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Abstract. Let w be a suitable weight function, B,, denote the polynomial of best
approximation to a function fin L2[ — 1, 11, v, be the measure that associates a mass of 1/(n + 1)
with each of the n+1 zeros of B,,,,—B,, and u be the arcsine measure defined by

dp:=(n. /1 —x?)"'dx. We estimate the rate at which the sequence v, converges to p in the
weak-* topology. In particular, our theorem applies to the zeros of monic polynomials of
minimal L? norm.

1. Introduction

Let C[—1, 1] denote the class of all continuous real functions on
[-1,1] and 2, denote the class of all polynomials of degree at most
n. Let feC[—1,1] and B, ,:= B, ,(f)eZ, be the polynomial of best
approximation to f in the sense that

max |f(x)— B, ,(x)| = E, ,(f):=min max |f(x)—P(x)]. (11)
—-1<x<1 Pe?, —1<x51
Itis well known (cf. [ 5, p. 75]) that there exist at least n + 2 alternation
points’y¥in [ —1,1] and a number 6 = £ 1 such that

fOH) =B, () =0(=1E, ,(f), i=1...n+2 (12

Let u, be the measure that associates the mass 1/(n + 2) with each of
the alternation points and u be the arcsine measure defined by

dp=—  er-11]. (1.3)

n«/l—xz’
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In [8], KADEC showed in particular that a subsequence of {u,}
converges to uin the weak-* topology. A major idea in the proof of his
theorem was to consider the zeros of the polynomials B, | , — B, -
These zeros interlace the alternation points y¥. If v, . denotes the
measure that associates the mass 1/(n + 1) with each of these zeros,
then Kadec showed that a subsequence of {v, .} converges in the
weak-* topology to u. The interlacing property then easily gives the
result about the alternation points themselves.

In [9], KrOO and SweTITS obtained the I* analogue of this result.
If g is a Lebesgue measurable function and w >0 is an integrable
function on [ —1, 1] then we define for 1 < p <

1 1/p
g1l pwi= <J Ig(t)l”W(t)dt) (1.4a)

) L/
and denote by L? the class of all functions g for which | g|f, ., < oo,
where two functions are identified if they are equal a.e. (almost
everywhere with respect to the Lebesgue measure). We also define

g lo:= esssup|g(t)}. (1.4b)
tef —1,1]

Let 1<p<oo be fixed, w>0 ae and feL?. We define the
polynomial B, ,:= B, , .(f) of best approximation to f from &, by

||f—Bn;p|‘p,w:En,p,w=min “f_P”p,w (15)
PeZ?,

KroO and SwETITS showed that all the zeros of the polynomials
B,.,,— B,, are simple and in [~ [, 1] if B, ., , # B, ,. We denote
the zeros of B, ,— B, , by

_1<yn+1,n+1,p<."'<,V1,n+1,p<1 (1.6)

and let v, , denote the measure that associates the mass (1/(n + 1) with
each of these zeros. KrRoO and SWETITS proved that a subsequence of
{v,p} converges to u in the weak-* topology.

In this paper, we obtain a quantitative estimate on the rate of
convergence of these measures. To this end we define, following
ErDOs and TURAN [6], the discrepancy of a signed measure ¢ on
[—1,1] by the expression

D[c]:= sup . |a([a, b])|. (1.7)

~1<asbs
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Various estimates for the discrepancy D[v, , — u] were given by
many authors [8, 3, 2]. Using lower estimates on the derivatives of
the polynomials B,,, ., —B, ., it is proved in [2] that for a
subsequence of positive integers,

(logn)*

Dy, —ulsc (1.8)
where c is an absolute constant independent of f and n. Here and in
the sequel, we adopt the convention that ¢,c,,... denote positive
constants depending only on p and w but their value may be different
at different occurrences, even within the same formula. The main
theorem of this paper is the following.

Theorem 1.1. Let —1=t,<---<t,,=1befixed points,a,,...,a,>
> —1 be fixed numbers, and w be a weight function that satisfies the
following conditions:

cwx)<c [ Ix—tl%<w(x), xe[—1,1]. (1.9)
i=1
Let 1 <p< oo and feL?, f not a polynomial. Then for any integer n
such that
En,p,w(f) + En+ l,p,w(f) < nz(En,p,w(f) - En+ l,p,w{f)) (110)

we have

1 2
DL, ,— ] <8N (1.11)
n

In particular, there exists a subsequence A of positive integers such that
(1.11) holds for all ne A. Because of (1.9) there exists a monic polynomial
P*e P, with all zeros in [ — 1, 1] such that

lw(x)P*(x)| <c <o, xe[—1,1] (1.12)

The typical examples of the weight functions considered in
Theorem 1.1 are the Jacobi weights and certain generalized Jacobi
weights [cf. 11]. If 1 <p< oo and f satisfies certain additional
conditions, then applying the results of PINKUS and ZIEGLER in [12],
we see that the zeros of B,,; ,— B, , interlace the points where
f— B, , changes sign. Therefore, in this case, Theorem 1.1 gives the
discrepancy between the measure associating these points of sign
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changes and the arcsine measure. If f is a 2z-periodic continuous
function and s, is the n-th partial sum of its Fourier series, then BINEV
et al. [1] have obtained, in particular, the following result. For any
0<o <(2/3)(2—\/§), there exists a subsequence {n,} and points
{xa)}j:1 _____ amw=1.2,.., Such that f —s, vanishes at x{, j=1,...,2n,
an

2% j=1...2n,0=12....

I
—|<n

x;“’ —
nv

As a corollary of Theorem 1.1 and its proof, we discuss the zeros
of polynomials of minimal L?-norm. Let T, , , € #, denote the monic
polynomial satisfying the equation
=&,,:= min [X"—P(X)|, .- (1.13)

I Ty lpow = epi= min

It is easy to see that T, , , has n simple zeroson [—1,1]. Let , , ,, be
the measure that associates the mass 1/(n + 1) with each of the zeros
of Ty i1, p -

Corollary 1.2. We have

1 2
D[/J’n,p,w_.u]gc(oin) s n=2,3,-.- . (114)

When p=2 then T, ,,, is the monic orthogonal polynomial with
respect to w. Corollary 1 2 thus generalizes the corresponding result
in [2] about orthogonal polynomials.

2. Proofs

We observe that if f(x)=x"*! then B, ,,(f)=x""! and con-
sequently, T,y 5. = B, i1 p.w(f) — B, (S for this choice of f. Since
the constants involved in Theorem 1.1 are independent of the
function, f, and the integer n clearly satisfies (1.11), Corollary 1.2
follows directly from Theorem 1.1. Thus, we need to prove only
Theorem 1.1. In the sequel, 1 < p < oo will be fixed, w will be a fixed
function satisfying (1.9) and f will also be a fixed function. We will
omit their mention from the notation. For example, || g| will denote
lgll,.w» E, will denote E, , ,(f) etc. Since E, —0 as n— co, standard
arguments (cf. [2]) show that there exists a subsequence A of integers
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such that (1.10) is satisfied for all neA. Our starting point is the
following consequence of Theorem 2.1 in [4].

Theorem 2.1. Let v be any Borel, positive unit measure supported
on{—1,1]. For a = 1 let &(«) be found such that

e() > max {|U(u—v,2)|:[z + /22 — 1| = a} (2.1a)

where

Ulp—v,z):= Jl log d(u — v)(t). (2.1b)
oy Jz—1f

Then

D[v — u] < ce(o) log (1/e(a)) 2.2)
for all a with o < 1 + () and e(a) < 1/e.
We write
Qpir()=a,  ,x"" = B, . (x) — B,(x), Qn+1:: a'|~+11 nt 1

(2.3)

In order to apply Theorem 2.1, we obtain estimates of the form

EQ—;:H(Yi,nﬂ)
P*(Yin+1)

for all nin a subsequence of integers. We will then use the ideas applied
frequently in [2] and [4]. We choose « = n™*. Using the maximum
principle for logarithmic potentials the upper estimate in (2.4) gives
an upper estimate on U(u—v,z). Next we use the Lagrange
interpolation formula based on the zeros of Q, , ; for the polynomial
P*(x)T,(x), where m:=n —deg(P*) and T,, is the Chebyshev poly-
nomial of degree m, to get a lower estimate on U(u—v,z). These
estimates will yield (1.11).

The following Proposition 2.2 summarizes certain known facts
about @, ,. Let

,:=|f—B,|F " sign(f—B,)—|f — B, " 'sign(f —B,,,), (2.3)
and

}|Q_n+1Hm<clnc2*"’ min

lsisn+1

=cn 27" (2.4)

(Dn

W. (2.6)

n+1
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Proposition 2.2. (KroO-SWETITS [9]) (a) If x, yeR, o > 0,

B(x, y):=|x|*signx —|y|*signy, M:=|x|+]y|
then sign ¢(x, y) = sign (x — y) and

27 M Hx — <[l ) <2|x—yl% a<l,  (273)

27 x -yl < gl ) < 2aM*Hx—y|, a=1.  (2.7b)
(b) The polynomial Q. , hasn + 1 simple zerosin(—1,1)if B, # B, ;1.
Moreover,

signQ,+, =sign®,
and )
J P(x)Q,+1(x)w,(x)dx=0 PeZ,. (2.8)
-1

We have

1

A32=J Q11 ()P Wy(x)dx = J Q5+ 1(X)Dp(x)| W(x)dx >
-1

-1

;{2_P+1”Qn+1”p>c(En—En+1)p’ lfpzz’ (29)

c”Qn+1”2(En+En+1)p—2, lf1<p<2
For the convenience of notation, we will adopt the convention

that the symbol M, will denote a quantity of the form c;» or ¢;n""
The values of ¢; and ¢ will be different in different occurrences of M,,,

even within the same formula.

Lemma 2.3. (a) For any polynomial Pe2,,

IPO)I <M, | Pll, |x|=1. (2.10)
(b) The leading coefficients a, ., of Q,+ satisfy
czn(En - En+ 1) < Ian+ 1 | < Mn(En + En+ 1)2"' (211)

Proof. Using (1.9) and Theorem 28 in [11, p. 120], we get for
(x| <1

1
min [P(x)| ~? f |P(2)|Pw(t)de =
Pe 2P, -1

1 m
>cmin|P(x)|”’J PO TT |t —t,|dt >
PeP, -1 =1

t

>M,. (2.12)
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This proves part (a). Let T, , | be the Chebyshev polynomial of degree
n+ 1 defined, as usual, by

T,

n

+1(cos0)=cos((n+ 1)0).
We get the first inequality in (2.11) exactly as in [2] by observing that
Qn+1 - 2—nan+ 1 Tn+1e=@n

and using the definitions of best approximation. To obtain the second
inequality, we use the extremal property of the Chebyshev polynomials.
Using (2.10), we get

2711 =27 a1 Thaa oo S HQps 1 Il <

<]‘471 HQn+l H gMn(En—‘{- En+1)-

This gives the second inequality in (2.11). W

Using the definition of Q,,, ; and (2.11) it is easy to get the upper
estimate in (2.4).

Corollary 2.4. If n is any integer satisfying (1.11) then
100411l <277M,, (2.13)

Next, we turn to the lower estimate in (2.4). Our proof involves
one step where it is easier to assume that all the moments of w, are
finite; so that one can construct orthogonal polynomials with respect
to w,. In view of the estimates (2.7), this is certainly the case when
p =2 and also in the case when 1 < p < 2 provided that none of the
zeros of Q,,, coincide with the points ¢,,...,t, _, described in the
hypothesis of Theorem 1.1. Therefore, it is convenient to assume first
that these points “do not exist” or equivalently, that each of the
exponents a,,...,a,,_, in (1.9) is zero. Thus, we first give the lower
estimate in (2.4) which is valid under this assumption and later
indicate the changes required in the proof so as to remove this
assumption.

Proposition 2.5. Let all the moments of w, be finite. If deg P*(x) =
=d and n > d is an integer which satisfies (1.11), then

Q_;w 1Gine1) Q_;+ (Vins1)
P*(yi.n+1) P*(yl,n+1)

M, = :
1sisn+1

>27"M,. (2.14)
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Proof. In this proof, it is convenient to write

Q;+1(Yi,n+1) Q;+1()’l,n+1)
P*(yi,n+ 1) P*(yl,n+1)

Since all the moments of w, are assumed to be finite, there exists (cf.
[7, Chapter 1) a system of polynomials

Qe=1x"+ -, 1>0, - (2.16)

orthonormal with respect to w, on [ —1,1]. Further, (2.9) and (2.8)
imply that

mn:=|an+1mn|= min
1Kisn+1

(2.15)

An_lQn+1 = Qn+ 1
Let 4; be the Cotes number corresponding to y; ., (cf. [7]). Using
the Christoffel-Darboux formula, we get

AnP* n yn ~
WF O L T iy 60 (2.17)
Qn+1(yl,n+1) yn+1

Since w, is supported on [—1,1], an application of Schwarz
inequality gives

n

Pn+1

= Jl X0,(X)@ 4 1 ()W, (x)dx| < 1.
-1

Using this estimate, the Schwarz inequality and the quadrature
formula, we get

A, -
— < /IIIP*(y[,n-i—l)Qn(yl,n‘{-l)l <

n
n+1

<Y LIP*Y, 00 )0ulVjr ) <

< Ul P*z(x)w,,(x)dx}l/z. (2.18)

This ends the part of the proof where the assumption that all moments
of w, should be finite is necessary. The rest of the proof does not use
this assumption.

We now distinguish between two cases. First, let p > 2. Using
(2.7b) with o = p — 1 > 1 we see that

1@, <2(p — D{If ~ Byl + | f = By 1 [}7 721 Q114 -
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So, using Holder’s inequality with exponents p/(p — 2) and p/2, we get

1
J P2 (x)w,(x)dx =
-1

1 @
= p*2
J L T9g

n+ 1

n

w(x)dx <

<2(p— I)Jl {f =B, +1f =B, ,[}" ?P**(x)w(x)dx <

S2p—DINf = Bul +1f =B, (117721 P*|* <
<cE,+E,. P~ (2.19)
From (2.11),
(En + En+ 1)72 < Mnian+1|"222"~
The estimate (2.18) now gives
1
J P*(x)w,(x)dx < M, a1 ?22"(E, + E,. ). (2.20)
-1
Again, from (2.9) and (1.10), we have
A2 c(E,— E, )2 M,(E, + E, ). (2.21)
From (2.18), (2.20) and (2.21), it follows that

1
m;z <A’:2J‘ P*Z(x)wn(x)d'xgMnIan—Fll_zzzna
—1
which leads to (2.14) in the case when p > 2.
Next, we consider the case when 1 < p<2. Using (2.7a) with
o=p—1and(1.12) we get

jl P*2(x)w,(x)dx gzjl 1Q+ 1 ()P 72 [PH(x) > P PH*(x) Pw(x)dx <
<cjl Pre) =77 (2.22)
1101 1(x)

Since n>d, we may express P* using the Lagrange interpolation
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formula based on the zeros of Q,,, ; and deduce that

Px) & PH*(Yjn+1)

Qui1(®)  j=1(x “Vin+ V2 l(yj,n+ V)
Using the fact that 0 < 2 — p < 1 and the definition (2.15) of m,,, we get

P*(X) 2—-p n+1
<mP™ 2y |x—y. . P72
Opei0)) " jgl ot
and hence that
1 P*(x) 2-p n+1 1
) -2 -2
J‘—l Qs 1(x) dx<m5 j;1~ Al'x—yj»n+1,p dx<cnm,’1’ :

Along with (2.22) and (2.18) this gives
m_*<cnd *mPT2,
ie.,
m, = M, A", (2.23)
From (2.9), (1.10) and (2.11) we have
Azl Qi P(Ey+ Eps )72 2
>(E,—Epy ) (E,+Ep )P 72 2
> en HE, + Eyu ) = M,(1ys 127",
Together with (2.23) this gives
m,=M,la,, 27"
and hence (2.14) also in the case when l <p<2. N

Next, we show that the estimate (2.18) holds even without the
assumption that all moments of w, be finite. This will be done by an
approximation argument.

Lemma 2.6. Let E, be a neighborhood of the point set {t,,...,t, .}
such that

J w(t)de < 1/k, (2.24)
E;x

E ., cE, k=1,2,..., and [—1,1]1\E, have a positive Lebesgue
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measure. Let
W(X), -if‘XE['—l, IJ\Eka

0, if xeE,,
and let

Hf_Bp,n'k“p,szggg}l Hf"PHp,ka

Then the sequence {B, ,,} converges uniformly on compact subsets of
the complex plane to B, ,,.

Proof. In this proof, p and n are fixed quantities and therefore, it
is convenient to denote |||, w, by |-y, B, ,» by By, -1l by [ -il and
B, , by B. We have

limsup || f — Byl <limsup || f — By [l <
Slimsup | f =Bl <|f—Bl. (225

Therefore, the sequence { By } is uniformly bounded on F,:=[ — 1, 1]\ E;.
Since each B, is in the finite dimensional space 2,, for any subse-
quence A of integers, there exists a subsequence A; of A and a
polynomial Be 2, such that {By}kea, converges uniformly to B on F .
Necessarily, the subsequence {B,},.,, converges uniformly to B also
on [ —1,1]. Then the dominated convergence theorem shows that

| f =Bl < | f— Bl =1lim || f — Byl. (2.26)
keA,

Together with (2.24), this shows that || f — B| = || f — BJ|. Since the
best approximating polynomial from &, in the L? norm is unique, we
conclude that B=B. Thus, the whole sequence {B,} converges
uniformly on [ —1, 1], and hence on compact subsets of the complex
plane,to B. W

Now, we are in a position to obtain the estimate (2.18) without w
having to satisfy the condition that all moments of w, be finite. Let
Ay s> My g, Qni 1 and w, , etc. denote the quantities 4, m,, @, . ; and
w, corresponding to W, rather than the original weight function w.
We observe that we can choose the same polynomial P* for all k.
Since all moments of each w, , are easily seen to be finite, we have

4 " 12
g{ J p*Z(x)w,,,k(xmx} | @.27)

mn,k
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In view of Lemma 2.6, the zeros of @, , converge to the zeros of
Q, .. Therefore, we arrive at (2.18) by letting k— oo in (2.27). As
remarked earlier, this completes the proof of (2.14) even without the
assumption that all moments of w, are finite.

Proof of Theorem 1.1. We observe that
1 —
f log 1 diu(t) = {log 2, xe[-—-1,1],
1 lz—t log2 —logl|z + /2> — 1], zeC\[—1,1].
(2.28)

The estimate (2.13) can now be written in the form
1
Ulp—v,2) <c 8" ze[—1,1]. (2.29)
n

In view of the maximum principle for potentials ([10, Theorem 1.10])
the estimate (2.29) holds for all ze C. Next, let n>2d and (1.10) be
satisfied. We express the polynomial T,_,P* using the Lagrange
interpolation formula and deduce that for any z with [z + \/z*> — 1| =
=14+n"%

[T, - a(2)P*(z)| < anle—n+ 1)1

Using well known formulas for the Chebyshev polynomials in the
complex domain and (2.28) this leads to

U(,u——v,z))—cl—og, lz4 /22— 1]=1+n"% (2.30)
n

In view of (2.29) and (2.30), we may apply Theorem 2.1 with
a=1+n"*and (@) = clogn/n to arrive at (1.12). W

References

[1] BINEV, P, PETRUSHEY, P., SaF¥, E. B., Trironov, O.: Distribution of interpolation points
of best I? approximants (n-th partial sums of Fourier series). Constr. Appr. 9, 445-472
(1993).

[2] BratT, H.-P.: On the distribution of simple zeros of polynomials. J. Approx. Theory 69,
250-268 (1992).

[3] BLATT, H.-P.,, LORENTZ, G. G.: On a theorem of Kadec. In: Proceedings of the Conference
on Constructive Theory of Functions, Varna, 1987, ed. Sendov, Petrushev, Moleev,
Tashev pp. 5664, Bulgarian Academy of Sciences. 1988.

[4] BraTT, H.-P.,, MHASKAR, H. N.: A general discrepancy theorem. Arkiv for Mathematik.
Ark. Mat. 31, 219-246 (1993). .

[5] CuEnEy, E. W.: Introduction to Approximation Theory. New York: Chelsea. 1982,



A Discrepancy Theorem Concerning Polynomials of Best Approximationin LP[ —1,1] 103

[6] ErDOS, P., TURAN, P.: On the uniformly dense distribution of certain sequences of points.
Ann. of Math. 51, 105-119.
[7] Freup, G.: Orthogonal Polynomials. Oxford: Pergamon Press. 1971.
[8] KADEC, M. I.: On the distribution of points of maximum deviation in the approximation
of continuous functions by polynomials. Amer. Math. Soc. Transl. 26, 231-234 (1963).
[9] Kroo, A., SWETITS, I. J.: On density of interpolation points, a Kadec-type theorem and
Saff’s principle of contamination in L -approximation. Constr. Appr. 8, 87-103 (1992).
{10] LanpkoF, N. S.: Foundations of Modern Potential Theory. Berlin: Springer. 1972.
[11] Nevai, P.: Orthogonal Polynomials. Mem. Amer. Math. Soc. 213. Providence: Amer.
Math. Soc. 1979.
{12] PiNKus, A., ZIEGLER, Z.: Interlacing properties of zeros of the error function in best 17
approximation. J. Approx. Theory 27, 1-18 (1970).

H. P. BLatr and H. N. MHASKAR
Mathem.-Geogr. Fakultit Department of Mathematics
Katholische Universitét California State University
D-85072 Eichstatt Los Angeles, CA 90032

Federal Republic of Germany USA



