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The nonlinear rescaling principle employs monotone and sufficiently smooth functions to transform the 
constraints and/or the objective function into an equivalent problem, the classical Lagrangian which 
has important properties on the primal and the dual spaces. 

The application of the nonlinear rescaling principle to constrained optimization problems leads to a 
class of modified barrier functions (MBF's) and MBF Methods (MBFM's). Being classical Lagrangians 
(CL's) for an equivalent problem, the MBF's combine the best properties of the CL's and classical 
barrier functions (CBF's) but at the same time are free of their most essential deficiencies. 

Due to the excellent MBF properties, new characteristics of the dual pair convex programming problems 
have been found and the duality theory for nonconvex constrained optimization has been developed. 

The MBFM have up to a superlinear rate of convergence and are to the classical barrier functions 
(CBF's) method as the Multipliers Method for Augmented Lagrangians is to the Classical Penalty 
Function Method. Based on the dual theory associated with MBF, the method for the simultaneous 
solution of the dual pair convex programming problems with up to quadratic rates of convergence have 
been developed. The application of the MBF to linear (LP) and quadratic (QP) programming leads to 
a new type of multipliers methods which have a much better rate of convergence under lower computa- 
tional complexity at each step as compared to the CBF methods. 

The numerical realization of the MBFM leads to the Newton Modified Barrier Method (NMBM). 
The excellent MBF properties allow us to discover that for any nondegenerate constrained optimization 
problem, there exists a "hot" start, from which the NMBM has a better rate of convergence, a better 
complexity bound, and is more stable than the interior point methods, which are based on the classical 
barrier functions. 

Key words: Nonlinear rescaling, modified barrier functions, multipliers method, simultaneous solution, 
dual problems. 

Introduction 

In  t h e  m i d d l e  o f  t he  1950's F r i s c h  [8] a n d  at  t he  o u t s e t  o f  t he  1960's C a r r o l l  [3] 

r e c o m m e n d e d  the  c lass ica l  b a r r i e r  f u n c t i o n s  ( C B F ' s )  fo r  so lv ing  c o n s t r a i n e d  

o p t i m i z a t i o n  p r o b l e m s .  La te r  t h e s e  f u n c t i o n s  w e r e  e x t e n s i v e l y  s t u d i e d  by  F i a c c o  

a n d  M c C o r m i c k  in [6] ( see  a l so  [13])  a n d  i n c o r p o r a t e d  in d i f f e r en t  g e n e r a l  s o l u t i o n  

t e c h n i q u e s ,  so  the  c o r r e s p o n d i n g  m e t h o d s  m a d e  up  a c o n s i d e r a b l e  p a r t  o f  m o d e r n  



178 R. Polyak / Modified barrier functions 

optimization theory (see [6, 13, 18, 19]). Interest in these functions and the corres- 
ponding methods grew dramatically in connection with the well known progress in 
Linear Programming (see [5, 7, 10, 12, 15, 16, 17, 28, 29, 34] and bibliography in it). 

At the same time the CBF's as well as the methods based on these functions still 
have their inherent drawbacks. A specific feature of the barrier functions is their 
unbounded increase in a neighborhood of the boundary. This enables us to start 
the solution process at any interior point of the feasible set and to remain in the 
interior without taking particular care of the constraints. It makes it possible to use 
the smooth optimization methods (see [4, 9, 19]) for solving constrained (nonsmooth) 
optimization problems. However, this merit of the CBF's becomes a deficiency when 
the computational process approaches the active constraints boundary. 

The CBF's as well as their derivatives do not exist at the solution. The CBF's 
grow to infinity, the condition number of the Hessian vanishes and the repulsive 
effect from the active constraints boundary becomes stronger as the computational 
process approaches the solution. So, while the computations are increasing from 
step to step, the rate of convergence is rather slow, even when the second order 
optimality conditions are fulfilled. Furthermore, the CBF's methods obtain the 
optimal values of the Lagrange multipliers only as a result of a limiting process as 
the penalty parameter tends to infinity. 

On the other hand, the classical Lagrangians, which are fundamental in con- 
strained optimization both for the theoretical analysis (necessary and sufficient 
condition, duality theory) and computational methods, along with very important 
qualities have some essential deficiencies. 

First of all, generally, the unconstrained optimum of the CL in the primal space 
under the fixed optimal Lagrange multipliers might not exist even if the second 
order optimality conditions are fulfilled. The unconstrained optimization CL, which 
correspond to the Linear Programming problem, under the fixed optimal dual 
variables is not equivalent to the initial LP problem. 

The objective function of the dual problem, which is based on the CL, is in 
general nonsmooth, independent of the smoothness of the initial functions, even 
for the convex programming problem when the second order optimality sufficient 
conditions are fulfilled. 

Th,~ purpose of this paper is to develop the MBF theory and, based on this theory, 
to consider MBF methods for solving constrained optimization problems. As will 
be proven later, the MBF combine the best properties of the CL and CBF, but at 
the same time are free from their most essential drawbacks and might be considered 
as interior augmented Lagrangians. 

In contrast to the CBF's, the MBF's are defined at the solution. Moreover, these 
functions keep the smoothness of the order of the initial functions in a neighborhood 
of the feasible set. They do not grow infinitely and the condition of the Hessian 
does not vanish when the current approximation approaches the solution. 
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The most important quality of  the MBF is the explicit representation of  the 

Lagrange multipliers. It allows us not only to attach to the MBF, which is in fact 
a classical Lagrangian, all of  the best properties of  the augmented Lagrangians (see 
[2, 11, 14, 20, 27, 31]) but also to find some new important  qualities. 

In contrast to the CL's, the MBF's  is strongly convex in the neighborhood of the 
solution even in the case of  nonconvex programming problems, if the second order 
optimality conditions are fulfilled. Under the optimal Lagrange multipliers, the 
unconstrained extremum of the MBF's exists and coincides with the solution of  the 
initial problem. The dual functions, which are based on the MBF's,  are as smooth 
as the initial functions of  the primal problem and, the dual problem, which is always 
convex whether the initial problem is convex or not, has important local (near the 

solution) properties. 
Based on the MBF theory, three versions of  MBFM have been developed. The 

MBFM's  have a much better rate of  convergence under lower computational  com- 
plexity at each step compared to the Classical Interior Point Methods (C1PM's) 
(see [6]), which are based on CBF's. Even under the fixed penalty parameter,  the 
sequence generated by MBFM's  converge to the primal and dual solutions linearly. 
I f  one increases the penalty parameter  from step to step, the MBFM sequence 
converges to the solution superlinearly, while CIPM have only an arithmetical rate 
of convergence. In fact, the MBFM is to the CIPM as the multipliers method of 
the augmented Lagrangians (see [2, 11]) is to the Classical Penalty Functions Method 

(see [6, 133). 
Moreover, a consideration of the dual problem associated with the MBF's  leads 

to a general method for simultaneous solution of the dual pair of  the convex 
programming problems with up to a quadratic rate of  convergence. 

The numerical realization of the MBFM leads to the Newton Modified Barrier 
Method (NMBM).  The analysis of MBF's  allowed us to discover that for any 
nondegenerate constrained optimization problem, there exists a "hot"  start, from 
which the NMBM trajectory is much more "powerful"  than the Interior Point 
Methods (IPM's)  trajectory. This means that following along the NMBM trajectory, 
one can obtain the same improvement  of  the current approximation by using 
essentially less Newton Method steps. This makes it possible to combine the universal 
self-concordant properties (see [17]) of  the CBF's,  which guarantee the polynomial  
complexity bound of the IPM's,  beginning at the "warm"  start, with excellent MBF's  
properties, which guarantee the essential improvement  of  this bound, beginning at 

the "hot"  start. 
Finally, note that in application to a nondegenerate LP, the normal system of 

equations, which one has to solve at every step of the NMBM,  is numerically more 
stable than the corresponding systems for the IPM which are based on the CBF. 

The main results for the nonlinear programming problems were obtained in 
1981-1982 as a part of  our investigation, which had been undertaken then, concerning 

the nonlinear rescaling (monotone transformation) principle in external and equili- 
brium problems with constraints (see [21-24]). 
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The LP and QP parts were done in 1986. Some results contained in this paper 
were presented at the l l th and 12th International Mathematical Programming 
Symposiums (Bonn, 1982, Boston, 1985) (see also [25-26]). 

1. Problem formulation and basic assumptions 

Let fo(x) and f l (x) ,  i = 1 , . . . ,  m, be C2-functions in Nn and let there exist 

x* = argmin{fo(x) lx c g2}, (1) 

where ~ = {x: f(x)~> 0, i=  1 , . . . ,  m}. I f fo(x)  and - f l ( x )  are convex and the Slater 
condition holds, i.e. 

3Xo: f ( x o ) > 0 ,  i = l , . . . , m ;  (2) 

then Karush-Kuhn-Tucker 's  (K-K-T ' s )  theorem holds true, i.e., there exists a vector 
u* = (Ul*, . . . ,  u*)~>0 such that 

L'(x*,  u*) = f ; ( x * )  - ~ u*f[(x*) = O, 
i=l 

f ( x * ) u *  = O, i = 1 , . . . ,  m. 

(3) 

Let I * = { i : f ( x * ) = 0 } = { 1 , . . . ,  r} be the active constraint set. In view of (2) the 
multiplier polyhedron 

Q =  u = ( U l , . . .  , Ur)>~O:f;(x*) - • uf[(x*)=O 
i=1 

is nonempty for a convex programming problem and every vertex of this polyhedron 
is in a one-to-one correspondence with a minimal set of the active constraints, i.e., 
with an index set I c I* such that 

min{ f[3(x*)- ~ ui~O'  i c I }  =0  

and 

min{ f ~ ( x * ) -  ~ uiff(x*) ui>~O, i c I',,j} > O Vj c I. 
icl\,j 

For convenience, denote f ( x )  = ( f ( x ) ,  i =  1 , . . . ,  m), f(r)(X) = ( f (x ) ,  i---- 1 , . . . ,  r), 
and f ' ( x ) = J ( f ( x ) ) ,  f(r)(X)= J(f(r>(x)) the Jacobi matrix of the vector-functions 
f (x ) ,  f(r)(x) respectively. 

If the sufficient regularity conditions are satisfied (for example see [6, p. 30]), 

rankf~r~(x*) = r, u/* > 0, i c I*, (4) 

then the multiplier polyhedron shrinks to a point. Condition (4) together with the 
sufficient condition for the minimum x* to be isolated, 

(L~x(X* , tA*)y, y)  ~ A (y, y) ,  fit > O, Vy  ~ O: f[r)(X*)y = O, ( 5 )  
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comprises the standard second-order optimality sufficient conditions for the con- 
strained optimization problem (1). 

(Since for any minimal set I conditions (4) are satisfied, it follows that results 
similar to those established below are valid for convex programming problems, 
whenever (4) and (5) are replaced by the Slater condition and (5) is satisfied for 

L,(x,  u ) = L ( x ) - E i c ,  u i f (x) ,  i.e., 

(L ' [~ (x* ,u* )y , y )~A(y , y ) ,  A > 0 ,  V y # O : f ; ( x * ) y = O ,  i c I ,  (5') 

hold.) 
We shall use the following assertion which is a modification of  the Debreu theorem 

(see [1]) and can be proved in a similar manner. 

Assertion 1. Let A be a symmetric n x n matrix, let B be an r x n matrix and U = 
diag ui: R r --> Nr, such that u = (ul . . . . .  Ur) > 0 and By = O ~ ( A y ,  y) >~ A (y, y), A > O. 
Then there exists a ko>O such that for any 0 < #  <A we have 

( (A+kBTUB)x ,x )>~tx(x ,x )  V x c R  ~ 

whenever k >~ ko. [] 

2. Modified barrier functions 

The functions ¢(x, k) =f0(x) - k  -1 ~ = l  In f ( x )  and c(x, k) = f o ( x ) +  k -1E~-i f/~l(X) 
introduced by Frisch [8] and Carroll [3] are the best-known barrier functions. 
However, both of these functions have a serious disadvantage because they, as well 
as their derivatives, do not exist at x* and the functions grow to infinity when x -~ x*. 

Let k > 0 and the set S2k = {x: k f ( x )  + 1 ~> 0, i = 1 , . . . ,  m}. Notice that S2 c .Ok. It 

is clear that i f f ( x ) ,  i =  1 , . . . ,  m are concave, the compactness of  S2 implies the 
compactness of  ~k for any k > 0  [6, p. 93]. If  (1) is a nonconvex programming 
problem, then the compactness of  S2 does not imply the compactness of  S2k. SO in 
the nonconvex case we will use the following growth condition 

3 k o > 0 a n d  ~->0: max{ lmaxn f (x )  lx~S2~,}=O(ko)~.r.  (6) 

It is clear that O(k) is a monotone decreasing function on k > 0. So if (6) is fulfilled 
for some ko> 0 the inequality O(k)<~ ~" will be fulfilled for any k/> k0. 

n m 1 ~ I  We define the Modified Frisch Function F(x, u, k ) : ~  ×~+  x ~ + ~  by the 
formula 

F(x, u , k ) = t ~ ( x ) -  
k i ~ u i l n ( k f ( x ) + l ) ,  i f x6 in t~2k ,  

i 1 

if x ~ int S2k, 
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and the Modified Carroll  Funct ion C(x, u, k) by the formula  

C(x, u, k) = I f°(x) + k-1 i~1 ~ u~[(kf(x) + 1) -1 - 1], if x c in t  ~k, 

if x ~ int ~k. 

For  every k > 0 ,  ~ - - ~ F = { x : k  - l l n ( k f ( x ) + l ) ~ > 0 ,  i = l  . . . .  , m } = ~ c = { x :  

k-l[kf(x) + 1) -1 - 1] <~ 0, i = 1 , . . . ,  m}, therefore problem (1) is equivalent to the 

problem 

x* = argmin{fo(x) lx c ~F} = argmin{fo(x) lx c ~c}, (7) 

while F(x, u, k) and C(x, u, k) are classical Lagrangians  for the problem (7). 

It is easy to see that for every u ~>0 and k > 0 ,  the functions F(x, u, k) and 

C(x, u, k) are convex in x provided  fo(x) is convex and f ( x ) ,  i =  1 , . . . ,  m, are 
concave.  The critical properties o f  these MBF's  are that: 

(P1) F(x*, u*, k)= C(x*, u*, k)-- fo(x*) f o r a n y  k > 0 .  

Due to K - K - T ' s  condit ion (3), for  any k > 0  we have: 

(P2) Fx(x' *,u*,k)=Cx(x ' *,u*,k)=f[}(x*)-~ u*f[(x*)=O. 
i - -1  

Therefore for any k > 0  the functions F(x, u*, k) and C(x, u*, k) attain their 

min imum at x* if (1) is a convex p rogramming  problem and thus the knowledge 

of  the Lagrange multipliers u* = (u*,  . . . ,  u*)  allow us to solve the problem (1) by 

solving one smooth  optimizat ion problem. 

(P3) x*=argmin{F(x, u*, k)Ixc~'}=argmin{C(x, u*, k ) l x ~ R ' } .  

To extend this idea to the nonconvex  p rogramming  problem we can proceed  as 

follows. 

Let U* = [diag u*]~=l, then 

(P4) -x~,xr" ( *, u*, k) = vx~,xC" ( *, u*, k) = L~x(x*, u*) + kf~(x*) U*f(r)(X* ). 

I f  (5) is fulfilled and u* > 0, i = 1 . . . . .  r, then for A = L"x~(X*, u*), B =f~r~(X*) and 

U = U* it follows f rom Assertion 1 that  there exists ko > 0 and A > IX > 0 such that 

(P5) (F~x(X*, u*, k)y, y) >1 Ix(y, y) Vy c ~', Vk >~ ko, 

i.e., F(x, u*, k) and C(x, u*, k) are strongly convex in N~ in the ne ighborhood  of  

x* for any k i> k0. 
Note  that for the CL the proper ty  (P5) is not  fulfilled even if (1) is a convex 

programming  problem and the second order  optimali ty sufficient condit ions are 

fulfilled in the strict form. On the other  hand,  the  proper ty  (P5), hence (P3), holds 

for  the MBF even if the problem (1) is non-convex,  whenever  (4)-(5) is fulfilled 

and k/> ko. For  the CL, (P3) is generally false even if (4)-(5) are fulfilled. 
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So, the Lagrange multipliers, the specific role of  the penalty parameter in the 

construction of  the MBF, together with the extension of the feasible set, which is 

defined by this parameter, give rise to the properties (P1)-(P5) and allow us to 
establish some new basic facts concerning MBF. 

3. Basic theorem 

This theorem states the main facts concerning the MBF. For e > 0 set U ( e ) =  
{ u c ~ + :  ui~> e, i=  1 . . . .  , r, ui~>0, i=  r + l , . . . ,  n}. Suppose e and ko>0  such that 
for a given vector u c U(e) and parameter k ~  > ko there exists a vector 

= £(u, k) = argmin{F(x, u, k)]x ~ 0~"}. 

Together with ~ we consider the vector 

= ~(u, k) = [diag(kf(£) + 1)-l]mlu. 

We will say that the vector u c U(e) is well defined for the parameter k ~> ko if £(u, k) 
exists and the estimation 

max{]12(u,k)-x*[[, Ila(u,k)-u*ll}<~ck ' l lu -u* l l=  3,kllu-u*[[ (8) 

1 holds true, c is independent of k ~> ko and Yk ~ 5. It will be proven later that if 

u e U(e) is well defined for the parameter /~> ko then u is well defined for any 

k~>/c For a fixed k>~ko consider the set Uk={UC U(e):  u is well defined for the 

parameter k} # 0 and define an operator Ck: Uk--" Uk by the formula 

Cku = ~(u ,  k )  = a. 

Then Cku* -= u*, i.e., u* is a fixed point of the mapping u -* ~(u, k). 

For a given k ~> ko also define a transformation Tk : Uk ~ R" x Uk by the formula 

Tku = (~(u, k), a(u, k)) = (2, ~). 

Note that Tku* = (~(u*, k), ~(u*, k)) = (x*, u*), for any k ~  > k0. The main results 

to be established below are the existence of a threshold ko, such that for every 

k ~> ko there exists a nonempty set Uk and a contractive operator Ck with contractibil- 
ity contr Ck = Yk, which tends to zero as k ~ oo, i.e. 

II Cku - u*  [I = II Cku - C~u* [[ <~ ~ II u - u *  II, (9 )  

holds for Vu c Uk, 0 < 7k <~ ~, k >1 ko and Yk ~ 0 if k ~ oo. In the course of proving 
the theorem we will find the estimation for the threshold k0, which is crucial to the 

properties of MBF's as well as for the complexity of  the MBFM's. 

This analysis highlights the most important parameters involved in the computa- 
tional process which are responsible for the complexity of  the constrained optimiz- 

ation problem. 
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Let 6 > 0  be small enough, 0 < e < m i n { u * [ i =  1 . . . .  , r} and k0 large enough 
(in the course of proof  it will be clearer what "small" and "large" mean). Also 
define sets D i ( . ) = D i ( u * , k o , 3 ,  e )={ui :u~>/e ,  lui-u*~ l<~Sk,k>iko}, i = l , . . . , r ,  
D~(u*,ko,6, e)={ui:O<~u,<~Sk, k>~ko}, i = r + l , . . . , m .  D(u*,ko,6,  e ) = D l ( ' )  
@'" " @ D r ( ' ) @ ' '  .@Din(" ) and for any fixed k>~ko define sets 

i U'k={u~:max(e ,u*-6k)~ui<~u*+6k},  i = l , . . . , r ,  U k = { U i : O ~ u i ~ k } ,  

i = r + l , . . . , m ,  U~=UXk@ ' ' ' @ U ~ @ ' ' , @ U ~ " .  So D ( ' ) = { u , k ) : u C U k ,  k>~ko} 
(see Figure 1). 

Further, let ~r = min{f(x*)  I r +  1 ~< i ~< m}> O, I" is the r x r identity matrix, 0 r'r 
is the r x r  zero matrix, M > O  large enough, ]lxll=maxl~i~, Ix~l, IlulI~<M and 
S(y, e ) = { x c  N": I[x-yll  ~< e}. 

LI"~: 

O<E 

k o I~iS r 

~ (u'~,ko,~,E)=Di(') 

U i 

ko r + l < i < m  k 

D(u*,ko,~,~)=D(-)=DI(.)®.. .® Dr (') ®...® Din(-) 

Uk :UL  ® . . . ® U ~ ® . . . ® U ~ ,  8=tg a 

Fig .  1. 

Theorem 1. (i) Let f ( x ) c  C 2, i = 0 , . . . ,  m, and the conditions (3)-(6) hold. Then 
there exist ko> 0 and small enough 6 > 0 that Jot any 0 < e < minv~i~r u* and any 
(u, k)~ D(u*, ko, 6, e) the following statements hold: 

(a) There exists a vector 

= ~(u, k) = argmin{F(x, u, k) lx c R ~} 

such that F'~( ~, u, k)= O. 
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(b) For the pair of  vectors ~ and ~ =- ~(u, k) = [diag(kf(2(u, k)) + 1)-l]~_~u the 
estimate 

max{ll -x*ll, I1 - u*ll) ~ & - ' l l u  - u*ll (lo) 
holds, with constant c independent of k. 

(c) ~(u*, k) = x*, a(u*, k) = u*, i.e. u* is thefixedpoint of  the mapping u ~ ~(u, k). 
(d) The function F(x, u, k) is strongly convex in a neighborhood of ~ = ~(u, k). 
(ii) Let fo(x) and - f ( x ) ,  i = 1 . . . .  , m, be convex and f ( x )  c C 2. 
(a) I f  S2*={xeg2: fo(x)=fo(x*)} is a compact, then for any (u,k)cO~+ +l there 

exist ~, = x( u, k) such that F" ( ~, u, k) = O. 
(b) ~(u*, k) = x*, 3(u*, k) = u* for any k>  O. 
(c) I f  conditions (3)-(5) are fulfilled, then for any (u, k) e D(u*, ko, 6, e) the 

estimation (10) holds and F(x, u, k) is strongly convex in a neighborhood of 2. 

Proof  (i) (a) Let t ~=(u , -u* )k  -1, i = l  . . . . .  m, t=( t i ,  i = l , . . . , m ) ,  S(O, 6)= 
{t ={t, . . . . .  tm): Itil<~ 3, i= 1 , . . . ,  m}, ~(~)= (~,  i= 1 , . . . ,  r), ai(x, t, k) = k t i (k f (x )  
+1)  -~, i = r + l , . . . , m ,  h (x , t , k )=Z~=~+,~(x , t , k ) f [T(x )=kY~=~+l t i ( k f ( x )  
+ l ) - l f f f ( x ) .  Then for  any k > 0 and x c S(x*, co), t c S(O, <3) the vector funct ion 

h(x, t, k)is smooth  enough and h (x*, 0, k) = O c ~ ' ,  h'k(X*, O, k) = 0 " ' ,  h' ,)(x*,  O, k) 
= 0 "'r. On the S(x*, Co) × S(u~), e0) x S(0, 6) × (0, oo) we consider the map  
(I)( X, fi(r), t, k) : N.+r+m+l ~ R.+~ defined by 

@(x, t~(,), t, k) = ( f ;T(x)  -- ~ ~,fff(X) -- h(x, t, k); 
\ i~ l  

+ u*i ) (k f i ( x )  + 1 )  - 1  - k-l~l i ,  i = 1 , . . . ,  r ) .  k-t(kti  

Taking into account  (3) and h(x*, O, k) = 0 we obtain ~ ( x * ,  u3~), O, k) = 0 for  Vk > O. 

=- ' * " L~x x * ,  * ' -  ' * ' Let q~'~a.) ~b~a(x , u~), 0, k); L~  = ( u ), f = f  (x ), f(r)=f~r)(X*), g~r)= 
[diag U*]7=~:Nr-~N r u * > 0 ,  i =  1 , . . . ,  r. 

In view of  h'x(X*, O, k) = 0"",  h;~.~(x*, O, k) = 0 "'r we obtain 

, , { " 
= cI)xa,)(x , U~r), O, k) = \ Lxx 

- utr)JT ) 
Along with (/)~k) we consider the matrix 

It 
---- qS~(x , u*,0,  = . , 

\ -  U(.)f(r) 

m] 
_k-l y )" 

__(f[r))T~ 

O~,r 1" 

The matrix @[oo) is nonsingular,  because for any vector w = (y, v) c O~ "+r the system 
qs~oo)w=0implies ,, , v Lxxy - (f(r)) v = 0 and U~(r)f[r)y = 0. Since u* > 0, i = 1, . . . ,  r the 
second set o f  equations implies f(r)y = 0. So mult iplying the first set o f  equat ions  
by y we obtain (L2xy, y) - (f~r)Y, v) = 0. Therefore f~r)Y = 0 implies (L2xy, y) = 0. By 

virtue o f  (5) this is possible only if y = 0, but  then f[r)v = 0 in view o f  (4) we obtain 

v = 0, i.e. it follows from 4)~oo)W . . . .  - a  ~o the matrix ~/'ioo) is nonsingular .  
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Consequent ly ,  there exists a constant  Ao>O ( independen t  of  k > O )  such that  

m,v ,,~, there exists a scalar tXo>0 such Moreover  for  the G r a m  matr ix  G(~ )=  ~-(~),~-(~) 

that  (G(o~)w, w)>~ IXo(W, w ) V w  c R "+~. Therefore  there exists a ko> 0 such that  for  
~ v T  e f t !  1 every k ~> k0 and for  the matr ix  Gk = "*'(k)'~(k~ we have (Gkw, w)>~ IXo(W, w ) V w  c 

N"+r and IXo> 0 is independen t  o f  k/> ko. So the matr ix  4~k) is not  only nonsingular ,  

but  there exists a constant  p > 0 which is independen t  of  k >~ k0 such that  II q~(-2~[[ <~ P. 
Let k~>ko be any large enough  number  and K = { O ~ R " } x [ k o ,  k~]. Since 
cI)(x*, u ~ ,  O, k) = O, f ( x )  c C 2, i = 0 . . . .  , m, and the matr ix  q~ik~ is nons ingular  for  

any k c [ko, k~] it follows f rom the second implicit  funct ion theorem (see [2, p. 12]) 
thai  there exist t o > 0 ,  6 > 0  and smooth  vector-funct ions  x ( . ) = x ( t , k ) =  
(xL(t, k) . . . .  , x,(t ,  k)), ~ ( .  ) = a(,)(t, k) = ( U l ( t ,  k ) , . . . . ,  at(t ,  k)) defined uniquely 
in a ne ighborhood  S(K,  ~) = {(t, k): ]t~l<~ 6, i = 1 . . . .  , m, k ~ [ ko, k~]} of  the compac t  
K such that  x(0,  k) = x*, a(r~(0, k) = u[~) = ( u * , . . . ,  u*) for  any k ~ [ko, k~]. 

(b) Now we are going to prove  the est imate (10). There  exist Co>0 such that  

max{llx(t ,  k) - x * l l ,  l id ( r ) ( / ,  k )  -- b/*[[} ~ ~:0, 

and 

cI)(x(l, k), U(r)(t, k), t, k ) ~  qb(x(-) ,  ~r ( . ) ,  .)~=0 

II(@'&,)(x(t, k), ~(,)(t, k), t, k))-lll <~ 2p V(t, k) c S(K,  6). 

Rewrit ing (l  1) we obtain  

l T l T f6 (x(t, k ) ) -  ~ ~(t,  k)f i  (x(t, k ) ) - h ( x ( t ,  k), t, k )=0 ,  
i = 1  

u i ( t , k )=(k t~+u* i ) ( k f ( x ( t , k ) )+ l ) - ' ,  i = l  . . . .  , r ,  

and let 

~ ( t , k ) = k h ( k f ( x ( t , k ) ) + l )  ~, i = r + l , . . . , m .  

(11) 

(12) 

(13) 

u i -  u~ 1 
Ui( ')= k f ( x ( . ) ) + k _ l ,  i = r + l  . . . .  ,m .  

So we have 

2 u i -  u* 2ui a (.)~< 
~r k kcr 

and 

We recall that  u~,.-r~ = * " " (• r + l ,  • " • , U ~ r n )  = 0 C ~ m - - r .  First let us est imate the II U(m-r~(" )]1 
where ~(m-r~(" ) = (fli("), i = r +  1 . . . .  , m).  I f  6 > 0 small enough then for any (t, k) 
S(K,  8) we have IIx(t, k ) - x ( O ,  k)[I = LLx(" )-x*ll  <~ ~ and f ( x ( t ,  k))>~½cr therefore  

(14) 
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Now we are going to show that  the es t imat ion (10) holds for  x(t,  k) = x ( .  ) and 

~(r)(t, k )  = (~i( t ,  k), i = 1 , . . . ,  r) ~ ~(~(. ). 
To this end we differentiate the identities (12) and (13) with respect  to t. 

F rom (12) we obtain  

f;'~x(x(" ))x',(" ) - ~ ui(" )fi';x(X(" ))x',(" ) 
i 1 

- (f(~)(x(')))Ta~r).,(" ) - -  h',(x(" )," ) =- O, 

i.e. 

where  

Let 

Then 

~[  ( ' ) ,  u ( , . ) ( ' ) ) x t ( ' ) - ( f ( r ) ( ' j~  (~).,t') ~ h ' , ( x ( ' ) , ' )  

£2dx(" ), G)(" )) = / ; % ( x ( .  )) - Z a,(.  )fG(x(" )), 
i = 1  

x't( ')  = J ~ ( x ( ' ) ) = ( x l . , ( ' ) , j  = 1 , . . . ,  n):Nm-->R ", 

A t -~! 
U(r).t(" ) = Jt(U(r)(° ) )=(IXi ,  t(° ), i =  1 , . . . ,  r ) : N m - > N  r. 

1 r ~ r .  Dr(" )=[d iag (k f ( x ( "  ))+ )]~:1 : Nr--> 

(15) 

Let 

H 

4 ' ( .  ) = n [ E~x(x(. ), ~ , ( .  )) 
r L-diag(kt i  + u*)f~r~(X(" )) 

Then combining  (15), (17) we obtain  

m 

r 

- ( f [r ) (x("  )))T ]. 
- k - '  D2( • ) J 

m 

r a~r~,,(.) r L r - P r ( ' ) ; O  ....... ]d 

In order  to est imate the norm of  the (n + r) x (n + r) matr ix  q~' 1(. ) and the (n + r) x 

m matr ix  R ( .  ) we will consider  the n x m and r x r matr ices  h'f(x(. ) , .  ) and Dr("  ) 
in more  detail. We recall that  h(x ( .  ), .  ) = ~im_~+l ~i(x(" )," )f iT(x(" )). Fur ther  let 

f m _ ~ ) ( x ( ' ) ) = ( f ( x ( ' ) ) ,  i = r + l  . . . .  , m ) ,  a(m ~ ) ( ' ) = ( ~ i ( x ( ' ) , ' ) ,  i = r + l , . . . , m ) ,  

Dr1( • ) = [diag(kf (x("  ) +  1 ) - - 1 ) ] ~ _ 1  , 

Differentiat ing (13) with respect  to t and mult ip lying bo th  sides to k -1 w e  obtain  

-d i ag (k t i  + u*)O72( • )f(r)(x(" ))x't(" ) - k ~a~r).,(" ) = [ - D 7 1 (  • ); O . . . .  ]. (16) 

Mult iplying bo th  sides of  the system (16) to D2r( • ) we obta in  

-d i ag (k t i  + u*)f[r)(X(" ))X:(" ) -- k-lD2r(" )alr).,(" ) = [ -Dr("  ), 0 r'm r]. (17) 
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D,, r ( . )=[diag(k f (x( . ) )+l)]~_r+l ,  t (m_r)=( t i ,  i = r + l , . . . ,  m), D(t(m_r))= 
[diag ti]~=r+l, D@m_r)(X(" ))) = [ d i a g f ( x ( .  ) ) ]~r+l .  Then 

h ' t (x( ' )"  ) = ~ ai(x(" ),')f'i '(x(" ))x ' t( ' )  
i--r+l 

+ (fire r)(X(" )))Tul . . . .  ),,(X(" )," ), 

t~Im_r),t(') = (a ; , ( ' ) ,  i =  r + l , . . . ,  m) 

: [orn-r,  r, kO~nl r(.  ) ]  --  k2O(t (m_r) )Dm2_r( . ) f [m_r) (X( .  ))xtt( • ). 

Now we consider  the system (18) for t = 0  and k > k o .  First of  all note that 
x (O,k )=x* ,  ~ ( r ) ( O , k ) = u * ) = ( u * , . . . u * ) > O  and also ~i(x(O,k),O,k)=O, i= 
r + l  . . . .  ,m,  f ( x (O,k ) )=f (x*)>~o->O,  i = r + l , . . . , m ,  Dr(O,k )=D~(O,k )=I  r, 
O(t(r,_r))lt( ...... , o = Om-r'm r, O ( f ( m _ r ) ( X , ) )  = [ d i a g ( f / ( x , ) ) ] ~ r +  1>~ crlm-r. 

Further, 

kOml_r(x(O, k ) )  = k[diag(kf(x*) + 1) 1]~_-r+t <~ O- lIm-~, 

Ulm-r)(0, k) = [0  ~-r'r, [ d i ag ( f (x* )  + k -1) 1]~-r+1] ~< [Or" r.r; t r- l l r , -~] ,  

cl)~a,(O , k) = cl)~k), h't(x(O, k); 0, k) 

= (f~m_~)(x*)) T- a~_~)(O, k) 

= (f(m ~)(X*))T[O . . . .  ; [ d i a g ( f ( x * ) + k  1) 117. +1]" 

Then for the norm of  the matrix h',(x(O, k) ;0 ,  k) we obtain the estimate 
[[h:(x(0, k), 0, k)ll <~ o-l]]f( . . . .  )(x*)ll. So for the matrix x:(0, k), and a~r),,(0, k) we 
have 

a~).,(0, k ) J  t_ [ - Y ,  O ~'~-~] .] = (q)~k)) 1Ro. (19) 

Taking into account  the estimate II~(~)ll~<p and IIh',(x(O,k),O,k)ll ~ 
tr ~llf~m r)(x*)ll from (19) we obtain 

max{llx',(o, k)ll II t~i,),~(o, k)ll} ~< p ( ~  ill f (  . . . .  )(x*)ll + II Fl l)  = p[ °--~ IIf(~-r)(X*)[I + 1]. 

So for a small enough 8 > 0 and any (t, k) ~ S(K,  6) the inequality 

II ~ ' - l ( x (  ~'t, k), ~(r)(rt, k))R(x('rt, k); (~'t, k))ll ~< 2p[(r -111f(m ~)(x*)ll + 1] = Co (20) 

holds for any 0 ~< ~- <~ 1 and any k/> ko. Also we have 

U(r)(t, k ) -u *J  La(~)(t, k)-U(r)(O, k)J 

L' 
= ~ ' - ' ( x ( r t ,  k), a(~)(Tt, k))R(x('rt, k); (Tt, k)) [ t ]  dr. 

(21) 
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So taking into account the estimate (20) and (21) we obtain 

max{llx(t , k ) -  x*ll , JJ~(t, k ) -  u*llI <~ co[It[[ = cok ' l l u -  u* H. 

Let 

189 

;(u, kt=xl--i--,k ), \ k '  ' \ k '  

Then for c = max{2cr -~, Co} we obtain 

max{ll;(u , k) -x*[I,  Ila(u, k) - u*ll} ~ < ck 'Hu - u*lJ = ykllU - u*ll 

i.e. the estimate (10) holds true. 
(c) Using the estimate (10) we will prove later that F(x, u, k) is strongly convex 

in the neighborhood of)~ = )~(u, k) = argmin{F(x, u, k)Ix c N n} uniformly in (u, k) c 
D(u*,  ko, 8, e). Meanwhile note that due to (P2), we have F'~(d(u*, k), u*, k) = 0 
and due to (P5), the function F(x, u*, k) is strongly convex at 2(u*, k). So d(u*, k) = 
argmin{F(x, u*, k) lx c N"} = x* and ~(u*, k) = [diag(kf(x*) + 1) 1]m=lU* = U*. 

(d) Equalities (12)-(14) show that ~ = 5(u, k) satisfies the necessary optimality 
condition for the function F(x, ~, k). This condition, along with the strongly convex 
F(x, ~, k), in a neighborhood of ~ enables us to prove that 2 is a local minimum 
F(x, ~, k) in a neighborhood of 2. First let us prove that F(x, u, k) is strongly convex 
in a neighborhood of )~. We have 

F'~(x, u, k) = f • ( x ) -  ~ ui(kf (x)  + 1)- 'f / ' (x) 
i = l  

and 

F'x(X, u, k ) = f ~ ' ( x ) -  ~ ui(k f i (x)+l) - ' f ; ' (x )  

m 

+ k  Y u , ( k f ( x ) +  2 ,~ , 1) )ci (x) f i (x) .  
i = 1  

Therefore, in view of ui = t~i(u, k) = u i ( k J i ( x ) - ~ -  1) -1 we obtain 

F~(x ,  u, k)=A~'(;  ) -  ~ ~, f ; ' ( ; ) -  ~ u,(kf( .~)+l)  'f['(;) 
i ~ l  i = r + l  

+ki 
i = 1  

i = r + l  

By (10) for a sufficiently large 

u i ( k ~ i ( ;  ) ~- 1 ~ ] - - 2 f l T ( ; ] f l ( ;  ` k / d i  k / 

u,(kf(.~) + 1) 2fff (.~)f:(.~) 

V(u, k) c D(u*, ko, 3, e). 

ko we have 2(u, k) near x* and a(u, k) near u* 
uniformly in ( u, k) ~ D( u *, ko, & e ). 
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So ~ x *  and ~ u *  lead to 

f ~ ' ( ; ) -  i . . . .  --> l." ( uifi (x) * u*), ~ x x \  x , 

i = 1  

A - - 2  t T A 1 A - ' - )  l T , ~ ! , 
k ~, u i ( k f ( x )+ l )  f i  (x) f i (x)  kf(r)(X )U(r)f(r)(X ). 

i ~ 1  

Furthermore, f (2~) -~f(x*)/> o->/0, i = r + 1 . . . . .  m, hence 

A n , n  u,(kf (x)  + 1)- ' f ; ' (~ )  --> O , 
i - - r + l  

k u i ( k f ( x )+ l )  f ,  ( x ) f ( x )  - - )  0 . ,  ~. 
i ~ r + l  

So for a large enough /Co we have 

F" "* x~x, u, k) . . . . .  * u*) + k f  'T '~x *~ = L x x ~ x  , J (r~ '  ~ U ' ~ , ~ f ~ , ~ ( x * )  

-- _,:~,xV'" ~ *, u*, k) V(u, k) ~ D(u*, ko, 6, e). 

In view of (5) and Assertion 1 for A = - "  ~ * L ~ t x  , u*) and B-=f(r~'(x*) there exists 
/z > 0 that mineigval F~(x* ,  u*, k) >~ Ix. Therefore for large enough /Co and small 
enough 6 the inequality 

(F~(~,  u, k)y, y) ' >~ ~l,z(y, y), 

holds true uniformly in (u, k) c D(u*, ko, 6, e). In view of (12) we have F ' (~ ,  u, k) = 
0. So the strong convexity of F(x, u, k) in x at the neighborhood of )~ implies that 

~ = argmin{F(x, u, k) l xc  S(.~, eo)}. Due to (10) ~ is a local minimum of F(x, u, k) 
in S(x*, eo). 

To complete the proof  of part  (i) of the theorem we should extend the neighbor- 
hood S(x*, eo) to ~k, hence, due to the definition of F(x, u, k), to ~ ' .  

First of all note that 

F(~, u, k)<~F(x *, u, k) = f o ( x * ) - k  ~ ~ u~ l n ( k f ( x * ) +  1) 
i - - 1  

<~fo(x*)-k ' ~ u* ln (k f (x*)+l )=fo(x*) .  (22) 
i 1 

Suppose that there exists a vector Y E S2k and a number  , ( >  0 such that F(2, u, k) ~< 
F(~, u; k) - L Then from (22) we obtain 

F(2~, u, k) ~<fo(x*) - L 

Let L ( x ) =  {i: f (2~)> 0}. Then from the last inequality we obtain 

f o ( : ~ ) < ~ f o ( x * ) + k  ~ Y~ u~ln(kf(Y)+l)-,~ 
i ~  l + ( ~ )  

So from the assumption (6) and ]]uJJ ~< M for the large enough ko and any k ~> k0 
we have f0(x) <~fo(x*) -½flu 
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From the other  side we have f o (Y )>~min{ fo (x ) l xeS2k} ,  then by assumpt ions  

(3)-(5) f rom Theorem 6 of [6 ,  p. 34] we obtainf0(Y) >~fo(x*) - k -1Y~=1 u*,  therefore 

taking large enough k0 we will get for any k ~  > k0 that f ) 0 7 ) > f o ( x * ) - ¼ £ .  
This contradict ion completes the p r o o f  o f  part  (i) o f  the theorem. 

(ii) (a) I f fo(x)  and - f ( x ) ,  i = 1 , . . . ,  m, are convex funct ions and/ '2* is a compact ,  

the existence o f  the min imum of  F(x ,  u, k)  in ~ over S2k for  any u > 0 and any k > 0 

follows from Lemma 12 of  [6, p. 95]. Moreover ,  F'~(~, u, k) = 0 because F(x ,  u, k)  + 
oo when x -+ 0S2k. 

(b) The convexity o f  F(x ,  u, k)  on x and (P3) ensure )~(u*, k) = x*, a(u*,  k) = u* 

for any k > 0. 
(c) I f  the assumptions (4) and (5) are fulfilled then this statement can be p roved  

in the same manner  as in the nonconvex  case, but  we don ' t  need the assumpt ion  

(6), because in this case S2*= {x*} and the level set o f  F(x ,  u, k) is b o u n d e d  for  

any fixed u > 0 and k > 0. 

The theorem is proved.  [] 

Remark 1. Theorem 1 can be proved similarly for the funct ion C(x ,  u, k)  if we 

consider a point- to-point  mapping  

q'c(x, t, k) (fy(x)-  L = i=, uif i  ^ , T ( x ) _ h ( x ,  t, k) ,  

( k t i + u * ) ( k f ( x ) + l )  2 - a i ,  i = l , .  . . . .  r ) .  

Remark 2. Theorem 1 is generally invalid if, instead o f  F(x ,  u, k),  one considers  

the classical Lagrangian L(x,  u) for the problem. 

Example. Let us consider  a problem 
X* . 9 2 = argmm{xi  - x2 ] f  (x)  = 2 - Xz ~ 0, f2(x)  = x2 > 0} = (0, 2). 

The corresponding  classical Lagrangian L(x,  u ) =  x21-x~ - u l ( 2 - X z ) -  UzX2. Then  
u * = 4 ,  u * = 0 ,  f ( r ) ( x ) = f l ( x ) ,  L ~ x ( x * , u * ) = (  2 02), f [ r ) ( x * ) = f ~ ( x * ) = ( _ ° , )  and 

= " * y : f ( r ) y  =0 ,  i.e. the second order  f ( r ) ( X * ) y  = O ~ y  (Y'), SO (L~x(x , u*)y, y)  = 2y 2 V ' 

optimali ty condit ions (4)-(5),  are fulfilled. But inf{L(x, u * ) l x c ~ 2 }  = 
inf{x 2 -  x 2 + 4x2 - 8Ix  c ~2} = -o0,  and moreover ,  inf{L(x, u)l x ~ ~2} = -o0 for  any 

u = (Ul, u2) > 0. Now let us consider the equivalent  problem x* = argmin{x 2 -  x 2 ] 

k ~ l n ( k ( 2 - x 2 ) + l ) > 0 ,  k ~ l n ( k x 2 + l ) > 0 }  and the corresponding classical 

Lagrangian 

F(X, U, k )  = x 2 - x  2 - k - l u ,  ln(k(2 - x 2 )  + 1) - k - ' u 2  ln(kx2 + 1). 

Then 

F~x(x*, u*, k ) =  I"  (~* * 4 . . . .  .. , u ) - ~  ( l n ( k ( 2 - x * ) +  1))"x 

-=(~ --~) -k  (~ -0k2)=(a 4k0-2) " 



192 R. Polyak / Modified barrier functions 

So F~x(x*, u*, k) is positive definite and x* = (0, 2) = argmin{F(x, u*, k)Ix c ~2} for 
any k>½. 

Remark 3. All the facts of Theorem 1 remain in force in case of a convex program- 
ming problem if only (2) and (5') hold and instead of D(u*,  ko, 6, e) we take 

D1(u*, ko, 6, e)={(u,  k): ui>~ e> O, ic  Ilu i-u~l<~ 6k, i~ I, u~ =0, iZ I, k>~ ko} 

for any minimal set I. 

4. Shifted barrier functions 

To use Theorem 1 one has to know a pair (u, k) ~ D(u*, ko, 6, e). But a priori we 
don't  know such pairs (u, k), as well as x°c in t /2 .  

To find x°c  int 12 we can use the multipliers method (see [24]) for solving the 
problem 

~=argmax{xmin  f ( x ) l x c R "  }. 

If int 12 ~ 0 then after some steps of the method of [24] we will get x°: f ( x  °) > 0 
i = l , . . . , m .  

Let e = ( 1 , . . . ,  1 )oR ' .  In order to find the pair (u, k ) c  D(u*, ko, 6, e) we will 
consider the shifted barrier function 

M ( x , k ) = I  F ( x ' e ' k ) = f ° ( x ) - k - l i = ~  ~ l n ( k f ( x ) + l ) ,  i f xc in t12k ,  

[ ec, if x ~ 12k. 

Note that if the condition (6) holds then 3k0> 0 such that the next inequalities 

fo (x )>~M(x ,k)>~fo(x) -O(k  ~lnk)  Vx~12 hold for any k~> ko. (23) 

The next theorem allows us to find (u, k) c D(u*, ko, 6, e). 

Theorem 2. I f  functions f~(x), i= 0 , . . . ,  m, are continuous, and there exists ko> 0 
such that 12ko is a compact then: 

(i) For any k >t ko there exists x( k ) = argmin{M(x, k) Ix c N n} such that 

M ' ( x ( k ) ,  k) = 0 

and 

lira fo( x( k ) ) = lim M ( x( k ), k)=fo(x*).  
k--~ oo k ~ o c ,  

(ii) I f  f i(x) c C 2, conditions (4) and (5) are fulfilled then there exists ko such that 
for any k >~ k o the vector x(k)  exists and for the pair (x(k),  u(k)), where u(x(k))  = 
[diag(kf(x(k))  + 1) 1]~' le, the estimate 

max{[Ix(k ) -x*ll  , [[u(k) - u*ll}<~ ck 1 (24) 

holds true with c > 0 independent of k >~ k o. 
(iii) Under condition (ii) the function M ( x, k) is strongly convex in a neighborhood 

of x(k).  
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Proof.  (i) The x(k )  = a r g m i n { M ( x ,  k ) l x c ~ n } = a r g m i n { M ( x ,  k) lxcg2k}  exist 

because  Ok is a compact ,  M(x,  k) is cont inuous  in int Ok and increases infinitely 
as x approaches  the bounda ry  of  Ok. Because of  the last p roper ty  we obta in  
M ' ( x ( k ) ,  k) = 0. 

To prove  l i m k ~ f o ( x ( k ) )  = l i m k ~  M ( x ( k ) ,  k) =fo(x*) ,  we consider  any converg-  
ing subsequence  {x(k~)}c {x(k)} and let l i m k ~ x ( k ~ ) = 2 .  It is easy to see that  
97~ S2, so due to (23) we obtain fo(2)<~ M(~,  k~)+O(k,  l ln k,). Therefore  for  any  

small e > 0 we can find large enough k~ that  f~(2) ~< M(2 ,  k,) + e. Then,  taking large 
enough ks one obtains  

fo(x(ks) ) -e<~fo(2)<~M(2,  k,)+e<~M(x(k~.),  k , ) + e + e ,  

i.e., f i (x(k~))  <~ M ( x ( k , ) )  + 3 e  ~< M(x* ,  k~) + 3 e  ~<fo(x*) +3e .  Taking into account  
that  e > 0 is arbitrari ly small, we obtain 

fo(2)  = l im fo (x (k , ) )  <~fo(x*), so fo(2)  =fo(x*) .  
k s ~  

Therefore  for  any subsequence  k~-->°o we have l im~oo fo (x ( k , ) )= fo (x )= fo (x* ) .  
Hence  limk~<~fo(x(k)) =fo(x*)  and,  by (23), l i m k ~  m ( x ( k ) ,  k) =fo(x*) .  

(ii) I f  (4) and (5) are fulfilled then (x*, u*) is a unique K - K - T  pair. There fore  

l i m k _ ~ f ( x ( k ) )  = l i m k ~  M ( x ( k ) ,  k) =f0(x*)  and l i m k ~  x (k )  = x*, limk~oo u(k)  = 
u*. In  addi t ion M(x,  k) --> oc if x-~ 0Ok, so 

M'~(x(k),  k ) = f ; ( x ( k ) ) -  ~ u~(k) f ; (x (k ) )=0.  (25) 
i I 

Now we are going to est imate I[ Ax {( = [(x( k ) - x * ll , {I Au I[ = II u( k ) - u* ]l. F o r f ( x )  c 
C 2 we have f [ ( x ( k ) ) = f [ ( x * ) + f T ( x * ) A x + h ( ( A x ) ,  and h ( ( 0 ) = 0 ,  i = 0  . . . . .  m, 
Il h T ( ~ x  ) ([ < ,~,( A x ) ax, o~,( ax  ) ~ O as Ax -> O, 1 = 0  . . . . .  m. Then,  u,( k ) = u,( x*, k ) + 

t $ u . , ~  u~(x , k )Ax  + h~/(Ax) and h~/(O) = O, IIh~ (Ax)II ~ ~ ( A x ) A x ,  where fi~(Ax) ~ 0 as Ax --, 
O, i = l , . . . , m .  

Note that  u~(x*, k) = 1, i e I *  = { 1 , . . . ,  r}, while f ( x * )  ~> cr > 0 for  i z: I* .  There-  
fore, u~(x*, k) = O(k-I ) ,  i~ I*. Then,  we have u~(x, k) = - k f [ ( x ) ( k f ( x )  + 1) -2, 
so, for  i e I*  we obtain  u~(x*, k) = - k f ' ( x * ) .  And in view o f f ( x * )  ~> ~r> 0 for  i~  I *  
we have ((u',(x*, k )N < k((f[ (x*)ll( ko- + 1) -2=  O ( k - ' ) .  

We now replace ui(k),  i c I*, and f [ ( x ( k ) ) ,  i ~ I* w {0}, in (25) by their  values. 
Taking into account  that  u~(k)= Au~ + u* we obtain  

0 = f ; ( x * )  + f~ ' (x* )Ax  + hi~(zlx) 

- ~ (Au~+u*)( f '~(x*)+f~ ' (x*)Ax+h[(Ax))+ ~ u~(k)f[(x(k))  
i - - I  i = r + l  

= f ; ( x * ) -  ~ u*f'(x*~i~,, 
i 1 

+ f ;  ( x )  - Z u*f; ' (x* Ax - f ' ( x* )Au i  + h q a x ) ,  
i = l  i=-I  
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hi(ax) = h ro(aX) - Z (au, + u*)h{(Ax) - i Auf;'(x*)Ax 
i = l  i = 1  

+ ~ ui(k)f;(x(k)), 
i = r + l  

hs(O) = O, LlhS(Ax)lJ ~ ~(ax)ll/ixll, 
and a(Ax)--~ 0 as II/ixll-, 0. In  view of K - k - m ' s  condi t ion (3) we can rewrite the 
latter as 

t T L~xAx - f (~)/iu + hi  ( Ax) = 0. (26) 

Then,  we have 

ui(k) = ui(x*, k)+ u'j(x*, k)Ax + h~( Ax) 

= 1-kf[(x*)Ax+h'/(Ax) ,  i= 1 . . . . .  r. (27) 

Let ~ = ( 1 , . . . , 1 ) < W ,  t i * = ( u *  . . . . .  u*),  v * = O - t i * ,  hU(Ax)=(hT(/ix), i= 
1 , . . . ,  r). Then  (27) takes the fo rm 

Au = v* - kf[r)(X*)/ix + h u (/ix) (28) 

with hU(0) = 0 and  II h~(/ix)ll <~/3 ( / ix)  I[/ixll, where/3 ( / ix)  --, 0 as [I/ixll --' 0. Combin ing  
(26) and (28) we obta in  

\ A u ]  \--f[¢) k - ' U ] \ A u ]  k- iv * + k- 'h" (Ax) ] "  

As shown in the p r o o f  of  Theo rem 1, the matr ix  D is nons ingular  and for sufficiently 

large k/> ko there exists a constant  po>  0 independen t  o f  k such that  U D-~[[ <~ po. 
Let p = (0, k-~v *) and q(Ax) = (hr(Ax); k ~hU(Ax)). Then  IIq(/ix)]l <~ ~(/ix)ll/ixll 
and "),(/ix) ~ 0 as II/ixll ~ 0. Recal l ing again that  x(k) ~ x* and u(k) -~ u*, we obtain  
for the vector  Az=(Ax,  Au)=D-~p+D-~q(Ax)  there exists an independen t  of  
k/> ko constant  c > 0 such that  [IAzll <~ ck -1, i.e., est imates (24) hold. 

(iii) Finally, we show that  F(x, k) is s trongly convex in a ne ighborhood  of  x(k). 
We have 

F'(x(k) ,  k)= FL(x, k)l~=~(.)=fL(x(k)) - ~ (kji(x(k))+ 1)- l f / (x(k)) ,  
i = 1  

F"(x(k) ,  k) = FL(x, k ) l ~ )  

=fD'(x(k))- ~ (k f (x(k)  + 1))-'fT(x(k)) 
i - - I  

+ k ~ (k f (x(k) )+ 1)-2f~Y(x(k))f[(x(k)) 
i = l  

=f~'(x(k))-  ~ u~(k)f~'(x(k)) 
i - -1  

+ k ~ u~(k)(kf(x(k)) + 1)-~f[T(x(k))f;(x(k)). 
i ~ l  
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We have u i ( k ) o  u * , f ( x ( k ) ) o f ( x * )  =0 ,  i = 1 , . . . ,  r, and there exists o - > 0  such 

that  f ( x ( k ) ) o f ( x * ) > ~ o ' > O ,  i = r + l , . . . , m .  Therefore,  k ( k f ( x ( k ) ) + l )  -2= 
O(k-~),  i =  r +  1 , . . . ,  m. Moreover ,  ui(k) = O(k-1),  i =  r +  1, . . . ,  m. Consequent ly ,  

if k ~ co, then 

f;'(x(k))- ~, u,(k)f['(x(k))-> L~(x*, u * ) ,  
i=1 

k ~ ( k f ( x ( k ) )  + 1) 2f[W(x(k))f[(x(k))--> kf~Tr) U ' f  (r) 
i = l  

m O , and E i = r + l  u i (k ) f [ ' ( x (k ) )~  "'" 

k ~ u , ( k ) ( k f ( x ( k ) ) + l ) ~ f [ T ( x ( k ) ) f / ( x ( k ) ) ~ O " ' " ,  
i=r+l 

i.e., for sufficiently large k we have F~x(x(k),  k)=--"LxAX" *, u * ) +  

k(f(r>(x*))Vu*f(r)(x*). Therefore,  in view of  f ( x ) c  C 2 the strong convexity o f  
F(x, k) in a ne ighborhood  of  x(k )  for sufficiently large k follows from Assert ion 

1. The theorem is proved.  [] 

Remark 4. The results o f  Theorem 2 remain in force for the funct ion N(x ,  k ) =  
C(x, e, k) if we set x(k )  = argmin{N(x,  k) lx c ~n}, u(k)  = (ui(k) = ( k f ( x ( k ) )  + 1) 2, 

i =  1 , . . . ,  m). 

5. M o d i f i e d  Barr ier  Func t ion  M e t h o d  

In this section we introduce and investigate the M B F  method  for solving constra ined 

opt imizat ion problems. We consider different versions o f  the M B F M  for convex 

and nonconvex  p rogramming  problems. 
The version with a permanent  penalty parameter  k has a l inear rate of  convergence.  

By increasing the parameter  f rom step to step, one can obtain M B F M  with a 

superlinear rate o f  convergence.  Note  that the C I P M  generally do not converge to 

the solution with a permanent  penalty parameter.  I f  the penal ty  parameter  increases 

infinitely C I P M  converge to the solution only with ari thmetical  rate of  convergence 

(24). 
For  a given k >  0 we consider a bounded  set Uk # 0, a contract ion o p e r a t o r  

Ck : Uk ~ Uk and the t ransformat ion Tk : Uk ~ En × Uk. Then CkUk = 
{ ~ = C k u : u e U k } c U k ,  SO there exists a b o u n d e d  set U D U k = C ~ U k = . . . D  
C~ Uk ~ ' " " • Also, we consider  a sequence o f  sets 

TkUk = {( ; ,  ~):  ; = ; ( u ,  k),  ~ = Cku, u ~ Uk}, 

T~Uk Tk(TkUk), Tk Tk( ~ ~ = . . . ,  s= Tk Uk) , . . .  • 
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There exists a bounde d  set X c R  ~ : x * ~ X  and X x U ~ T k U k ~ T  2 U k ' ' ' D  
s TkUk ~"  • • 

For a given k > 0 c o n s i d e r  a nonnegat ive funct ion 

v(y, k )=-v(x ,  u, k) = m a x { -  m i n  f ( x ) ,  [[F'(x,  u, k)[[, i=1 ~ uilf/(x)[} 

defined on X x U. I f  (1) is a convex programming  problem, then the relation 

v(y, k) = 0 ¢e~ y = y* = (x*, u*) 

holds true for any k > 0. 

For a given k > k o  and u e U ~  we consider a sequence { y ' = T ; u } ~ l =  
{T~(T'k ~ u ) } ~  ={~(u"  1, k), ~ ( u  ' 1, k)}~Li. Then 

v(y~' k ) = m a x  { -l~-~mmin f ( x ' ) ,  ,=1 ~ u~lf(x~)]} ' 

because 

F~(x ' ,  " ' k ) = f ; ( x ' ) - ~  ~ ' 7 u~ (kf i(x )+1)  ' f [ ( x  ~) U , 

i=1 

= f ~ ( x  ~) - ~ u~f[(x  ~) = L'~(x', u ~) = O. 
i = l  

For any u c Uk the sequence {yS}~ 1 belongs to X x U therefore there exists such 
a constant  L >  1 that 

v ( y ~ , k ) = v ( y ~ , k ) - v ( y * , k ) < ~ g [ [ y ' - y * l l  V u e  Uk, s>~l. 

For a given O<y<~½ and u e  Uk we can find such /~>ko that 7~<~yL 1. Due to 
Theorem 1, for any k ~  > / ~ >  ko and for  the sequence { y ' =  T;u} ,~ l  the estimate 

m a x { H x ~ - x * [ ] , l l u ~ - u * l l } < ~ v k l l u  ~ ' - u * l l ,  W ~ ,  s~>l, 

holds true. Therefore v ( y  ~, k)<~ Z~,~ll u~-' -u*l l  <~ ~l lu '  ~ - u*ll <~ < l l u  - u*ll, o <  ~ <  
1 ½. So for an a priori given 0 <  y~<5 one can find k~> ko that for any u e  Uk the 

sequence {y~ = T;u} .~ l  exists and the sequence {v(y  ~, k)}~_o is bounded  by {3 /}~o .  

Further  for any sequence {ks}s°C l, k l>  ko, k~+~> k,, l i m s ~  k~ =oe, there exists 
such a sequence { % } ~ ,  % + 1 < % ,  lim,~o~ % = 0 ,  that  for {yS+l= rkU~}~l the 

estimate 

max{llx "+~ - x l l  , I lu '+~-  u*ll}~ < 7~ltu~- u*ll 

holds and v(y ' ,  k,)<~y~ . . .  ~ l l u - u * l l ,  ~ - ~ 0  for any u6/i lk, .  

(a) Permanent parameter version (PPV) .  Let start with x = x °e  int S2, u = u ° = e = 
( 1 , . . . ,  1)c12 m, k~>/¢ and suppose (x' ,  u ~) have been found  already. To find the 

next approximat ion,  y~+~ = (x "+1, uS+~), one has to fulfill the next operations: 
Step 1. Start with x := x s, u := u s. 

Step 2. Find ~ = ~(u, k), ~ = t~(u, k) = CkU. 
Step 3. Set x ~+1 := )2, u s+l := ~, s + 1 := s and go to Step 1. 
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The next  asser t ion  is a consequence  o f  Theorems  1 and  2. 
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Assert ion 2. I f  (1) is a convex programming problem, f ( x )  c C 2, i = 0 , . . . ,  m, and 

conditions (3) - (5)  are fulfilled, then for any 0 < y <~ ~ there exists such t~> ko that for 
any k >t k the sequence {y.~+l T,+lutO~ k Js=l converges to y* and the estimate 

m a x { / / x - ~ + l -  x*ll ,  Ilu s+' - u ' I l i a <  TkllU'--U*II ,  Tk ~ % 

holds true. [] 

Note  that  Asser t ion  2 is true for  any  u ° = u c U~. 

So the M B F M  with a fixed pena l ty  p a r a m e t e r  converges  to the so lu t ion  with a 

l inear  rate o f  convergence• N o r m a l l y  we don ' t  know the t h r e s h o l d / 7  a pr ior .  So the 

second  version,  which we are going to descr ibe  be low,  a l lows the ad jus tmen t  o f  the  

pena l ty  p a r a m e t e r  on the level, which guaran tees  the  convergence  with at leas t  a 

l inear  rate. 

(b) Adjusted parameter version (APV).  Along  with ~Qk ={x: f i ( x ) ~ - k  -1, 
i =  1 . . . .  , m}DS2 we will cons ider  a set S 2 ~ = { x : f ( x ) > k  -l, i= 1 , . . . ,  m}<  J2. 

Let {k, > 0}~o ,  k~<k~+l ,  k~-+oe, k = k ( O ) = k o ,  d ( 0 ) =  1, 0<y~<½ is fixed, s tart  
• ~o X 0 C + u O  = - s  s s with x . =  = /2k,  u =  e = ( 1 , . . . , 1 ) ~ ' a n d s u p p o s e x , x , u , k ( s ) , d ( s )  

have been  found  a l ready.  The APV consists  o f  the  next  steps:  

Step O. Start  with x := ~ = ~. 

Step 1. Set u : = u  s, k : = k ( s ) ,  d : = d ( s ) .  

Step 2. Find  2 = ~(u,  k),  t~ = ~(u, k) = CkU, i.e., 3~ = Tku = (~, ~). 
s'+l .~s+l Step3. I f v (~ ,k )<~ye+~,se tx~+~=~,u '+~=a,  s t a r t w i t h x = x  , :=ff, d ( s +  

1 ) = d ( s ) + l ,  k ( s + l ) = k ( s ) ,  s + l : =  s, go to Step 1. 

Step 4. I f  v0~, k ) >  ya+l ,  set ~ , + l = a r g m i n { f 0 ( x , ) [ i =  1 , . . . ,  s + l } ,  t~+~ = 
max{tlff+t(Ys+'-~)c~Q~}, .~s+l= ts+l.{"+l-~-(1-t~+l)X , uV+l=u O, k ( s +  l ) =  k~+,, 

d ( s + l )  = 1, s +  1:= s, and  go to Step 0. 

The next  asser t ion  is a consequence  o f  Theorems  1 and  2. 

Assert ion 3. I f  (1) is a convex programming problem, f ( x ) c  C 2, i = 0  . . . . .  m and 

conditions (3) - (5)  are fu(filled, then for any 0 < y <~ ½, there exists a number So such 

that k(s)  = k,~, = k, s >1 So, the sequence {Y~}~0 converges to y* = (x*, u*) and the 
estimate 

max{llx~+l-x*ll, llu~+'-u*ll}~klJu'-u*l[, S>So, rk-~r, (29) 

holds true. [] 

N o w  we are going to cons ider  the var iable  pena l ty  p a r a m e t e r  vers ion o f  the 

M B F M  for solving convex as well  as nonconvex  p r o g r a m m i n g  prob lems .  
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(C) Varying parameter version (VPV) .  Let  {ks > 0},~-o, k, < k~+l, lim~_,~ ks = co, 

u ° = e e R m, x ° = fro c i n t  12, k :=/Co, suppose  x ' ,  £ ' ,  u ~ have been  found  a l ready.  The 

VPV step consists  of  the next  opera t ions :  

Step 1. Start  with x := )7", u := u ~, k := k~. 

Step 2. Find  x "+~ = )~(u, k),  u "+1 = ~(u, k) = CkU, i.e., y~+~ = Tku ~, 

Step3. ~'+l = argmin{fo(x~)li  = 1 . . . .  , s + 1}, t~+~ = max{t  !2 ~ + t(2 '+~ - 97 ~) c 12~}. 

Step 4. Set 97"+~: = ts+l~'+~+(1-t~+~)~ ~, s + l : = s ,  go to Step 1. 

Assertion 4. I f  f ( x ) ~ C 2, i = 0 , . . . ,  m, the conditions (3) - (5)  are fulfilled and u ° -- e c 

~m is well defined for  the parameter go, then the sequence {yS+l = TkyS}~_l converge 

to y* and the estimate 

max{llx ÷l-x*ll, " ' "   ,lle-u*ll, (30) 

holds true. [] 

Asser t ion  4 fol lows from Theorems  1 and  2. 

Corol lary .  I r e  > 0 is small enough and the conditions o f  Assertion 4 are fulfilled then 

for  any k >  ko, any u ~ Uk and any start x 6 sO~(u, k ), e ), the VPV o f  the M B F M  

leads to finding a minimum o f  the strongly convex and smooth function at every step 

even if  the initial problem is nonconvex. In addition, estimation (30) holds true. [] 

We wou ld  like to emphas i ze  that  for the C B F  m e t h o d  unde r  the same assump-  

t ions ins tead  o f  es t imate  (30) one can  guarantee  only  the es t imate  (24). 

To real ize the  above  men t ioned  vers ions  of  M B F M  numer ica l ly ,  we have to 

rep lace  the infinite p rocedu re  o f  f inding 9~ = )~(u, k ) =  a rgmin{F(x ,  u, k ) I x  c R n} by  

a finite p rocedu re  ma in ta in ing  the p roper t i e s  of  the  vec tor  9~. In  the next sect ion we 

descr ibe  such a method .  

6. Newton Modified Barrier Method 

To main ta in  the p roper t i e s  o f  the  M B F M  wi thout  solving the uncons t r a ined  opt imiz-  

a t ion  p r o b l e m  at every step,  one  has  to use a finite p rocedure ,  which  al lows to find 

an a p p r o x i m a t i o n  for  ~ wi th  cer ta in  accuracy.  Below we descr ibe  such a method ,  

which  is based  on the APV of  the M B F M  and  on the g loba l  converging  step size 

vers ion  of  the  N e w t o n  Me thod .  1 Let e > 0  be smal l  enough,  {ks}~=o, k,+~>ks, 

lim,~oo k, =oo,  k = k ( O ) = k o ,  d(0)  = l ,  0 < y ~ < ½  is fixed. 

1 The step size can be defined by the Goldstein-Armijo rule (see [4]). 
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Let start with x := yo = x o ~ S2~, u ° = e = ( 1 , . . . ,  1) c ~ "  and let ~', x s, u', k ( s ) ,  d (s) 

be a l ready found.  To find the approx ima t ion  (x "+1, u "+1) one has to fulfill the next  

operat ions:  
Step O. Start with x := if" = 2. 
Step 1. Set u : = u  s, k : = k ( s ) ,  d : = d ( s ) .  

Step 2. Find ~" = ((x,  u, k) by solving the system 

F ~ ( x ,  u, k )~  = - F ~ ( x ,  u, k) 

and set t := 1. 
5t(F~(x,  u, Step 3. Check  x + t( ~ £2 k and F ( x  + t(, u, k)  - F (x ,  u, k)  <~ l , k) ,  ~). 

Step 4. I f  x + t~" c S2k, the last inequali ty is fulfilled and  t = 1 set x := x + ~ and  go 
to Step 5; if  x +  t ( c  S2k, the last inequal i ty  is fulfilled and t <  1 set x : =  x +  t~" and  
go to Step 2; if  x +  t~'~ ~k,  a n d / o r  the inequal i ty  is not  fulfilled set t :--½t and  go 

to Step 3. 
Step 5. I f  I1~11 ~ e go to Step 6; otherwise go to Step 2. 

Step 6. Set £ := x, ~ = [d i ag (k f (~ )  + 1)-~]~'u, fi = (£, t~); if  v(fi, k) <~ 7 d+l set x "+~ = 
~, u ~ l = a ;  start  x : = x  s+~, d ( s + l ) = d ( s ) + l ,  k ( s + l ) = k ( s ) ,  s + l : = s ,  e :=  e% and 

go to Step 1. 
Step 7. I f  v(fi, k ) >  y a+l, set : ~ ' + ~ = a r g m i n { f o ( x i ) [ i =  1 . . . .  , s + l } ,  t,+~ = 

max{t].~+t(.~s+l ~)CaQk}, 2s+1 - ,,s+l-- + =ts+lX ± ( 1 - - t , + l ) ~ ,  u S + l = u  °, e : = e k  -1, k ( s +  

1 ) = k ~ + l , d ( s + l ) = l , s + l : = s ,  and go to Step 0. 

Assertion 5. I f  (1) is a convex programming problem, f ( x )  c C 2, i = 0 , . . . ,  m, and 
1 conditions (3)-(5)  are fulfilled, then for  a small  enough e > 0 and 0 <  7 < ~ ,  there 

exists such So that for  s >! So : 
(i) The penalty parameter is permanent,  i.e. k ( s )  = k~ o = k and the step size t = 1. 

(ii) Every N M B M  step (" large" step), i.e. every updating u requires 

O(1og2 log2 e -1) Newton steps. 

(iii) The sequence {yS = (x~, u~)}~ o converges to y* = (x*, u*) and the estimate 

m a x { l l x ' - x * l l ,  I l u~ -u* l l }~3 ,  ~, s ~ s o ,  

holds grUe. [] 

Assertion 5 follows f rom Theorems  1 and 2 and  the Newton  method  proper t ies  
(see [32, 33]). We will call the approx ima t ion  (x so, uSo), i.e., the momen t  when  the 

N M B M  switch to the MBF trajectory,  a " h o t "  start. Beginning at this momen t ,  one 
can update  u, i.e. improve  the current  a p p r o x i m a t i o n  twice ( 7 ~  <1)  in every 

O(log2 log2 e -1) Newton  steps in the worst  case. 
The  n u m b e r  So depends  on characterist ics o f  the cons t ra ined  opt imizat ion p r o b l e m  

in the solut ion and  can be decreased by increasing ko. 
We have a l ready discussed the unp leasan t  consequences  of  increasing k. There fo re  

we are going to s tudy the possibil i ty of  improv ing  the es t imat ion (29) by resor t ing 
to some means  other  than increasing k. It turns out that  such possibili t ies exist and  
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are connected to important properties of the dual to (1) problem, which is based 
on the MBF. 

In the next section we are going to consider the duality theory, which is based 
on the MBF. Because of the excellent MBF properties (P1)-(P5), the dual function 
as well as the dual problem have some very important characteristics in the convex 
as well as in the nonconvex case while MBF is a classical Lagrangian for the 
equivalent problem. 

7. Dual problems 

First of  all we note that since problems (7) and (1) are equivalent for any k >  0, it 
follows that the classical Lagrangians F(x, u, k) and C(x, u, k) for problem (7) 
preserve all the properties of  classical Lagrangians for convex programming prob- 
lems (see [30]), so the following is true. 

Assertion 6. I f  fo(x) and all - f ( x )  are convex and Slater's condition holds, then 

x* c ~2 is a solution of  problem (7) for any k > 0 if and only if: 
(i) There exists a vector u * ~  0 such that 

u*if(x*)=O, i = l , . . . , m ,  F ( x , u * , k ) > ~ F ( x * , u * , k )  V x c R  n. (31) 

(ii) The pair (x*, u*) is a saddle-point of the Lagrangian, i.e., 

F(x,  u*, k) >1 F(x*,  u*, k) >1 F(x*,  u, k) Vx  ~ N n, Vu c N~. [] (32) 

Let Ok(X) = supu>~0 F(X, u, k). Then 

=~f , (x ) ,  i f f ( x ) ~ > 0 ,  i = l , . . . , m ,  
0k(x) / 

leo, otherwise, 

and the initial problem (1) reduces to finding 

x* = argmin{ Ok ( x ) l x c N"}. (33) 

Let pk (u )=  infuse,, F(x, u, k). Then the dual problem to (1) consists of finding 

u* = argmax{~k(u) I u i> 0}. (34) 

By the definition of Ok(x) and q~k(u) we have fo(x) = Ok(x) >~ q~k(u) Vx c ~2, Vu c ~+. 
Therefore, if )~ and a are feasible solutions of the primal and dual problems and 
q'k(2) = ~k(a), then )~ = x* and a = u*. The smoothness of  the dual function ~k(U) 
depends on the convexity and smoothness of  the functions f ( x ) ,  i = O , . . . ,  m. I f  (1) 
is a convex programming problem then for u ~> 0 and k > 0 the function q~k(u) is as 
smooth as f ( x ) ,  i = 0 , . . . ,  m, if, for example, fo(x) is strongly convex orfo(x) strictly 
convex and S2 is a compact.  

If  fo(x) and f ( x ) ,  i = 1 , . . . ,  r, are nonconvex, the next lemma takes place. 
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Lemma 1. Let f ~ C 2, i = 0 , . . . ,  m, and conditions (3)-(6) hold. Then for any fixed 
k ~ ko the concave function ~p~(u) is twice continuous differentiable in Uk. 

Proof.  First o f  all note that ~k(u) is a concave funct ion for any k > 0  whether  or 
not  the functions fo(x) and -fo(x),  i= 1 . . . .  , m, are convex. By Theorem 1 the 
funct ion F(x, u, k) is strongly convex in a ne ighborhood  of  ~ = 2(u, k) V(u, k) c 
D(u* ,  ko, fi, e). Therefore  £(u, k) = £(.  ) is a unique min imum of  F(x, u, k) over  x, 
while ~k(u) = F(~(u ,  k), u, k) = F ( 2 ( .  ), • ) = F ( .  ) is smooth in Uk, i.e., there exists 
~L(u) : F ' ( . ) ~ ' ( . ) +  P ' ( . ) :  (~L, ( . ) , . . . ,  ~L,,,()). 

Since the matrix F~y(£( .  ), .) is positive definite for  (u, k) ~ D(u*, ko, 6, s) the 
system F'~(x, u, k) = 0 yields a unique vector-funct ion d(u,  k) such that 

4(u*,  k) = x *  and 2"(u,  k) = £ ' ( . )  = = - ( F ' y ( ~ ( . ) , . ) ) - ' .  F ; ~ ( 2 ( . ) , . )  

V ( u , k ) ~ D ( u * , k o ,  f , s ) .  Since F ' . ( . ) = 0  it follows that  ¢ ~ ( . ) = F ' ( . ) =  
- k - l ( l n ( k f ~ ( . ) + l )  . . . .  , l n ( k f , ( . )  + 1)). Fur thermore ,  ¢ ~ , ~ ( . ) = F ~ ( . ) x ' ( . ) =  
! - F ' ~ ( . ) x ( F ' ~ ( . ) ) - ~ x F ~ ( . ) .  We set ] k ( . ) = [ d i a g ( k f ( £ ( . ) ) + l ) - ~ ] 7 L ~ : / t ~ ' ~ - ~  ~" 
and f k = f k ( x * ) = [ d i a g ( k f ( x * ) + l ) - ' ] ~ L ~ : ~ - > ~  m. Then F ~ ( ' ) = - f k ( ' ) f ' ( ' ) ,  
F;u(" ) = _ f ,v ( .  )]k(" ), therefore,  ¢;~,,(. ) = - ]k ( "  )f ' ("  ) ( F ' , ( .  ) ) -~f ,v( .  )]k(" ). Note  
that  ¢~ ,~(u*)=  - fk f ' (x*)(F;~(x*,  u*, k)) ~f'T(x*)fk = - - f J ' ( F ~ ) - ' f ' T f k .  [] 

8. Duality theorems 

The dual problems based on MBF's  not only possess all the propert ies well known 
in convex programming but have some new impor tant  features. 

Theorem 3 (duality,  the convex case). Letf~(x) and - f ( x ) ,  i = 1 , . . . ,  m, be convex. 
(i) I f  the Slater condition holds, then the existence of a solution of problem (1) 

implies that problem (34) has a solution andre(x*) = @k(x*) = ~k( U*) for all k >  O. 
(ii) I f  fo(x) is strongly convex or if  fo(x) is strictly convex and 12 is compact, 

f ( x )  c C=, i = O , . . . ,  m, then the solution of the dual problem corresponds" to that of  
the primal problem and the optimal values of the objective functions coincide. 

(iii) I f f ( x )  c C 2, i = 0 , . . . ,  m, and conditions (4)-(5)  are satisfied, then ]'or every 
k >~ ko there exists a solution of the dual problem and the second order optimality 
conditions hold for the dual problem. 

Proof. (i) Let x* be a solution of  problem (1). Then  Assertion 6 implies that there  
exists a vector u * ~  > 0 satisfying (31). Therefore ,  

~k(U*) = min F(x ,  u*, k) = F(x*, u*, k) =fo(x*) />  F(x*, u, k) 
X C ~  n 

>~minF(x,u,k)=q~k(u) Vu>~O, 
X G ~  n 

i.e., u* is a solut ion of  the dual problem and fo(x*)= ~k(u*). 
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(ii) The assumptions  imply that  F(x, u, k) is strongly convex in x ~ Ok for every 

u > 0 and k > 0. Therefore the vector x(u, k) = argmin{F(x,  u, k) lx  c ff~} is defined 

uniquely and because of  the smoothness  o f f ( x ) ,  i =  0 , . . . ,  m, the gradients ¢~(u)  

of  the dual funct ion exist. Let fi be a solution o f  problem (34) and ~ = x(fi, k). Then 

the optimality condit ions for problem (34) are satisfied at tT, i.e., 

~ u , ( t T ) = - k - ~ l n ( k f ( 2 ) + l ) ~ < 0  for i: fi~ = 0, 

~ ' k , , ( fO=-k - l l n ( k f~ (£ )+ l )=O for i: ~ , > 0 .  

Further, a~ > 0 implies f ( ~ )  = 0 and it follows f rom tT~ = 0 that f ( g )  >~ 0, i.e., 2 c / 2  

and the complementar i ty  condit ions f ( 2 )  • fii = 0, i = 1 . . . . .  m, hold for the pair  

(2, tT). Therefore,  C k ( a ) = f 0 ( x ) -  k -~ ET'-~ u~ l n ( k f ( g ) +  1 )=f0 (x ) ,  i.e., for the pair  
of  feasible solutions (g, 5) of  the primal and dual problems we have Ck(tT) =fo(X), 
hence g = x* and t7 = u*. 

(iii) Since (4)-(5) hold true and k ~ ko, it follows f rom Theorem 1 that F(x, u, k) 
is strongly convex in x for any u c U~, so the first part  of  the statement can be 
proven as in (ii). 

We now show that the second-order  optimality condit ions in the strict form hold 

for problem (34), i.e., the gradients o f  active constraints are linearly independent ,  

the corresponding Lagrange multipliers are positive, and condit ion type (5) is 
satisfied. 

We first note that the vectors 

r i 
. 

( r 0 , . . . , 0 , 0 , . . . ,  1 , . . . , 0 )  = e~, i = r + l , . . . , m ,  

which are gradients o f  the active constraints u~ ~> 0, i = r +  1 , . . . ,  m, of  the dual  

problem, are linearly independent ,  i.e., condit ion (4) holds true for problem (34). 

Now we show that condi t ion (5) is satisfied for p rob lem (34). Let us consider the 
Lagrangian L( u, A, k) for problem (34). We have L( u, A, k) = ~k ( u ) + ~ ~ ~ ;t~u~, there- 

fore L'~,(u,)t, k) " ~u~ = ( V l , . .  vm = ~k~,~ ~. Let v . ,  ), then (v, e~) = 0 ~ v ~  = 0, therefore,  

any vector v ~ W": (v, e~) = 0, i --- r +  1 . . . .  , m, has the form v = (vl . . . . .  Vr, O , . . . ,  0). 
Taking into account  (4)-(5) we obtain from Theorem 1 that  for a fixed k ~> ko the 

matrix F ~  = F~'~(x*, u*, k) is positive definite and the mineigval F~x =/z  > 0. Let 
t !  t t - I  maxeigval F ~  = Mk > 0, then 'v'y 6 ~" we have tz-~(y, y) >~ ( F ~  y, y) >~ Mk~(y, y),  

1 _<z i t - 1  ~ f t t  ( * ~ ,  
i .e .  -tx (y, y) ~ - ( F ~  y, y) ~ -M-~(y ,  y). S o  f o r  ~ , u  , A k )  we obtain 

(L'[,,(u*, A*, k)v, v) = (~pZ~(u*)v, v) = (f~f'(--(F~x)-~)f'Tfkv, v) 

= (--(F~)--~f'T~,f 'T~) ~ - -M; ' ( f 'T~ , f 'T~)  

where ~ = f ~ v = ( ( k f ~ ( x * ) + l ) - i v ~ , . . . , ( k f ( x * ) + l ) - ' v ~ , O , . . . , O ) = ( v ~ , . . . , v ,  
0 , . . . , 0 )  = (V~r~,O,... ,O). Thus,  

( L ~ , ( U * , A * , k ) v , V ) ~ - M ~ ' ( f ~ ( x * )  '~ * V(r),f(r)(X )/)(r)) 

- -  1 ~" * v T - - M ~  (f~>(x )f~r~(X )V~,>, V~,~). 
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It follows f rom (4) that  the G r a m  matr ix  f(r)(X*)f~r)(X *) is non-s ingular  so mineigval  
f r  (X*~grT ( X ~  _ _  (~)t u(r)~ j - / x o >  0. Hence,  fo r /2  = M;~ /xo>  0 we obta in  

(L'~,(u*,A*,k)v,v)~-/211v]] 2 Vv such that  ( v , e~ )=0 ,  i = r + l , . . . , m ,  

i.e., condi t ion type (5) is verified for  the dual  p roblem.  Moreover ,  A* = -q~ ,~(u*)  = 
k - l ( k f ( x  *) + 1) -I  > 0, i = r +  1 , . . . ,  m, that  together  with the l inear i ndependence  
gradients  e~, i = r +  1 , . . . ,  m, o f  the active constraints  u~ ~> 0, i = r +  1 , . . . ,  m, o f  the 
dual p rob lem comple te  the p r o o f  of  the theorem.  [] 

Remark  5. All the facts of  the above theorem fail to be  true if the convexi ty  of  the 

funct ions fo(x) and - f ( x )  is abandoned ,  moreove r  s ta tement  (iii) is in general  
invaled even for  the convex p r o g r a m m i n g  p rob l em if the dual  p rob lems  are based  
on the classical Lagrangian  L(x, u). However ,  these results are valid for  k I> k0 even 
in the nonconvex  case if the dual p rob lems  are based  on the functions F(x, u, k) 
or C(x, u, k). 

Theorem 4 (duality,  nonconvex  case). Let f ( x ) c  C 2, i = 0 , . . . ,  m, and conditions 
(3)-(6)  hold. Then there exists ko > 0 such that for k >1 ko the following is true: 

(i) The existence of  a solution of  the primal problem guarantees the existence of  
the dual problem solution and 

fo(x*) = pk(u*). 

(ii) The second-order sufficient optimality conditions are satisfied for the dual 
problem in the strict form. 

(iii) The pair (x*, u*) is a solution of  the primal and dual problems if and only if 
this pair is a saddle-point o fF (x ,  u, k), i.e., if  (32) holds true. 

Proof .  (i) Let x* be a solution of  p rob lem (1). Then  it follows f rom Theo rem 1 that  
F(x, u*, k) is s t rongly convex in a ne ighborhood  of  x* and by (3) we have 

F~(x, u*, k)l~=~* = f ~ ( x * )  - ~. u*(k f ( x* )  + 1) ' f ; (x*)  
i 1 

= f ; ( x * )  - ~ u*f[(x*)  = O. 
i - -1  

Therefore ,  

~k(U*) = argmin{F(x ,  u*, k ) I x  ¢ ~"} = F(x*,  u*, k), 

and there exists 

~tk.(U*) = k- l ( ln(k f l (x  *) + 1 . . . .  , ln (kf~(x*)+  1), 

ln(kfr+,(x*) + 1) . . . . .  In(kfm(x*) + 1)) 

= ( 0 , . . . ,  0; - k - '  ln(kf+,(x*)  + 1 ) , . . . ,  - k - '  ln(kfm(X*) + 1)). 
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So for i: u * > 0 ,  we have ~,~,(u*) = 0  and  for i >  r, due to f ( x * )  ~ > o r>0 ,  we obtain  
t * ~ --1 9k, , (u  ) ~ - k  l n ( k ~ r + l ) < 0 ,  i.e., at the point  u* the opt imal i ty  condi t ions are 

satisfied for  the dual  p rob lem,  which is always convex whether  or not fo(x) and 
- f ( x ) ,  i = 0 . . . .  , r, are convex.  Thus u* is a solut ion of  the dual  problem.  

(ii) Since the dual  p rob lem is convex and its solvabil i ty is guaranteed  by condi-  
t ions (3)-(5) ,  the second-order  sufficient condi t ions for  the dual  p rob lem can be 

p roved  just  as in the previous  theorem.  
(iii) We first show that  if (x*, u*) is a solution to the pr imal  and dual problems,  

then this pair  is a saddle-point  of  the Lagrangian  F(x, u, k). Indeed,  by Theorem 
1 for k ~> ko the funct ion F(x, u*, k) is s trongly convex in x in a ne ighborhood  of  
x* and F'dx*, u*, k) = 0, hence F(x, u*, k) >~ F(x*, u*, k) in a ne ighborhood  of  x*. 
We now extend the latter inequali ty to all x c [2k, hence,  to ~". Actually,  if  there is 

a vector  ~ c Ok, such that  F(~, u*, k) <~ F(x*, u*, k) - ~ = f , ( x * )  - ~, and ~ > 0, then 
fo(2)<~fo(x*) +k ~ - 1  u* l n ( k f 0 ? ) + l ) - ~ .  Now repeat ing  the considera t ion of  
T he o rem 1 (part  (i)) we will get f rom the one side fo(x)  <~fo(x*) _1~ but  f rom the 

other  side fo()~) >~fo(x*) l- -z)~. This contradic t ion shows that  F ( x , u * , k ) ~  
F(x* ,u*,k)  for  all x~ [2k ,  i.e. F(x ,u* , k )>~F(x* ,u* ,k )Vx~R"  and k~>ko 

whenever  ko is sufficiently large. Fur thermore ,  since x* ~ 12, we have ln(kf(x*) + 1) ~> 
0, i = 1 , . . . ,  m, therefore,  fo(x*)  = F(x*, u*, u) >i F(x*, u, k) for  all u ~> 0. Therefore  

F(x, u*, k) >~ F(x*, u*, k) >~ F(x*, u, k) Vx c R', Vu c R~2. 

Finally, we show that  if (2, fi) is a saddle-poin t  of  F(x, u, k), i.e., if 

. fo(x)-k  -1 ~ f i~ln(kf(x)+l)>~fo(~)-k ' ~ ~i, l n ( k f ( f f ) + l )  
i = l  i = 1  

> ~ f o ( ~ ) - k  -1 ~ u, l n ( k f ( X ) + l )  
i = l  

V x c W ' ,  u ~ R ' ~ ,  (35) 

then 9~ = x* and fi = u*. Indeed,  the right inequali ty in (35) yields 

i ~ 1  i = 1  

(36) 

It  follows f rom (36) that  f ( f f )  >/0, i = 1 , . . . ,  m, since if there is io such that  fo (~)  < 0, 
then we can take k > 0  such that  0 < k f o ( f f ) + l < l ,  i.e. l n ( k f o ( ~ ) + l ) < 0  and set 
ui = ~i, i # io, while u~ o can be made  sufficiently large to obta in  the opposi te  inequali ty 

to (36). 
Therefore ,  it follows f rom (36) that  ff is a feasible solut ion to p rob lem (1). 

Consequent ly ,  l n (k f  (if) + 1) >1 0, i = 1 . . . .  , rn, and ~ - 1  tTi l n ( k f ( ~ )  + 1) ~> 0. 
Since (35) holds true for  any u ~> 0, we set u = 0 and obtain  ~ ' - 1  tT~ ln (k f  (if) + 1) <~ 0 

hence ~'~"-1 u~ l n ( k f ( f f ) +  1 ) = 0  implies f i~f ( f f )=0 ,  i--- 1 . . . .  , m. 
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The left inequality in (35) yields 

f o ( x )~  fo(x) +k-1 ~ G ln (k f ( x )+  l). 
i--1 

For every x~g2 we have ln(kf(x)+l)>~O, i = l , . . . , m ,  therefore, fo(x)>-fo(.f) 
V x ~ O ,  i.e., ~ is the minimum of  fo(x) over g2, i.e., i f=x* .  Since )7= 
argmin{F(x, ti, k) Ix ~ N"} it follows that 

F'~(.~, a, k) = 0 ~ f ; (~)  - ~ a,f;(~) = f ; ( x * )  - Z fi,f;(x*) = O, 
iGl* icl* 

where I*  = { i : f ( f f )  = 0} = { i : f ( x* )  = 0} i.e., 07, ~) is a Karush -Kuhn-Tucke r  pair  
and hence by (4) we obtain ~ = u*. The theorem is proved. [] 

Corollary. The restriction ffk(u) = ~k(u) I .... =0 ......... ~o of the dual function to the mani- 
fold of the active constraints of  the dual problem is strongly concave if the conditions 
of  Theorem 4 are fulfilled. [] 

Remark 6. All the facts concerning the dual function q~k(u) and dual problem (34), 
which have been stated in Theorems 3 and 4 hold for the function G ( u ) =  
min{C(x, u, k ) Ix  ~ ~2k}, for the dual problem 

u* = argmax{ck(u)Ju ~ 0} (37) 

and for the restriction G(u)  = G(u)J ..... = ........ =0 of the dual function ck(u) to the 
set of  active constraints of  the dual problem (37). 

The convexity and smoothness properties of  dual functions can be used for finding 
nonzero components of  u* by applying smooth optimization methods to (gk(u) or 
G(u) .  Let us consider this in detail. 

9. Method of controlling sequences for simultaneous solution of primal and dual 
convex problems 

First of  all note that the implementation of different versions of  the MBFM involve 
solving unconstrained optimization problems at every step. Therefore, to use these 
algorithms in practice it is necessary to replace the unconstrained optimization by 
a finite procedure maintaining the estimates (29). 

We consider now the convex programming problem. We choose cr > 0, find 
from the condition 

Y6 R": [[F'~0~ , u, k)l I <<- o~kl[[[diag(kf(£)+ 1 ) - - l ] ~ n _ l  u - -  Ull 

and set 

= [d iag(kf (£)  + 1)-']~Y ,u. 
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Let ~/= fi - u*. Then 

~7+u*-u 
k - k - l ( [ d i a g ( k f ( x )  +DI 11"Ji=lu-u). 

Therefore 

I IF ' (£  u, u)ll <~ ak- '[[[diag(kf (£c)+ 1)-']m lU --U H = k la(]l~/H + IIAull) 

<~ ak- l ( l laul l  + II~zll) 
where Az = (Ax, Au), Zlx = £ --x*. 

Using arguments as in the proof  of Theorem 5 in [19] and taking into account 
the estimates for Lagrange multipliers corresponding to passive constraints, we 
obtain from the inequality 

II -x*ll c(1 + ol)k-lll U - -  u*ll, 

It gives us the following lemma. 

l ift-  u'l] <~ c(1 + a ) k  l l lu- u*]]. 
(38) 

Lemma 2. I f  f~(x)  and all - f ( x ) ,  i= 1 , . . . ,  m, are convex and smooth enough and 

the conditions (4)-(5) are fulfilled, then for  any a > 0 there are such small e > 0 and 

6 > 0 that for  any (u, k)  ~ D ( u * ,  ko, 6, e) the estimate (38) holds. [] 

A similar result follows for the function C(x ,  u, k) if we find £ from the condition 

II c'~(~, u, k)[I ~< a k - I l l u [ d i a g ( k f ( £ ) +  1)-217'L1- ull 

and set fi = [diag(kf(£)  + 1)-2]~'_1u. 
The above arguments enable us to consider the following alternative to the PPV 

method: 

, .~+1 ~ c&- l ] ] [d iag(k f (x '+ l )+l  w l l m  u S - u ' l l ,  (39a) IlF (x ,u,k)ll  , j,=l 

u ~+1 = [d iag(k f (xS+l)+ 1) l]ZlUL (39b) 

So we have the next assertion 

Assertion 7. I f  fo(x)  and - f ( x ) ,  i= 1 , . . . ,  m, are convex and smooth enough and 

conditions (2), (4)-(5) are julfilled, then the method (39) generates sequence {x '~, u ~} 
such that the estimate 

max{I]x ~+1 -x*l l ,  [[uS+l-u*l]}~ < c ( l + a ) k  l[[uS-u*H 

holds' and c is independent o f  k >~ ko and a > O. [] 

Now we are going to consider a method for the simultaneous solution of the 
primal and dual convex programming problems. This method is based on smooth 
optimization methods and intensively uses the dual problem properties which have 
been stated above. 
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Let qSk(u)--=¢k(u)lu,=o, i = r + l , . . . , m ,  be the restriction of the Ck(u) to the 
manifold of the active constraints of  the dual problem. Then for any k/> ko, 

u* = argmax{ffk(u) I u = (ul . . . .  , ur, 0 . . . .  ,0) e Uk}. (40) 

I f  the conditions (4)-(5) are fulfilled and f ( x ) ,  i = 1 , . . . ,  m, smooth enough then 
ffk(u) is strongly concave and smooth enough too. So to solve the problem (40) we 
can use smooth optimization methods (see [4, 9, 19]). 

Based on these methods one can define relaxation operators R:  Uk ~ Uk with 
properties 

(i) I [Ru-u*[[<~ql lu -u* l l  , q < l ,  

(ii) I I R u - u * l l < _ q ( u ) l l u - u * l l ,  where q ( u ) ~ O  as u ~ u * ,  

(iii) [ IRu-u*l l<~q[[u-u*[I  2. 

We define the gradient relaxation operator by the formula 

Ru = u +  t ~ u ( u )  (41) 

if the conditions (2)-(5) are fulfilled and f ( x ) ,  i = 0 , . . . ,  m, is smooth enough that 
there exists t > 0 such that the gradient relaxation operator possesses property (i). 

We define the Newton operator by the formula 

Ru = u - (~u~(u ) ) - l~ ,u (u ) .  (42) 

I f  f ( x ) ,  i = 0  . . . .  , m, are smooth enough and (2)-(5) are fulfilled the Newton's  
operator possesses property (ii) or (iii). Some other relaxation operators with 
properties (ii) or (iii) can be defined on the basis of  smooth optimization methods 
(see [2, 4, 9]) which require only q~,u(u). To implement the relaxation operators 
we should find £(u, k).  Therefore in order to implement these operators numerically 
we should replace the generally infinite procedure of  finding :~(u, k) by a finite 
procedure. 

Denote by _R an operator like R in which £(u, k) is replaced by 

~=)?(u,  k): IIF'07, u, k)ll ~ 6. (43) 

We will call the sequence {6~}~o a controlling sequence if 0 <  6~+~< 6~ and 
l i m ~  6~ =0.  The controlling sequence {6~}~=o is said to be consistent with the 
opera to r /~  if for any u c Uk and for the sequence {ce~ = 6,11RSu- u*ll ~k'}~=o ~ the 
condition 

Z a~ < +co (44) 

is fulfilled. The controlling sequences method generates a sequence 07~ = 0 ?s, tT')},~_o 
in the next way. 

Let t7 ° = 0 = ( 1 , . . .  ,1) e N~ and let the vector fi~ = (ys, ~ )  have been found already. 
Set ff~ := Rff~ and find 

~'+'cn~= IIFx(x , u , k ) l l < ~ 6 , ,  (45) 
~+~ = [d iag(kf  (~+~) + 1)-~]~_l ~s. (46) 

The next assertion takes place. 
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Assertion 8. I f  fo(x) and all - f ( x )  are convex, f ( x ) c C  2, i = O , . . . , m ,  and the 
conditions (2)-(5) are fulfilled, while the controlling sequence {6,},~o is consistent with 

= ~s oo the operator R, then for sequences {)7 s (~ ,  )},=0 obtained by (45)-(46), the 
estimates 

(a) 117-y*[[ ~ (ck- lq )  ~, q < 1, 

(b) 117-y*ll<~(ck) " II q~, q,~O, 
i ~ l  

(c) ii;~ Y, ll<~(ck) ~q2,, q<l ,  

hold true provided the operator R possesses one of properties (i)-(iii). [] 

In the next section we will implement the MBF theory for solving the LP and 
QP problems. 

10. Modified barrier functions in Linear and Quadratic Programming 

We start with the implementation of the MBF for solving LP problems. 
Let A be an m x n matrix, p c ~", q c R m, and there exists the solution of the primal 

x* = argmin{(p, x ) l A x  =- q, x >~ 0} (47) 

and dual 

v* = argmax{(q, v) IvA <- p} (48) 

linear programming problems. 
Let k > 0 ,  g2k = { xcR ' , x j>~-k  1 , j = l  . . . .  ,n}, Q = { x : A x = q } ,  e = ( 1 , . . . , 1 ) c  

R'. The modified barrier functions F( x, u, k) : Q x R ~_ x ~ ~+ ~ ~1, C ( x, u, k) : Q x ~"~ x 
N~+- R ~, which are correspondent to problem (47) are defined by the formulas 

F ( x , u , k ) = I ( P , x ) - k - l j = l i  u j ln(kx i+l) ,  i f x c in tg 2 k ,  

Lee, if x ¢ int S2k, 

o r  

(p, x) + k -~ ~ uj((kxi + 1)  - I  - 1 ) ,  if x c in t  g2k, 
C(x, k) U, I 

tee,  if x ~ int g2k. 

Let u = p - v A ;  we assume that the dual pair (1) and (2) are nondegenerate, i.e., 
rank A = m, m < n and the complementary slackness conditions are fulfilled in strict 
form with the additional proviso that 

u * > 0  and x * = 0  f o r j = l , . . . , n - m ,  (49a) 

U*=0 and x * > 0  f o r j = n - m + l  . . . .  ,n. (49b) 
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Under  the nondegeneracy  assumption the optimal solutions x* and v* are unique.  
n + l  • Let D ( u * , k o , 8 ,  e ) = { ( u , k ) c ~ +  . u = ( u l , . . . , u n ) : u i > ~ e > O ,  [ui -u*l<~6k,  i =  

1 . . . . .  n - m, 0 <~ u~ <~ 8k, i = n - m + 1 , . . . ,  n, k >1 ko}. The next  assertion takes place.  

Assertion 9. I f  conditions (49) are fulfilled and rank A = m, then there exists' ko > 0 

and small enough B > 0  that for  an), 0 < e < m i n l ~ i  . . . . .  u* and any ( u , k ) ~  
D ( u * ,  ko, 6, e) the next statements hold: 

(i) There exists a vector 

:~ = ~(u, k ) =  argmin{F(x,  u, k ) l x E  Q}. 

(ii) The triple 2, ~ = d iag(k~ + 1 )- l  u, ~ = (p - ~) A T(AA T)-I, satisfies the inequality 

max{/l£ -x*] l ,  I1~ - u*ll , II~ - v'l/} <~ ck- ' lJu - u*ll (50) 

holds true and c > 0 is independent o f  k. 

(iii) The restriction o f F ( x ,  u, k)  to Q is strongly convex in a neighborhood o f  £. [] 

Assertion 9 gives a possibility to realize the PPV of  the M B F M  if we have a pair  
(u, k)  ~ D(u* ,  ko, 6, e). To find such a pair  we consider the shifted barrier funct ion 
M ( x ,  k)  = F(x ,  e, k).  

Assertion 10. 

such that for  every k >1 ko : 
(i) The vector x ( k )  = argmin{M(x,  k ) { x  ~ Q} exist. 

(ii) For the triple x ( k ) ,  u ( k ) = [ d i a g ( k x i ( k ) + l  ) 117=ie , 
( p -  u ( k ) ) A V ( A A T )  -1 the estimate 

m a x { l l x ( k ) -  x*ll, Itu(k)- u*ll, I I v ( k ) -  v*ll} ~< e k - '  

holds and c is independent o f  k. 

(iii) The restriction o f  M ( x ,  k) to Q is strongly convex. [] 

I f  conditions (49) are fulfilled and rank A = m, then there exists ko> 0 

v ( k )  = 

(51) 

Remark 7. All of  the facts of  Assertions 9 and 10 remain in force if instead o f  
F(x ,  u, k) and M ( x ,  k)  we consider  C(x ,  u, k)  and N ( x ,  k)  = C(x ,  e, k). 

So taking x ° c  int 12k C~ Q, u°=-e, and large enough k ~> k0, we can develop the 
PPV of  the M B F M  for l inear programming problems. 

The PPV of  the MBF method  consists of  finding the sequence {w s = (x ~, u' ,  vS)}~_l 
by formulas 

X s+l = argmin{F(x,  u', k ) l x  E g2}, (52a) 

u.~+l = [diag(kx)~+, -1 . . . .  v~+l + 1) ] i = , u ,  = (p - u ' + ' ) A V ( a a V )  -1. (52b) 
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The next assertion is a consequence of Assertions 9 and 10. 

Assertion 11. I f  conditions (49) are fulfilled and rank A = m then there exist such 
ko> 0 and c > 0, which are independent of  k that the estimate 

max{I]x~-x*l[ , l lu ' -u*[[,[[v ' -v*[[}<~ck-~=y~,  0 <  yk<~½, (53) 

holds for any k >1 ko. [] 

In order to realize method (52) we have to avoid solving problem (52a) at every 
step, keeping estimate (53). 

To solve problem (52a) one can use Newton's method. Now we are going to 
describe the Newton step for solving (52a). Let 

Then 

U = [diag u " ~]j-1, D~,k=[diag(kxj+l)] j=~:N"~R ". 

F ' (x ,  u, k )= F ' ( .  ) = p -  U[diag(kxj + 1)-']~_,e = p -  UD~.~e; 

F'~x(x, u, k) = F'~(.  ) = kU[diag(kxj + 1 ~ 21" = kUD;2k ] d j =  1 , • 

The Newton's method step for minimizing F(x, u, k) in x consists of finding 
Newton's direction ~ and updating x by formula 

x : = x + t ( ,  0 < t < ~ l .  

To find ( =  ((x, u, k) we have to solve the problem 

~ ( x , u , k ) =  " ' " argmm{5(Fx~(x, u, k)(,  ~) + (F'~(x, u, k), ( ) I A (  = 0}, (54) 

i.e., 

~(x, u, k )=  argmin{½k(UD~,~(, ~) + ( ( p -  UD~,~e), ~) }a~ = 0}. (55) 

Having introduced the Lagrange multipliers v = ( v ~ , . . . ,  Vm) which correspond 
to the system A~ = 0 we obtain the next system, 

k U D ; , ~  + (p - UD~,~e) = vA, (56a) 

A~ = 0. (565) 

Let Dx.kr = kU~. Then ~ = k-~Dx.kU ~r. Instead of system (56) we obtain the system 

D~.~r = ATv --p + UD~}xe, (57a) 

A U  lDx, kr = 0, (57b) 

o r  

r = Dx, kAVv - Dx, k(p - UD~,~e), 

AU-1Dx, kr=O. 

(58a) 

(58b) 
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Putting u ~/2r = h we obtain instead of (58) the system 

I" -D~,kU-1/2AT~( h~ U l / 2 e -  Uo1/2Dxkp) " 

The last least square problem can be rewritten as 

v(x, u, k ) =  v(.  ) =  argmin{ll(AU 1/2Dx, k )Tv-  g-1/2(Ox, x P -  Ue)]l~l v c N"}. 

The last least square problem is equivalent to the next normal system of equations 

(AD2~,k U - 1 A  T) I) = ADx, k( U - l  Dx, kp - e). (60) 

So one can find the Newton direction by the formula 

~(x, u, k) = k - '  Dx.kU-' r(x, u, k),  

where 

r( x, u, k) = Dx, kA Tv( x, U, k) - Dx.kp + Ue. 

The numerical realization of the PPV of the MBFM leads to the Newton Modified 
Barrier Method (NMBM) for solving the primal problem (47). 

The NMBM uses the Newton Method to solve (52a) and update the Lagrange 
multipliers by formula (52b). Note that instead of solving problem (52a) one can 
find an approximation for x '+1= ~(u ' ,  k) with accuracy 2 L, where L is the input 
length. I f  the initial approximation x ~'° = x ~ is well defined (see [32, 33]), for problem 

(52a), one can perform the Newton sequence 

X s'j+l = X s'j ~- ( ( X  s'j, U s, k), j = O, 1, 2 , . . . ,  

which is also well defined (see [29]), i.e. ( F ~ ( x  ~'j, u s, k))  -1 exist and the sequence 

{x"J}~-o converges to ~ ( u  ~, k) quadratically. 
So to find an approximation for ~(u ~, k) with accuracy 2 L, one has to perform 

O(log2 L) Newton steps. I f  x" is well defined for problem (52a), and u" is well 
defined for the parameter  k, one can improve the initial approximation (x' ,  u s) at 
least twice (yk<~½) for O(log2 L) steps of  the Newton Method. 

Now we are going to consider some implementations of  the MBF's  for solving 
the QP problems. 2 

Let C be an n x n symmetric matrix, A = ( a i ) ~ n  1 be an m x n matrix, A = (~), B 

an r x n matrix, D an ( m -  r ) x  n matrix, p c ~ ,  q ~ N", a ~  •", m > n. We suppose 
that there exist 

x* = argmin{fo(x) = l(Cx, x)  + (p, x) lAx  >I q} (61) 

and Karush-Kuhn-Tucker ' s  conditions (3) hold, i.e., there is a vector u* c ~ '  such 
that 

Cx* + p - u*A = 0 (62) 

2 These results we obtained together with B. Yuzefovich (Faculty of Industrial Engineering and 
Management, Technion, Haifa). 
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and 

u * ( A x * - q ) i = u * [ ( a  i ,x*)-q~]=O, i = l , . . . , m .  (63) 

We will suppose  that  the complemen ta ry  condi t ions (63) are fulfilled in the strict 

form, i.e. 

u * > 0  and ( A x * - q ) i = O  for i = l , . . . , r ,  (64a) 

u * = 0  and (Ax* -q )~>O for i = r + l , . . . , m ,  (64b) 

and  rank A = rank B = r < n, i.e. vectors  a ' ,  i = 1 , . . . ,  r, are l inearly independent .  
Let L(x, u)=½(Cx, x) + (p, x ) - ( u ,  A x -  q), then L'x(x, u)= C. I f  condit ion (5) is 

fulfilled for the QP p rob lem (61), then there exists A > 0, 

(Cy, y)>~A(y,y) Vy:By=O.  (65) 

Let ~ 2 k = { x : r i ( x ) = ( A x - q ) ~ 7 > - k  a, i = l , .  . . ,  m}. On the R~ x~+'xR~+ we define 

the MBF ' s  

r n  

f o ( x ) -  k -1 ~, ui ln(kri(x) + 1), if  x c i n t  g2k, 
F(X, u, k) = i-1 

oe, i f  x ~ int /2k ,  

and 

f f o ( x ) + k  ' ~ ui[(kri(x)+l)  1 - 1 ] ,  i f x c S 2 k ,  
C(x, u, k) ~ i=l 

(0% i f x ~ / 2 k .  

Then,  for any k >  0, we obtain  F(x*, u*, k )= C(x*, u*, k)=fo(x*) and 

F" (x, u*, k)ly_x. = C'~(x, u*, k)l~ ~. = Cx* + p -  u*A = O. 

Let 

= ~+ .ui>~e>O, lui-u*l<~Sk, i = l , . . . , r ,  D(u*, ko, 6, e) {(u, k) c ,n+,. 

0 ~  u ~  6" k, i =  r + l , . . . ,  m, k>~ko}. 

The next assert ion takes place. 

Assertion 12. I f  (64) and (65) hold, then there exists such ko and small enough B > 0 
that for any 0 < e < min{u*l  i = 1 , . . . ,  r} the next statements hold for any (u, k) c 
D(u*, ko, 6, e): 

(i) There exists a vector 

~ .~(u, k ) =  a rgmin{F(x ,  u, k)[x c ~ }  such that F'~(fc, u, k) = O. 

(ii) For the pair ~, ~ = [diag[1/(kr~(~) + 1))]~L1 u the estimate 

max{[ ]£ -x*[ [ ,  [t~-t/*[[}<~ ck 1[]u-u*[[ 

holds and c is independent of k > ko. 
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(iii) Let /~B = [diag ~]7 ~, /~D = [diag tT~]L,+,. For the matrix 

F~(:~, u, k) = C + kBTUB[diag(kr~(~) + 1)-~]7=lB 

+ kDTl~D[diag(kr~(~) + 1)-~]Lr+~D, 

there exist such 0 < tz < A that 

(F~'~(~, u, k )y, y)>~ l,z(y, y) '¢y~ff~n 

and 

" * k) = C+kBTU*~B. D F ~ ( x  , u*, 
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(66) 

Let us consider  the shifted barr ier  funct ion for  the QP prob lem,  M ( x ,  k ) =  
F(x,  e, k). 

The next assert ion takes place. 

Assertion 13. I f  conditions (64)-(65) hold, then there exist such ko> 0 that for any 

k>~ko : 
(i) There exist 

x ( k ) = a r g m i n { M ( x , k ) [ x ~ R n } :  M ~ ( x ( k ) , k ) = O ,  

and for the pair (x(k) ,  u(k))  where 

u(k)  = u (x (k ) )  = [diag(kri(x(k))+ 1)-']~'_1 e = A-~(x (k ) )e  

= ( u , ( k ) , . . . ,  u i ( k ) , . . , ,  u,,(k)),  

e = ( 1 , . . . ,  1) c ~m, the estimate 

max{l lx(k)  - u*ll, Ilu(k) - u*ll} <~ ck ' (67) 

holds and c > 0 is independent of  k >~ ko. 
(ii) The function M(x ,  k) is strongly convex in a neighborhood of  x (k ) ,  i.e. for  the 

matrix 

M ~ ( x ( k ) ,  k) = C + kA T a - 2 ( x ( k ) ) A  = C + kA T U ( x ( k ) ) A - i ( x ( k ) ) A ,  

where U(x ( k ) )  = [diag u~(k)]~_l, there exists tx > 0 independent of  k ~  ko such that 

( M ~ x ( x ( k ) , k ) y , y ) > ~ t z ( y , y )  V y ~ R ' .  [] 

Assert ions 11 and  12 allow us to develop  the PPV me thod  for  solving QP prob lems .  
Let x ° c int ~ ,  u ° = e = ( 1 , . . . ,  1) ~ ~m, and  k ~ ko. The sequence  {x '~, u~}~-o we obta in  
by  the formulas  

x ~+1 = a rgmin{F(x ,  u ~, k) lx ~ R~}, (68a) 

u ~+' = [diag(kr~(x~+')+ 1) ~]7_,uL (68b) 
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As a consequence  of  Assert ions 12 and 13 we have the next  assertion: 

Assertion 14. I f  conditions (62), (64), (65) hold then for the sequence (68) the estimate 

max{l lx~-x*l l ,  llu ~ u*ll}<-(ek 1)s='~k , 0 < ' y k ~ ,  (69) 

holds true and c > 0 is independent of k >! ko. [] 

Now we consider  an impor tan t  par t icular  case of  the Quadra t ic  P rogramming  
p rob lem 

x* = argmin{fo(x)  = l (Cx,  x) - (p, x) lx >i 0}. (70) 

For  the solut ion x* we have u * =  C x * - p  ~ 0 and the complemen ta ry  condi t ion 

u*x*=(Cx*-p) ,x*=O,  i = l , . . . , n ,  (71) 

is fulfilled. 
We suppose  that  the complemen ta ry  condi t ion holds in the strict form, i.e. 

u*=(Cx*-p)~>O and x * = 0 ,  i = l , . . . , r ,  (72a) 

u*i=(Cx*-p)i=O and x * > 0 ,  i = r + l , . . . , n .  (72b) 

Let g2k ={X~, . . . ,Xn) :  x~>1-k  ~, i =  1 , . . . ,  n}. Then the MBF,  which cor respond  to 
the QP problem,  (70) is defined on R" " x R+ x N+ by fo rmula  

F(x,u,k)={½(Cx, x ) - ( p , x ) - k - l ~ , u i l n ( k x i + l ) ,  x c i n t  g2k, (73) 
k co, x ~ int/2k.  

So F(x*, u*, k) =fo(x*) ,  F'~(x, u*, k)l~=~. = C x * - p  - u* = 0, hence if fo(x) is a 
convex funct ion we obtain  

x* = a rgmin{F(x ,  u*, k) lx ~ [R"}. 

Let 

Cr r C r n r )  
C= 

C . . . .  C~--r.n--r 

where err and C . . . .  -r  are symmetr ic  r x r  and ( n - r ) x ( n - r )  matrices,  Cr.n_r = 
T Cn-r,r is an r x ( n - r )  matrix.  We consider  y c ~ n :  (y, ei) = 0 ,  i = 1 , . . . ,  r, where 

i 

ei = (0, 1,0; 0 , . . . , 0 ) .  

So y = ( 0 , . . . ,  0, Yr+l, • • " ,  Yn), let fi = (Y,+I, • • •, Y,). The  classical Lagrangian  for  
the p rob lem (70) is L(x, u) =fo (x )  - Y , ~ I  uixi, so L'~(x, u) = C. Therefore  the condi-  
t ion (65) can be rewrit ten in the fo rm 

(Cy, y)>~A(y,y) Vy:(y,e~)=O, i = l , . . . , r ,  

i.e. 

Let 

ui~6" k, i = r + l , . . . , m , k > ~ k o } .  

(C,,_r,n_ ry, y)  ~> A ()~,)7), A>O.  (74) 

D(u*,ko, B,e)={(u,k)~R2+':  u,>~e>O, lu i -u*]<~6 .k , i= l , . . . , r ,  0<~ 
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Assertion 15. I f  conditions (72) and (74) are fulfilled, then for any pair 
D(  u*, ko, 6, e) the next statements hold: 

(i) There exists a vector 

such that C:~ - p  -[diag(k)~i + 1)-l]•lu -- C:~ - p  - ff = 0. 
(ii) For the pair ~ and ~ the estimate 

max{ll:f-x*[I, I1~- u*ll} <~ ck-~llu - u*ll 

holds and c > 0 is independent of  k > ko. 
Let /~= [diag a,]~%l. Then for the matrix 

F~,0~ u, k) = C + kU[diag(k~, + 1)-~]7_~ 

there exist such 0 < tx < ,~ that 

((C + k/~[diag(k2~ + 1)-~],%1)y, y) I> ~z(y, y) Vy c N" 

and 

+ ,  F o r . . . .  ] 
F2x(x*, u*, k) = C 

~ c O  "-r'r 0 . . . . . . . .  

where U* = [diag u*]r=l [] r ,  r • 
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(u, k) c 

Let N(x ,  k) = F(x,  e, k). Then the next assertion takes place. 

Assertion 16. I f  conditions (72) and (74) hold then there exists such a ko>0 that for 

any k >~ ko: 
(i) There exists x ( k ) = a r g m i n { N ( x , k ) l x c ~ 2 k } : M ' x ( x ( k ) , k ) = O  and for the 

vector x(k) ,  and u ( k ) = ( u l ( k ) , . . . , u , ( k ) ) = [ d i a g ( k x i ( k ) + l ) - l ] ~ ' - l e ,  where e= 
( 1 , . . . ,  1)c R n, the estimate 

max{llx(k)-  x*ll, [ [ u ( k )  - u*ll} ~< ck-1 

holds and c> 0 is independent of  k. 
(ii) The function N(x ,  k) is strongly convex in a neighborhood of  x(k) ,  and 

(Urr(k) 0 ..... ) 
N"xx(x(k), k)=  C + k \  O• .... o , - r , , - r /  

where U~,r(k) = [diag ui(k)]r 1 > 0. [] 

Assertions 15 and 16 lead to the next multipliers method for solving the QP 
problem (70)• 

L e t x ° > 0 ,  u ° = e = ( 1 , . . . , D e N " . T h e n  

x'+l=argmin{½(Cx, x ) - ( p , x ) - k - l } ~  u~. ln(kxi+ l ) J x c N ' } ,  (75a) 

u s+l = [diag(kx~+l + 1 )-1] ~_~ u'. (75b) 
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F r o m  Asser t ions  15 and  16 we obta in :  

Assert ion 17. I f  (72) and (74) hold then for  the sequence {x s, u ' } ~ o ,  which is defined 
by (75) the next estimate holds: 

max{llx~-x*ll, Ilu*-u*llI<~(ck-'y. [] 

Remark  8. I f  C = G T G  and G is an m x n matr ix ,  then  it is sufficient that  rank  G = 

n - r (the last  n - r co lumns  shou ld  be l inear ly  i n d e p e n d e n t )  to fulfill cond i t ion  (74). 

I f  C = 0 then  p r o b l e m  (61) turns into the LP p r o b l e m  

x* = argmin{(p ,  x) l r (x)  = A x  - q ~ 0}, (76) 

which  is equiva len t  to the dual  p r o b l e m  (48). Let S2k = {X: ri(x) = (Ax  - q)i ~ - k  1, 

i = 1 , . . . ,  m}. The modi f ied  bar r i e r  func t ion  which co r r e sponds  to p rob l e m (76) we 

define by the fo rmula  

F ( x , u , k ) = [ ( p , x ) _  1 i = l  ~ u i l n ( k r i ( x ) + l ) ,  i f x e i n t ~ 2 k ,  

[co, if x ~  int X2k. 

Let A = ( ~ ) ,  B be an n x n matr ix ,  N be an ( m - n )  x n matr ix  and r a n k A = r a n k  

B = n. We also suppose  that  the c o m p l e m e n t a r y  cond i t ions  are fulfil led in the strict 

form 

u * > 0  and  r i (x*)=O,  i = l , . . . , n ,  (77a) 

u * = 0  and  r i (x*)>O,  i = n + l , . . . , m .  (77b) 

Let 

,,,+l. [ui _ u, l  <~ 3k, i = l, . . . , n, D(u* ,  ko, 6, e ) =  {(u, k ) ~ +  . ui>~ e, 

O<~u~<~3k, i=  n + l , . . . ,  m, k ~> ko}, 

U = [d iag  Ui]~n~l, U B = [d iag  u~]7-,, UN = [d iag  u~]Z~+,,  

k (x ,  k) = [d iag  ( k r , ( x )+  1 ) ] m , ,  AB(X, k) = [d iag(kr , (x )+ 1)]~_1, 

AN (x, k)  = [diag(krf(x)  + 1)] ~-,,+,. 

So U * = [ d i a g  * " " u ,  ] i ~ ,  U ~  . . . .  ~ . . . . .  = = = 0  , k R ( x * , k )  I , U * A N I ( x  * , k )  0 . . . . . . . . . .  . 

The next  asser t ion  takes place.  

Assert ion 18. / f  condition (77) is fulfilled and rank A =  n then for  any (u, k ) c  
D(u* ,  ko, 3, e) the next statements hold: 

(i) There exists a vector 

= ~(u,  k) = a rgmin{F(x ,  u, k) lx  ~ ~ }  
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such that 

F'~(~, u, k) = p - A T A - ~ ( ~ ,  k), u = p - A ~  a =0 .  

(ii) For the pair £ and ~ = d - l (~ ,  k)u the estimation 

max{l ]2-x*[ [ ,  [ [~ -  u*l[} ~ < ck-'llu -u*[ [  

holds and c > 0 is independent of  k >~ ko. 
(iii) The matrix 

F~(~,  u, k) = kATLjA-'(f;, k ) A  = kBTUBABI (N ,  k ) B +  kNT~JNA-I(~, k ) N  

is positive definite uniformly in (u, k) c D(u*,  ko, 6, e), i.e. there exists tx > O, 

( F ~ ( ~ ( u , k ) , u , k ) y , y ) > ~ k l ~ ( y , y )  V y c ~ ' ,  V ( u , k ) c P ( u * , k o ,  B,e), 

and 

F" ( * k) = kBTU*B. [] xx~ x , U ~, 

Now let us consider  the Shifted Barrier Funct ion which corresponds to the LP 
problem (76). We obtain M(x,  k) = F(x, e, k). 

Assertion 19. I f  condition (77) is fulfilled and rank A = n, then there exists such ko > 0 
that for any k >~ ko : 

(i) There exists 

x( k ) = a rgmin{m(x ,  k ) l x ~ ff~n} 

such that 

M ' ( x ( k ) ,  k) = p - a v A - ' ( x ( k ) ,  k)e = O. 

(ii) For the pair of  vectors x (k )  and u(k)  = A J(x(k), k)e = ( u l ( k ) , . . . ,  um(k)) 
the estimate 

max{[Ix(k) -x* l l ,  Uu(k) - u*ll}~ ck l 

holds true with c> 0 is independent of  k. 

(iii) Let U(k)  = [diag ui(k)]~=l, the matrix 

F~x(x(k),  k) = kATU(k)A  ' (x(k) ,  k )A  

is positive definite. Moreover, there exist # > 0 independent of  k >~ ko that 

(F~x(x(k) ,k )y ,y )>~ktz (y ,y )  V y ~ ' .  [] 

Now we consider  the PPV of  the M B F M  for the LP problem (76). Let x ° c i n t  ~k,  

u ° =  e = ( 1 , . . . ,  1) G R m and (x' ,  u s) have been found  already. The next approxima-  

tion (x ~+1, u ~+1) one finds by formulas 

x "+' = argmin{(p, x) - k-lX, u~ ln(kri(x) + 1 [x ~ R~}, (78a) 

s+ l  A l ( x S + l  k ) u  ~. (78b) U ~ 

The next assertion is a consequence o f  Assertions 18 and 19. 
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Assertion 20. I f  the slackness complementary conditions (77) are fulfilled in the strict 
form and rank A = rank B = n, then for the sequence {x ~, uS}~_o the estimate 

max{llx -x*LL, Ilu - u*ll}  (ck-l) = 0 < (79) 

holds and c > 0 is independent o f  k >~ ko. [] 

The numerical realization of method (78) leads to the Newton Modified Barrier 
Method (NMBM) for simultaneous solution the dual pair LP problem. The NMBM 
consists of using the Newton method for solving problem (78a) and updating the 
Lagrange multipliers by formula (78b). 

The Newton step for finding 

~(u, k) = argmin{F(x, u, k ) ]x  ~ ~"} (80) 

under fixed u > 0 and k > 0 leads to finding 

~F" ; X= x - , .  xxtx, u, k ) ) - '  F ' ( x ,  u, k ) =  x + ~(x, u, k) 

i.e., ~(x, u, k) is the solution of the normal system of equations 

ATkUA-2(X, k )A~  = - ( p -  UA-'(X, k )A) .  (81) 

So i f x  ~ is well defined (see [32, 33]) for problem (80) with u = u ~ then the sequence 

x S';+l = x `~'s + ~(x s'j, u s, k),  j = O, 1, 2 , . . . ,  x '~'° = x ~, 

tt s,j s . .  ~xS, Jl oo is well defined (see [29]), i.e. (Fxx(x  u , k)) -~, j = 0, 1, 2, .,  exists and L ,s=0 
converges to ~(u ~, k) quadratically. Therefore in O(log2 L) Newton method steps 
one can obtain approximation )?~+1 for x ~ + l = ~ ( u  ~, k) with precision 2 - t .  I f  

max~s~m.l~;~,  {la0[, ]P;I, Iq~l} <~ 2;, then, under the natural assumption: 1<< n < m, 
the input length L can be estimated by l (m + 1) 2. So, in O(log2 m) Newton method 
steps in the worst case, we can obtain the approximation ys+l to x ~+1-- x (u  ~, k) 
with accuracy 2 t. 

Using the approximation Y~+~ instead of x s+~ in formula (78b), we obtain an 
approximation a~+~ for u s+~ with property (79). Therefore after O(log2 m) Newton 
steps one can update the Lagrange multipliers, i.e., to realize one "large" NMBM 
step, which, due to Assertion 20, allows us to improve the current approximation 
at least twice (Yk ~< ½). In addition the new vector of the Lagrange multipliers ~+~, 
again, due to Assertion 20, is well defined, i.e., (~'+~, k) ~ D(u* ,  ko, 6, e). So, in the 
dual space we are in a position where the basic theorem acts again. As for the 
primal space, if condition (77) is fulfilled and rank A = rank B = n, then 

mineigval F ~ ( x * ,  u*, k) ~> k/~o min u* 

where/~o = mineigval BTB, rain u* = rain{u* I i = 1 . . . .  , n} > 0. Therefore there exists 

ko > 0 and 1 > ao > 0 that for a fixed k >~ ko, 

F~x(x(u, k),  u, k) >i kaotZo min u* mineigval " ^ 
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! M s  - s  uniformly in u c Uk. Further, due to estimation (79) we obtain I[Fx(x, u,  k)ll ~0 
for a fixed k ~> k0. Hence there exists such So that for any s i> So if ys is well defined 
(see [32]) for the Newton method in conformity to problem (80) with u = ffs, then 
the approximation £s+~ will be well defined for the same problem with u = ff'+~. 
So, beginning from 37 so = (£ so, if'o) ("hot"  start) in every "large" NMBM step, i.e. 

after every updating of the Lagrange multipliers, which in the worst case needs 
O(log2 m) Newton method steps, one can improve the current approximation at 

least twice (yk <~½). 
Note that the number  So can be decreased by increasing k0. 

11. Some concluding remarks 

The properties (P1)-(P5) cause the principal difference between MB and CB func- 
tions. Note that the constrained optimization problem (1) is equivalent to the 
unconstrained nonsmooth problem 

x* = argmin{0(x, x*)lx ~ R"} (82) 

where O(x, x*) = max{f0(x) -fo(x*), - f ( x ) ,  i =  1 , . . . ,  m}, it follows from (P1)-(P5) 
that F(x, u*, k) is an exact smooth approximation of the nonsmooth function 
q~(x, x*) for any k > 0 in the convex case and k ~> k0 in the nonconvex case. This 
indicates that in order to solve the constrained optimization problem (1), or the 
nonsmooth problem (82), one has to solve the smooth unconstrained problem 

x* = argmin{F(x, u*, k ) Ix  c R"} 

where F(x, u*, k) is strongly convex in the neighborhood of x*. 
On the other hand CBF q~(x, k) does not exist at the solution, and cannot be an 

exact smooth approximation of the O(x, x*) for any k >  0. 
So together with the penalty parameter  k > 0, which is the only tool in CBF for 

improving the smooth approximation of the nonsmooth function (O(x, x*), the MBF 
has another tool - -  the vector of  Lagrange multipliers. Therefore, the sequence 
{F(x, u ~, k)}~_o under the fixed k > k0 gives a much better approximation to O(x, x*) 

oo  U s than {q~(x, k)}k=k0 and the sequence {x', },~1 converges to (x*, u*) much faster 

than {x(k), u(k)}k~ko. 
The difference between CBF trajectory {x(k), u(k)}(k~ ~) and MBF trajectory 

{x (t, k), u (t, k)} (t = (u - u* ) /k  ~ 0) leads to the principal difference between IPM 

and NMBM trajectories. The IPM follows along the CBF trajectory turning from 
one "warm"  start to another "warm"  start by performing one Newton step and 
updating the penalty parameter.  It allows us, in case of  the LP, to improve the 
current approximation in (1 - a/~/m) time by one Newton step where a is a universal 
constant (in [29] the corresponding result has been proved with c~ = 41-1). So to 
improve the current approximation twice one has to perform O(x/m) Newton steps. 
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The NMBM follow along the MBF trajectory turning from one "hot"  start to 
another "hot"  start. In the case of  the LP, to find the approximation for ~(u, k) 
with accuracy 2 c one has to perform O(log2 m) Newton steps. Therefore, to 
improve the current approximation twice (7k ~< ½), by following the NMBM trajec- 
tory, one has to perform, in the worst case, O(log2 m) Newton steps. In the case of 
the nonlinear programming problem, starting from the "hot"  start ~; for the problem 
~(a ' ,  k) = argmin{F(x, a ~;, k)[x  c R'},  one has to perform O(log2 log2 e -1) Newton 
Method steps to find an approximation ~+1 for ~(a ' ,  k) with accuracy e > 0 and 
then to update the vector ~s, i.e., to compute f f~+~=[diag(kf (£ ;+~)+l ) ]a  s. The 
approximation ~+~ will be the "hot"  start for the next problem ~(~i S+~, k ) =  
argmin{F(x, ~s+l, k) lx c R"} i.e., to improve again the current approximation twice 

yk<~½, one has to perform O(log2 log2 e -~) Newton steps. The moment  when the 
NMBM trajectory reaches the "hot"  start is crucial for the NMBM complexity. 
This moment  depends on the MBF properties in the solution of the primal and dual 
problems. For any nondegenerate constrained optimization problem w i t h f ( x )  c C 2, 
i = 0 . . . .  , m, due to (P5), the function F(x, u*, k) is not only strongly convex in the 
neighborhood of x* but keeps this property in the neighborhood of ~ = ~(u, k) = ~(.  ) 
uniformly in (u, k) c D(u*, ko, ~, e). Moreover, the 

cond F '~(~(  • ) , .  ) = mineigval F'~(x( .  ),.  )(maxeigval F'~(x(.  ),.  ))-' 

is stable for any fixed k >~ ko and can be estimated uniformly in u a Uk. In other 
words, let fixed k ~> ko and 

/x = mineigval t~ ~xtx . . . .  *, u*, k) = mineigval( L~ + kf(r~'7 U *f(~); 

Mk = maxeigval(L'~ + kf~;; U* f~ ) ,  

then there exists 0 < 13o < 1 that 

cond F'x(~(u, k), u, k) >1 ¢3olxM~ 1 Vu c Uk (83) 

i.e., cond F 'x(~("  ), • ) is stable for any fixed k/> ko. 
The threshold ko is critical for the conditions of  the MBF near the solution. 

Moreover, this parameter  is responsible for the contractibility properties of the 
operator Ck as well as for the transformation of the nonconvex constrained optimiz- 
ation problem (1) into the sequence of strongly convex unconstrained optimization 
problems. The threshold ko, which provides the contractibility properties of  the 
operator Ck can be estimated due to (19)-(21) by the value ~- = ]](O~k~)-lRol] which, 
inturn, depends on &min  u* = min{u~ ] i = 1 , . . . ,  r},max u* = {max u*]i = 1 , . . . ,  r}, 
IX, Mk, iXo = mineigval f(j)(x*)f~r~(x*), Mo = maxeigvalf(r)(x'7 *)f (r)(x' *), and ~r= 
min{ f (x*)[ i= r+ 1 , . . . ,  m}. These parameters characterize the "measure"  of  the 
nondegeneracy of the constrained optimization problem. 

So the "hot"  start very much depends on the measure of  nondegeneracy of the 
constrained optimization problem. Therefore it seems promising to combine the 
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universa l  s e l f - concordan t  (see [17]) p roper t i e s  o f  the C B F  which  gua ran tee  the  

p o l y n o m i a l  complex i ty  b o u n d  o f  the IPM,  with the M B F  proper t i e s  (P1 ) - (P5) ,  

which  a l low us to speed  up the process  at the final s tage and  to reduce  f rom O(~-m) 

to O(log2 m) the  number  o f  Newton  steps,  which in the wors t  case, have to be 

p e r f o r m e d  to improve  the current  a p p r o x i m a t i o n  by  a given amount .  

Final ly ,  note  that  in case o f  nondegene ra t e  dua l  pa i r  o f  LP the no rma l  systems 

o f  equat ions  (60), (81), which one has to solve at every s tep o f  the N M B M ,  are 

numer ica l ly  much  more  s table than the c o r r e s p o n d i n g  systems in the IPM,  which  

are  based  on the C B F  (see [10, 12, 29]). 
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