i \right) \bigg\}, \end{split}$$

$$\begin{split} \dot{\omega} &= n \bigg\{ -\frac{3J_2 R_e^2}{4a^2(1-e^2)^2} \left(1-5\cos^2 i\right) + \frac{3J_2^2 R_e^4}{128a^4(1-e^2)^4} \left[-10-25e^2 + \right. \\ &+ 24\sqrt{1-e^2} - 6(6-21e^2 + 32\sqrt{1-e^2})\cos^2 i + \\ &+ 5(86-9e^2 + 72\sqrt{1-e^2})\cos^4 i\right] - \\ &- \frac{15J_4 R_e^4}{128a^4(1-e^2)^4} \left[3(4+3e^2) - 18(8+7e^2)\cos^2 i + \right. \\ &+ 7(28+27e^2)\cos^4 i\right] \bigg\}, \end{split}$$
$$\dot{\Omega} &= n \bigg\{ -\frac{3J_2 R_e^2 \cos i}{2a^2(1-e^2)^2} + \frac{3J_2^2 R_e^4 \cos i}{32a^4(1-e^2)^4} \left[4-9e^2 + 12\sqrt{1-e^2} - \right. \\ &- \left. \left. \left. \left(40-5e^2 + 36\sqrt{1-e^2}\right)\cos^2 i\right] - \right. \\ &- \left. \left. \left. \left. \left(40-5e^2 + 36\sqrt{1-e^2}\right)\cos^2 i\right] - \right. \\ &- \left. \left. \left. \left. \left. \left(3J_2 R_e^4 (2+3e^2)\cos i\right) \right(3-7\cos^2 i) \right] \right\}. \end{split}$$

The main problem denotes the secular and long period effects resulting from setting [R] to be $[R'_2] + [R''_2]$. Then

$$\begin{aligned} \frac{d\delta a}{dt} &= 0\\ \left(\frac{d\delta e}{dt}\right)' &= -ne\sqrt{1-e^2} \frac{M'}{M} \frac{a^3}{a'^3} \left\{-\frac{1.5}{8}(1+\cos^2 i)[\sin 2\omega C'_{210}] + \right.\\ &+ \frac{1.5}{4}\cos i[\cos 2\omega S'_{210}] + \\ &+ \frac{1.5}{2}\sin i[\cos 2\omega S'_{220}] + \\ &+ \frac{1.5}{2}\sin i\cos i[\sin 2\omega C'_{220}] - \\ &- \frac{1.5}{8}\sin^2 i[\sin 2\omega C'_{20}] \right\},\end{aligned}$$

$$\left(\frac{\mathrm{d}\delta i}{\mathrm{d}t}\right)' = \frac{n\frac{M'}{M}}{\sqrt{(1-e^2)}} \frac{a^3}{a'^3} \left\{ \frac{15}{8}e^2 \sin i \cos i [\sin 2\omega C'_{210}] - \right. \\ \left. - \frac{15}{8}e^2 \sin i [\cos 2\omega S'_{210}] - \right. \\ \left. - \frac{15}{4}e^2 \sin^2 i [\sin 2\omega C'_{220}] + \right. \\ \left. + \frac{15}{4}e^2 \cos i [\cos 2\omega S'_{220}] - \right. \\ \left. - \frac{3}{4}\sin i(1+\frac{3}{2}e^2)S'_{210} + \right. \\ \left. + \frac{3}{2}\cos i(1+\frac{3}{2}e^2)S'_{220} - \right. \\ \left. - \frac{15}{8}e^2\sin i\cos i[\sin 2\omega C'_{20}] \right\},$$

.

$$\begin{split} \left(\frac{\mathrm{d}\delta\Omega}{\mathrm{d}t}\right)' &= \frac{n\frac{M'}{M}}{\sqrt{(1-e^2)}}\frac{a^3}{a'^3}\left\{-\frac{3}{4}(1+\frac{3}{2}e^2)\cos iC'_{20} + \right. \\ &+ \frac{3}{4}\cos i(1+\frac{3}{2}e^2)C'_{210} + \\ &+ \frac{3}{2}\frac{\cos 2i}{\sin i}\left(1+\frac{3}{2}e^2)C'_{220} + \right. \\ &+ \frac{30}{16}e^2\cos i[\cos 2\omega C'_{20}] - \frac{30}{16}e^2\cos i[\cos 2\omega C'_{210}] - \\ &- \frac{15}{8}e^2[\sin 2\omega S'_{210}] + \frac{15}{4}e^2\operatorname{ctn} i[\sin 2\omega S'_{220}] - \\ &- \frac{15}{4}e^2\frac{\cos 2i}{\sin i}\left[\cos 2\omega C'_{220}\right]\right\} + \\ &+ \frac{\mathrm{d}\dot{\Omega}}{\mathrm{d}e}\left(\delta e\right)' + \frac{\mathrm{d}\dot{\Omega}}{\mathrm{d}i}\left(\delta i\right)', \end{split}$$

$$\left(\frac{\mathrm{d}\delta\omega}{\mathrm{d}t}\right)' = \frac{n\frac{M'}{M}}{\sqrt{(1-e^2)}} \frac{a^3}{a'^3} \{ {}^3_{\$}(4-5\sin^2 i+e^2)C'_{20} + \\ + \frac{3}{8}(5\sin^2 i-2-3e^2)C'_{210} + \\ + \frac{3}{2}\operatorname{ctn} i(5\sin^2 i-1-\frac{3}{2}e^2)C'_{220} + \\ + \frac{30}{16}(\sin^2 i-e^2)[\cos 2\omega C'_{20}] + \\ + \frac{30}{16}(1+\cos^2 i-e^2)[\cos 2\omega C'_{210}] + \\ + \frac{15}{8}(2-e^2)\cos i[\sin 2\omega S'_{210}] + \\ + \frac{15}{4}\operatorname{ctn} i(e^2-2\sin^2 i)[\cos 2\omega C'_{220}] + \\ + \frac{15}{4}\left(2\sin i-e^2\frac{(1+\sin^2 i)}{\sin i}\right) [\sin 2\omega S'_{220}] \} + \\ + \frac{\mathrm{d}\dot{\omega}}{\mathrm{d}e}(\delta e)' + \frac{\mathrm{d}\dot{\omega}}{\mathrm{d}i}(\delta i)',$$

$$\left(\frac{\mathrm{d}\delta g}{\mathrm{d}t}\right)' = -\frac{n\left(\frac{M'}{M}\right)a^3}{a'^3} \left\{\frac{1}{4}(7+3e^2)(1-\frac{3}{2}\sin^2 i)C'_{20} + \right. \\ \left. + \frac{3}{8}(7+3e^2)\sin^2 iC'_{210} + \right. \\ \left. + \frac{3}{2}(7+3e^2)\sin i\cos iC'_{220} + \right. \\ \left. + \frac{30}{16}(1+e^2)\sin^2 i[\cos 2\omega C'_{20}] + \right. \\ \left. + \frac{30}{16}(1+e^2)(1+\cos^2 i)[\cos 2\omega C'_{210}] + \right. \\ \left. + \frac{30}{8}(1+e^2)\cos i[\sin 2\omega S'_{210}] - \right. \\ \left. - \frac{15}{2}(1+e^2)\sin i\cos i[\cos 2\omega C'_{220}] + \right. \\ \left. + \frac{30}{4}(1+e^2)\sin i[\sin 2\omega S'_{220}] \right\} + \left. \frac{\mathrm{d}\dot{g}}{\mathrm{d}e}(\delta e)' + \frac{\mathrm{d}\dot{g}}{\mathrm{d}\dot{t}}(\delta i)'.$$

(6)

RONALD H. ESTES

Similar expressions are obtained for the solar perturbations where all primes are replaced by double primes.

Tables I–III display the principal terms of the lunar longitude, latitude and (a'/r') as given by Brown's theory. For the purpose of this paper, the lunar and solar terms in longitude, latitude and parallax whose coefficients are less than 5×10^{-6} rad in magnitude are omitted. In addition all planetary terms and cosine terms in $\delta\lambda$ and β are

Coef. \times 10 ⁵ of sine	M	ultiples	of			$-$ Coef. \times 10 ⁵	M	ultiples	of		
or sinc	l	ľ	F	D	Г		l	ľ	F	D	Г
-61	0	0	0	1	0	1149	0	0	0	2	0
7	0	0	0	4	0	-27	0	0	2	-2	0
-200	0	0	2	0	0	-3	0	0	2	2	0
-80	0	1	0	-2	0	- 324	0	1	0	0	0
9	0	1	0	1	0	-12	0	1	0	2	0
	0	2	0	-2	0	-4	0	2	0	0	0
1	1	-2	0	-2	0	1	1	-2	0	0	0
14	1	-1	0	-2	0	72	1	-1	0	0	0
7	1	-1	0	2	0	4	1	0	-2	-2	0
19	1	0	-2	0	0	-3	1	0	-2	2	0
-19	1	0	0	-4	0	2	1	0	0	-3	0
-2224	1	0	0	-2	0	9	1	0	0	1	0
10 976	1	0	0	0	0		1	0	0	1	0
93	1	0	0	2	0	-22	1	0	2	0	0
-2	1	1	0	-4	0	-100	1	1	0	-2	0
-53	1	1	0	0	0	-1	1	1	0	2	0
-4	1	2	0	-2	0	-1	2	-1	0	-2	0
5	2	1	0	0	0	-15	2	0	0	-4	0
-103	2	0	0	-2	0	373	2	0	0	0	0
7	2	0	0	2	0	-2	2	0	2	0	0
-1	2	1	0		0		2	1	0	-2	0
	2	1	0	0	0	-6	3	0	0	-2	0
17	3	0	0	0	0						

TABLE I

Longitude of Moon $\delta \lambda$

omitted. The resulting accuracy of the functions depending on the position of the Moon and Sun is 1×10^{-4} with 231 terms in C'_{200} , 235 terms in C'_{210} , 255 terms in C'_{220} , 11 terms in C''_{200} , 17 terms in C''_{210} and 16 terms in C''_{220} . Tables V-VIII list the terms of these functions whose coefficients exceed 10^{-5} rad.

Figures 1 and 2 compare perturbations of orbital elements obtained using the method of this paper with those obtained from the Geodyn program (numerical integration of the disturbing function, Equation (1)) and an analytic theory of long period and secular effects (Murphy and Felsentreger, 1966) using the equatorial elements of the Moon.

TABLE II

Coef. \times 10 ⁵ of sine	Mı	ıltiples	of			Coef. \times 10 ⁵	Μι	ıltiples	of		
of sine	!	ľ	F	D	Г	- Of Sille	1	ľ	F	D	Г
-2	0	0	1	-4	0	- 302	0	0	1	-2	0
2	0	0	1	— 1	0	89 50	0	0	1	0	0
-3	0	0	1	1	0	57	0	0	1	2	0
-1	0	0	3	-2	0	-3	0	0	3	0	0
-4	0	1	-1	-2	0	-2	0	1	-1	0	0
-6	0	1	-1	2	0	-14	0	1	1	-2	0
-3	0	1	1	0	0	3	1	-1	-1	0	0
3	1	-1	1	0	0	1	1	0	-3	0	0
-1	1	0	-1	-4	0	-97	1	0	-1	-2	0
485	1	0	-1	0	0	16	1	0	-1	2	0
-3	1	0	1		0	-81	1	0	1	-2	0
490	1	0	1	0	0	7	1	0	1	2	0
-4	1	1	-1	-2	0	-2	1	1	-1	0	0
	1	1	1	-2	0	-3	1	1	1	0	0
-1	2	0	-1	-4	0	15	2	0	-1	0	0
7	2	0	1	-2	0	30	2	0	1	0	0
2	3	0	1	0	0						
					T	ABLE III					
						<i>a</i> ′					
						$\overline{r'}$					
Coef. \times 10 ⁵	M	ultiples	of			$-$ Coef. \times 10 ⁵	M	ultiples	of		
	l	ľ	F	D	Γ		l	ľ	F	D	Г
100 000	0	0	0	0	0	-29	0	0	0	1	0
825	0	0	0	2	0	8	0	0	0	4	0
-3	0	0	2	-2	0	56	0	1	0	-2	0
-12	0	1	0	0	0	4	0	1	0	1	0

Latitude of Moon

-7	1	-1	0	-2	0	34	1	-1	0	0	0
7	1	-1	0	2	0	-21	1	0	-2	0	0
-1	1	0	-2	2	0	18	1	0	0	-4	0
-1	1	0	0	-3	0	1002	1	0	0	-2	0
5450	1	0	0	0	0	-3	1	0	0	1	0
90	1	0	0	2	0	1	1	0	0	4	0
-2	1	0	2	-2	0	2	1	1	0	-4	0
42	1	1	0	-2	0	-28	1	1	0	0	0
-1	1	1	0	2	0	1	1	2	0	-2	0
4	2	-1	0	0	0	11	2	0	0	-4	0
-9	2	0	0	-2	0	297	2	0	0	0	0
8	2	0	0	2	0	-3	2	1	0	0	0
-3	3	0	0	-2	0	18	3	0	0	0	0
1	4	0	0	0	0						

-2 0

-9

TABLE IV

Development	of	sin	λ″	and	$\cos \lambda$	("
-------------	----	-----	----	-----	----------------	----

Coef. \times 10 ⁵	Мι	ltiples	of		
of sine in sin λ''	l	ľ	F	D	Г
99 972	0	1	0	0	1
1674 - 4.2T	0	2	0	0	1
32	0	3	0	0	1
1	0	4	0	0	1
2	0	1	0	1	1
-1675 + 4.2T	0	0	0	0	1
-4	0	-1	0	0	1
-2	0	1	0	-1	1
4	0	0	1	-1	0
-4	0	2	-1	1	2
Deve	elopme	nt of (a	n"/r") ³		
Coef. \times 10 ⁵	Mı	ultiples	of		
or cosine	l	ľ	F	D	Г
$100\ 042 - 0.2T$	0	0	0	0	0
-1	0	0	0	1	0
5027 - 12.5T	0	1	0	0	0
126 - 0.63T	0	2	0	0	0
3	0	3	0	0	0
5027 - 12.5T 126 - 0.63T 3	0 0 0	1 2 3	0 0 0	0 0 0	0 0 0

TABLE V

Development of C'_{200}

Coef. \times 10 ⁵ of cosine	Multip	les of				Coef. \times 10 ⁵	Multiples of						
	l l'	F	D	Г	Ω	of cosine	<i>l l'</i>	F	D	Г	Ω		

75 695	0	0	0	0	0	0	6	0	1	-1	5	1	0
-60	0	0	2	-2	0	0	2055	0	0	0	2	0	0
909	0	0	2	0	0	0	-73	1	0	-2	0	0	0
2369	1	0	0	-2	0	0	-16	1	0	2	-2	0	0
326	1	0	0	2	0	0	-272	0	1	1	-1	1	0
147	0	1	-1	3	1	0	9720	0	1	1	1	1	0
-9826	0	1	-1	1	1	0	-813	1	1	-1	1	1	0
6	1	1	1	-5	-1	0	-269	1	-1	-1	-1	-1	0
-86	1	1	1	-1	1	0	33	1	1	-1	3	1	0
-170	1	-1	1	-3	-1	0	-27	2	1	1	-1	1	0
5	2	1	-1	3	1	0	-12	0	2	1	-1	1	0
-5	0	2	-1	3	1	0	5	0	0	1	-1	1	0
3	0	0	1	-3	-1	0	- 54	2	1	-1	1	1	0
1	0	1	1	0	1	0	28	0	0	2	2	0	0

Table V (Continued)

Coef. \times 10 ⁵ of cosine	Μ	ultipl	es of				Coef. \times 10 ⁵	Multiples of					
or cosme	l	ľ	F	D	Г	Ω	of cosine	l	ľ	F	D	Г	Ω
-3	0	1	2	-2	0	0	32	1	0	-2	-2	0	0
175	1	0	2	0	0	0	1016	2	0	0	0	0	0
-3	2	0	2	-2	0	0	23	2	0	2	0	0	0
297	0	1	1	3	1	0	14	1	-1	-1	-5	-1	0
-4	0	1	3	-1	1	0	-19	0	1	-3	1	1	0
19	0	0	1	3	1	0	-7	1	-1	-3	-1	-1	0
354	1	-1	-1	-3	-1	0	1861	1	1	1	1	1	0
72	1	1	1	3	1	0	247	2	1	1	1	1	0
-13	2	-1	-1	1	-1	0	11	2	1	1	3	1	0
-21	0	2	1	1	1	0	15	0	2	-1	1	1	0
-5	2	-1	-1	-3	-1	0	17	0	0	1	1	1	0
-11	0	0	1	-1	-1	0	-10	0	1	1 [′]	2	1	0
-4	1	2	1	-1	1	0	16	1	0	-1	-3	-1	0
28	3	1	1	1	1	0	9	2	-1	-1	-5	-1	0
15	1	0	1	1	1	0	-13	1	2	1	1	1	0
-5	3	1	1	-1	1	0	-1	1	-2	-1	-1	-1	0
1	1	0	-1	-1	-1	0	23 457	0	2	0	2	2	0
717	0	2	0	4	2	0	19	0	2	0	0	2	0
18	0	2	0	6	2	0	34	1	-2	0	-6	-2	0
-10	0	2	2	0	2	0	4	0	2	-2	4	2	0
96	0	2	-2	2	2	0	48	0	1	0	4	2	0
-10	0	3	0	4	2	0	10	1	2	-2	2	2	0
-17	1	-2	-2	-2	-2	0	-173	1	2	0	0	2	0
853	1	-2	0	-4	-2	0	4491	1	2	0	2	2	0
- 663	1	-2	0	-2	-2	0	174	1	2	0	4	2	0
2	1	-2	0	0	-2	0	594	2	2	0	2	2	0
29	2	2	0	4	2	0	-81	0	3	0	2	2	0
-13	2	-2	0	-4	-2	0	72	0	1	0	2	2	0
-71	2	2	0	0	2	0	-24	0	2	0	3	2	0
4	0	2	0	1	2	0	-9	1	3	0	0	2	0
-8	1	- 3	0	4	-2	0	40	1	-1	0	-4	-2	0
13	1	1	0	4	2	0	3	1	2	0	1	2	0
6/	3	2	0	2	2	0	22	2	-2	0	-6	-2	0
42	1	1	0	2	2	0	- 38	1	3	0	2	2	0
- 14	3 1	2	0	0	2	0	-3	1	-3	0	-2	-2	0
-6	1	2	0	3	2	0	9	2	1	0	2	2	0
- 3	2	3	0	0	2	0	-8	2	3	0	2	2	0
- 66	0	1	1	1	1	0	4	0	l	I	2	1	0
4	0	1	-1	0	1	0	-2	1	1	1	2	1	0
31	1	0	0	4	0	0	-9	l	0	-2	2	0	0
12 380	1 1	0	0	0	0	0	62	1	0	0	-4	0	0
0	N L	1	1	4 1	U 1	U A	4 1 <i>E A</i>	0	 ₁	1	-3	1	0
- 130	U 1	1 1	- 1 1	1 1	1	U O	- 104	1	I -	— I	-1	1	0
- 23	1	— I 1		1 1] 1		- 5	1	I ∡	1	-3	1	0
- 804 7	1	- 1 1	1 1	<u>1</u> 1	— <u>I</u> 1	U O	- I -	2	1		-3	1	0
/ E	2	1	1 1		1	U O)	1	0	2	2	0	0
5	U 2	1 1	1 1) 1	1	U A		1	1	1	5	1	0
Z	Z	- 1	1	T	-1	U	- 1	U	2	1	3	1	0

Coef. $\times 10^5$ of cosine	Μ	ultiple	es of		_		Coef. \times 10 ⁵	Multiples of							
	l	ľ	F	D	Г	Ω	of cosine	l	ľ	F	D	Г	${\Omega}$		
	0	2	-1	-1	1	0	1	0	0	1	1	-1	0		
1	3	1	1	3	1	0	3	1	0	1	3	1	0		
-1	1	-2	-1	1	-1	0	-1	1	-2	-1	-3	-1	0		
-2	0	2	2	2	2	0	1	0	2	-2	0	2	0		
1	0	1	0	6	2	0	2	1	2	-2	0	2	0		
-1	1	-2	-2	0	-2	0	-1	1	2	0	-2	2	0		
4	1	2	0	6	2	0	-2	0	1	0	0	2	0		
2	1	-1	0	-6	-2	0	3	3	2	0	4	2	0		
-1	1	1	0	0	2	0	-2	1	3	0	4	2	0		
-2	0	1	-1	-3	1	0	-2	1	2	2	0	2	0		
1	1	-2	2	-4	-2	0	8	1	-2	2	-2	-2	0		
4	0	1	0	-4	0	0	133	0	1	0	-2	0	0		
2	2	1	0	4	2	0	1	0	0	0	4	2	0		
-24	0	1	0	0	0	0	10	0	1	0	1	0	0		
2	0	3	0	3	2	0	2	0	1	0	1	2	0		
-22	0	1	0	2	0	0	6	0	2	0	-2	0	0		
-1	1	-2	0	-2	0	0	1	1	-2	0	0	0	0		
1	1	-2	0	2	0	0	-16	1	-1	0	-2	0	0		
76	1	-1	0	0	0	0	-6	1	0	- 1	1	1	0		
	1	-2	1	-1	-1	0	2	2	0	1	1	1	0		
23	1	-1	0	2	0	0	-2	1	-2	1	1	-1	0		
1	1	1	-3	1	1	0	4	1	1	-1	-3	1	0		
	1	0	0	-3	0	0	39	2	0	0	4	0	0		
-2	2	-1	1	-5	-1	0	5	1	2	-1	1	1	0		
-6	1	2	-1	1	1	0	- 6	1	0	1	-3	-1	0		
1	2	-1	0	-6	-2	0	1	4	2	0	0	2	0		
-4	1	0	0	-1	0	0	-5	2	0	-2	0	0	0		
110	2	0	0	-2	0	0	38	2	0	0	2	0	0		
-9	2	-1	1	-3	-1	0	4	3	1	-1	1	1	0		
81	3	0	0	0	0	0	2	3	0	2	0	0	0		
-2	1	-1	3	-1	-1	0	-1	3	-1	-1	-1	-1	0		
3	1	0	1	-1	-1	0	2	4	1	1	1	1	0		
-2	2	2	1	1	1	0	5	4	2	0	2	2	0		
-11	1	0	0	1	0	0	-1	2	0	-2	2	0	0		

Table V (Continued)

TABLE VI

Coef. \times 10⁵ Multiples of Multiples of Coef. \times 10⁵ of cosine of cosine \boldsymbol{F} Γ l l' \boldsymbol{F} $l \quad l'$ D ${\Omega}$ D Г ${\it \Omega}$ 90 813 -2-2-94-2-2-2-3-2 - 39 -2-2-2-2-14 -2-2-2-2-2-2-313-2-2-2-2-2-2- 39 -2-2-3 -2-2-2-2-4 -2-4 -2-2-32-3 -4-2-2-10 -3-2-2-2-2-2-2-3 -2-2-2-4-2-2-2-2-67-2-2-2 -2-2-2-6 -2-6 -2-5 -2-669 -1 -2-2-2-4-2-4 -2-2-2-3-2-3-2 17 388 -2-2567 -2-2-2-5-2-2-2-2-25-2-2-2-2-2-15-2-2-4 -2-6 -1 -2-2-32-1 -2-4 -147 -2-1 -2 -2

Development of C'_{210}

5	1	0	0	-4	-2	2	36	2	1	0	2	2	-2
9	2	1	0	4	2	-2	-3	2	-2	-2	-4	-2	2
85	2	-2	0	-6	-2	2	-273	2	2	0	0	2	-2
-52	2	-2	0	-4	-2	2	4	2	2	0	1	2	-2
4	2	2	0	2	2	2	2301	2	2	0	2	2	-2
111	2	2	0	4	2	-2	3	2	2	0	6	2	-2
-3	2	2	2	0	2	-2	8	2	-1	0	-6	-2	2
-11	2	3	0	0	2	-2	-2	2	-1	0	-4	-2	2
-31	2	3	0	2	2	-2	-2	2	3	0	4	2	-2
6	3	1	0	2	2	-2	- 56	3	2	0	0	2	-2
260	3	2	0	2	2	-2	15	3	2	0	4	2	-2
-5	3	3	0	2	2	-2	-9	4	2	0	0	2	-2
27	4	2	0	2	2	-2	-4	2	2	0	3	2	-2
5	0	2	-2	0	2	-2	-2	1	-3	0	-6	-2	2

-13

-2

-2

Coef. \times 10 ⁵ of cosine	Μ	ultipl	es of				Coef. \times 10 ⁵	⁵ Multiples of							
	l	ľ	F	D	Г	Ω	or cosme	l	ľ	F	D	Г	Ω		
2	1	-2	0	8	-2	2	-2	1	2	2	2	2	-2		
30	1	-2	2	-2	-2	2	4	2	2	-2	2	2	-2		
3	2	-2	-2	-2	-2	2	3	2	-2	0	-8	-2	2		
2	5	2	0	2	2	-2	7855	0	0	0	0	0	2		
-3	0	0	0	1	0	2	-3	0	0	0	1	0	-2		
106	0	0	0	2	0	2	106	0	0	0	2	0	-2		
2	0	0	0	4	0	2	2	0	0	0	4	0	-2		
-3	0	0	2	-2	0	2	-3	0	0	2	-2	0	-2		
47	0	0	2	0	0	2	47	0	0	2	0	0	-2		
7	0	1	0	-2	0	2	7	0	1	0	-2	0	-2		
-1	0	1	0	0	0	2	-1	0	1	0	0	0	-2		
-1	0	1	0	2	0	2	-1	0	1	0	2	0	-2		
4	1	-1	0	0	0	2	4	1	-1	0	0	0	-2		
1	1	-1	0	2	0	2	1	1	-1	0	2	0	-2		
2	1	0	-2	-2	0	2	2	1	0	-2	-2	0	-2		
-4	1	0	-2	0	0	2		1	0	-2	0	0	-2		
3	1	0	0		0	2	3	1	0	0	-4	0	-2		
123	1	0	0	-2	0	2	123	1	0	0	-2	0	-2		
643	1	0	0	0	0	2	643	1	0	0	0	0	-2		
17	1	0	0	2	0	2	17	1	0	0	2	0	-2		
5	1	1	0	-2	0	2	5	1	1	0	-2	0	-2		
-3	1	1	0	0	0	2	-3	1	1	0	0	0	-2		
2	2	0	0	-4	0	2	2	2	0	0	-4	0	-2		
6	2	0	0	-2	0	2	6	2	0	0	-2	0	-2		
53	2	0	0	0	0	2	53	2	0	0	0	0	-2		
2	2	0	0	2	0	2	2	2	0	0	2	0	-2		
4	3	0	0	0	0	2	4	3	0	0	0	0	-2		
-2	2	1	0	0	2	-2	1	0	0	2	2	0	2		
1	0	0	2	2	0	-2	9	1	0	2	0	0	2		
9	1	0	2	0	0	-2	1	2	0	2	0	0	2		
1	2	0	2	0	0	-2	2	2	-2	2	-2	-2	2		
-2	3	3	0	0	2	-2	-2	0	1	-1	5	1	-2		
-2	1	-1	1	-5	-1	2	-4	0	1	1	-1	1	2		
95	0	1	1	-1	1	-2	146	0	1	1	1	1	2		
- 3386	0	1	1	1	1	-2	-6	0	0	1	1	1	-2		
94	1	-1	-1	-1	-1	2	-4	1	- 1	-1	-1	-1	-2		
-1	1	1	1	-1	1	2	30	1	1	1	-1	1	-2		
8	1	— 1	-1	1	-1	2	28	1	1	1	1	1	2		
- 648	1	1	1	1	1	-2	5	2	-1	-1	-1	-1	2		
9	2	1	1	-1	1	-2	2	3	1	1	-1	1	-2^{-1}		
2	0	1	-1	3	1	2	-51	0	1	-1	3	1	-2		
	Ū	1	1	1	1	2	3423	0	1	-1	1	1	-2^{-1}		
-5	0	2	1	1	1	-2	-12	1	1	<u> </u>	1	1	- 2		
283	1	- 1	-1	1	1	-2^{-}	-12	1	1	1	3	1	-2		
59	1	<u> </u>	1	3	<u> </u>	2	-3	1	Î	1	_ 3	1			
280	1		1	<u> </u>	<u> </u>	2	-12	1	1	1	<u> </u>	_ 1	_2		
-2	1	2	- 1	1	1	-2	19	2	1	1	1	1	-2		
-2	2	- 1	<u> </u>	3	1	-2^{-2}	3	2	-1	1	-3^{-1}	1	- 2		
	_	-	-	-	—		-		-	-	-	-			

Table VI (Continued)

Coef. \times 10 ⁵	M	ultiple	es of				Coef. \times 10 ⁵	Multiples of							
of cosine	l	ľ	F	D	Г	Ω	of coshie	1	l'	F	D	Г	Ω		
3	0	1	1	2	1	-2	4	0	1	1	3	1	2		
-104	0	1	1	3	1	-2	-2	0	1	1	5	1	-2		
4	0	2	1	-1	1	-2	-7	0	0	1	3	1	-2		
7	0	2	1	1	1	-2	-2	0	0	1	-1	1	-2		
-5	1	0	1	1	1	-2	2	1	-1	-3	-1	-1	2		
-5	1	-1	-1	-5	-1	2	-123	1	-1	-1	-3	-1	2		
5	1	-1	-1	-3	-1	-2	1	1	1	1	3	1	2		
-25	1	1	1	3	1	-2	-6	1	0	-1	-3	-1	2		
5	1	2	1	1	1	-2	-3	2	-1	-1	-5	-1	2		
2	2	-1	-1	-3	-1	2	4	2	1	1	1	1	2		
- 86	2	1	1	1	1	-2	-4	2	1	1	3	1	-2		
-10	3	1	1	1	1	-2	-2	0	1	-1	-1	1	2		
46	0	1	-1	-1	1	-2	7	0	1	-3	1	1	-2		
3	0	2	-1	-1	1	-2	4	0	0	1	-1	-1	2		
2	1	0	-1	1	1	-2	-2	1	1	1	-1	1	2		
54	1	1	-1	-1	1	-2	7	1	1	1	1	-1	2		
2	1	2	-1	-1	1	-2	3	1	0	1	-3	-1	2		
2	2	1	-1	-1	1	-2	23	2	-1	1	-1	- 1	2		
2	3	-1	1	1	-1	2									

Table VI (Continued)

TABLE VII

Development of C'_{220}

Coef. \times 10 ⁵ of cosine	Multiples of	Coef. \times 10 ⁵	Multiples of							
of cosine	l l' F D Γ Ω	- or cosine								
-2	0 1 -1 5 1 -1	-2	1 - 1 1 - 5 - 1 1							
-15	0 1 1 -1 1 1	99	0 1 1 -1 1 -1							
519	0 1 1 1 1 1	- 3553	0 1 1 1 1 -1							
-6	0 0 1 1 1 -1	99	1 - 1 - 1 - 1 - 1 - 1 1							
-14	1 - 1 - 1 - 1 - 1 - 1	- 5	1 1 1 1 1 1							
31	1 1 1 -1 1 -1	8	1 - 1 - 1 1 - 1 1							
-1	1 - 1 - 1 1 - 1 - 1	99	1 1 1 1 1 1							
-680	1 1 1 1 1 -1	5	2 - 1 - 1 - 1 - 1 1							
-1	2 1 1 -1 1 1	10	2 1 1 -1 1 -1							
2	3 1 1 -1 1 -1	8	0 1 -1 3 1 1							
- 54	0 1 -1 3 1 -1	- 525	0 1 -1 1 1 1							
3592	0 1 -1 1 1 -1	-6	0 2 -1 1 1 -1							
-43	1 1 -1 1 1 1	297	1 1 -1 1 1 -1							
2	1 1 -1 3 1 1	-12	1 1 -1 3 1 -1							
62	1 - 1 1 - 3 - 1 1	-9	1 - 1 1 - 3 - 1 - 1							
294	1 - 1 1 - 1 - 1 1	-43	1 - 1 1 - 1 - 1 - 1							
-3	2 1 - 1 1 1 1	20	2 1 - 1 1 1 - 1							
4	2 - 1 1 - 3 - 1 1	4	0 1 1 2 1 -1							

Coef. \times 10 ⁵ of cosine	Μ	ultipl	es of				Coef. \times 10 ⁵	Multiples of						
of cosine	l	ľ	F	D	Г	Ω	of cosine	l	l'	F	D	Г	Ω	
16	0	1	1	3	1	1	- 109	0	1	1	3	1	-1	
-3	0	1	1	5	1	-1	4	0	2	1	-1	1	-1	
1	0	0	1	3	1	1	-7	0	0	1	3	1	-1	
-1	0	2	1	1	1	1	8	0	2	1	1	1	-1	
-5	1	0	1	1	1	-1	-2	1	0	1	3	1	-1	
3	1	-1	-3	-1	-1	1	- 5	1	-1	-1	-5	-1	1	
-129	1	-1	-1	-3	-1	1	19	1	-1	-1	-3	-1	-1	
4	1	1	1	3	1	1	-26	1	1	1	3	1	-1	
-6	1	0	-1	-3	-1	1	5	1	2	1	1	1	-1	
-3	2	-1	-1	-5	-1	1	2	2	-1	-1	-3	-1	1	
13	2	1	1	1	1	1	-90	2	1	1	1	1	-1	
-4	2	1	1	3	1	-1	1	3	1	1	1	1	1	
-10	3	1	1	1	1	-1	-7	0	1	-1	-1	1	1	
48	0	1	-1	-1	1	-1	-1	0	1	-3	1	1	1	
7	0	1	-3	1	1	-1	3	0	2	1	-1	1	-1	
4	0	0	1	-1	-1	1	2	1	0	-1	1	1	-1	
8	1	1	-1	-1	1	1	56	1	1	-1	1	1	-1	
8	1	-1	1	1	-1	1	-1	1	-1	1	1	-1	<u> </u>	
2	1	2	<u> </u>	-1	1	<u> </u>	3	1	0	1	-3^{-1}	-1	1	
3	$\hat{2}$	1	1	_1	1		24	2	1	1	-1	-1	1	
-3	2	1	1	<u> </u>	<u> </u>	<u> </u>	2	3	1	1	1	1	1	
811	0	2	0	2	2	1	-18 842	0	2	Ô	2	2	-1	
20	0	2	Õ	3	2	-1	-3	0	- 2	0 0	- 1	2	-1	
25	Ő	$\frac{2}{2}$	Õ	4	$\tilde{\frac{2}{2}}$	1	576	Ő	2	0 0	4	2	-1	
	Õ	2	Õ	0	2	1	_14	Õ	2	Ő	6	2	1	
8	0 0	2	2	Õ	2	1	4	0	2	2	4	2	_1	
3	0	2	$\frac{2}{2}$	2	2	1	3	Ő	2	_2	т 2	2	1	
	0	2	2	2	2	1	2	0	1	0	6	2	1	
- /1 . 2	0	1	0	2 1	2	1	_ 39	0	1	0	о Л	2	1 1	
2	0	3	0	- - 2	2	1 1		0	1	0	+ 2	2	— 1 _ 1	
-3	0	1	0	2	2	1	- 57	0	1	0	2	2	— 1 — 1	
2	0	1	0	2	2	1	- 57 8	0	1	0	2 Л	2	-1 _1	
	0	0	0	Л	2	1	7	1	_3	0		2	1	
-2	1	1	0	т 2	2	1	_ 3/	1	5	0	-+	-2	1	
2	1	_3	0	2	$-\frac{2}{2}$	1		1	1	0	2. 1	2	1	
8	1	- 5	_2	-2	2	1	- 10 1/	1	2	2		2	1 1	
- 8	1	_2	-2		2	- 1 1	1	1	2	-2	-2 -6	-2	1	
-21	1	-2	0	-0	2	1	130	1	-2	0	0-	-2	— 1 1	
-0 685	1	2	0	1	2	1	30	1	2	0		2	— <u>1</u> 1	
-003	1	-2	0		-2	1	155	1	2	0	-4 2		- <u>1</u> 1	
5	1 1	2	0	1 2	2	— <u>1</u> 1	522	1	2	0	2	2	1	
-3008] 1	2	0	2	2		555	1 1	-2	0	-2	-2	1	
- 23	1	-2		- <u>/</u>	-2	— <u>I</u> 1	ט 120	1 1	2		3 A	2	— I 1	
O A	1			4		1	- 107	1	2	0	4	2	-1 1	
-4	1	2 1	U	0 C	2	I 1	3 7	1	2	2	U	2	I -	
- 3	1	- I	U	-6	-2	1	/	1	<u></u> 5	U	0	2	-1	
- 32	1	-1	U	-4	-2	1		1	-1	0	-4	-2	-1	
-1	1	3	0	2	2	1	30	1	3	0	2	2	1	
2	1	3	0	4	2	1	/	2	1	0	2	2	-1	

Table VII (Continued)

Coef. \times 10 ⁵	Ν	lultip	les of				Coef. \times 10 ⁵ of cosine	Multiples of							
or cosme	l	l'	F	D	Г	Ω	of cosine	l	l'	F	D	Г	Ω		
-18	2	-2	0	-6	-2	1	-2	2	2	0	0	2	1		
57	2	2	0	0	2	-1	11	2	-2	0	-4	-2	1		
21	2	2	0	2	2	1	-478	2	2	0	2	2	-1		
-23	2	2	0	4	2	-1	2	2	3	0	0	2	-1		
6	2	3	0	2	2	-1	2	3	2	0	2	2	1		
-54	3	2	0	2	2	-1	-3	3	2	0	4	2	-1		
2	4	2	0	0	2	-1	-6	4	2	0	2	2	-1		
18 115	0	0	0	0	0	1	-8	0	0	0	1	0	1		
- 8	0	0	0	1	0	-1	246	0	0	0	2	0	1		
246	0	0	0	2	0	-1	4	0	0	0	4	0	1		
4	0	0	0	4	0	-1	-7	0	0	2	-2	0	1		
-7	0	0	2	-2	0	- 1	109	0	0	2	0	0	1		
109	0	0	2	0	0	-1	16	0	1	0	-2	0	1		
16	0	1	0	-2	0	-1	-3	0	1	0	0	0	1		
-3	0	1	0	0	0	-1	1	0	1	0	1	0	1		
1	0	1	0	1	0	— 1	-3	0	1	0	2	0	1		
-3	0	1	0	2	0	-1	-2	1	-1	0	-2	0	1		
-2	1	-1	0	-2	0	-1	9	1	-1	0	0	0	1		
9	1	-1	0	0	0	-1	3	1	-1	0	2	0	1		
3	1	-1	0	2	0	-1	4	1	0	-2	-2	0	1		
4	1	0	-2	-2	0	-1	-9	1	0	-2	0	0	1		
-9	1	0	-2	0	0	-1	8	1	0	0	-4	0	1		
8	1	0	0	-4	0	-1	283	1	0	0	-2	0	1		
283	1	0	0	-2	0	-1	1482	1	0	0	0	0	1		
1482	1	0	0	0	0	-1	-1	1	0	0	1	0	1		
-1	1	0	0	1	0	-1	39	1	0	0	2	0	1		
39	1	0	0	2	0	-1	-2	1	0	2	-2	0	1		
-2	1	0	2	-2	0	-1	12	1	1	0	-2	0	1		
12	1	1	0	-2	0	-1	-8	1	1	0	0	0	1		
- 8	1	1	0	0	0	-1	2	2	-1	0	0	0	1		
2	2	-1	0	0	0	-1	5	2	0	0	-4	0	1		
5	2	0	0	-4	0	-1	13	2	0	0	-2	0	1		
13	2	0	0	-2	0	-1	121	2	0	0	0	0	1		

Table VII (Continued)

TABLE VIII

Development of C''_{200}

Coef. \times 10 ⁵ of cosine	Μ	ulti	ples of				Coef. \times 10 ⁵ of cosine	Multiples of								
of cosine	l	ľ	F	D	Г	Ω		l	ľ	F	D	Г	${\Omega}$			
76 291	0	0	0	0	0	0	- 198	0	1	0	0	2	0			
23 724	0	2	0	0	2	0	2	0	1	1	-1	1	0			
-2	0	3	-1	1	3	0	1389	0	3	0	0	2	0			
56	0	4	0	0	2	0	3827	0	1	0	0	0	0			
1	0	5	0	0	2	0	96	0	2	0	0	0	0			
2	0	3	0	0	0	0										

Development of C''_{210}

-1	0	1	0	0	2	2	- 768	0	1	0	0	2	-2
7917	0	0	0	0	0	2	199	0	1	0	0	0	2
199	0	1	0	0	0	-2	5	0	2	0	0	0	2
5	0	2	0	0	0	-2	170	0	2	0	0	2	2
91 851	0	2	0	0	2	-2	10	0	3	0	0	2	2
5376	0	3	0	0	2	-2	3	0	2	0	1	2	-2
-3	0	2	0	-1	2	-2	219	0	4	0	0	2	-2
8	0	5	0	0	2	-2	8	0	1	1	-1	1	-2
- 8	0	3	-1	1	3	-2							

Development of C''_{220}

-7	0	1	0	0	2	1	159	0	1	0	0	2	-1
18 257	0	0	0	0	0	1	458	0	1	0	0	0	1
458	0	1	0	0	0	-1	11	0	2	0	0	0	1
11	0	2	0	0	0	-1	820	0	2	0	0	2	1
- 19 057	0	2	0	0	2	-1	48	0	3	0	0	2	1
-1115	0	3	0	0	2	-1	2	0	4	0	0	2	1
-45	0	4	0	0	2	-1	-2	0	5	0	0	2	-1
-2	0	1	1	-1	1	-1	2	0	3	-1	1	3	-1

The lunar elements used in the calculation of the perturbed orbital elements [assumed linear in the formal integration of the variation Equations (6)] are given by

 $l = 296^{\circ}.104\ 608\ +\ 13^{\circ}.064\ 992\ 446\ 5(t\ -\ t_0)\ + \\ +\ 0^{\circ}.000\ 688\ 9((t\ -\ t_0)\ \times\ 10^{-4})^2,$

 $l' = 358.475845 + 0.9856002670(t - t_0) -$

 $- 0.000 011 2((t - t_0) \times 10^{-4})^2,$

Fig. 1. δi at the epoch March 17.5075, 1958 for the Vanguard I satellite.

Fig. 2. δe at the epoch March 17.5075, 1958 for the Vanguard I satellite.

$$\begin{split} F &= 11^{\circ}250\ 889\ +\ 13^{\circ}229\ 350\ 449(t\ -\ t_0)\ -\\ &-\ 0^{\circ}000\ 240\ 7((t\ -\ t_0)\ \times\ 10^{-4})^2, \\ D &= 350^{\circ}737\ 486\ +\ 12^{\circ}190\ 749\ 191\ 4(t\ -\ t_0)\ -\\ &-\ 0^{\circ}000\ 107\ 6((t\ -\ t_0)\ \times\ 10^{-4})^2, \\ \Gamma &= 281^{\circ}220\ 833\ +\ 0^{\circ}000\ 047\ 068\ 4(t\ -\ t_0)\ +\\ &+\ 0^{\circ}000\ 033\ 9((t\ -\ t_0)\ \times\ 10^{-4})^2, \end{split}$$

and the obliquity is given by

$$\varepsilon = 23^{\circ}.452\ 294 - 0^{\circ}.003\ 562\ 6(t - t_0) \times 10^{-4} - 0^{\circ}.000\ 000\ 123((t - t_0) \times 10^{-4})^2.$$

Acknowledgements

The author wishes to thank R. Kolenkiewicz for supplying the results of the Geodyn program and J. Murphy for supplying the data from his analytic theory for the comparison made on the Vanguard I orbit. Special thanks are given to Dr. Peter Musen for interesting discussions and inspiration.

References

Brouwer, D.: 1959, Astron. J. 64, 378–397.
Kaula, W. M.: 1962, Astron. J. 67, 300.
Kozai, Y.: 1959, Smithsonian Inst. Astrophys. Obs. Rept., No. 22, 7–10.
Murphy, J. and Felsentreger, T.: 1966, NASA TN D-3559.
Musen, P., Bailie, A., and Upton, E.: 1961, NASA TN D-494.
Musen, P. and Estes, R.: 1971, NASA-X-550-71-342.
Musen, P. and Felsentreger, T.: 1972, NASA-X-550-72-192.