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The nonlinear rescaling principle employs monotone and sufficiently smooth functions to transform the
constraints and/or the objective function into an equivalent problem, the classical Lagrangian which
has important properties on the primal and the dual spaces.

The application of the nonlinear rescaling principle to constrained optimization problems leads to a
class of modified barrier functions (MBF’s) and MBF Methods (MBFM’s). Being classical Lagrangians
(CL’s) for an equivalent problem, the MBF’s combine the best properties of the CL’s and classical
barrier functions (CBF’s) but at the same time are free of their most essential deficiencies.

Due to the excellent MBF properties, new characteristics of the dual pair convex programming problems
have been found and the duality theory for nonconvex constrained optimization has been developed.

The MBFM have up to a superlinear rate of convergence and are to the classical barrier functions
(CBF’s) method as the Multipliers Method for Augmented Lagrangians is to the Classical Penalty
Function Method. Based on the dual theory associated with MBF, the method for the simultaneous
solution of the dual pair convex programming problems with up to quadratic rates of convergence have
been developed. The application of the MBF to linear (LP) and quadratic {QP) programming leads to
a new type of multipliers methods which have a much better rate of convergence under lower computa-
tional complexity at each step as compared to the CBF methods.

The numerical realization of the MBFM leads to the Newton Modified Barrier Method (NMBM).
The excellent MBF properties allow us to discover that for any nondegenerate constrained optimization
problem, there exists a “hot” start, from which the NMBM has a better rate of convergence, a better
complexity bound, and is more stable than the interior point methods, which are based on the classical
barrier functions.

Key words: Nonlinear rescaling, modified barrier functions, multipliers method, simultaneous solution,
dual problems.

Introduction

In the middle of the 1950’s Frisch [8] and at the outset of the 1960’s Carroll [3]
recommended the classical barrier functions (CBF’s) for solving constrained
optimization problems. Later these functions were extensively studied by Fiacco
and McCormick in [6] (see also [13]) and incorporated in different general solution
techniques, so the corresponding methods made up a considerable part of modern
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optimization theory (see [6, 13, 18, 19]). Interest in these functions and the corres-
ponding methods grew dramatically in connection with the well known progress in
Linear Programming (see [5, 7, 10, 12, 15, 16, 17, 28, 29, 34] and bibliography in it).

At the same time the CBF’s as well as the methods based on these functions still
have their inherent drawbacks. A specific feature of the barrier functions is their
unbounded increase in a neighborhood of the boundary. This enables us to start
the solution process at any interior point of the feasible set and to remain in the
interior without taking particular care of the constraints. It makes it possible to use
the smooth optimization methods (see[4, 9, 19]) for solving constrained (nonsmooth)
optimization problems. However, this merit of the CBF’s becomes a deficiency when
the computational process approaches the active constraints boundary.

The CBF’s as well as their derivatives do not exist at the solution. The CBF’s
grow to infinity, the condition number of the Hessian vanishes and the repulsive
effect from the active constraints boundary becomes stronger as the computational
process approaches the solution. So, while the computations are increasing from
step to step, the rate of convergence is rather slow, even when the second order
optimality conditions are fulfilled. Furthermore, the CBF’s methods obtain the
optimal values of the Lagrange multipliers only as a result of a limiting process as
the penalty parameter tends to infinity.

On the other hand, the classical Lagrangians, which are fundamental in con-
strained optimization both for the theoretical analysis (necessary and sufficient
condition, duality theory) and computational methods, along with very important
qualities have some essential deficiencies.

First of all, generally, the unconstrained optimum of the CL in the primal space
under the fixed optimal Lagrange multipliers might not exist even if the second
order optimality conditions are fulfilled. The unconstrained optimization CL, which
correspond to the Linear Programming problem, under the fixed optimal dual
variables is not equivalent to the initial LP problem.

The objective function of the dual problem, which is based on the CL, is in
general nonsmooth, independent of the smoothness of the initial functions, even
for the convex programming problem when the second order optimality sufficient
conditions are fulfilled.

The purpose of this paper is to develop the MBF theory and, based on this theory,
to consider MBF methods for solving constrained optimization problems. As will
be proven later, the MBF combine the best properties of the CL and CBF, but at
the same time are free from their most essential drawbacks and might be considered
as interior augmented Lagrangians.

In contrast to the CBF’s, the MBF’s are defined at the solution. Moreover, these
functions keep the smoothness of the order of the initial functions in a neighborhood
of the feasible set. They do not grow infinitely and the condition of the Hessian
does not vanish when the current approximation approaches the solution.
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The most important quality of the MBF is the explicit representation of the
Lagrange multipliers. It allows us not only to attach to the MBF, which is in fact
a classical Lagrangian, all of the best properties of the augmented Lagrangians (see
[2, 11, 14, 20, 27, 31]) but also to find some new important qualities.

In contrast to the CL’s, the MBF’s is strongly convex in the neighborhood of the
solution even in the case of nonconvex programming problems, if the second order
optimality conditions are fulfilled. Under the optimal Lagrange multipliers, the
unconstrained extremum of the MBF’s exists and coincides with the solution of the
initial problem. The dual functions, which are based on the MBF’s, are as smooth
as the initial functions of the primal problem and, the dual problem, which is always
convex whether the initial problem is convex or not, has important local (near the
solution) properties.

Based on the MBF theory, three versions of MBFM have been developed. The
MBFM’s have a much better rate of convergence under lower computational com-
plexity at each step compared to the Classical Interior Point Methods (CIPM’s)
(see [6]), which are based on CBF’s. Even under the fixed penalty parameter, the
sequence generated by MBFM’s converge to the primal and dual solutions linearly.
If one increases the penalty parameter from step to step, the MBFM sequence
converges to the solution superlinearly, while CIPM have only an arithmetical rate
of convergence. In fact, the MBFM is to the CIPM as the multipliers method of
the augmented Lagrangians (see [2, 11]) is to the Classical Penalty Functions Method
(see [6, 13]). )

Moreover, a consideration of the dual problem associated with the MBF’s leads
to a general method for simultaneous solution of the dual pair of the convex
programming problems with up to a quadratic rate of convergence.

The numerical realization of the MBFM leads to the Newton Modified Barrier
Method (NMBM). The analysis of MBF’s allowed us to discover that for any
nondegenerate constrained optimization problem, there exists a “‘hot” start, from
which the NMBM trajectory is much more “powerful” than the Interior Point
Methods (IPM’s) trajectory. This means that following along the NMBM trajectory,
one can obtain the same improvement of the current approximation by using
essentially less Newton Method steps. This makes it possible to combine the universal
self-concordant properties (see [17]) of the CBF’s, which guarantee the polynomial
complexity bound of the IPM’s, beginning at the “warm”’ start, with excellent MBF’s
properties, which guarantee the essential improvement of this bound, beginning at
the “hot” start.

Finally, note that in application to a nondegenerate LP, the normal system of
equations, which one has to solve at every step of the NMBM, is numerically more
stable than the corresponding systems for the IPM which are based on the CBF.

The main results for the nonlinear programming problems were obtained in
1981-1982 as a part of our investigation, which had been undertaken then, concerning
the nonlinear rescaling (monotone transformation) principle in external and equili-
brium problems with constraints (see [21-24]).
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The LP and QP parts were done in 1986. Some results contained in this paper
were presented at the 11th and 12th International Mathematical Programming
Symposiums (Bonn, 1982, Boston, 1985) (see also [25-26]).

1. Problem formulation and basic assumptions

Let fo(x) and fi(x), i=1,..., m, be C*-functions in R" and let there exist
x* = argmin{ fy(x) | x € ), (1)

where Q ={x: fi(x)=0,i=1,..., m}. If fo(x) and —f;(x) are convex and the Slater
condition holds, i.e.

Axe:  filxe) >0, i=1,...,m; (2)

then Karush-Kuhn-Tucker’s (K-K-T’s) theorem holds true, i.e., there exists a vector
u*={(u¥,..., u¥)=0 such that

Li(x* u*)=fo(x*) = L uf filx*)=0,  fixui=0, i=1,...,m.
i=1

(3)

Let I*={i: fi(x*)=0}={1,..., r} be the active constraint set. In view of (2) the
multiplier polyhedron

r

Q={u =(U, .., u) =00 f3(x*) = ¥ ufi’(x*):o}

i=1
is nonempty for a convex programming problem and every vertex of this polyhedron
is in a one-to-one correspondence with a minimal set of the active constraints, i.e.,
with an index set I < I'* such that

min{ f(ﬁ(x*)—‘z u,-fﬁ(x*)‘ u,-ZO,ieI}:O

and

min{ Sox®) = ¥ ufl(x™) u,«BO,ieI\j}>0 Vjel

iel\j
For convenience, denote f(x)=(fi(x), i=1,...,m), fin(x)=(fi{x),i=1,...,7r),
and f'(x)=J(f(x)), fl»(x)=J(fi»n(x)) the Jacobi matrix of the vector-functions
J(x), fin(x) respectively.
If the sufficient regularity conditions are satisfied (for example see [6, p. 30]),
rank f{,,(x*)=r, u¥f>0, iel* (4)

then the multiplier polyhedron shrinks to a point. Condition (4) together with the
sufficient condition for the minimum x* to be isolated,

(L™, u®)y, )= Ay, ¥), A>0, Vy#0:f((x*)y=0, (5)
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comprises the standard second-order optimality sufficient conditions for the con-
strained optimization problem (1).

(Since for any minimal set I conditions (4) are satisfied, it follows that results
similar to those established below are valid for convex programming problems,
whenever (4) and (5) are replaced by the Slater condition and (5) is satisfied for

Ll(x’ u) :ﬁ)(x)_ziﬁl uiﬁ(x)’ i'e"
( /I/xx(x*a u*)}’, y)Z/\(ys y)’ /\>09 Vy¢0f1/(X*)y:0’ iGI, (SI)

hold.)
We shall use the following assertion which is a modification of the Debreu theorem
(see [1]) and can be proved in a similar manner.

Assertion 1. Let A be a symmetric n X n matrix, let B be an rx n matrix and U =
diag u4;:R">R’, such that u=(u;,...,u,)>0 and By=0=(Ay, y)=A(y,y), A>0.
Then there exists a ko> 0 such that for any 0<u <A we have

((A+kB"UB)x, x)= u(x,x) VxeR"

whenever k=k,. O

2. Modified barrier functions

The functions ¢ (x, k) = fo(x) =k ™' Y7 In fi(x) and c(x, k) =fo(x)+ k' ¥, fi7(x)
introduced by Frisch [8] and Carroll [3] are the best-known barrier functions.
However, both of these functions have a serious disadvantage because they, as well
as their derivatives, do not exist at x* and the functions grow to infinity when x -» x*.

Let k>0 and the set {2, ={x: kfj(x)+1=0, i=1,..., m}. Notice that 2 < (2,. It
is clear that if fi(x), i=1,..., m are concave, the compactness of {2 implies the
compactness of (2, for any k>0 [6, p.93]. If (1) is a nonconvex programming
problem, then the compactness of £2 does not imply the compactness of 2,. So in
the nonconvex case we will use the following growth condition

k>0 and 7>0: max{lm_qx fi(x)

xe!)ko} = 0(k0)$’r (6)

It is clear that #(k) is a monotone decreasing function on k> 0. So if (6) is fulfilled
for some k,> 0 the inequality 6(k) =< 7 will be fulfilled for any k= k,.

We define the Modified Frisch Function F(x, u, k):R" xR} xR} ->R' by the
formula

F(x,u k)= Jolx) =k E] u; In(kfi(x)+1), if xeint (2,

0 if x gint £2,,
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and the Modified Carroll Function C(x, u, k) by the formula

C(x, u, k)= So(x)+k™! i; u[(kfi(x)+1) 7' =1], if xeint O,
0 if x gint £2,.

For every k>0, Q=0,={x: k" In(kfi(x)+1)=0, i=1,..., m}=0c={x:
k7'[kfi(x)+1)"'—=1]=<0, i=1,..., m}, therefore problem (1) is equivalent to the
problem

x* = argmin{fy(x)|x € Qr} = argmin{ fo(x)|x € 2}, (7

while F(x, u, k) and C(x, u, k) are classical Lagrangians for the problem (7).

It is easy to see that for every u=0 and k>0, the functions F(x, u, k) and
C(x, u, k) are convex in x provided fy(x) is convex and fi(x), i=1,..., m, are
concave. The critical properties of these MBF’s are that:

(P1) F(x* u* k)= C(x* u*, k)=fy(x*) for any k> 0.

Due to K-K-T’s condition (3), for any k>0 we have:
(P2)  Fi(x* u* k)= CL(x* u* k)=fo(x*)— ¥ uffi(x*)=0.
i=1

Therefore for any k>0 the functions F(x, u® k) and C(x, u*, k) attain their
minimum at x* if (1) is a convex programming problem and thus the knowledge
of the Lagrange multipliers u® = (u¥, ..., u’) allow us to solve the problem (1) by
solving one smooth optimization problem.

(P3) x*=argmin{F(x, u*, k)|x e R"}=argmin{C(x, u*, k)| xeR"}.

To extend this idea to the nonconvex programming problem we can proceed as
follows.
Let U*=[diag u¥]/_,, then

(P4)  FiL(x*, u*, k) = Crx™, u*, k) = L (x*, u®) + kf (5(x*) URf(,) (x7).

If (5) is fulfilled and u¥>0, i=1,...,r, then for A= L, (x*, u*), B=f{,,(x*) and
U = U* it follows from Assertion 1 that there exists k,>0 and A > x> 0 such that

(P5) (Fl(x*,u*,k)y,y)=un(y,y) VyeR" Vk=k,

i.e., F(x, u* k) and C(x, u*, k) are strongly convex in R" in the neighborhood of
x* for any k= k,.

Note that for the CL the property (P5) is not fulfilled even if (1) is a convex
programming problem and the second order optimality sufficient conditions are
fulfilled in the strict form. On the other hand, the property (P5), hence (P3), holds
for the MBF even if the problem (1) is non-convex, whenever (4)-(5) is fulfilled
and k= k,. For the CL, (P3) is generally false even if (4)-(5) are fulfilled.
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So, the Lagrange multipliers, the specific role of the penalty parameter in the
construction of the MBF, together with the extension of the feasible set, which is
defined by this parameter, give rise to the properties (P1)-(P5) and allow us to
establish some new basic facts concerning MBF.

3. Basic theorem

This theorem states the main facts concerning the MBF. For £>0 set U(e)=
{ueR?:u=e i=1,...,r,u;=0,i=r+1,..., n}. Suppose ¢ and k,> 0 such that
for a given vector u€ U(e) and parameter k = k, there exists a vector

% =%(u, k) =argmin{F(x, u, k)| xeR"}.
Together with X we consider the vector
i =1d(u, k)=[diag(kf,(X)+1)"'1Z,u.

We will say that the vector u € U(e) is well defined for the parameter k= k, if £(u, k)
exists and the estimation

max{||£(u, k) —x*||, ||d(u, k) — u*|} = ck '||u— u*| = yi||u—u*|| (8)

holds true, ¢ is independent of k=k, and v, <3. It will be proven later that if
ue U(e) is well defined for the parameter k= k, then u is well defined for any
k= k. For a fixed k= k, consider the set U, ={uc U(e): u is well defined for the
parameter k}# ) and define an operator C,: U, > U, by the formula

Cu=1t(u k)y=1.

Then Cu®*=u*, ie., u* is a fixed point of the mapping u - @ (u, k).
For a given k= k, also define a transformation T, : U, - R" X Uy by the formula

T = (X(wk), d(u, k)= (%, 0).

Note that T,u™*=(£(u®*, k), #(u*, k)) = (x*, u®), for any k= k,. The main results
to be established below are the existence of a threshold kg, such that for every
k = k, there exists a nonempty set U, and a contractive operator C; with contractibil-
ity contr Cy = y,, which tends to zero as k- o0, i.e.

I Cue = || = || Gt = Cu*[| < || — ], (9)

holds for Yue Uy, 0<y, <3, k=k, and vy, >0 if k> co. In the course of proving
the theorem we will find the estimation for the threshold k,, which is crucial to the
properties of MBF’s as well as for the complexity of the MBFM’s.

This analysis highlights the most important parameters involved in the computa-
tional process which are responsible for the complexity of the constrained optimiz-
ation problem.
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Let >0 be small enough, 0<e<min{uf|i=1,...,r} and k, large enough
(in the course of proof it will be clearer what “small” and ‘“‘large” mean). Also
define sets D;(-)=D;(u* ko, 8,&)={u;:u;=¢, |lu,—uf|<ék, k=k}, i=1,...,r,
D(u*, ko, 8, e)={u;: 0su; <8k, k=ko}, i=r+1,...,m. DW¥* ky, 8, e)=D,(")
Q- ®D,()®--®D,(-) and for any fixed k=k, define sets

L ={u,: max(e, u¥ - k)= u,<uf+8k}, i=1,...,r, Ui={u: 0= u; < 8k},
i=r+l,...,m U =Ui® - QUi® - -QU. So D(*)={u, k): ue Uy, k= ko}
(see Figure 1).

Further, let o =min{f;(x*)|r+1<i=m}>0, I" is the r x r identity matrix, O""
is the rXxr zero matrix, M >0 large enough, |x| =max,-,=,|x]|, [|u]|<M and
S(y,e)={xeR": |x—y| =&}

D (0¥, ko Se) = D)
¥*
uj )
hi
Uk
O<e L U L L u
— =k
Ko 1<isr
D (u*,k 5,8,€)=D;()
i
Lk
L L R L U U UL
Ko r+1=i=m k
D(u* kg, 8,€)=D(-)=D|(-)®...8 D () ®...® Dpy(")
Ug=Uk@..euke. eup, S=1ga

Fig. 1.

Theorem 1. (i) Let fi(x)e C?, i=0,..., m, and the conditions (3)-(6) hold. Then
there exist k,> 0 and small enough >0 that for any 0<e <min,=;~, u¥ and any
(u, k)e D(u*, ky, 8, €) the following statements hold :

(a) There exists a vector

% = %(u, k) = argmin{ F(x, u, k)| xeR"}

such that F.(X, u, k) =0.
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(b) For the pair of vectors X and = ii(u, k) =[diag(kfi(£(u, k))+1)"']"1u the
estimate

max{|| £ —x*, | & —u*[[} < ck ™ flu—u¥| (10)

holds, with constant c independent of k.

(¢) £(u* k)=x* d(u*, k)=u*, ie u* is the fixed point of the mapping u - i (u, k).

(d) The function F(x, u, k) is strongly convex in a neighborhood of % = %(u, k).

(ii) Let fo(x) and —f(x), i=1,..., m, be convex and f,(x)e C*

(a) If 0% ={xe 0: f(x) fo(x*)} is a compact, then for any (u, k)e R there
exist X = x(u, k) such that F(X, u, k) =0.

(b) Z(u*, k)=x*, d(u* k)=u* for any k> 0.

(c) If conditions (3)-(5) are fulfilled, then for any (u, k)e D(u*, k,, 8, &) the
estimation (10) holds and F(x, u, k) is strongly convex in a neighborhood of X.

Proof (i) (a) Let t;=(u;—ub)k™, i=1,....m, t=(t,i=1,...,m), S(0,8)=
{t={t;,..., tn): |t:|<8,i=1,..., m}, u(,)—(z?,,z ,F), u(x tk)—kt(kf(x)
+1)7L di=rdl,..,m, h(x, Lk)y=Y" ., u(x, t, k)f,’T(x) kY, . t(kfi(x)
+1)7'f/(x). Then for any k>0 and x € S(x*, ¢,), t€ S(0, 8) the vector function
h(x, t, k)issmooth enoughand h(x*,0, k) = O e R", ki (x*,0, k) = O™", h}; (x*,0, k)
=0™. On the S(x* &) xS(uf,, eo) xS0, 8)x(0,0) we consider the map
D(x, Gy, 1, k)RS R defined by

D(x, di, L, k)=< §(xX) = X A4 fT(x) ~ h(x, 1, k);
i=1

kW kt;+uf) k() +1) T~k ', i=1,.. ., r) .

Taking into account (3) and h(x*, 0, k) = 0 we obtain @(x*, uf,, 0, k) = 0for Vk>0.

Let (p;ﬁ(,)E ¢;Q(X*a uzkr)s Oa k)9 L;;x = LZX(X*, u*), f’Ef,(X*), f(,r) :f(lr)(X*)s Uzkr) =

[diag uf]:R" >R, uf>0,i=1,.
In view of hl(x* 0, k)= O"" h,

Uy

(x*, 0, k) = O™ we obtain

L =/ fr>)T)

D, =D, (x*,ul,),0,k :<
(k) (r)( (r) ) (r)j(r) _kAIIr

Along with @{,, we consider the matrix

Y 12 —(fzr»T)
PDloy= Pla(x*, u™,0,0) (_ Ut ., o~ )
The matrix @/, is nonsingular, because for any vector w=(y, v) eR""" the system
®(.,w=0implies L.y —(f{,)"v=0and U¥, f(,,y =0. Since uf>0,i=1,...,r the
second set of equations implies f{,,y =0. So multiplying the first set of equations
by y we obtain (L), y, y) —(f{,,¥, v) = 0. Therefore f{,)y = 0 implies (LY.y, y) = 0. By
virtue of (5) this is possible only if y =0, but then f{,,v =0 in view of (4) we obtain

v=0, i.e. it follows from (o, —. = . -0 So the matrix ®(«, is nonsingular.
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Consequently, there exists a constant A,>0 (independent of k>0) such that
1P| < Ao

Moreover for the Gram matrix Go) = D%, P|, there exists a scalar uy> 0 such
that (G, w) = uo(w, w) YweR""". Therefore there exists a k,> 0 such that for
every k= k, and for the matrix G, = @(I)@(,O we have (Gw, w) =3 uo(w, w)Vwe
R"*" and u,> 0 is independent of k= k,. So the matrix @}, is not only nonsingular,
but there exists a constant p >0 which is independent of k = k, such that || ®))|| < p.
Let k,>k, be any large enough number and K ={0OcR"}x[ky, k;]. Since
®(x*, uf,),0,k)=0, fi(x)e C*, i=0,..., m, and the matrix @/, is nonsingular for
any k €[ky, k,] it follows from the second implicit function theorem (see [2, p. 12])
that there exist &£,>0, >0 and smooth vector-functions x(-)=x(¢t k)=
(x,(t k), .oy %, (8, k), () = i (8 k) = (0,(8, k), ..., 4,.(¢ k)) defined uniquely
in a neighborhood S(K, §)={(t, k): |t]|<8,i=1,..., m, ke[ky, k,]} of the compact
K such that x(0, k) = x*, @i,,(0, k) = uly, = (uf, ..., u¥) for any ke[k, k,].

(b) Now we are going to prove the estimate (10). There exist ,> 0 such that
max{{|x(#, k) —x*|, [[d(t, k) —u*[|} < g,

D(x(t, k), i, (t, k), t, k)= D(x(), 4,(-),)=0 (11)
and
WD, (x(1, k), i,y (1, k), £, k) M <2p V(1 k)eS(K, d).

Rewriting (11) we obtain

S 0) = £ K el 1) = b ), 1K) =0, (12)

(e, k)= (kt; v ub)(Kfi(x(, )Y+ 17", i=1,...,r, (13)
and let

.t k) =kt(kfi(x(t, KH+1)", i=r+1,...,m (14)

Werecall that uf, ., =(u¥, ..., u%)=0cR™ " Firstletus estimate the || @i, ()|
where i, ()= (G4(-),i=r+1,..., m). If §>0small enough then for any (¢, k) €
S(K, 8) we have ||x(t, k) —x(0, k)| = |x(*)—x*| <& and f,(x(t, k)) =30 therefore

() u; — uf 1 o m
u\*)= : —, I=r+1,..., m
ko filx(C)+E!

So we have

. 2 w,—uf 2u

s — -

() o k ko

and

“ﬁ(mfr)( ' )“ = ”ﬁ(mfr)( )= uikmfr)“ <20 k! ”u(mAV) - uzkm—r)“'
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Now we are going to show that the estimation (10) holds for x(t, k) = x(-) and
doy(t k)= (4 (t, k), i=1,...,r)=d,(-).

To this end we differentiate the identities (12) and (13) with respect to t.

From (12) we obtain

der(x(-))x:(+) — é] 4 ()fpe(x())xi(-)
= (fly(x( TG () —hi(x(+), ) =0,

ie.
ELG ), (DX = Sl il () = B, ) (15)
where
L) () =fia (D) = T (a3,
X =) = (KD, =1, m) R SR,
B )=T ()= (), i=1,...,r):R">R".
Let
D,(+) =[diag(kfi(x())+ DTiy: R >R
Then

D, '(+) =[diag(kfi(x(-)+ 1) )]i-i.
Differentiating (13) with respect to ¢ and multiplying both sides to k' we obtain
~diag(kt; +uF) D2 )f (o (x (- Nxi(-) =k Yidg () =[-D;'(-); 0™ "] (16)
Multiplying both sides of the system (16) to D2(-) we obtain
—diag(kt;+uF)f{,(x(-)xi(-) = k' D;(+)i(, () =[-D,(-), 0" "]. (17)
Let

L(x(-), din(+)) —(fz,><x<->))TJ.

>e)=, [—diag<kz,»+u;*>fz,>(x<->> Zk D)

Then combining (15), (17) we obtain
m m

o XD gy [ BN Tt g, (8
r[ﬁér),l('):l—d) ( )X r [[_Dr()’ Or,m—-r]] P ( )R( )

In order to estimate the norm of the (n+r) X (n+r) matrix @'~ '(-) and the (n+r) X
m matrix R(-) we will consider the n X m and r x r matrices h;(x(-), ) and D,(-)
in more detail. We recall that h(x(-), )=Y1 ., d:(x(-), )fI"(x(-)). Further let
S (N = (X)), i= 141,y m), g () = (@), ), = P41, m),
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Dmfr():[dlag(kj;(x())+1)]:n:r+15 t(m*r):(tia i:r+13"', m)’ D(t(m—r)):
[diag t172,11, D(fim-n(x(+))) =[diag fi(x(-))]iZ,+:. Then

R(x() )= 3 d(x(o), xR

+ (Sl (G o (3 (), ),
ﬁémwr),t('):(ﬁ;t(')’ i=r+1,..., m)
=[0" 7 kDL ()1 = K D(tm-n) Do () f (= (X)) x1().

Now we consider the system (18) for t=0 and k> k,. First of all note that
x(0, k) =x*, 4,0, k)=uf,=(uf,...u¥)>0 and also 4;(x(0,k),0,k)=0, i=
r+1,...,m, fi(x(0,k)=f(x")=0>0, i=r+1,...,m, D.(0,k)=D*0,k)=1I",
D(tim-r)l 0= O™ ", D(fim-p(x*)) = [diag(fi(x*NI i1 = 01",

Further,

kD, (x(0, k) = k[ diag(Kf,(x*) + 1) " IL,0y < o' 17,
(0, k) =[ O™, [diag(fi(x*) + k™) "I, 1< [O™ ¥ 0 I,
B4, (0, k) = Dy, hi(x(0, k)3 0, k)

= Flmn (X)) (0, K)

= (flm- o (NTTO™ s [diag(fi(x™) + k™) 7 0],

Then for the norm of the matrix h)(x(0, k); 0, k) we obtain the estimate
I7i(x(0, k), 0, K)|| < o[ flm_n(x*)]. So for the matrix x;(0, k), and #,, (0, k) we
have

[ x1(0, k) ]=(<I>z = [h;(x(o, k)0, k)

— oyl
ﬁér),r(o, k) [_Ir’ Or,m‘r] ] = (¢(k)) R,. (19)

Taking into account the estimate |®3\||<p and |h)(x(0,k),0,k)|<
o | flm_r(x*)|| from (19) we obtain

max{]|x{(0, k)| 1,0, )} < plo | flm-nN+NT]) = plo Lflm-n(x™)] +1].
So for a small enough >0 and any (¢, k) € S(K, ) the inequality

@' (x(rt, k), iy (rt, K))R(x(7t, k)3 (7, kD < 2pL0 ™ [ flm-n(x*) |+ 1]1=¢o  (20)
holds for any 0= 7<1 and any k= k,. Also we have

[ x(t, k) —x* ]z[ x(t, k) —x(0, k) ]
ﬁ(r)(t, k) - u* ﬁ(,)(l‘, k) - ﬁ(r)(O, k)

=Jl @' (x(t, k), d,(7t, k))R(x(7t, k); (v, k))[ ] dr.
(21)
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So taking into account the estimate (20) and (21) we obtain

max{||x(t, k) —x*|, | (s, k) —u*|} < colltl] = cok ™" flu — |-

. u—u* . . fu—u* . u—u*
x(“y k):x< k ,k)’ u(ua k):<u(r)<—k__, k)vu(m—r)<—k_a k))

Then for ¢ =max{2c ", ¢,} we obtain

max{||£(u, k) —x*|, |@(u, k) — u*||} < ck ' |Ju—u*|| = y|Ju—u*|

Let

i.e. the estimate (10) holds true.

(c) Using the estimate (10) we will prove later that F(x, u, k) is strongly convex
in the neighborhood of % = £(u, k) = argmin{F(x, u, k)| x € R"} uniformly in (u, k) €
D(u*, ky, 6, ). Meanwhile note that due to (P2), we have FL(£(u® k), u* k)=0
and due to (P5), the function F(x, u*, k) is strongly convex at £(u*, k). So £(u™, k) =
argmin{ F(x, u*, k)|xeR"} =x* and #i(u*, k) =[diag(kf;(x*)+ 1) '/L,u*=u*.

(d) Equalities (12)-(14) show that £ = £(u, k) satisfies the necessary optimality
condition for the function F(x, @, k). This condition, along with the strongly convex
F(x, 4, k), in a neighborhood of £ enables us to prove that £ is a local minimum
F(x, i, k) in a neighborhood of X. First let us prove that F(x, u, k) is strongly convex
in a neighborhood of X£. We have

F(x, u, k)= fo(x)— _gl u(kfi(x)+1)7'f](x)
and

Fl(x, u k) =f3(x)~ gl u (KF () + 1)1 (x)

DRICACRS R COTHE
Therefore, in view of &, = #;(u, k) = u;(kf,(£)+1)"" we obtain

FL(f ) =)= £ @/~ L (k@)1 /()

i=rt1

e T K2+ 1) 7 @(0)

kY w(kR)+ )RR

i=rt1
V(u, k)e D(u®* ko, 8, &).

By (10) for a sufficiently large k, we have x(u, k) near x* and #(u, k) near u*
uniformly in (u, k)€ D(u*, k;, 8, ).
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So £ x* and 4~ u™ lead to

r
0(£)= L 4f7 (%) > Liux*, u*),
i=1

k z (K (R)+ 1)L RV 1) = K (%) U i (7).

Furthermore, fi(X)}~> fi(x*)=0=0, i=r+1, ..., m, hence

Y w(ki(D)+1)7fI(X) > 0™,

i=r+1
kY w(kfi(D+D)7f(£)fi(R) > 0"
i=r+1

So for a large enough k, we have

Fl(®, u, k) = L6, u*) + K (x*) U, £l (x%)

= FZx(X*a u*a k) V(”; k) € D(u*a kO’ 5a 8)

In view of (5) and Assertion 1 for A= L”.(x* u*) and B=f""(x*) there exists
>0 that mineigval F7 (x*, u®*, k)= u. Therefore for large enough k, and small
enough § the inequality

(FL(X, u, k)y, )= au(y, ),

holds true uniformly in (u, k) € D(u*, ko, 8, £). In view of (12) we have F.(£, u, k)=
0. So the strong convexity of F(x, u, k) in x at the neighborhood of X implies that
£ =argmin{F(x, u, k)|x € S(X, £,)}. Due to (10) % is a local minimum of F(x, u, k)
in S(x*, g,).

To complete the proof of part (i) of the theorem we should extend the neighbor-
hood S(x*, gy} to (2, hence, due to the definition of F(x, u, k), to R".

First of all note that

F(& u k)= F(x*, u, k) = fo(x®) —k ™ 3w In(kf(x*) +1)

<o) =k T uF (ki (x)+ 1) = £, (22)
Suppose that~ there exists a vector % € 2, and a number A >0 such that F(%, u, k)<
F(%, u, k) — A. Then from (22) we obtain
F(% u, k)< fo(x*) = X.
Let I.(x)={i: fi(X)> 0}. Then from the last inequality we obtain
SR <folx*)+k " Y u In(kfi(X)+1)—A.

eI (%)

So from the assumption (6) and Jju||< M for the large enough k, and any k= k,
we have f,(%) < fo(x*) = 3A.
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From the other side we have f,(X)=min{fy(x)|x e (2}, then by assumptions
(3)-(5) from Theorem 6 of [6, p. 34] we obtain fo(X) = fo(x*) — k™' ¥ _, u¥, therefore
taking large enough k, we will get for any k = k, that fy(%) = fo(x*) — A,

This contradiction completes the proof of part (i) of the theorem.

(i) (a) If fo(x)and —fi{x),i=1,..., m, are convex functions and 2% is a compact,
the existence of the minimum of F(x, u, k) in X over {2, for any u>0 and any k>0
follows from Lemma 12 of [6, p. 95]. Moreover, F'.(X, u, k) =0 because F(x, u, k) >
o0 when x - 4482,.

(b) The convexity of F(x, u, k) on x and (P3) ensure £(u*, k) =x*, ii(u™, k) =u*
for any k> 0.

(c) If the assumptions (4) and (5) are fulfilled then this statement can be proved
in the same manner as in the nonconvex case, but we don’t need the assumption
(6), because in this case 2% ={x*} and the level set of F(x, u, k) is bounded for
any fixed u>0 and k> 0.

The theorem is proved. [

Remark 1. Theorem 1 can be proved similarly for the function C(x, u, k) if we
consider a point-to-point mapping

Pc(x, 4, 1, k)= (fs‘<x> =S S~k 1 k),
(kt; +ud)(kfi(x)+1) " —d,i=1,...., r) .

Remark 2. Theorem 1 is generally invalid if, instead of F(x, u, k), one considers
the classical Lagrangian L(x, u) for the problem.

Example. Let us consider a problem
x¥=argmin{xi - x3|fi(x) =2—x,=0, fo(x) =x,= 0} = (0, 2).

The corresponding classical Lagrangian L(x, u)=x{—x3—u,(2—x,) — u,x,. Then
wi=4, ut=0, fi,(x)=fix), LLO*ut)=G %), fin(x*)=fix*)=(") and
Fl(x®)y=0=y=(3), so (LL(x*, u*)y, y)=2y1 Vy: fl,,y =0, i.e. the second order
optimality conditions (4)-(5), are fulfilled. But inf{L(x, u*)|xeR’}=
inf{x] — x3+4x,~8|x € R’} = —c0, and moreover, inf{L(x, u)|x € R’} = — for any
u=(u,, u)>0. Now let us consider the equivalent problem x*=argmin{xj— x|
k'In(k(2—x,)+1)=0, k 'ln(kx,+1)=0} and the corresponding classical
Lagrangian
F(x,u k) =x7—x3— k™', In(k(2—x5)+1) =k "u, In(kx,+ 1).

Then

4
FLx™, u®, k)= LL(x*, u*) % (In(k(2—x3)+ 1)),

B ((2) —(2)> G (g —(;8) B (i 4k0— 2)‘
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So FL.(x*, u*, k) is positive definite and x* = (0, 2) = argmin{F(x, u*, k)| x € R*} for

any k>3.

Remark 3. All the facts of Theorem 1 remain in force in case of a convex program-

ming problem if only (2) and (5') hold and instead of D(u®*, k,, 8, £) we take
D;(u*, ko, 8, e)={(u, k): ;= >0, ieI|lu,—u¥|< 6k icLLu;=0,i¢ I k= ko}

for any minimal set I

4. Shifted barrier functions

To use Theorem 1 one has to know a pair (u, k) e D(u*, ko, 8, €). But a priori we
don’t know such pairs (u, k), as well as x°cint £2.

To find x°cint 2 we can use the multipliers method (see [24]) for solving the
problem

= argmax{lmin filx)|xe R"}.

If int £ # ¢ then after some steps of the method of [24] we will get x% £i(x°)>0
i=1,...,m

Let e=(1,...,1)eR" In order to find the pair (u, k) D(u*, ky, 8, &) we will
consider the shifted barrier function

M, k) = F(x, e k)= fy(x)— k™' i‘g:l In(kfi(x)+1), if xecint 2,
0, if x¢ Q.
Note that if the condition (6) holds then 3k,>> 0 such that the next inequalities
fxX)=2M(x, k=f(x)—0(k 'Ink) Vxef hold for any k=k,. (23)

The next theorem allows us to find (u, k) € D(u*, k;, 8, ).

Theorem 2. If functions fi(x), i=0,..., m, are continuous, and there exists k,>0
such that (2, is a compact then:
(i) For any k= k, there exists x(k)=argmin{M (x, k)| x e R"} such that
M (x(k), k) =0
and
lim fo(x(k)) = lim M (x(k), k) = fo(x*).

(ii) If fi(x)e C?, conditions (4) and (5) are fulfilled then there exists k, such that
for any k = k, the vector x(k) exists and for the pair (x(k), u(k)), where u(x(k))=
[diag(kf:(x(k))+ 1) "1 e, the estimate

max{||x(k)—x*||, |u(k) —u*|}=ck ' (24)
holds true with ¢ >0 independent of k = k,.
(iii) Under condition (ii) the function M (x, k) is strongly convex in a neighborhood

of x(k).
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Proof. (i) The x(k)=argmin{M(x, k)|xeR"}=argmin{M(x, k)|xe 2.} exist
because (2, is a compact, M(x, k) is continuous in int {2, and increases infinitely
as x approaches the boundary of £2,. Because of the last property we obtain
Mi(x(k), k)=0.

To prove lim, ., fo(x(k)) =lim,_ M(x(k), k) = f,(x*), we consider any converg-
ing subsequence {x(k,)}={x(k)} and let lim, .. x(k,)=X It is easy to see that
xe ), so due to (23) we obtain fo(x)< M(X, k,) +O(k, " In k). Therefore for any
small € > 0 we can find large enough k, that f,(X) < M (X, k,) + ¢. Then, taking large
enough k, one obtains

Jolx(k)) —e <fo(£)< M(X, k) +e< M(x(k,), k) + e +e,

ie., folx(ky)) s M(x(k))+3e= M(x* k,)+3e<f,(x*)+3e Taking into account
that £ > 0 is arbitrarily small, we obtain

Jo(X) = gﬁiir(}ofo(X(ks)) <folx*), so fo(%) = fo(x™).

Therefore for any subsequence k00 we have 1im; o fo(x(k,)) = fo(X) = fo(x™).
Hence lim,._, . fo(x(k)) = fo(x*) and, by (23), lim . M{(x(k), k) =fo(x*).

(ii) If (4) and (5) are fulfilled then (x*, u™*) is a unique K-K-T pair. Therefore
lim, .o f(x(k)) =lim;_ . M(x(k), k) =f,(x*) and lim,_, , x(k) = x* lim;_.. u(k)=
u*. In addition M(x, k) > if x> 382, so

MLGe(R), k) =fix(0) = T (k)i (x(k)) =0. (25)

Now we are going to estimate ||Ax| = ||x(k)—x*|, |[Au| = |u(k) —u*|. For fi(x) e
C*> we have fl/(x(k))=fl(x*)+f!(x*)Ax+h{(Ax), and h}(0)=0, i=0,..., m,
[[Ri(Ax)| < a;(Ax)Ax, a;(AXx) >0 as Ax~>0, 1=0, ..., m. Then, u,(k)=u;(x*, k)+
uj(x® k)Ax+h{(Ax)and h{(0) =0, | h{'(Ax)|| < B;(4x)Ax, where 8;(4x) > 0 as Ax >
0,i=1,...,m

Note that u;(x*, k)=1, ieI*={1,..., r}, while f,(x*)= o >0 for i I'*. There-
fore, wu,(x* k)=0O(k "), ig I*. Then, we have ul(x, k)= —kf!(x)(kfi(x)+1)72
so, for i € I'* we obtain u{(x*, k) = —kf!(x*). And in view of fi(x*)=0o>0forig I*
we have (ul(x*, k)| < k| fl(x*)|(ka+1) 7" =0(k™").

We now replace u,(k), ieI* and f](x(k)), ie I'* {0}, in (25) by their values.
Taking into account that w;(k) = du;+ u¥ we obtain

0=fi(x*)+ fi(x*)Ax + h{(Ax)

-
i=r+

— T (At uB) S0+ )8+ B A+ Y (i)
= fi(6) = £ i fix)

+< SRS uikf{’(x*)) Ax— 3 fH(x*)Auy+h7(4x),

i=
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where

B (4x) = h{(dx) = 3 (Au+ub)hl(x)— T Aufl(x*)Ax

+ 3 wkfiek),
h1(0)=0,  ||h/(Ax)] = a(ax)|Ax]|,
and a(4x)->0 as ||Ax|~0. In view of K-K-T’s condition (3) we can rewrite the
latter as
LY Ax —f{5Au+h'(Ax) =0. (26)
Then, we have
u,(k) = w,(x*, k) +ui(x*, k)Ax+ h}(4Ax)
=1—-kfl(x"YAx+ hi(4x), i=1,...,r. (27)
Let e=(1,...,)eR’, a*=(f,...,u}), v*=e—ua* h"(Ax)=(h!(4Ax), i=
1,..., 7). Then (27) takes the form
Au=v*—kf{,(x*)Ax + h"(Ax) (28)
with h*(0) =0and ||h*(Ax)| = B(4x)| Ax)|, where 8(Ax) > 0as || Ax || > 0. Combining
(26) and (28) we obtain

Ax\ [ L —flh\/[ Ax _( 0 ) ( hf(Ax)>
D(M)“(—f{,) k“I’><Au>— o) T k~'h*(Ax))

As shown in the proof of Theorem 1, the matrix D is nonsingular and for sufficiently
large k= k, there exists a constant p,>0 independent of k such that |[D7'|| < p,.
Let p=(0, k 'v*) and g(Ax)=(h’(Ax); k 'h*(Ax)). Then | g(Ax)|| =< y(4x)||Ax||
and y(Ax)~ 0 as ||Ax||-> 0. Recalling again that x(k) - x* and u(k) - u*, we obtain
for the vector Az = (Ax, Au)=D"'p+ D 'q(Ax) there exists an independent of
k= k, constant ¢ > 0 such that ||Az||< ck™', i.e., estimates (24) hold.

(iii) Finally, we show that F(x, k) is strongly convex in a neighborhood of x(k).
We have

Fl(x(k), k) = Fl(x, k)| =0 = fo(x(k)) = i (Kf(x (k) + 1) f1(x(k)),

=

F)/c/x(x(k)a k) = F;ﬁx(x’ k)lxzx(k)
= 6’(X(k))—§ (Kfi(x(k)+1))"'f7 (x(k))

=1

T (G + 17 (e ()
=3k = X ) (x(k)

e T () + 1)1 G (et
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We have u;(k) > u¥, fi(x(k))-> fi(x*)=0, i=1,...,r, and there exists > 0 such
that fi(x(k))>fi(x*)=0>0, i=r+1,...,m Therefore, k(kf(x(k))+1)*=
O(k™), i=r+1,..., m Moreover, u;(k)=0(k™"), i=r+1,..., m Consequently,
if k- oo, then

o(x(k))— gl ui(k)f{ (x(k)) > Li(x*, u¥),

k é:l (Kfi(x(k)) + 1) 2 f T (x (k) f1(x(k)) > kf (S U*fL,,
and 37, u(k)f7 (x(k))> 0",

kY w(k)(kfi(x(k)+ 1) fT(x(k)f(x(k)) > O™,
i=r+1
iie., for sufficiently large k we Thave FZL.(x(k), k)=LL(x* u*)+
k(fin(x*)TU*f{,,(x*). Therefore, in view of fi(x)e C* the strong convexity of
F(x, k) in a neighborhood of x(k) for sufficiently large k follows from Assertion
1. The theorem is proved. [

Remark 4. The results of Theorem 2 remain in force for the function N(x, k)=
C(x, e, k) if we set x(k) = argmin{ N (x, k)| x € R"}, u(k) = (u;(k) = (kfi(x(k))+ 1),
i=1,...,m).

5. Modified Barrier Function Method

In this section we introduce and investigate the MBF method for solving constrained
optimization problems. We consider different versions of the MBFM for convex
and nonconvex programming problems.

The version with a permanent penalty parameter k has a linear rate of convergence.
By increasing the parameter from step to step, one can obtain MBFM with a
superlinear rate of convergence. Note that the CIPM generally do not converge to
the solution with a permanent penalty parameter. If the penalty parameter increases
infinitely CIPM converge to the solution only with arithmetical rate of convergence
(24).

For a given k>0 we consider a bounded set U, ##, a contraction operator
C.:U» U, and the transformation T,:U,>R"xU,. Then CU,=
{li=Cu:ueUJ< U, so there exists a bounded set U>U,>CU,>--->
CiU,>---. Also, we consider a sequence of sets

TkUk = {()e, 12). 55‘—‘ f(u, k), ﬁ - Cku, uc Uk},

Ti Uk = Tk(TkUk)’ ceey Ti: Tk(TiilUk), e
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There exists a bounded set X<R":x*e X and XxU>T U, >T:U,--->
iUkD

For a given k> 0 consider a nonnegative function

v(y, ky=v(x, u, k) =max{—lr£r¥iénmﬁ(x), | Filx, u, k)|, gl u,-[f,-(x)|}

defined on X x U. If (1) is a convex programming problem, then the relation
v(p, k) =0 & y=y*=(x* u¥)

holds true for any k> 0.
For a given k>k, and ue U, we consider a sequence {y’=Tiu}sn;=
{T(Ti w2y ={%(u" ", k), 4(u" ", k)}Z,. Then

v(y°, k):max{—linin fi(x*), X u§|f;(xs)’}’
=ism i=1
because

Fl(x%u k) =fi(x") - gl up (kfi(x) +1) 7 f1(x7)

=/i(x") = ¥ uifix) = L' w) =0,

For any u € U, the sequence {y*};_, belongs to X x U therefore there exists such
a constant L>1 that

v(y%, k)y=0v(y, k)—v(y*, k)= Ly —y*| VYuel,, s=1.

For a given 0<y=13 and ue U, we can find such k> k, that yz=< yL™'. Due to
Theorem 1, for any k = k > k, and for the sequence {y* = Tiu}>_, the estimate

max{|[x* - x*|, fu’ —w*} =< yfu " —u*], pe<yr, =1,

holds true. Therefore v(y*, k)< Ly, |u* ™ —u*|< y|u* ' —u*|| < y'[|lu —u*|,0< y=
3. So for an a priori given 0<y=<1} one can find k= k, that for any ue Uy the
sequence {y° = Tru},_, exists and the sequence {v(y*, k)}:—, is bounded by {y’}:2,.

Further for any sequence {k,}._,, k; > ko, ko1 >k, lim o k, =00, there exists
such a sequence {y,}i 1, Yo+1 <7V, lim .7, =0, that for {y*"'=T,u’}?_, the
estimate

1

max{[lx*™" = x|, [lu™ - u|} < yyflu’ -

holds and v(y’, k) <1y, - - y|Jlu—u™|, y.> 0 for any ue U, .

(a) Permanent parameter version (PPV). Let start with x =x’cint 2, u=u’=e =
(1,...,1)eR™, k=k and suppose (x*, u*) have been found already. To find the
next approximation, y**'=(x*"', u*™"), one has to fulfill the next operations:

Step 1. Start with x:=x", u=u".
Step 2. Find £ =%(u, k), 4 =1(u, k)= Cu.
Step 3. Set x*™':=%, u*"":=1{, s+1:=+s and go to Step 1.
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The next assertion is a consequence of Theorems 1 and 2.

Assertion 2. If (1) is a convex programming problem, fi(x)e C?, i=0,..., m, and
conditions (3)-(5) are fulfilled, then for any 0< vy =<3 there exists such k> k, that for
any k= k the sequence {y*™" = T 'u}S, converges to y* and the estimate

max{|lx" = x*|, Ju —uF <y fu —wFl e,

holds true. O

Note that Assertion 2 is true for any u’=u ¢ U,.

So the MBFM with a fixed penalty parameter converges to the solution with a
linear rate of convergence. Normally we don’t know the threshold k a prior. So the
second version, which we are going to describe below, allows the adjustment of the
penalty parameter on the level, which guarantees the convergence with at least a
linear rate.

(b) Adjusted parameter version (APV). Along with 2, ={x:fi(x)=-k™",
i=1,...,m}> 2 we will consider a set 25 ={x:f(x)=k™",i=1,..., m}c= L

Let {k,>0}2, k, <k, ko>, k=k(0)=k,, d(0)=1, 0< y=1 is fixed, start
with x =x°=xc 2], u=u’=e=(1,...,1)eR"™ and suppose x°, x°, u®, k(s), d(s)
have been found already. The APV consists of the next steps:

Step 0. Start with x = %"= x.

Step 1. Set u=u’, ki=k(s), d =d(s).

Step 2. Find £=%(u, k), d=1d(u, k)= Cuy, i.e., = Tu= (% ii).

Step 3. If (¥, k)= y*™! set x*"' =%, u'"' =i, start with x =x""", "' =% d(s+
=d(s)+1, k(s+1)=k(s), s+1:=s, go to Step 1.

Step 4. If  v($, k)>y*"", set x'=argmin{fy(x)|i=1,...,s+1}, t =
max{t|x+t(x*"'-x)e 2y}, =t FT (1t )X T =u’, k(s+1)=kypy,
d(s+1)=1, s+1:=s, and go to Step 0.

The next assertion is a consequence of Theorems 1 and 2.

Assertion 3. If (1) is a convex programming problem, f.(x)e C> i=0,..., m and
conditions (3)-(5) are fulfilled, then for any 0 < y<j;, there exists a number s, such
that k(s) =k, =k, s=s,, the sequence {y*};_, converges to y*=(x*, u*) and the
estimate

s+1

max{[|x" = x*[, Ju" —wt |} < yllu’ — w5 =50, <y, (29)

holds true. [

Now we are going to consider the variable penalty parameter version of the
MBFM for solving convex as well as nonconvex programming problems.



198 R. Polyak | Modified barrier functions

(c) Varying parameter version (VPV). Let {k,>0}._q, k; <k, lim,, o k, =00,
u’=ecR™ x°=x"cint 2, k= k,, suppose x°, X°, u® have been found already. The
VPV step consists of the next operations:

Step 1. Start with x = x°, u=u’, k== k,.

Step 2. Find x* ' =%(u, k), " =ii(u, k)= Cu, ie., vy = T,

Step3. "' =argmin{fy(x")|i=1,..., s+ 1}, =max{¢| X + (%" - %) e 2}

Step 4. Set * =1, %' +(1—t,,,)X, s+1:=35, go to Step 1.

Assertion4. Iffi(x)e C? i=0,..., m, the conditions (3)-(5) are fulfilled and u° = e ¢
R™ is well defined for the parameter k,, then the sequence {y*"' = T, u°}?_, converge
to y* and the estimate

max{[|x* ™ = x*|, Ju —uti =y ye—u¥], % -0, (30)

it

i
he

/

holds true. O
Assertion 4 follows from Theorems 1 and 2.

Corollary. If € >0 is small enough and the conditions of Assertion 4 are fulfilled then
Sfor any k> ko, any ue U, and any start x € S(£(u, k), £), the VPV of the MBFM
leads to finding a minimum of the strongly convex and smooth function at every step
even if the initial problem is nonconvex. In addition, estimation (30) holds true. [J

We would like to emphasize that for the CBF method under the same assump-
tions instead of estimate (30) one can guarantee only the estimate (24).

To realize the above mentioned versions of MBFM numerically, we have to
replace the infinite procedure of finding £ = £(u, k) = argmin{ F(x, u, k)| x ¢ R"} by
a finite procedure maintaining the properties of the vector X. In the next section we
describe such a method.

6. Newton Modified Barrier Method

To maintain the properties of the MBFM without solving the unconstrained optimiz-
ation problem at every step, one has to use a finite procedure, which allows to find
an approximation for £ with certain accuracy. Below we describe such a method,
which is based on the APV of the MBFM and on the global converging step size
version of the Newton Method.! Let £>0 be small enough, {k,}iso, k11> ki,
lim, .o k, =00, k=k(0)=ky, d(0)=1, 0< y=3 is fixed.

! The step size can be defined by the Goldstein-Armijo rule (see [4]).



R. Polyak /| Modified barrier functions 199

Letstart withx = x°=x"c Q7 u’=e=(1,...,1)eR™and let ¥°, x*, u®, k(s), d(s)
be already found. To find the approximation (x**", u**') one has to fulfill the next
operations:

Step 0. Start with x:=%°'=x.

Step 1. Set u:=u’, ki=k(s), d:=d(s).

Step 2. Find { = {(x, u, k) by solving the system

Fidx, u, k){ = =F(x, u, k)

and set 1:= 1.

Step 3. Check x+t{ € 2, and F(x+ 1, u, k)— F(x, u, k) <it(F.(x, u, k), {).

Step 4. If x+ t{ € £, the last inequality is fulfilled and ¢ =1 set x:=x+¢{ and go
to Step 5; if x+ 1{ € £2;, the last inequality is fulfilled and ¢ <1 set x:=x+1t{ and
go to Step 2; if x+ t{ £ {2, and/or the inequality is not fulfilled set ¢:=3¢ and go
to Step 3.

Step 5. If ||{|| = & go to Step 6; otherwise go to Step 2.

Step 6. Set %= x, i =[diag(kf,(£)+ 1) '17'u, § = (£, #); if v(F, k) <y set x* "' =

A

£u Tt = start x=x, d(s+1)=d(s)+1, k(s+1)=k(s), s+1:=5, £ = gy, and

go to Step 1.
Step 7. If  v($, k)> 9", set £ '=argmin{fy(x")|i=1,...,5+1}, t,=
max{t|E+ (£ -%) ey}, XM =1, T+ -t )E u ' =u’, e=ek, k(s+

)=k, d(s+1)=1, s+1:=s, and go to Step 0.

Assertion 5. If (1) is a convex programming problem, fi(x)e C*, i=0,..., m, and
conditions (3)-(5) are fulfilled, then for a small enough ¢>0 and O<y\;, there
exists such s, that for s = s,:
(i) The penalty parameter is permanent, i.e. k(s) =k, = k and the step size t =1.
(ii) Every NMBM step (‘“‘large” step), i.e. every updating u requires
O(log, log, £™') Newton steps.
(iii) The sequence {y° = (x*, u®)}i., converges to y* = (x*, u™) and the estimate

max{||x’ —x*|, |[u’ —u*|}<v’, s=s,,

holds rrie. [

Assertion 5 follows from Theorems 1 and 2 and the Newton method properties
(see {32, 33]). We will call the approximation (x%, u™), i.e., the moment when the
NMBM switch to the MBF trajectory, a “hot” start. Beginning at this moment, one
can update u, i.e. improve the current approximation twice (y=3) in every
O(log, log, £ ') Newton steps in the worst case.

The number s, depends on characteristics of the constrained optimization problem
in the solution and can be decreased by increasing k.

We have already discussed the unpleasant consequences of increasing k. Therefore
we are going to study the possibility of improving the estimation (29) by resorting
to some means other than increasing k. It turns out that such possibilities exist and
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are connected to important properties of the dual to (1) problem, which is based
on the MBF.

In the next section we are going to consider the duality theory, which is based
on the MBF. Because of the excellent MBF properties (P1)-(P5), the dual function
as well as the dual problem have some very important characteristics in the convex
as well as in the nonconvex case while MBF is a classical Lagrangian for the
equivalent problem.

7. Dual problems

First of all we note that since problems (7) and (1) are equivalent for any k>0, it
follows that the classical Lagrangians F(x, u, k) and C(x, u, k) for problem (7)
preserve all the properties of classical Lagrangians for convex programming prob-
lems (see [30]), so the following is true.

Assertion 6. If fi(x) and all —f,(x) are convex and Slater’s condition holds, then
x*e ) is a solution of problem (7) for any k>0 if and only if:
(i) There exists a vector u™ =0 such that

uffi(x*)=0, i=1,...,m, F(x,u* k)= F(x* u*, k) VxeR" (31)
(ii) The pair (x*, u*®) is a saddle-point of the Lagrangian, i.e.,

F(x,u* k)= F(x* u*, k)= F(x*, u, k) VxeR", YuecR}. O (32)

Let ¢ (x)=sup,=o F(x, u, k). Then

folx), if fi(x)=0, i=1,...,m,
0, otherwise,

‘//k(x):{

and the initial problem (1) reduces to finding

x* = argmin{y, (x)|x e R"}. (33)
Let ¢ (u) =inf p» F(x, u, k). Then the dual problem to (1) consists of finding

u* =argmax{e,(u)|u=0} (34)

By the definition of 4, (x) and ¢, (u) we have fo(x) = (x) = ¢, (u) Vxe 2, VueRY.
Therefore, if X and @ are feasible solutions of the primal and dual problems and
U (%)= @ (i1), then ¥ =x* and 4 = u*. The smoothness of the dual function ¢, (u)
depends on the convexity and smoothness of the functions fi(x), i=0, ..., m. If (1)
is a convex programming problem then for u= 0 and k> 0 the function ¢, (u) is as
smooth as f;(x),i=0,..., m,if, for example, fo(x) is strongly convex or fy(x) strictly
convex and {2 is a compact.
If f,(x) and fi(x), i=1,...,r, are nonconvex, the next lemma takes place.
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Lemma 1. Let fie C?, i=0,..., m, and conditions (3)-(6) hold. Then for any fixed
k =k, the concave function ¢, (u) is twice continuous differentiable in U,.

Proof. First of all note that ¢, (u) is a concave function for any k>0 whether or
not the functions fy(x) and —fy(x), i=1,..., m, are convex. By Theorem 1 the
function F(x, u, k) is strongly convex in a neighborhood of £=x%(u, k) V(u, k)€
D(u*, k,, 8, €). Therefore £(u, k) =%(+) is a unique minimum of F(x, u, k) over x,
while ¢ (u) = F(X(u, k), u, k) = F(X(-), )= F(-) is smooth in U,, i.e., there exists
Phalt) = FUOZL)F L) = @k s @k ().

Since the matrix F7.(%(+), ) is positive definite for (u, k) € D(u*, ko, 8, €) the
system F'(x, u, k) =0 yields a unique vector-function X(u, k) such that

R(u*, k)=x* and X (u k)=%,(")=—(FL(2(-),") " FL(2(),")

V(u, k)e D(u*, ky, 8,¢). Since F.{(-)=0 it follows that ¢} (:-)=F.(-)=
—k "In(kf,()+1), ..., In(kf,.,(+)+1)). Furthermore, ¢.(-)=FL()x, ()=
= FL ()X (FL(-) ' X FL,(+). We set fi(-)=[diag(kfi(2(-))+1)"']/L,:R™ > R"
and f = fi(x*) =[diag(kf,(x*)+ 1) '] :R" >R"™. Then Fl(-)=~f(-)f'(*),
FL(-)==f"()i(+), therefore, ¢y, () =—f()f (- )(Ful-) 7/ ()/i(-). Note
that @7, (u®) = —fif (FWFLF, u*, k)T o=~/ S (FL) e O

8. Duality theorems

The dual problems based on MBF’s not only possess all the properties well known
in convex programming but have some new important features.

Theorem 3 (duality, the convex case). Let fy(x) and ~fi(x), i=1,..., m, be convex.
(i) If the Slater condition holds, then the existence of a solution of problem (1)
implies that problem (34) has a solution and f,(x*) = . (x*) = ¢, (u™) for all k>0.
(ii) If fo(x) is strongly convex or if fy(x) is strictly convex and {2 is compact,
fi(x)e C? i=0,..., m, then the solution of the dual problem corresponds to that of
the primal problem and the optimal values of the objective functions coincide.
(iii) Iffi(x)e C% i=0,..., m, and conditions (4)~(S) are satisfied, then for every
k=k, there exists a solution of the dual problem and the second order optimality
conditions hold for the dual problem.

Proof. (i) Let x* be a solution of problem (1). Then Assertion 6 implies that there
exists a vector u™ = 0 satisfying (31). Therefore,

‘Pk(u*) = min F(x’ u*s k) = F(X*a u*a k) :"f()(x*)2 F(X*’ u, k)

xeR"

=min F(x, u, k)= ¢ (u) Yu=90,

xeR"

i.e.,, u* is a solution of the dual problem and f3(x*) = ¢, (u®).
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(ii) The assumptions imply that F(x, u, k) is strongly convex in x € 2, for every
u>0 and k> 0. Therefore the vector x(u, k) = argmin{F(x, u, k)|x € R”} is defined
uniquely and because of the smoothness of f;(x), i=0,..., m, the gradients ¢} (u)
of the dual function exist. Let @ be a solution of problem (34) and x = x(#, k). Then
the optimality conditions for problem (34) are satisfied at i, i.e.,

@l (i) ==k In(kfi(X)+1)<0 for i: &, =0,
@l (1) ==k In(kfi(x)+1)=0 for i: &#,>0.

Further, @;> 0 implies f;(X) =0 and it follows from 4 =0 that f;(X)=0, i.e., X
and the complementarity conditions f;(X):#,=0, i=1,..., m, hold for the pair
(%, ). Therefore, ¢, (@1) =fo(X)—k™ 'L/, @ In(kfi(X)+1) = fo(X), i.e., for the pair
of feasible solutions (X, #) of the primal and dual problems we have ¢, (i1) = fo(X),
hence £ =x* and i =u*.

(ili) Since (4)-(5) hold true and k = k,, it follows from Theorem 1 that F(x, u, k)
is strongly convex in x for any ue U,, so the first part of the statement can be
proven as in (ii).

We now show that the second-order optimality conditions in the strict form hold
for problem (34), i.e., the gradients of active constraints are linearly independent,
the corresponding Lagrange multipliers are positive, and condition type (5) is
satisfied.

We first note that the vectors

r i

T
(0,...,0,0,...,1,...,0)=e;, i=r+1,...,m,
which are gradients of the active constraints u;=0, i=r+1,..., m, of the dual

problem, are linearly independent, i.e., condition (4) holds true for problem (34).
Now we show that condition (5) is satisfied for problem (34). Let us consider the
Lagrangian L(u, A, k) for problem (34). We have L(u, A, k) = ¢, (u) +Y7_, Au;, there-
fore L}, (u, A, k)= @h,(u). Let v=(vy,..., vy), then (v, ¢) =0=v; =0, therefore,
any vector veR"™: (v, ¢,)=0,i=r+1,..., m, has the form v=(v,,...,0,,0,...,0).
Taking into account (4)-(5) we obtain from Theorem 1 that for a fixed k= kq the
matrix Fy, = Fi(x*, u*, k) is positive definite and the mineigval F%, = u >0. Let
maxeigval FZ,= M, >0, then VycR" we have u (3, y)=(F' v, y)= Mz'(», y),
ie. —p ' y)=—(F. 'y, y)=—Mi'(y, ¥). So for L, (u*, A*, k) we obtain

(Li(u*, A%, k)0, 0) = (@hu(u™)0, 0) = (fif (—=(FL) ™ " fiv, v)
= (~(FL) f"8,f0)<~M(f 75, f7D)

where b=Fo=(k(x*)+ )"0y, ..., (K(x¥)+1)0,,0,...,00=(0,,..., 0,
0,...,0)=(v,0,...,0). Thus,

(LL (%, A%, k), 0) < = M (Fln(X) 00, Foy(x%) 0

= =M (flo (X)X 04y, Ve)-
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It follows from (4) that the Gram matrix f(,)(x*)f(’:)(x*) is non-singular so mineigval
f<’r>(x*)f<’:)(x*) = o> 0. Hence, for 4 = M 'u,>0 we obtain

(Li(u*, A* k)v,0)< —4|lv]* Vo such that (v, e)=0, i=r+1,...,m,
i.e., condition type (5) is verified for the dual problem. Moreover, A ¥ = ¢}, (u™) =
kK™'(kfi(x*)+1)"'>0, i=r+1,..., m, that together with the linear independence

gradients e;, i=r+1,..., m, of the active constraints 4; =0, i=r+1,..., m, of the
dual problem complete the proof of the theorem. [

Remark 5. All the facts of the above theorem fail to be true if the convexity of the
functions fy(x) and —f;(x) is abandoned, moreover statement (iii) is in general
invaled even for the convex programming problem if the dual problems are based
on the classical Lagrangian L(x, u). However, these results are valid for k= k, even
in the nonconvex case if the dual problems are based on the functions F{x, u, k)
or C(x, u, k).

Theorem 4 (duality, nonconvex case). Let fi(x)e C?, i=0,..., m, and conditions
(3)-(6) hold. Then there exists k,> 0 such that for k =k, the following is true:

(i) The existence of a solution of the primal problem guarantees the existence of
the dual problem solution and

Jo(x™) = @i (u™).

(ii) The second-order sufficient optimality conditions are satisfied for the dual
problem in the strict form.

(iii) The pair (x*, u™*) is a solution of the primal and dual problems if and only if
this pair is a saddle-point of F(x, u, k), i.e., if (32) holds true.

Proof. (i) Let x* be a solution of problem (1). Then it follows from Theorem 1 that
F(x, u® k) is strongly convex in a neighborhood of x* and by (3) we have

FL %, )l = 5% = § b () + 1) 1 (x%)

=14(x) = £ urfi(x¥)=0.
Therefore, .
e (u*) =argmin{ F(x, u*, k)| x e R"} = F(x*, u*, k),
and there exists
Pru®) =k (In(kfi(x*) +1,..., In(kf,(x*) + 1),
In(kf (x™)+ 1), ..., In(kf,(x*)+ 1))
=(0,...,0; =k ' In(kf, . (x*)+1), ..., —k 7" In(kf, (x*)+1)).
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So for i: u¥ >0, we have ¢}, (u*) =0 and for i> r, due to fi(x*)= o >0, we obtain
Pl (uF)= —k'In(ko+1)<0, i.e., at the point u* the optimality conditions are
satisfied for the dual problem, which is always convex whether or not fy(x) and
~fi(x), i=0,...,r are convex. Thus u™ is a solution of the dual problem.

(ii) Since the dual problem is convex and its solvability is guaranteed by condi-
tions (3)-(5), the second-order sufficient conditions for the dual problem can be
proved just as in the previous theorem.

(iii) We first show that if (x*, u™) is a solution to the primal and dual problems,
then this pair is a saddle-point of the Lagrangian F(x, u, k). Indeed, by Theorem
1 for k= k, the function F(x, u®*, k) is strongly convex in x in a neighborhood of
x*and F'.(x*, u*, k) =0, hence F(x, u*, k)= F(x*, u*, k) in a neighborhood of x*,
We now extend the latter inequality to all x € £2,, hence, to R". Actually, if there is
a vector X € £, such that F(X, u™®, k)= F(x*, u*, k) — X =fy(x*)— X, and X >0, then
FoX)=<folx®)+ k'Y _, uf In(kfi(X)+1)—A. Now repeating the consideration of
Theorem 1 (part (i)) we will get from the one side fo(X)=<fo(x*)—3A but from the
other side fo(%)=fy(x*)—4A. This contradiction shows that F(x, u* k)=
F(x* u* k) for all xe{2, ie. F(x,u* k)=F(x* u*, k)VxeR" and k=k,
whenever k, is sufficiently large. Furthermore, since x* € {2, we have In(kf;{(x*)+1) =
0,i=1,..., m,therefore, fo(x*) = F(x™, u*, u)= F(x*, u, k) for all u=0. Therefore

Fix,u*, k)= F(x* u*, k)= F(x*, u k) VxeR", VueRT.

Finally, we show that if (%, &) is a saddle-point of F(x, u, k), i.e., if

SOk Y @ In()+ 1) = A0 -k L @ In(ki(5)+1)

=0~k 3w (kD) +1)

VxeR" uecRy, (35)

then x =x™* and @ = u™. Indeed, the right inequality in (35) yields

IRNE:

i In(kfi(X)+ 1)< Y u In(kfi(X)+1) YueRT. (36)
i=1 i=1
It follows from (36) that f;(X) =0, i=1, ..., m, since if there is i, such that f; (X) <0,
then we can take k>0 such that 0<kf, (¥)+1<1, i.e. In(kf, (x)+1) <0 and set
u; = 1, i # iy, while u;, can be made sufficiently large to obtain the opposite inequality
to (36).

Therefore, it follows from (36) that x is a feasible solution to problem (1).
Consequently, In(kf;(¥)+1)=0, i=1,...,m, and ¥} @ In(kf;,(x)+1)=0.

Since (35) holds true for any u =0, we set u =0 and obtain };" , &; In(kfi(X)+1)=<0
hence Y., 4; In(kf;(x)+1) =0 implies @, fi(x)=0,i=1,..., m.
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The left inequality in (35) yields
Sox)=fo(X)+ k7 X @ In(kfi(x)+1).
i=1

For every xe we have In(kfi(x)+1)=0, i=1,..., m, therefore, fi(x)=f,(X)
Vxe (), ie, X is the minimum of fy(x) over {2, ie., X=x* Since x=
argmin{F(x, 4, k)[xeR"} it follows that
FUx @, k)=0 = fi(x)- ¥ afi(x)=fo(x*)— ¥ afi(x*)=0,
iel* iel®
where I*={i: f(x)=0}={i: fi(x*)=0} i.e., (¥ @) is a Karush-Kuhn-Tucker pair
and hence by (4) we obtain @ = u*. The theorem is proved.

Corollary. The restriction ¢, (u) = cpk(u)[um:o,_,_,“m:(, of the dual function to the mani-
fold of the active constraints of the dual problem is strongly concave if the conditions
of Theorem 4 are fulfilled. []

Remark 6. All the facts concerning the dual function ¢, (u) and dual problem (34),
which have been stated in Theorems 3 and 4 hold for the function ¢ (u)=
min{C (x, u, k)| x € 2, }, for the dual problem

u* =argmax{c,(u)|u=0} (37)

and for the restriction ¢ (u)= ck(u)],,m:“.:um:o of the dual function ¢ (u) to the
set of active constraints of the dual problem (37).

The convexity and smoothness properties of dual functions can be used for finding
nonzero components of u* by applying smooth optimization methods to &.(u) or
¢« (u). Let us consider this in detail.

9. Method of controlling sequences for simultaneous solution of primal and dual
convex problems

First of all note that the implementation of different versions of the MBFM involve
solving unconstrained optimization problems at every step. Therefore, to use these
algorithms in practice it is necessary to replace the unconstrained optimization by
a finite procedure maintaining the estimates (29).

We consider now the convex programming problem. We choose a >0, find X
from the condition

XeR": |[Fi(X u k)| < ak™|[diag(kf;(x)+1)"" 1/ u—u
and set

i = [diag(kfi(¥)+1)7' ]2 u.
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Let n =u—u®. Then
+ut—
T =k ((diag () + 1)1 —w).
Therefore
[ FL(X, u, u)|| < ak™"||[diag(kf;(X)+ 1) 1L u—ul| =k 'a(n]l+ | du])
< ak (|| Au|| + || Az])

where Az =(Ax, Au), Ax =X —x*.

Using arguments as in the proof of Theorem 5 in [19] and taking into account
the estimates for Lagrange multipliers corresponding to passive constraints, we
obtain from the inequality

[%—x*|=<c(+a)k u—u*|, W —u*||=<c(l+a)k 'u—u¥|.
(38)
It gives us the following lemma.
Lemma 2. If fi(x) and all —fi(x), i=1,..., m, are convex and smooth enough and

the conditions (4)-(5) are fulfilled, then for any a >0 there are such small ¢ >0 and
8> 0 that for any (u, k)e D(u®*, k,, 8, £) the estimate (38) holds. [

A similar result follows for the function C(x, u, k) if we find X from the condition

1CUE, u, k)| < ak™ | uldiag(kfi () +1) 1, —ul

and set 4 =[diag(kf;(x)+1) 1" u.
The above arguments enable us to consider the following alternative to the PPV
method:

X EeR™ [FLx™, k) < ak ! |[diag(kh(x* )+ 1) u ]|, (39a)
u* " =[diag(kf.(x*" )+ 1)1 vl (39b)
So we have the next assertion
Assertion 7. If fo(x) and —fi(x), i=1,..., m, are convex and smooth enough and

conditions (2), (4)-(5) are fulfilled, then the method (39) generates sequence {x’, u’}
such that the estimate

max{]|x* —x*|, [lu" —u¥|}< e+ )k u” —u¥|

holds and c is independent of k= k, and a« >0. [

Now we are going to consider a method for the simultaneous solution of the
primal and dual convex programming problems. This method is based on smooth
optimization methods and intensively uses the dual problem properties which have
been stated above.
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Let &(u)=¢i(u)|y-0, i=r+1,..., m, be the restriction of the ¢,(u) to the
manifold of the active constraints of the dual problem. Then for any k = k,,
u* =argmax{@,(u)|u=(uy,...,u,0,...,00e Ul (40)
If the conditions (4)~(5) are fulfilled and fi(x), i=1,..., m, smooth enough then
@ {u) is strongly concave and smooth enough too. So to solve the problem (40) we
can use smooth optimization methods (see [4, 9, 19]).
Based on these methods one can define relaxation operators R: U~ U, with
properties
(i) [Ru—u*[<gqllu—-u*l, q<1,
(ii) JRu—u*||=q(u)|u—u*|, where g(u)->0 as u->u*,
(i) [|[Ru—u*|<qllu—u*|.
We define the gradient relaxation operator by the formula
Ru=u+ 13}, (u) (41)

if the conditions (2)-(5) are fulfilled and f;(x), i=0,..., m, is smooth enough that
there exists ¢ >0 such that the gradient relaxation operator possesses property (i).
We define the Newton operator by the formula

Ru:u_(‘ﬁ;&m(”))‘lgb;m(u)- (42)
If fi(x), i=0,...,m, are smooth enough and (2)-(5) are fulfilled the Newton’s
operator possesses property (ii) or (iii). Some other relaxation operators with
properties (ii) or (iii) can be defined on the basis of smooth optimization methods
(see [2, 4, 9]) which require only ¢},(u). To implement the relaxation operators
we should find X(u, k). Therefore in order to implement these operators numerically
we should replace the generally infinite procedure of finding X(u, k) by a finite

procedure.
Denote by R an operator like R in which £(u, k) is replaced by
X=x(u, k): |Fi(% u k)||<8. (43)

We will call the sequence {6,}:=, a controlling sequence if 0<§,,, <8, and
lim.,. 8 =0. The controlling sequence {8,};~, is said to be consistent with the
operator R if for any u e U, and for the sequence {a, = 6, || R°u—u*||"'k*}7_, the
condition

La, <+ (44)
is fulfilled. The controlling sequences method generates a sequence {3° = (X°, #°)}5,
in the next way.

Let #i®=¢e=(1,...,1) €R" and let the vector 7° = (X*, &i’) have been found already.
Set 4" = Ri° and find
ey |FLUETL A k)| <8, (45)

a4 = [diag(f,(F) + 1), (46)

The next assertion takes place.
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Assertion 8. If fo(x) and all —f(x) are convex, fi(x)e C? i=0,...,m, and the
conditions (2)-(5) are fulfilled, while the controlling sequence {8,}., is consistent with
the operator ﬁ, then for sequences {y°= (X, u’)};~, obtained by (45)-(46), the
estimates

(a) 7 —y*l=(ck'q), q<1,
(d) |7 —y*=(ck)" Il g, ¢:~0,
i=1

(© 7 -yl=(ck)q”, g<1,
hold true provided the operator R possesses one of properties (1)-(iii). O

In the next section we will implement the MBF theory for solving the LP and
QP problems.

10. Modified barrier functions in Linear and Quadratic Programming
We start with the implementation of the MBF for solving LP problems.
Let A be an m X n matrix, p € R", g € R™, and there exists the solution of the primal
x*=argmin{(p, x)|Ax = ¢, x = 0} (47)
and dual
v* =argmax{(q, v)| vA < p} (48)

linear programming problems.

Let k>0, 2, ={xeR", x;=—-k ',j=1,...,n}, Q={x: Ax=¢q}, e=(1,..., )¢
R". The modified barrier functions F(x, u, k): Q xRI xRL>R", C(x, u, k): Q xR’} X
R} —>R', which are correspondent to problem (47) are defined by the formulas

(p,x)—k! »}:1 w; In(kx; +1), if xeint 2,
iz

F(x,u k)=
%, if xgint {2,
or
C(x, u, k) :{(p, X)+k Y u((kx+1)7' = 1), if xeint O,
, if x2int ;.

Let u=p—uvA; we assume that the dual pair (1) and (2) are nondegenerate, i.e.,
rank A= m, m <n and the complementary slackness conditions are fulfilled in strict
form with the additional proviso that

uf>0 and xf=0 forj=1,...,n—-m, (49a)

uf=0 and x>0 forj=n—-m+1,...,n (49b)
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Under the nondegeneracy assumption the optimal solutions x* and v* are unique.
Let D(u* ko, 8, e)={(, k) eRY ™" u=(uy,...,u,): ;=e>0, |u~u¥l<ék, i=
,...,n—m,0su;<8k i=n—m+1,...,n, k= ky}. The next assertion takes place.

Assertion 9. If conditions (49) are fulfilled and rank A =m, then there exists ky> 0
and small enough §>0 that for any 0<e<min,cic,_, u¥ and any (u, k)e
D(u*, ky, 6, £) the next statements hold :

(i) There exists a vector

% =%(u, k) =argmin{F(x, u, k)| x € Q}.
(ii) Thetriple%, it = diag(k%;+1)"'u, 0 = (p— 4)AT(AA") "', satisfies the inequality
max{||X —x*||, |4 —u*|, |6 - v*[l} < ck 7 u—u¥| (50)

holds true and ¢ >0 is independent of k.
(iii) The restriction of F(x, u, k) to Q is strongly convex in a neighborhood of X. [

Assertion 9 gives a possibility to realize the PPV of the MBFM if we have a pair
{(u, k) e D(u*, ko, 8, £). To find such a pair we consider the shifted barrier function
M(x, k)= F(x, e, k).

Assertion 10. If conditions (49) are fulfilled and rank A = m, then there exists ko> 0
such that for every k=k;:

(i) The vector x(k)=argmin{M(x, k)|x € Q} exist.

(ii) For the triple  x(k), u(k) =[diag(kx;(k)+1)""]/ e, v(k)=
(p—u(k))AT(AA™) " the estimate

max{|x(k)—x*||, [[u(k)—u*|, |o(k) — v*|} =< ck™' (51)

holds and c is independent of k.
(iii) The restriction of M(x, k) to Q is strongly convex. O

Remark 7. All of the facts of Assertions 9 and 10 remain in force if instead of
F(x, u, k) and M(x, k) we consider C(x, u, k) and N(x, k)= C(x, ¢, k).

So taking x’eint 2, 1 Q, u’=¢, and large enough k= k,, we can develop the
PPV of the MBFM for linear programming problems.

The PPV of the MBF method consists of finding the sequence {w* = (x°, u”, v*)}5-;
by formulas

x*"'=argmin{F(x, u’, k)| x € 02}, (52a)

ux+1:[diag(kx;+l+l)~l]n us’ v.v-%l:(p_us-Fl)AT(AAT)*l‘ (Szb)

i=1
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The next assertion is a consequence of Assertions 9 and 10.
Assertion 11. If conditions (49) are fulfilled and rank A =m then there exist such
ko> 0 and ¢ >0, which are independent of k that the estimate

max{fx’ —x*[, ffu' —u*[, 0"~ o*[}< k™ =y, 0<ye=3, (53)

holds for any k=k,. O

In order to realize method (52) we have to avoid solving problem (52a) at every
step, keeping estimate (53).

To solve problem (52a) one can use Newton’s method. Now we are going to
describe the Newton step for solving (52a). Let

Us=[diagu]j-,,  D.x=[diag(kx;+1)]-,:R" > R".
Then

Fi(x,u, k)= F.(-)=p— Uldiag(kx; +1)"']]_je=p—UDe;

Fidx, u, k)=FL(-)=kU[diag(kx;+1) ]/, = kUD%.

The Newton’s method step for minimizing F(x, u, k) in x consists of finding
Newton’s direction { and updating x by formula

x=x+1, 0<t=l.

To find {=£(x, u, k) we have to solve the problem

{(x, u, k) = argmin{3(FL.(x, u, k), £) + (Fi(x, u, k), {)| AL =0}, (54)
1e.,
{(x, u, k)= argmin{3k(UD 3¢, {)+((p— UDre), {)| AL = 0}. (55)

Having introduced the Lagrange multipliers v =(v,,..., v,) which correspond
to the system A =0 we obtain the next system,

kUD ;¢ +(p— UDLe) = vA, (56a)

AL=0. (56b)
Let D, ,r=kU{ Then { =k™'D, U 'r. Instead of system (56) we obtain the system

D ir=A"v—p+UDjke, (57a)

AU 'D,;r=0, (57b)
or

r=D ATv— D, (p—UDje), (58a)

AU'D 4 =0. (58b)
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1

Putting u~'/>r=h we obtain instead of (58) the system
( I" - x,kU‘l/zAT><h) 3 ( U'%e~ U’”Dx,kp) (59)
AUYD,, o™ v o) :

The last least square problem can be rewritten as
v(x, u, k) = o(-) = argmin{[[(AU"°D, ;)"0 — U™*(Dy .p— Ue)||5| v e R™}.

The last least square problem is equivalent to the next normal system of equations

(ADL, U'ANv=AD, (U 'D p—e). (60)
So one can find the Newton direction by the formula

(x, u, k)=k7'D U™ "r(x, u, k),
where

r(x, u, k)= D A"v(x, u, k) — D, p+ Ue.

The numerical realization of the PPV of the MBFM leads to the Newton Modified
Barrier Method (NMBM) for solving the primal problem (47).

The NMBM uses the Newton Method to solve (52a) and update the Lagrange
multipliers by formula (52b). Note that instead of solving problem (52a) one can
find an approximation for x**'=£(u", k) with accuracy 2~ %, where L is the input
length. If the initial approximation x*° = x* is well defined (see [32, 33]), for problem
(52a), one can perform the Newton sequence

xS =X+ i(xM ut k), j=0,1,2,...,

which is also well defined (see [29]), i.e. (FZ.(x*/, u, k))™" exist and the sequence
{x*7}7_, converges to %(u’, k) quadratically.

So to find an approximation for £(u°, k) with accuracy 2%, one has to perform
O(log, L) Newton steps. If x* is well defined for problem (52a), and u® is well
defined for the parameter k, one can improve the initial approximation (x°, u*) at
least twice (y, <3) for O(log, L) steps of the Newton Method.

Now we are going to consider some implementations of the MBF’s for solving
the QP problems.?

Let C be an n x n symmetric matrix, A=(a’)™, be an m x n matrix, A=(p), B
an r X n matrix, D an (m —r) X n matrix, peR”, geR™, a'€R", m > n. We suppose
that there exist

x*=argmin{ fo(x) =3(Cx, x)+ (p, x)| Ax = q} (61)

and Karush-Kuhn-Tucker’s conditions (3) hold, i.e., there is a vector u* e R such
that

Cx*+p—u*A=0 (62)

2 These results we obtained together with B. Yuzefovich (Faculty of Industrial Engineering and
Management, Technion, Haifa).
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and
uf(Ax*—q);=ufl(a’,x*) —¢]1=0, i=1,...,m. (63)

We will suppose that the complementary conditions (63) are fulfilled in the strict
form, i.e.

u¥>0 and (Ax*—gq),=0 fori=1,...,r, (64a)
u¥=0 and (Ax*—¢q);>0 fori=r+1,...,m, (64b)

and rank A=rank B=r<n, i.e. vectors a’, i=1, ..., r, are linearly independent.
Let L(x, u)=%(Cx, x) +(p, x) — (u, Ax — q), then L%.(x, u) = C. If condition (5) is
fulfilled for the QP problem (61), then there exists A >0,

(Cy,y)=A(y,y) Vy:By=0. (65)

Let 2, ={x: r(x)=(Ax—¢q),=—k™ ', i=1,...,m}. On the R" xR xR we define
the MBF’s

x)—k™' 3 u; In(kr;(x)+1), if xeint 0,
o gy 0 KT X G+ ) ‘
0, if x Zint (2,

and

o)+ Y wl(kri(x)+1) 1 =1], if xe 2,
C(x,u k)= i=1
0, if x ¢ Qk.
Then, for any k>0, we obtain F(x*, u*, k)= C(x*, u*, k) =f,(x*) and
F;(X, U*s k)\x:x* = C;(x, u*, k)'x:x* = CX*+P ~u*A=0.
Let
D(u*, ko 8, ) = {(u, K)ERT™ s = >0, |u,—u| < 5k, i =1, ...
Osu<d8-ki=r+1,...,m k=ky}.
The next assertion takes place.
Assertion 12. If (64) and (65) hold, then there exists such k, and small enough 8 >0
that for any 0<e <min{u¥|i=1,...,r} the next statements hold for any (u, k)¢

D(u*, ko, 8, 8):
(i) There exists a vector

%= %(u, k) =argmin{F(x, u, k)| x € R"} such that F'(%, u, k)=0.
(ii) For the pair X, 4 = [diag[1/(kr;(X)+1))]/%, u the estimate
max{[|£ —x*|, & — &%} = ck ' lu—u*|

holds and c is independent of k> k.
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(iii) Let Uy = [diag ;17— U, = [diag 4;]i~,.,. For the matrix
F1(% u, k)= C+ kB Uy[diag(kri(£)+1) ']/=, B
+ kD" Up[diag(kr,(£)+ 1)1 11D,
there exist such 0<u <A that
(FL(X u k)y,y)=u(y,y) VyeR" (66)
and
Fr(x* u* k)=C+kB'U%B. O
Let us consider the shifted barrier function for the QP problem, M(x, k)=

F(x, e, k).
The next assertion takes place.

Assertion 13. If conditions (64)-(65) hold, then there exist such k,>0 that for any
k=ky:
(i) There exist

x(k) =argmin{M(x, k)|xeR"}: M.(x(k), k)=0,
and for the pair (x(k), u(k)) where
u(k) =u(x(k))=[diag(kr,(x(k))+1)"'1/L1e = 47 (x(k))e
=(u(k), ..., uk), ..., u,(k)),
e=(1,...,1)eR"™, the estimate
max{[|x(k) —u*|, u(k) —u*|} < k™' (67)

holds and ¢ >0 is independent of k= k.
(ii) The function M(x, k) is strongly convex in a neighborhood of x(k), i.e. for the
matrix

M? (x(k),k)=C+kATA7(x(k))A= C+kATU(x(k)A " (x(k))A,
where U(x(k))=[diag u,(k)]/Z., there exists u >0 independent of k= k, such that

(ML (x(k),k)y,y)=u(y,y) VyeR" O]

Assertions 11 and 12 allow us to develop the PPV method for solving QP problems.

Letx’cint 2, u’=e=(1,...,1)eR", and k = k,. The sequence {x*, u*}"., we obtain
by the formulas
x*"'=argmin{F(x, u’, k)| xeR"}, (68a)

w*t=[diag(kr,(x**")+ 1)) u’. (68b)



214 R. Polyak |/ Modified barrier functions

As a consequence of Assertions 12 and 13 we have the next assertion:

Assertion 14. If conditions (62), (64), (65) hold then for the sequence (68) the estimate
max{[|x* —x*[|, lu* —u*[}= (k) =y, 0<wm =3, (69)
holds true and ¢ >0 is independent of k=k,. O
Now we consider an important particular case of the Quadratic Programming
problem
x* = argmin{fy(x) =3(Cx, x) — (p, x)|x = 0}. (70)
For the solution x* we have u®= Cx* — p=0 and the complementary condition
uxF=(Cx*-p),x¥=0, i=1,...,n (71)

is fulfilled.
We suppose that the complementary condition holds in the strict form, i.e.

u¥=(Cx*—p);>0 and x¥=0, i=1,...,r, (72a)
uf =(Cx*-p);=0 and x}>0, i=r+1,...,n (72b)
Let 2, ={x;,...,x,):x;=~k ', i=1,...,n}. Then the MBF, which correspond to
the QP problem, (70) is defined on R” xR xR by formula
HOx, x)—(p,x)— k'Y u; In(kx; +1), xeint £,

73
0, x int £2,. (73)

F(x, u, k):{

So F(x* u* k)=fy(x*), Fi.(x, u* k)| _x-=Cx*—p—u*=0, hence if fy(x) is a
convex function we obtain

x*=argmin{F(x, u*, k)|xeR"}.

C :( C, Ciner >
Corr Comrnes
where C,, and C,_,,_, are symmetric rXr and (n—r) X (n—r) matrices, C,,_, =
C, ., is an rx(n—r) matrix. We consider yeR": (y,¢,)=0, i=1,...,r, where

Let

¢,=(0,1,0;0,...,0).
So y=00,...,0,¥41,---, ), let ¥=(¥,41,...,¥.). The classical Lagrangian for
the problem (70) is L(x, u) = fo(x) —Y|_, ux;, so LY.(x, u) = C. Therefore the condi-
tion (65) can be rewritten in the form

(Cya)’)B)\(y,Y) Vy:(y,ei):05 i:la"',ra
i.e.

(Coern—i? 7)== A3, ¥), A>0. (74)

Let D(u*, ko, 8,e)={(u, k)eR7T™: wy=e>0, |u;—uf|<é - ki=1,...,r, 0<
w<86-ki=r+1,...,m k=ky}.
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Assertion 15. If conditions (72) and (74) are fulfilled, then for any pair (u, k)€
D(u¥, k,, 8, €) the next statements hold :
(i) There exists a vector
xeR"}.

n

£ =x(u, k):argmin{fo(x)—k’1 Y u; In(kx;+1)
i=1

such that C% —p —[diag(k%;+1) "] iu=Cf—p~ii=0.
(ii) For the pair £ and i the estimate
max{||X —x*[|, & - w*||} < ckHlu—u*|
holds aizd ¢>0 is independent of k> k.
Let U =[diag @,]7—,. Then for the matrix
FL (% u, k)= C +kU[diag(k%, +1)"'1",
there exist such 0<<u <A that
(C+kUldiag(kfi+ 1)) ») = p(3,3) VyeR"
and

U* Or,nfr

Fl(x* u* k)=C+k o ],

(x*, u™, k) [On_” on-rnr
where U¥, =[diag u¥]i_,. 0

Let N(x, k)= F(x, e, k). Then the next assertion takes place.

Assertion 16. If conditions (72) and (74) hold then there exists such a k,> 0 that for
any k=ky:

(i) There exists x(k)=argmin{N(x, k)|xe Q. }: Mi(x(k),k)=0 and for the
vector x(k), and u(k)=(uy(k),..., u,(k))=[diag(kx;(k)+1)""]}_ e, where e=
(1,...,1)eR", the estimate

max{||x(k) — x*||, |u(k) —u*||} =< ck ™

holds and ¢ > 0 is independent of k.
(ii) The function N(x, k) is strongly convex in a neighborhood of x(k), and

U, (k) O™ )
On-r,r O"*V,VI*V

where U, (k) =[diag u;(k)]}—;>0. O

N;umxm=c+k(

Assertions 15 and 16 lead to the next multipliers method for solving the QP
problem (70).
Let x°>0, u’=e=(1,...,1)eR". Then

x* M =argmin{3(Cx, x) — (p, x) — k™'Y uj In(kx; +1)| xeR"}, (75a)
uw* = [diag(kx{+ 1)1 (75b)



216 R. Polyak | Modified barrier functions
From Assertions 15 and 16 we obtain:
Assertion 17. If (72) and (74) hold then for the sequence {x°, u*};_,, which is defined
by (75) the next estimate holds:
max{[|lx* —x*||, [[u* —u*[}= (k™). O
Remark 8. If C=G"G and G is an m X n matrix, then it is sufficient that rank G =
n —r (the last n — r columns should be linearly independent) to fulfill condition (74).
If C =0 then problem (61) turns into the LP problem
x*=argmin{(p, x)|r(x) = Ax —q =0}, (76)

which is equivalent to the dual problem (48). Let 2, = {x: r;(x)=(Ax—q);= -k,
i=1,...,m}. The modified barrier function which corresponds to problem (76) we
define by the formula

)=k 'Y wIn(kn(x) 1), if xeint 2,
F(x,u, k)= (P, x) El” n(kr(x)+1), if xeint £y
, if x Zint 0.

Let A=(2), B be an nx n matrix, N be an (m —n) X n matrix and rank A =rank
B = n. We also suppose that the complementary conditions are fulfilled in the strict
form

uf>0 and r(x*)=0, i=1,...,n, (77a)

uf=0 and r(x*)>0, i=n+1,...,m (77b)
Let

D(u*, ky, 8, e)={(u, k)eRT " u;= ¢, |lu,—u¥|< 8k i=1,...,n,

Osu,;s=8ki=n+1,...,mk=ky},

U=[diag w,]iX,, Us=[diagu]i.,, Uy=I[diagu]il...,

A(x, k) =[diag (kr.(x)+ 1)1, Ap(x, k) =[diag(kr,(x)+ 1)},

AN (x, k) =[diag(kr,(x)+ 1)1, 1.
So U¥=[diag u¥]},, UL =0"""""" Az(x*, k)=I" ULAY (x* k)y=0m"""""

The next assertion takes place.

Assertion 18. If condition (77) is fulfilled and rank A=n then for any (u, k)e
D(u*, k,, 8, &) the next statements hold :
(i) There exists a vector

£ =%(u, k) =argmin{F(x, u, k)| x ¢ R"}
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such that
Fufuk)y=p—ATAT (X k), u=p-ATi=0.
(ii) For the pair £ and 4= A7'(%, k)u the estimation
max{||£ — x*||, || — u*||} < ck~||u —u¥|
holds and ¢ >0 is independent of k = k.
(iii) The matrix
FlL(%, u, k)= kATUA (%, k) A= kB"Ud ' (%, k) B+ kNTUNA ™M (R, k)N
is positive definite uniformly in (u, k)e D(u*, ky, 5, €), i.e. there exists u >0,
(FL(X(u, k), u, k)y,y) = kp(y,y)  VyeR", Y(u, k)e D(u*, ky, 8, ¢),
and
F7 (x* u* k)=kB"U%B. O

Now let us consider the Shifted Barrier Function which corresponds to the LP
problem (76). We obtain M(x, k) = F(x, e, k).

Assertion 19. If condition (77) is fulfilled and rank A = n, then there exists such ko> 0
that for any k= k,:
(i) There exists

x(k)=argmin{M(x, k)|xeR"}
such that
Mi(x(k), k)=p—ATA7"(x(k), k)e=0.

(ii) For the pair of vectors x(k) and u(k)=4""(x(k), k)e=(u,(k), ..., u,(k))
the estimate

max{[[x(k) —x*|, [lu(k) —u*{} = ck ™'

holds true with ¢ >0 is independent of k.
(ili) Let U(k)=[diag u:(k)]/L,, the matrix

Fl(x(k), k)=kATU(k)4 '(x(k), k) A
is positive definite. Moreover, there exist u > 0 independent of k= k, that
(Fo(x(k), )y, y)=ku(y,y) VYyeR™ 0O

Now we consider the PPV of the MBFM for the LP problem (76). Let x° € int £2,,
u’=e=(1,...,1)eR™ and (x°, u°) have been found already. The next approxima-

tion (x**', u**") one finds by formulas
x* ' =argmin{(p, x) — k7' 3u; In(kr,(x)+1|xeR"}, (78a)
us+1 — A*l(xsﬂ—l, k)us (78b)

The next assertion is a consequence of Assertions 18 and 19.
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Assertion 20. If the slackness complementary conditions (77) are fulfilled in the strict
Jform and rank A =rank B = n, then for the sequence {x°, u’};_, the estimate

max{||x* —x*|, Ju* —w*|}<(ck ™) =k, 0<ye<3, (79)

holds and ¢ >0 is independent of k= k,. O

The numerical realization of method (78) leads to the Newton Modified Barrier
Method (NMBM) for simultaneous solution the dual pair LP problem. The NMBM
consists of using the Newton method for solving problem (78a) and updating the
Lagrange multipliers by formula (78b).

The Newton step for finding

£(u, k) =argmin{F(x, u, k)|x e R"} (80)
under fixed u >0 and k>0 leads to finding

X=x—(Fl(x,u, k) "F.(x,u ky=x+(x,uk)
i.e., {(x, u, k) is the solution of the normal system of equations

ALUA*(x, k)AL =—(p—ud™'(x, k) A). (81)
So if x* is well defined (see [32, 33]) for problem (80) with u = u® then the sequence

xM T = x4 p(x ut k), j=0,1,2,. .., x%0=x’,

is well defined (see [29]), i.e. (FL.(x™u’, k)™, j=0,1,2,..., exists and {x>/}}2,
converges to X(u®, k) quadratically. Therefore in O(log, L) Newton method steps
one can obtain approximation X'*' for x*"'=x%(u’, k) with precision 275 If
MaX<j<mi<j=<n {| s |Pil, |g:|} <2/, then, under the natural assumption: [« n<m,
the input length L can be estimated by I(m+1)°. So, in O(log, m) Newton method
steps in the worst case, we can obtain the approximation x**' to x""' =x(u’, k)
with accuracy 2~ -

Using the approximation x**' instead of x**' in formula (78b), we obtain an
approximation @*"' for u**' with property (79). Therefore after O(log, m) Newton
steps one can update the Lagrange multipliers, i.e., to realize one “large” NMBM
step, which, due to Assertion 20, allows us to improve the current approximation
at least twice (7, =<3). In addition the new vector of the Lagrange multipliers #°*',
again, due to Assertion 20, is well defined, i.e., (i*'", k) € D(u*, k,, 6, ). So, in the
dual space we are in a position where the basic theorem acts again. As for the
primal space, if condition (77) is fulfilled and rank A =rank B = n, then

1 1

mineigval Fy, (x*, u® k)= ku, min u*

where o= mineigval B"B, min u* =min{u¥*|i=1, ..., n}> 0. Therefore there exists
ky>0 and 1> a,> 0 that for a fixed k= k,,

mineigval FiL.(£(u, k), u, k) = kaguo min u*



R. Polyak | Modified barrier functions 219

uniformly in u € Uy. Further, due to estimation (79) we obtain || F(X*, @°, k)||>0
for a fixed k = k,. Hence there exists such s, that for any s = s, if X° is well defined
(see [32]) for the Newton method in conformity to problem (80) with u = @, then
the approximation x**' will be well defined for the same problem with u=d*"".
So, beginning from yo= (X%, %) (“hot” start) in every “large” NMBM step, i.e.
after every updating of the Lagrange multipliers, which in the worst case needs
O(log, m) Newton method steps, one can improve the current approximation at
least twice (v <1%).
Note that the number s, can be decreased by increasing k.

11. Some concluding remarks

The properties (P1)-(P5) cause the principal difference between MB and CB func-
tions. Note that the constrained optimization problem (1) is equivalent to the
unconstrained nonsmooth problem

x* = argmin{y(x, x*)[xeR"} (82)

where ¢(x, x*) = max{fo(x) —fo(x*), —fi(x),i=1, ..., m}, it follows from (P1)-(P5)
that F(x,u*, k) is an exact smooth approximation of the nonsmooth function
¥(x, x*) for any k>0 in the convex case and k =k, in the nonconvex case. This
indicates that in order to solve the constrained optimization problem (1), or the
nonsmooth problem (82), one has to solve the smooth unconstrained problem

x*=argmin{F(x, u*, k)| xcR"}

where F(x, u*, k) is strongly convex in the neighborhood of x*.

On the other hand CBF ¢(x, k) does not exist at the solution, and cannot be an
exact smooth approximation of the ¢(x, x*) for any k> 0.

So together with the penalty parameter k> 0, which is the only tool in CBF for
improving the smooth approximation of the nonsmooth function (#(x, x*), the MBF
has another tool — the vector of Lagrange multipliers. Therefore, the sequence
{F(x, u®, k)}:_, under the fixed k > k, gives a much better approximation to ¢(x, x*)
than {¢(x, k)};_,, and the sequence {x°, u"}{_, converges to (x*, u*) much faster
than {x(k), u(k)}-s,-

The difference between CBF trajectory {x(k), u(k)}(k > o) and MBF trajectory
{x(t, k), u(t, k)} (t=(u—u*)/k—0) leads to the principal difference between IPM
and NMBM trajectories. The IPM follows along the CBF trajectory turning from
one “warm’ start to another “warm” start by performing one Newton step and
updating the penalty parameter. It allows us, in case of the LP, to improve the
current approximation in (1 — a/+'m) time by one Newton step where « is a universal
constant (in [29] the corresponding result has been proved with a =417"). So to
improve the current approximation twice one has to perform O(v'm) Newton steps.
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The NMBM follow along the MBF trajectory turning from one “hot” start to
another “hot” start. In the case of the LP, to find the approximation for £(u, k)
with accuracy 2", one has to perform O(log, m) Newton steps. Therefore, to
improve the current approximation twice (y, <%), by following the NMBM trajec-
tory, one has to perform, in the worst case, O(log, m) Newton steps. In the case of
the nonlinear programming problem, starting from the “hot” start x* for the problem
(4’ k) = argmin{ F(x, &*, k)| x € R"}, one has to perform O(log,log, ¢ ') Newton
Method steps to find an approximation x°*™' for £(4°, k) with accuracy £ >0 and
then to update the vector #°, i.e., to compute &' "' =[diag(kf;(x*"")+1)]d". The
approximation x°*' will be the “hot” start for the next problem £(i**' k)=
argmin{F(x, i°*", k)| x € R"} i.e., to improve again the current approximation twice
v« =%, one has to perform O(log, log, ¢~') Newton steps. The moment when the
NMBM trajectory reaches the “hot” start is crucial for the NMBM complexity.
This moment depends on the MBF properties in the solution of the primal and dual
problems. For any nondegenerate constrained optimization problem with f;(x) e C?,
i=0,...,m, due to (P5), the function F(x, u™®, k) is not only strongly convex in the
neighborhood of x™* but keeps this property in the neighborhood of £ = £(u, k) = £(-)
uniformly in (u, k) e D(u*, ko, 8, ). Moreover, the

cond FZ.(%£(+), ) =mineigval FZ.(x(-), - )(maxeigval FZ.(x(+),))""

is stable for any fixed k= k, and can be estimated uniformly in ue U,. In other
words, let fixed k= k, and

w =mineigval F7 (x*, u*, k) =mineigval( L}, + kf(’,T) U*fl),
M, = maxeigval( L, + kf(:; U*fl.),
then there exists 0 << B,<1 that
cond FL(X(u, k), u, k)= BouM;' VYue U (83)

i.e., cond F..(X(+), ) is stable for any fixed k= k.

The threshold k, is critical for the conditions of the MBF near the solution.
Moreover, this parameter is responsible for the contractibility properties of the
operator C; as well as for the transformation of the nonconvex constrained optimiz-
ation problem (1) into the sequence of strongly convex unconstrained optimization
problems. The threshold k,, which provides the contractibility properties of the
operator C, can be estimated due to (19)-(21) by the value 7 = ||[(®{,) ' R, which,
inturn,dependson A, min u* =min{u¥|i=1,..., r},max u*={max uf|i=1,...,r},
s My, po=mineigval f{,,(x*)f{,,(x*), My = maxeigval f{,,(x*)f{,(x*), and o=
min{f;(x*)|i=r+1,..., m}. These parameters characterize the “measure” of the
nondegeneracy of the constrained optimization problem.

So the “hot™ start very much depends on the measure of nondegeneracy of the
constrained optimization problem. Therefore it seems promising to combine the
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universal self-concordant (see [17]) properties of the CBF which guarantee the
polynomial complexity bound of the IPM, with the MBF properties (P1)-(P5),
which allow us to speed up the process at the final stage and to reduce from O(v/m)
to O(log, m) the number of Newton steps, which in the worst case, have to be
performed to improve the current approximation by a given amount.

Finally, note that in case of nondegenerate dual pair of LP the normal systems
of equations (60), (81), which one has to solve at every step of the NMBM, are
numerically much more stable than the corresponding systems in the IPM, which
are based on the CBF (see [10, 12, 29]).
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