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Abstract. Let w be a suitable weight function, B.,p denote the polynomial of best 
approximation to a function f i n  L ~ [ -  1, 13, v. be the measure that associates a mass of 1/(n + 1) 
with each of the n +  1 zeros of B . + ~ , p - B . , p  and # be the arcsine measure defined by 
d/l:= (Tr~l - x 2 )  - l dx. We estimate the rate at which the sequence v. converges to t z in the 
weak-* topology. In particular, our theorem applies to the zeros of monic polynomials of 
minimal L~ norm. 

I. Introduction 

Let C [ -  1, 1] denote the class of all continuous real functions on 
[ -  1, 1] and N, denote the class of all polynomials of degree at most 
n. Let f e C [ -  1, 1-1 and B,,oo:-- B, ,~( f )e~ ,  be the polynomial of best 
approximation to f in the sense that 

max I f(x)-B, ,oo(x)l=E,,~(f):=min max ]f(x)-P(x)!.  (1.1) 
- 1 ~x<~ l P e ~ n  - 1 <~x<~ 1 

It is well known (cf. [5, p. 75] ) that there exist at least n + 2 alternation 
pointsy* in [ -  1, 1] and a number 6 = _+ 1 such that 

1) E, ,~(f) ,  i = l , . . . , n + 2 .  (1.2) f ( y * ) -  B,,~(y*) = 6(-- i 

Let #, be the measure that associates the mass 1/(n + 2) with each of 
the alternation points and # be the arcsine measure defined by 

dx 
d#:=rcx / l_x2  , x e [ -  1, 1]. (1.3) 
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In [8], KADEC showed in particular that a subsequence of {/~.} 
converges to/~ in the Weak-* topology. A major idea in the proof of his 
theorem was to consider the zeros of the polynomials B. + 1,~ - B.,oo. 
These zeros interlace the alternation points y*. If v.,~ denotes the 
measure that associates the mass 1/(n + 1) with each of these zeros, 
then Kadec showed that a subsequence of {v.,~} converges in the 
weak-* topology to ~. The interlacing property then easily gives the 
result about the alternation points themselves. 

In [9], KRO6 and SWETITS obtained the L p analogue of this result. 
If 9 is a Lebesgue measurable function and w/> 0 is an integrable 
function on [ -  1, 1] then we define for 1 ~< p < oc 

[I g llp,w: = ( f ~ l lg(t)l~w(t)dt ) 1/~ (1.4a) 

and denote by LPw the class of all functions g for which/I] g IIp,w < ~ ,  
where two functions are identified if they are equall a.e. (almost 
everywhere with respect to the Lebesgue measure). We also define 

[Ig T] oo := ess sup Ig(t)[. (1.4b) 
t~[-- 1 ,1]  

Let l < p < o o  be fixed, w > 0  a.e. and f e L ~ .  We define the 
polynomial B.,p:= Bn,p,w(f) of best approximation to f from ~ .  by 

II f - B.Iv IIp,w = E.,p,w = min II f - P IIp,w. (1.5) 
Peeg n 

KRO6 and SWETITS showed that all the zeros of the polynomials 
Bn+ 1,p- Bn,p are simple and in [ - 1 ,  1] if B.+l,p # B,,p, We denote 
the zeros of B. + 1,p - -  Bn,p by 

- 1  < Y.+l..+l.p < " "  < Yl,.+l.p < 1 (1.6) 

and let v.,p denote the measure that associates the mass (1/(n + 1) with 
each of these zeros. KRO6 and SWET1TS proved that a subsequence of 
{V.,p} converges to ~ in the weak-* topology. 

In this paper, we obtain a quantitative estimate on the rate of 
convergence of these measures. T o  this end we defirre, following 
ERD/3S and TURAN 1-6], the discrepancy of a signed measure tr on 
[ -  1, 1] by the expression 

D[tr] := sup Itr([a, b])l. (1.7) 
- l  <~a<~b~l 
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Various estimates for the discrepancy D[v, ,o~-#]  were given by 
many authors [-8, 3, 2]. Using lower estimates on the derivatives of 
the polynomials B , + I , ~ - B , , ~ ,  it is proved in [2] that for a 
subsequence of positive integers, 

(log n) 2 
D [ v . , ~  - ~] <<. c - -  (1.8) 

n 

where c is an absolute constant independent o f f  and n. Here and in 
the sequel, we adopt the convention that c, cl . . . .  denote positive 
constants depending only on p and w but their value may be different 
at different occurrences, even within the same formula. The main 
theorem of this paper is the following. 

Theorem 1.1. Let - 1 = t 1 <. . .  < tin--- 1 be f ixed points, a1,... , a,~ > 
> - 1  be f ixed numbers, and w be a weight function that satisfies the 

following conditions: 

c l w ( x ) < < , c f i l x - t i t a ~ w ( x ) ,  x E [ -  1, 1]. (1.9) 
i = l  

Let 1 < p < oe and f eL~, f not a polynomial. Then for any integer n 
such that 

E,,p,w(f) + E,+ 1,p,w(f) ~ nZ(E,,v,~(f) -- E,+ 1,p,~(f)) (i.10) 

we have 

(log n) 2 
D [ v , , ; -  I~] <~ c . (1.11) 

n 

In particular, there exists a subsequence A of positive integers such that 
(1.11) holds for all ne A. Because of (1.9) there exists a monic polynomial 
P* ~ ~ with all zeros in [ -  1, 1] such that 

]w(x)P*(x)[ ~<c < 0% x e [ - 1 , 1 ]  (1.12) 

The typical examples of the weight functions considered in 
Theorem 1.1 are the Jacobi weights and certain generalized Jacobi 
weights [cf. 11]. If 1 < p  < oe and f satisfies certain additional 
conditions, then applying the results of PINKUS and ZIE~LER in [12], 
we see that the zeros of B,+I, p -  B,,p interlace the points where 
f - B , , p  changes sign. Therefore, in this case, Theorem 1.1 gives the 
discrepancy between the measure associating these points of sign 
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changes and the arcsine measure. If f is a 2re-periodic cont inuous  
function and s, is the n-th partial sum of its Fourier  series, then BINEV 
et al. [1] have obtained, in particular, the following result. For  any 

0 < g < (2/3)(2 - v/3), there exists a subsequence {nv} and points 
{X}V)}j=l . . . . .  2nr,v= 1,2, ''' such that  f - s , ,  vanishes at x~? )J , j = 1,.. . ,2n,  
and 

x(~) jrc <n~-a, j = l , .  , 2 n ~ , v = l , 2 , . .  
- J  - - n v  . . . .  

As a corollary of Theorem 1.1 and its proof, we discuss the zeros 
of polynomials  of minimal  LP-norm. Let T,,p,,, ~ ~,, denote  the monic  
polynomial  satisfying the equat ion 

IlT..pnp,w=ep,w:= rain [[x"--P(x)llp,w. (1.13) 
P ~  n - 1 

It is easy to see that  T,,,p,w has n simple zeros on [ -  1, 1]. Let #.,p,w be 
the measure that  associates the mass 1/(n + 1) with each of the zeros 
of T.+ 1,p,w. 

Corollary 1.2. We have 

(log n) 2 
O[/2n,p,w--~] ~ c - - ,  n = 2 , 3 , . . . .  (1.14) 

n 

When p = 2 then T.,p,w is the monic  or thogonal  polynomial  with 
respect to w. Corollary 1.2 thus generalizes the corresponding result 
in [2] about  or thogonal  polynomials.  

2. Proofs 

We observe that  if f ( x ) =  x "+ 1 then B,+ 1,p,,~(f) --- x"+ 1 and con- 
sequently, T, + 1,p,w = B, + 1,p,w(f) - B,,p,w(f) for this choice off .  Since 
the constants  involved in Theorem 1.1 are independent  of the 
function, f ,  and the integer n clearly satisfies (1.11), Corollary 1.2 
follows directly from Theorem 1.1. Thus, we need to prove only 
Theorem 1.1. In the sequel, 1 < p < oc will be fixed, w will be a fixed 
function satisfying (1.9) and f will also be a fixed function. We will 
omit  their ment ion  from the notation.  For  example, H g [I will denote 
II 0 Irp,w, g ,  will denote  E,,p,w(f) etc. Since E, ~ 0 as n ~ oo, s tandard 
arguments  (cf. [2]) show that there exists a subsequence A of integers 
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such that  (1.10) is satisfied for all neA. Our  starting point  is the 
following consequence of Theorem 2.1 in [4]. 

Theorem 2.1. Let v be any Borel, positive unit measure supported 
on [ -  1, 1]. For ~ >1 1 let e(c~) be found such that 

a ( ~ ) > ~ m a x { l U ( # - v , z ) l ' l z + , , / - ~ - l l = ~ }  (2.1a) 

where 

Then 

U(,u - v, z):= log d ( # -  v)(t). 
- 1  

D[v - #] ~< c~(c 0 log (1/e(~)) 

for all ~ with e ~< 1 + e(e) 3 and e(e) < 1/e. 

We write 

Q,+l (x) :=  a,+lx  "+I + . . . .  B,+1(x ) - B,(x), 

(2.1b) 

(2.2) 

(2.3) 

In order to apply Theorem 2.1, we obtain estimates of the form 

IIQ.+llt <<.Cl noR-", min (?~,+,(Y~.,+I) 
I~<i~<.+i P*(Yi.n+I) >~cln-c2 -" (2.4) 

for all n in a subsequence of integers. We will then use the ideas applied 
frequently in [2] and [4]. We choose ~ = n -4. Using the max imum 
principle for logari thmic potentials the upper  estimate in (2.4) gives 
an upper  estimate on U ( p - v , z ) .  Next we use the Lagrange 
interpolat ion formula based on the zeros of Q, + 1 for the polynomial  
P*(x)T,,(x), where m:=  n -  deg(P*) and T,. is the Chebyshev poly- 
nomial  of degree m, to get a lower estimate on U(Iz-v , z ) .  These 
estimates will yield (1.11). 

The following Proposi t ion  2.2 summarizes certain known  facts 
about  Q, + ~. Let 

O . : = l f - B . [  v - l s i g n ( f - B . ) - l f - B . + l f  - l s i g n ( f - B . + l )  , (2.5) 

and 

w, := w. (2.6) 
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Proposition 2.2. (KRO0-SWETITS [93) (a) I f  x, yER, c~ > 0, 

c~(x,y):= [x]~signx--[yl~signy, M:=  Ix[ + ]Yl 

then sign ~b(x, y) = sign (x - y) and 

~ 2 - ~ M ~ - l l x - y [ < ~ l O ( x , y ) f < ~ 2 [ x - y l ~ ,  ~ < 1 ,  (2.7a) 

2-~lx -y l~<~l (o(x ,y ) l<~2o~M~- l lx -y[ ,  ~>1 .  (2.7b) 

(b) The polynomial Q. + 1 has n + 1 simple zeros in ( - 1, 1)/f B. # B. + 1. 
Moreover, 

sign Q. + 1 = sign O. 

and 

f l P(x)Qn+I(X)W.(x)dx = P e ~ , .  (2.8) 0 
- 1  

We have fl 
A 2"= IQ.+l(x)12w.(x)dx = IQ.+l(x)O.(x)lw(x)dx>. 

n" 
--1 --1 

2-p+IIIQn+lllp>~c(En-En+a) p, i f  p>>.2, >~ (2.9) 
[e[[Qn+~HZ(En+En+a) p-z ,  / f l < p < 2 .  

For the convenience of notation, we will adopt the convention 
that the symbol Mn will denote a quantity of the form Ca nc or cln -c. 
The values of ca and e will be different in different occurrences of Mn, 
even within the same formula. 

Lemma 2.3. (a) For any polynomial P e ~ . ,  

IP(x)I<.%MnIIPII, Ix[< 1. (2.10) 

(b) The leading coefficients an+ a o f  Q,+ 1 satisfy 

c2n(E . -E .+O<<.Ian+II<.M.(E .+En+02 ". (2.11) 

Proof. Using (1.9) and Theorem 28 in [11, p. 120], we get for 
Ixl~l 

min IP(x)[-P IP(t)lPw(t)dt >>- 
PE~,~ - 1 

>~cminlP(x)l -p ]P(t)] p [ t - t i l a ' d t ~  

i> M n. (2.12) 
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This proves part  (a). Let T n + 1 be the Chebyshev polynomial  of degree 
n + 1 defined, as usual, by 

r ,+  1(cos 0) = cos ((n + 1)0). 

We get the first inequality in (2.11) exactly as in [2] by observing that  

Q,+ 1 - 2 - "a ,  + 1T,+ 1 ~ ,  

and using the definitions of best approximat ion.  To obtain the second 
inequality, we use the extremal property of the Chebyshev polynomials. 
Using (2.10), we get 

2-"]a ,+  11 = 2-"  II a ,+l  T,+ 1 [I ~ ~< HQ,+I li~ ~< 

~< M,  IIQ,+t II < ~ M , ( E , + E , + I ) .  

This gives the second inequality in (2.11). [] 

Using the definition of Q, +1 and (2.11) it is easy to get the upper  
estimate in (2.4). 

Corollary 2.4. l f  n is any integer satisfying (1.11) then 

[I (~.+1 II ~ ~< 2 - ~  (2.13) 

Next, we turn to the lower estimate in (2.4). Our  proof  involves 
one step where it is easier to assume that  all the moments  of w. are 
finite; so that  one can construct  or thogonal  polynomials  with respect 
to %. In view of the estimates (2.7), this is certainly the case when 
p ~> 2 and also in the case when 1 < p < 2 provided that  none of the 
zeros of Q,,+ ~ coincide with the points  t 2 . . . .  , t i n -  1 described in the 
hypothesis  of Theorem 1.1. Therefore, it is convenient  to assume first 
that  these points "do not exist" or equivalently, that  each of the 
exponents  a2, . . .  , a m_ 1 in (1.9) is zero. Thus, we first give the lower 
estimate in (2.4) which is valid under  this assumpt ion and later 
indicate the changes required in the proof  so as to remove this 
assumption.  

Proposition 2.5. Let  all the moments o f  w, be finite. I f  deg P * ( x )  = 

= d and n >>- d is an integer which satisfies (1.11), then 

O'n+ l(Yi,n+l Q--~tn+ l(Yl,n+ 1) rh,:= min - - -  ) " t~<i~<, 1[ P (Yi.,+l ~ ( y ~ . ~ + ~  I~>2-~M,. (2.14) 
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Proof. In this proof, it is convenient to write 

]0;+,(y,,.+l) I -' Q.+l(yz,.+0 
m.:=  ]a.+lth.] = min - ~ . - -  =:  (2.15) 

1~<i~.+1 P (Y/,.+I) [ D - - * - -  " P (Yt,.+l) I 

Since all the moments  of w. are assumed to be finite, there exists (cf. 
[7, Chapter  I])  a system of polynomials 

Ok = 7k xk + "", 7k > 0, (2.16) 

or thonormal  with respect to w. on [ - 1 ,  1]. Further,  (2.9) and (2.8) 
imply that 

AnlQn+I = Qn+l. 

Let )~j be the Cotes number corresponding to y j,.+ x (cf. [7]). Using 
the Christoffel-Darboux formula, we get 

A.P*(Yz,.+ I) 7. 
- -  '~tP*(Yl,n+ 1)0.(Yl,. + ~). (2.17) 

Q'.+I(Yt,.+I) 7.+, 

Since w. is supported on [ - 1 , 1 ] ,  an application of Schwarz 
inequality gives 

7. f 1 
- xO.(x)O.+,(x)w.(x)dx <. 1. 

7 n + l  - 1  

Using this estimate, the Schwarz inequality and the quadrature 
formula, we get 

An_ <~ 2l[p.(yl,n+ 1)On(Yt,n + i)1 ~< 
mn 

n + l  

<<. ~ 2jIP*(Yj,.+~)O.(Yj,.+x)I <<. 
j = l  

<~ P*2(x)w,(x)dx ~ . (2.18) 
1 

This ends the part of the proof where the assumption that all moments 
of w, should be finite is necessary. The rest of the proof does not use 
this assumption. 

We now distinguish between two cases. First, let p ~> 2. Using 
(2.7b) with ~ = p - 1/> 1 we see that 

I~.l ~<2(p-  1 ) { I f - B . I  + [ f - B . + ~ I } P - 2 1 Q . + l l .  
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So, using H61der's inequality with exponents  p/(p - 2) and p/2, we get 

f l P*2(x)wn(x) dx = 
- 1  

~1 P 'z (x)  ~n W(x)dx 
J --1 Q n + l  

~< 2 ( p - l ) f l  { I f - B n ] + l f - - B n + l [ } P - 2 p * 2 ( x ) w ( x ) d x ~  
1 

<~ 2(p -- 1)fi l l --  B,, [ + I f -  B, + 1 [[[P- 2 [[ p ,  i[ 2 ~< 

<<. c(E, + E,+ 1) p-2. (2.19) 

F r o m  (2.11), 

(E,, + E,,+ 1) -2 ~< M,,[a,,+ 11-222n" 

The estimate (2.18) now gives 

f l P*2(x)w,(x)dx <~ Mnla,+ l l- 222~(En + En+ l) p" (2.20) 
- t  

Again, from (2.9) and (1.10), we have 

A 2 ~ c(E n - -  E,+ ~)P >~ M,(E, + E,+ 1) p. (2.21) 
n 

F r o m  (2.18), (2.20) and (2.21), it follows that  ;1 
m22<~A2 2 P*Z(x)wn(x)dx<~Mnlan+l]-222n , 

- I  

which leads to (2.14) in the case when p ~> 2. 
Next, we consider the case when 1 < p < 2. Using (2.7a) with 

~. = p - 1 and (1.12) we get 

P*2(x)w,,(x)dx ~< 2 IQ,+ I(x)lP- 2lP*(x)]Z-PlP*(x)[Pw(x)dx <~ 
- 1  - 1  

f l  P*(x) 2-p 
<~ c -1 Q~i (x )  dx_ (2.22) 

Since n ~> d, we may  express P* using the Lagrange interpolat ion 
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formula based on the zeros of Q. + 1 and deduce that  

P*(x) _ .+1  P (Yj,.+I) 

Q.+l(x) j= (x-yjm+l)Q' .+l(yj , .+ 1) 

Using the fact that  0 < 2 - p < 1 and the definition (2.15) of m., we get 

P*(x) 2-p .+1 

and hence that  

-1 ~ dx<~mP-Z " [x-YJ'"+l[p-2dx<~cnmp-2" 
j = l J -  1 

Along with (2.22) and (2.18) this gives 

i.e., 

mn 2 ~ cnA~ 2mp - e, 

m, >~ M A 2/p (2.23) n n ~ 

F r o m  (2.9), (1.10) and (2.11) we have 

Z 2./> c II Q.+I II 2(E. + E.+I) ~-2/> 

C(En-- En+ 1)2(En + En+ 1) p - 2 / >  

>1 cn-4(E,, + E,,+ 1) p >~ M,(la ,+  112-") p. 

Together  with (2.23) this gives 

m,,>~ M,,la,,+ll2-" 

and hence (2.14) also in the case when 1 < p < 2. �9 

Next, we show that  the estimate (2.18) holds even wi thout  the 
assumpt ion  that  all moment s  of w, be finite. This will be done by an 
approximat ion  argument.  

L e m m a  2.6. Let E k be a neighborhood of the point set {t  2 . . . . .  t m_ 1 } 
such that 

fE w(t)& <<. 1/k, (2.24) 
k 

Ek+t ~gk ,  k = 1 , 2 , . . . ,  and [ - 1 , 1 ] \ E  1 have a positive Lebesgue 
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measure. Let 

and let 

~w(x), ifX6[--1,1]\Ek, 
Wk(X):= (0, if X~Ek, 

]] f - Bv,.,k ]Jv, w~ = min [I f - -  P tlp,w~. 
Pe ~ 

Then the sequence {B,,p,k} converges uniformly on compact subsets of 
the complex plane to Bn, p. 

Proof. In this proof, p and n are fixed quantities and therefore, it 
is convenient  to denote  [[" I[v.w~ by H'Hk, Bn,p,k by Bk, 1]" ]lp,w by ]l'J] and 
B,. p by B. We have 

lim sup ]l f - Bk Ijl ~< lim sup It f -- Bk Ilk ~< 
k--~ oo k~oo 

<~ l imsupl l f  -BILk <~llf -B l l .  (2.25) 
k--* oo 

Therefore, the sequence {BK} is uniformly bounded on F 1 := [--  1, 1] \E  a. 
Since each B k is in the finite dimensional  space ~n, for any subse- 
quence A of integers, there exists a subsequence A 1 of A and a 
polynomial  Be~ ' ,  such that  {Bk}k~A, converges uniformly t o / ]  on F 1. 
Necessarily, the subsequence {Bk}k~A, converges uniformly to B also 
on [--  1, 1]. Then the domina ted  convergence theorem shows that  

II f - B H ~< II f - / 3  II = lim II f - Bk Ilk. (2.26) 
keA 1 

Together  with (2.24), this shows that  II f - B I] = II f - / 3  H. Since the 
best approximat ing  polynomial  from ~n in the LPw norm is unique, we 
conclude that  B - - B .  Thus,  the whole sequence {Bk} converges 
uniformly on [--  1, 1], and hence on compact  subsets of the complex 
plane, to B. [] 

Now, we are in a posi t ion to obtain the estimate (2.18) wi thout  w 
having to satisfy the condi t ion that  all moments  of w, be finite. Let 
An,k, ran,k, Qn+ 1,k and w,, k etc. denote  the quantities An, m,, Qn+ 1 and 
w n corresponding to Wk rather than the original weight function w. 
We observe that  we can choose the same polynomial  P* for all k. 
Since all moment s  of each w,, k are easily seen to be finite, we have 

Ank' ~ {fl P*2(X)Wnk(X)dx} I / 2 . ,  (2.27) 
mn,k 1 
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In view of Lemma 2.6, the zeros of Q,+ 1,k converge to the zeros o f  
Q,+I- Therefore, we arrive at (2.18) by letting k ~  ~ in (2.27). As 
remarked earlier, this completes the proof of (2.14) even without the 
assumption that all moments of w, are finite. 

Proof of Theorem 1.1. We observe that 

f l  log ] ~ _  tr d#(t) = ~l~ 2' 
- t t.log 2 -- log [z + x / ~  - 1 [, z ~ C \ [ -  1, 1]. 

(2.28) 

The estimate (2.13) can now be written in the form 

cl~ n, U(# - v,z) ~< z 6 [ -  1, 1]. (2.29) 
n 

In view of the maximum principle for potentials ([10, Theorem 1.10]) 
the estimate (2.29) holds for all zeC. Next, let n ~> 2d and (1.10) be 
satisfied. We express the polynomial T,-nP* using the Lagrange 
interpolation formula and deduce that for any z with [z + ~ - 1 [ = 

= 1 + n  - 4 ,  

r T,-d(z)e*(z)l <<- M,2"I (~,+ l(Z)[. 

Using well known formulas for the Chebyshev polynomials in the 
complex domain and (2.28) this leads to 

log n 
U ( # -  v,z)>, - c  , [ z + w / z Z - 1 ] = l + n  -4. (2.30) 

n 

In view of (2.29) and (2.30), we may apply Theorem 2.1 with 
= 1 + n -4 and e(~) clogn/n to arrive at (1.12). �9 
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