Mh. Math. 120, 91-103 (1995)

A Discrepancy Theorem Concerning Polynomials of Best Approximation in $L_w^p[-1, 1]$

By

H.-P. Blatt, Eichstätt, and H. N. Mhaskar*, Los Angeles, CA

(Received 6 December 1993)

Abstract. Let w be a suitable weight function, $B_{n,p}$ denote the polynomial of best approximation to a function $f \text{ in } L^p_w[-1,1]$, v_n be the measure that associates a mass of 1/(n+1) with each of the n+1 zeros of $B_{n+1,p} - B_{n,p}$ and μ be the arcsine measure defined by $d\mu := (\pi \sqrt{1-x^2})^{-1} dx$. We estimate the rate at which the sequence v_n converges to μ in the weak-* topology. In particular, our theorem applies to the zeros of monic polynomials of minimal L^p_w norm.

1. Introduction

Let C[-1, 1] denote the class of all continuous real functions on [-1, 1] and \mathscr{P}_n denote the class of all polynomials of degree at most n. Let $f \in C[-1, 1]$ and $B_{n,\infty} := B_{n,\infty}(f) \in \mathscr{P}_n$ be the polynomial of best approximation to f in the sense that

$$\max_{1 \le x \le 1} |f(x) - B_{n,\infty}(x)| = E_{n,\infty}(f) := \min_{P \in \mathscr{P}_n} \max_{1 \le x \le 1} |f(x) - P(x)|.$$
(1.1)

It is well known (cf. [5, p. 75]) that there exist at least n + 2 alternation points y_i^* in [-1, 1] and a number $\delta = \pm 1$ such that

$$f(y_i^*) - B_{n,\infty}(y_i^*) = \delta(-1)^i E_{n,\infty}(f), \quad i = 1, \dots, n+2.$$
(1.2)

Let μ_n be the measure that associates the mass 1/(n+2) with each of the alternation points and μ be the arcsine measure defined by

$$d\mu := \frac{dx}{\pi\sqrt{1-x^2}}, \quad x \in [-1,1].$$
 (1.3)

^{*} This author gratefully acknowledges partial support from NSA contract #A4235802 during 1992, AFSOR Grant 226113 during 1993 and The Alexander von Humboldt Foundation during both of these years.

¹⁹⁹¹ Mathematics Subject Classification: 41A10, 30C15.

In [8], KADEC showed in particular that a subsequence of $\{\mu_n\}$ converges to μ in the weak-* topology. A major idea in the proof of his theorem was to consider the zeros of the polynomials $B_{n+1,\infty} - B_{n,\infty}$. These zeros interlace the alternation points y_i^* . If $v_{n,\infty}$ denotes the measure that associates the mass 1/(n+1) with each of these zeros, then Kadec showed that a subsequence of $\{v_{n,\infty}\}$ converges in the weak-* topology to μ . The interlacing property then easily gives the result about the alternation points themselves.

In [9], KROÓ and SWETITS obtained the L^p analogue of this result. If g is a Lebesgue measurable function and $w \ge 0$ is an integrable function on [-1, 1] then we define for $1 \le p < \infty$

$$\|g\|_{p,w} := \left(\int_{-1}^{1} |g(t)|^{p} w(t) dt\right)^{1/p}$$
(1.4a)

and denote by L_w^p the class of all functions g for which $\|g\|_{p,w} < \infty$, where two functions are identified if they are equal a.e. (almost everywhere with respect to the Lebesgue measure). We also define

$$\|g\|_{\infty} := \operatorname{ess\,sup}_{t \in [-1,1]} |g(t)|. \tag{1.4b}$$

Let 1 be fixed, <math>w > 0 a.e. and $f \in L^p_w$. We define the polynomial $B_{n,p} := B_{n,p,w}(f)$ of best approximation to f from \mathscr{P}_n by

$$\|f - B_{n,p}\|_{p,w} = E_{n,p,w} = \min_{P \in \mathscr{P}_n} \|f - P\|_{p,w}.$$
 (1.5)

KROÓ and SWETITS showed that all the zeros of the polynomials $B_{n+1,p} - B_{n,p}$ are simple and in [-1, 1] if $B_{n+1,p} \neq B_{n,p}$. We denote the zeros of $B_{n+1,p} - B_{n,p}$ by

$$-1 < y_{n+1,n+1,p} < \dots < y_{1,n+1,p} < 1 \tag{1.6}$$

and let $v_{n,p}$ denote the measure that associates the mass (1/(n + 1)) with each of these zeros. KROÓ and SWETITS proved that a subsequence of $\{v_{n,p}\}$ converges to μ in the weak-* topology.

In this paper, we obtain a quantitative estimate on the rate of convergence of these measures. To this end we define, following ERDÖS and TURÁN [6], the *discrepancy* of a signed measure σ on [-1, 1] by the expression

$$D[\sigma] := \sup_{\substack{-1 \leq a \leq b \leq 1 \\ \sigma \in [a, b]}} |\sigma([a, b])|.$$
(1.7)

Various estimates for the discrepancy $D[v_{n,\infty} - \mu]$ were given by many authors [8, 3, 2]. Using lower estimates on the derivatives of the polynomials $B_{n+1,\infty} - B_{n,\infty}$, it is proved in [2] that for a subsequence of positive integers,

$$D[v_{n,\infty} - \mu] \le c \frac{(\log n)^2}{n} \tag{1.8}$$

where c is an absolute constant independent of f and n. Here and in the sequel, we adopt the convention that c, c_1, \ldots denote positive constants depending only on p and w but their value may be different at different occurrences, even within the same formula. The main theorem of this paper is the following.

Theorem 1.1. Let $-1 = t_1 < \cdots < t_m = 1$ be fixed points, $a_1, \ldots, a_m > -1$ be fixed numbers, and w be a weight function that satisfies the following conditions:

$$c_1 w(x) \leq c \prod_{i=1}^m |x - t_i|^{a_i} \leq w(x), \quad x \in [-1, 1].$$
 (1.9)

Let $1 and <math>f \in L^p_w$, f not a polynomial. Then for any integer n such that

$$E_{n,p,w}(f) + E_{n+1,p,w}(f) \le n^2 (E_{n,p,w}(f) - E_{n+1,p,w}(f))$$
(1.10)

we have

$$D[\nu_{n,p} - \mu] \leqslant c \frac{(\log n)^2}{n}. \tag{1.11}$$

In particular, there exists a subsequence Λ of positive integers such that (1.11) holds for all $n \in \Lambda$. Because of (1.9) there exists a monic polynomial $P^* \in \mathscr{P}_n$ with all zeros in [-1, 1] such that

$$|w(x)P^*(x)| \le c < \infty, \quad x \in [-1, 1]$$
 (1.12)

The typical examples of the weight functions considered in Theorem 1.1 are the Jacobi weights and certain generalized Jacobi weights [cf. 11]. If 1 and <math>f satisfies certain additional conditions, then applying the results of PINKUS and ZIEGLER in [12], we see that the zeros of $B_{n+1,p} - B_{n,p}$ interlace the points where $f - B_{n,p}$ changes sign. Therefore, in this case, Theorem 1.1 gives the discrepancy between the measure associating these points of sign changes and the arcsine measure. If f is a 2π -periodic continuous function and s_n is the *n*-th partial sum of its Fourier series, then BINEV et al. [1] have obtained, in particular, the following result. For any $0 < \delta < (2/3)(2 - \sqrt{3})$, there exists a subsequence $\{n_v\}$ and points $\{x_j^{(v)}\}_{j=1,...,2n_v,v=1,2,...}$ such that $f - s_{n_v}$ vanishes at $x_j^{(v)}, j = 1,...,2n_v$ and

$$\left| \frac{x_{j}^{(v)}}{x_{j}^{(v)}} - \frac{j\pi}{n_{v}} \right| < n_{v}^{-\delta}, \quad j = 1, \dots, 2n_{v}, v = 1, 2, \dots$$

As a corollary of Theorem 1.1 and its proof, we discuss the zeros of polynomials of minimal L^p -norm. Let $T_{n,p,w} \in \mathscr{P}_n$ denote the monic polynomial satisfying the equation

$$\|T_{n,p}\|_{p,w} = \varepsilon_{p,w} := \min_{P \in \mathscr{P}_{n-1}} \|x^n - P(x)\|_{p,w}.$$
 (1.13)

It is easy to see that $T_{n,p,w}$ has *n* simple zeros on [-1, 1]. Let $\mu_{n,p,w}$ be the measure that associates the mass 1/(n+1) with each of the zeros of $T_{n+1,p,w}$.

Corollary 1.2. We have

$$D[\mu_{n,p,w} - \mu] \leq c \frac{(\log n)^2}{n}, \quad n = 2, 3, \dots$$
 (1.14)

When p = 2 then $T_{n,p,w}$ is the monic orthogonal polynomial with respect to w. Corollary 1.2 thus generalizes the corresponding result in [2] about orthogonal polynomials.

2. Proofs

We observe that if $f(x) = x^{n+1}$ then $B_{n+1,p,w}(f) = x^{n+1}$ and consequently, $T_{n+1,p,w} = B_{n+1,p,w}(f) - B_{n,p,w}(f)$ for this choice of f. Since the constants involved in Theorem 1.1 are independent of the function, f, and the integer n clearly satisfies (1.11), Corollary 1.2 follows directly from Theorem 1.1. Thus, we need to prove only Theorem 1.1. In the sequel, 1 will be fixed, <math>w will be a fixed function satisfying (1.9) and f will also be a fixed function. We will omit their mention from the notation. For example, ||g|| will denote $||g||_{p,w}$, E_n will denote $E_{n,p,w}(f)$ etc. Since $E_n \to 0$ as $n \to \infty$, standard arguments (cf. [2]) show that there exists a subsequence Λ of integers A Discrepancy Theorem Concerning Polynomials of Best Approximation in $L_w^p[-1, 1] = 95$

such that (1.10) is satisfied for all $n \in \Lambda$. Our starting point is the following consequence of Theorem 2.1 in [4].

Theorem 2.1. Let v be any Borel, positive unit measure supported on [-1, 1]. For $\alpha \ge 1$ let $\varepsilon(\alpha)$ be found such that

$$\varepsilon(\alpha) \ge \max\left\{ |U(\mu - \nu, z)| : |z + \sqrt{z^2 - 1}| = \alpha \right\}$$
(2.1a)

where

$$U(\mu - \nu, z) := \int_{-1}^{1} \log \frac{1}{|z - t|} d(\mu - \nu)(t).$$
 (2.1b)

Then

$$D[\nu - \mu] \leq c\varepsilon(\alpha) \log(1/\varepsilon(\alpha))$$
(2.2)

for all α with $\alpha \leq 1 + \varepsilon(\alpha)^3$ and $\varepsilon(\alpha) < 1/e$.

We write

$$Q_{n+1}(x) := a_{n+1}x^{n+1} + \dots = B_{n+1}(x) - B_n(x), \quad \bar{Q}_{n+1} := a_{n+1}^{-1}Q_{n+1}.$$
(2.3)

In order to apply Theorem 2.1, we obtain estimates of the form

$$\|\bar{Q}_{n+1}\|_{\infty} \leq c_1 n^c 2^{-n}, \quad \min_{1 \leq i \leq n+1} \left| \frac{Q_{n+1}(y_{i,n+1})}{P^*(y_{i,n+1})} \right| \geq c_1 n^{-c} 2^{-n} \quad (2.4)$$

for all *n* in a subsequence of integers. We will then use the ideas applied frequently in [2] and [4]. We choose $\alpha = n^{-4}$. Using the maximum principle for logarithmic potentials the upper estimate in (2.4) gives an upper estimate on $U(\mu - v, z)$. Next we use the Lagrange interpolation formula based on the zeros of Q_{n+1} for the polynomial $P^*(x)T_m(x)$, where $m := n - \deg(P^*)$ and T_m is the Chebyshev polynomial of degree *m*, to get a lower estimate on $U(\mu - v, z)$. These estimates will yield (1.11).

The following Proposition 2.2 summarizes certain known facts about Q_{n+1} . Let

$$\Phi_n := |f - B_n|^{p-1} \operatorname{sign} (f - B_n) - |f - B_{n+1}|^{p-1} \operatorname{sign} (f - B_{n+1}), \quad (2.5)$$

and

$$w_n := \left| \frac{\Phi_n}{Q_{n+1}} \right| w. \tag{2.6}$$

Proposition 2.2. (KROÓ-SWETITS [9]) (a) If $x, y \in \mathbf{R}$, $\alpha > 0$,

 $\phi(x, y) := |x|^{\alpha} \operatorname{sign} x - |y|^{\alpha} \operatorname{sign} y, \quad M := |x| + |y|$

then sign $\phi(x, y) = \text{sign}(x - y)$ and

$$\alpha 2^{-\alpha} M^{\alpha - 1} |x - y| \le |\phi(x, y)| \le 2|x - y|^{\alpha}, \quad \alpha \le 1,$$
 (2.7a)

$$2^{-\alpha}|x-y|^{\alpha} \leq |\phi(x,y)| \leq 2\alpha M^{\alpha-1}|x-y|, \quad \alpha \ge 1.$$
 (2.7b)

(b) The polynomial Q_{n+1} has n + 1 simple zeros in (-1, 1) if $B_n \neq B_{n+1}$. Moreover,

 $\operatorname{sign} Q_{n+1} = \operatorname{sign} \Phi_n$

and

$$\int_{-1}^{1} P(x)Q_{n+1}(x)w_n(x)dx = 0 \quad P \in \mathscr{P}_n.$$
(2.8)

We have

$$A_{n}^{2} := \int_{-1}^{1} |Q_{n+1}(x)|^{2} w_{n}(x) dx = \int_{-1}^{1} |Q_{n+1}(x)\Phi_{n}(x)| w(x) dx \ge$$
$$\ge \begin{cases} 2^{-p+1} \|Q_{n+1}\|^{p} \ge c(E_{n} - E_{n+1})^{p}, & \text{if } p \ge 2, \\ c \|Q_{n+1}\|^{2} (E_{n} + E_{n+1})^{p-2}, & \text{if } 1 (2.9)$$

For the convenience of notation, we will adopt the convention that the symbol M_n will denote a quantity of the form c_1n^c or c_1n^{-c} . The values of c_1 and c will be different in different occurrences of M_n , even within the same formula.

Lemma 2.3. (a) For any polynomial $P \in \mathcal{P}_n$,

$$|P(x)| \le M_n \|P\|, \quad |x| \le 1.$$
(2.10)

(b) The leading coefficients a_{n+1} of Q_{n+1} satisfy

$$c2^{n}(E_{n}-E_{n+1}) \leq |a_{n+1}| \leq M_{n}(E_{n}+E_{n+1})2^{n}.$$
(2.11)

Proof. Using (1.9) and Theorem 28 in [11, p. 120], we get for $|x| \leq 1$

$$\min_{P \in \mathscr{P}_{n}} |P(x)|^{-p} \int_{-1}^{1} |P(t)|^{p} w(t) dt \geqslant$$

$$\geq c \min_{P \in \mathscr{P}_{n}} |P(x)|^{-p} \int_{-1}^{1} |P(t)|^{p} \prod_{i=1}^{m} |t - t_{i}|^{a_{i}} dt \geqslant$$

$$\geq M_{n}.$$
(2.12)

A Discrepancy Theorem Concerning Polynomials of Best Approximation in $L_w^p[-1, 1] = 97$

This proves part (a). Let T_{n+1} be the Chebyshev polynomial of degree n+1 defined, as usual, by

$$T_{n+1}(\cos\theta) = \cos\left((n+1)\theta\right).$$

We get the first inequality in (2.11) exactly as in [2] by observing that

$$Q_{n+1} - 2^{-n} a_{n+1} T_{n+1} \in \mathscr{P}_n$$

and using the definitions of best approximation. To obtain the second inequality, we use the extremal property of the Chebyshev polynomials. Using (2.10), we get

$$2^{-n} |a_{n+1}| = 2^{-n} ||a_{n+1} T_{n+1}||_{\infty} \le ||Q_{n+1}||_{\infty} \le M_n ||Q_{n+1}|| \le M_n (E_n + E_{n+1}).$$

This gives the second inequality in (2.11).

Using the definition of Q_{n+1} and (2.11) it is easy to get the upper estimate in (2.4).

Corollary 2.4. If n is any integer satisfying (1.11) then

$$\|\bar{Q}_{n+1}\|_{\infty} \leq 2^{-n} M_n. \tag{2.13}$$

Next, we turn to the lower estimate in (2.4). Our proof involves one step where it is easier to assume that all the moments of w_n are finite; so that one can construct orthogonal polynomials with respect to w_n . In view of the estimates (2.7), this is certainly the case when $p \ge 2$ and also in the case when 1 provided that none of the $zeros of <math>Q_{n+1}$ coincide with the points t_2, \ldots, t_{m-1} described in the hypothesis of Theorem 1.1. Therefore, it is convenient to assume first that these points "do not exist" or equivalently, that each of the exponents a_2, \ldots, a_{m-1} in (1.9) is zero. Thus, we first give the lower estimate in (2.4) which is valid under this assumption and later indicate the changes required in the proof so as to remove this assumption.

Proposition 2.5. Let all the moments of w_n be finite. If deg $P^*(x) = d$ and $n \ge d$ is an integer which satisfies (1.11), then

$$\bar{m}_{n} := \min_{1 \leq i \leq n+1} \left| \frac{\bar{Q}'_{n+1}(y_{i,n+1})}{P^{*}(y_{i,n+1})} \right| = : \left| \frac{\bar{Q}'_{n+1}(y_{i,n+1})}{P^{*}(y_{i,n+1})} \right| \ge 2^{-n} M_{n}.$$
(2.14)

Proof. In this proof, it is convenient to write

$$m_{n} := |a_{n+1}\bar{m}_{n}| = \min_{1 \le i \le n+1} \left| \frac{\bar{Q}'_{n+1}(y_{i,n+1})}{P^{*}(y_{i,n+1})} \right| = : \left| \frac{\bar{Q}'_{n+1}(y_{l,n+1})}{P^{*}(y_{l,n+1})} \right|.$$
(2.15)

Since all the moments of w_n are assumed to be finite, there exists (cf. [7, Chapter I]) a system of polynomials

$$\tilde{Q}_k = \gamma_k x^k + \cdots, \quad \gamma_k > 0, \qquad (2.16)$$

orthonormal with respect to w_n on [-1, 1]. Further, (2.9) and (2.8) imply that

$$A_n^{-1}Q_{n+1} = \tilde{Q}_{n+1}$$

Let λ_j be the Cotes number corresponding to $y_{j,n+1}$ (cf. [7]). Using the Christoffel–Darboux formula, we get

$$\frac{A_n P^*(y_{l,n+1})}{Q'_{n+1}(y_{l,n+1})} = \frac{\gamma_n}{\gamma_{n+1}} \lambda_l P^*(y_{l,n+1}) \tilde{Q}_n(y_{l,n+1}).$$
(2.17)

Since w_n is supported on [-1, 1], an application of Schwarz inequality gives

$$\frac{\gamma_n}{\gamma_{n+1}} = \left| \int_{-1}^1 x \widetilde{Q}_n(x) \widetilde{Q}_{n+1}(x) w_n(x) dx \right| \leq 1.$$

Using this estimate, the Schwarz inequality and the quadrature formula, we get

$$\frac{A_{n}}{m_{n}} \leq \lambda_{l} |P^{*}(y_{l,n+1}) \widetilde{Q}_{n}(y_{l,n+1})| \leq \\ \leq \sum_{j=1}^{n+1} \lambda_{j} |P^{*}(y_{j,n+1}) \widetilde{Q}_{n}(y_{j,n+1})| \leq \\ \leq \left\{ \int_{-1}^{1} P^{*2}(x) w_{n}(x) dx \right\}^{1/2}.$$
(2.18)

This ends the part of the proof where the assumption that all moments of w_n should be finite is necessary. The rest of the proof does not use this assumption.

We now distinguish between two cases. First, let $p \ge 2$. Using (2.7b) with $\alpha = p - 1 \ge 1$ we see that

$$|\Phi_n| \leq 2(p-1)\{|f-B_n|+|f-B_{n+1}|\}^{p-2}|Q_{n+1}|.$$

A Discrepancy Theorem Concerning Polynomials of Best Approximation in $L_w^p[-1,1]$ 99

So, using Hölder's inequality with exponents p/(p-2) and p/2, we get

$$\int_{-1}^{1} P^{*2}(x)w_{n}(x)dx =$$

$$= \int_{-1}^{1} P^{*2}(x) \left| \frac{\Phi_{n}}{Q_{n+1}} \right| w(x)dx \leq$$

$$\leq 2(p-1) \int_{-1}^{1} \{ |f - B_{n}| + |f - B_{n+1}| \}^{p-2} P^{*2}(x)w(x)dx \leq$$

$$\leq 2(p-1) |||f - B_{n}| + |f - B_{n+1}| ||^{p-2} ||P^{*}||^{2} \leq$$

$$\leq c(E_{n} + E_{n+1})^{p-2}.$$
(2.19)

From (2.11),

$$(E_n + E_{n+1})^{-2} \leq M_n |a_{n+1}|^{-2} 2^{2n}.$$

The estimate (2.18) now gives

$$\int_{-1}^{1} P^{*2}(x) w_n(x) dx \leq M_n |a_{n+1}|^{-2} 2^{2n} (E_n + E_{n+1})^p.$$
(2.20)

Again, from (2.9) and (1.10), we have

$$A_n^2 \ge c(E_n - E_{n+1})^p \ge M_n(E_n + E_{n+1})^p.$$
(2.21)

From (2.18), (2.20) and (2.21), it follows that

$$m_n^{-2} \leq A_n^{-2} \int_{-1}^1 P^{*2}(x) w_n(x) dx \leq M_n |a_{n+1}|^{-2} 2^{2n}$$

which leads to (2.14) in the case when $p \ge 2$.

Next, we consider the case when $1 . Using (2.7a) with <math>\alpha = p - 1$ and (1.12) we get

$$\int_{-1}^{1} P^{*2}(x) w_{n}(x) dx \leq 2 \int_{-1}^{1} |Q_{n+1}(x)|^{p-2} |P^{*}(x)|^{2-p} |P^{*}(x)|^{p} w(x) dx \leq \leq c \int_{-1}^{1} \left| \frac{P^{*}(x)}{Q_{n+1}(x)} \right|^{2-p} dx.$$
(2.22)

Since $n \ge d$, we may express P^* using the Lagrange interpolation

formula based on the zeros of Q_{n+1} and deduce that

$$\frac{P^*(x)}{Q_{n+1}(x)} = \sum_{j=1}^{n+1} \frac{P^*(y_{j,n+1})}{(x-y_{j,n+1})Q'_{n+1}(y_{j,n+1})}.$$

Using the fact that 0 < 2 - p < 1 and the definition (2.15) of m_n , we get

$$\left|\frac{P^*(x)}{Q_{n+1}(x)}\right|^{2-p} \le m_n^{p-2} \sum_{j=1}^{n+1} |x - y_{j,n+1}|^{p-2}$$

and hence that

$$\int_{-1}^{1} \left| \frac{P^{*}(x)}{Q_{n+1}(x)} \right|^{2-p} dx \leq m_{n}^{p-2} \sum_{j=1}^{n+1} \int_{-1}^{1} |x-y_{j,n+1}|^{p-2} dx \leq cnm_{n}^{p-2}.$$

Along with (2.22) and (2.18) this gives

$$m_n^{-2} \leqslant cnA_n^{-2}m_n^{p-2},$$

i.e.,

$$m_n \ge M_n A_n^{2/p}. \tag{2.23}$$

From (2.9), (1.10) and (2.11) we have

$$A_n^2 \ge c \|Q_{n+1}\|^2 (E_n + E_{n+1})^{p-2} \ge$$

$$\ge c(E_n - E_{n+1})^2 (E_n + E_{n+1})^{p-2} \ge$$

$$\ge cn^{-4} (E_n + E_{n+1})^p \ge M_n (|a_{n+1}|^{2^{-n}})^p.$$

Together with (2.23) this gives

$$m_n \ge M_n |a_{n+1}| 2^{-n}$$

and hence (2.14) also in the case when 1 .

Next, we show that the estimate (2.18) holds even without the assumption that all moments of w_n be finite. This will be done by an approximation argument.

Lemma 2.6. Let E_k be a neighborhood of the point set $\{t_2, \ldots, t_{m-1}\}$ such that

$$\int_{E_k} w(t)dt \le 1/k, \tag{2.24}$$

 $E_{k+1} \subseteq E_k, \ k = 1, 2, \dots, \ and \ [-1, 1] \setminus E_1$ have a positive Lebesgue

100

A Discrepancy Theorem Concerning Polynomials of Best Approximation in $L_w^p[-1,1] = 101$

measure. Let

$$W_k(x) := \begin{cases} w(x), & \text{if } x \in [-1, 1] \setminus E_k, \\ 0, & \text{if } x \in E_k, \end{cases}$$

and let

$$\| f - B_{p,n,k} \|_{p,W_k} = \min_{P \in \mathscr{P}_n} \| f - P \|_{p,W_k}.$$

Then the sequence $\{B_{n,p,k}\}$ converges uniformly on compact subsets of the complex plane to $B_{n,p}$.

Proof. In this proof, p and n are fixed quantities and therefore, it is convenient to denote $\|\cdot\|_{p,W_k}$ by $\|\cdot\|_k$, $B_{n,p,k}$ by B_k , $\|\cdot\|_{p,w}$ by $\|\cdot\|$ and $B_{n,p}$ by B. We have

$$\limsup_{k \to \infty} \|f - B_k\|_1 \leq \limsup_{k \to \infty} \|f - B_k\|_k \leq \leq \limsup_{k \to \infty} \|f - B\|_k \leq \|f - B\|. \quad (2.25)$$

Therefore, the sequence $\{B_K\}$ is uniformly bounded on $F_1:=[-1,1]\setminus E_1$. Since each B_k is in the finite dimensional space \mathcal{P}_n , for any subsequence Λ of integers, there exists a subsequence Λ_1 of Λ and a polynomial $\tilde{B} \in \mathcal{P}_n$ such that $\{B_k\}_{k \in \Lambda_1}$ converges uniformly to \tilde{B} on F_1 . Necessarily, the subsequence $\{B_k\}_{k \in \Lambda_1}$ converges uniformly to \tilde{B} also on [-1, 1]. Then the dominated convergence theorem shows that

$$||f - B|| \leq ||f - \tilde{B}|| = \lim_{k \in \Lambda_1} ||f - B_k||_k.$$
 (2.26)

Together with (2.24), this shows that $||f - B|| = ||f - \tilde{B}||$. Since the best approximating polynomial from \mathcal{P}_n in the L^p_w norm is unique, we conclude that $B = \tilde{B}$. Thus, the whole sequence $\{B_k\}$ converges uniformly on [-1, 1], and hence on compact subsets of the complex plane, to B.

Now, we are in a position to obtain the estimate (2.18) without w having to satisfy the condition that all moments of w_n be finite. Let $A_{n,k}, m_{n,k}, Q_{n+1,k}$ and $w_{n,k}$ etc. denote the quantities A_n, m_n, Q_{n+1} and w_n corresponding to W_k rather than the original weight function w. We observe that we can choose the same polynomial P^* for all k. Since all moments of each $w_{n,k}$ are easily seen to be finite, we have

$$\frac{A_{n,k}}{m_{n,k}} \leq \left\{ \int_{-1}^{1} P^{*2}(x) w_{n,k}(x) dx \right\}^{1/2}.$$
(2.27)

In view of Lemma 2.6, the zeros of $Q_{n+1,k}$ converge to the zeros of Q_{n+1} . Therefore, we arrive at (2.18) by letting $k \to \infty$ in (2.27). As remarked earlier, this completes the proof of (2.14) even without the assumption that all moments of w_n are finite.

Proof of Theorem 1.1. We observe that

$$\int_{-1}^{1} \log \frac{1}{|z-t|} d\mu(t) = \begin{cases} \log 2, & x \in [-1,1], \\ \log 2 - \log |z + \sqrt{z^2 - 1}|, & z \in \mathbb{C} \setminus [-1,1]. \end{cases}$$
(2.28)

The estimate (2.13) can now be written in the form

$$U(\mu - \nu, z) \leq c \frac{\log n}{n}, \quad z \in [-1, 1].$$
 (2.29)

In view of the maximum principle for potentials ([10, Theorem 1.10]) the estimate (2.29) holds for all $z \in \mathbb{C}$. Next, let $n \ge 2d$ and (1.10) be satisfied. We express the polynomial $T_{n-d}P^*$ using the Lagrange interpolation formula and deduce that for any z with $|z + \sqrt{z^2 - 1}| = 1 + n^{-4}$,

$$|T_{n-d}(z)P^*(z)| \leq M_n 2^n |\overline{Q}_{n+1}(z)|.$$

Using well known formulas for the Chebyshev polynomials in the complex domain and (2.28) this leads to

$$U(\mu - \nu, z) \ge -c \frac{\log n}{n}, \quad |z + \sqrt{z^2 - 1}| = 1 + n^{-4}.$$
 (2.30)

In view of (2.29) and (2.30), we may apply Theorem 2.1 with $\alpha = 1 + n^{-4}$ and $\varepsilon(\alpha) = c \log n/n$ to arrive at (1.12).

References

- BINEV, P., PETRUSHEV, P., SAFF, E. B., TRIFONOV, O.: Distribution of interpolation points of best L² approximants (*n*-th partial sums of Fourier series). Constr. Appr. 9, 445–472 (1993).
- [2] BLATT, H.-P.: On the distribution of simple zeros of polynomials. J. Approx. Theory 69, 250-268 (1992).
- [3] BLATT, H.-P., LORENTZ, G. G.: On a theorem of Kadec. In: Proceedings of the Conference on Constructive Theory of Functions, Varna, 1987, ed. Sendov, Petrushev, Moleev, Tashev pp. 56-64, Bulgarian Academy of Sciences. 1988.
- [4] BLATT, H.-P., MHASKAR, H. N.: A general discrepancy theorem. Arkiv för Mathematik. Ark. Mat. 31, 219–246 (1993).
- [5] CHENEY, E. W.: Introduction to Approximation Theory. New York: Chelsea. 1982.

A Discrepancy Theorem Concerning Polynomials of Best Approximation in $L_{w}^{p}[-1,1]$ 103

- [6] ERDÖS, P., TURÁN, P.: On the uniformly dense distribution of certain sequences of points. Ann. of Math. 51, 105–119.
- [7] FREUD, G.: Orthogonal Polynomials. Oxford: Pergamon Press. 1971.
- [8] KADEC, M. I.: On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials. Amer. Math. Soc. Transl. 26, 231–234 (1963).
- [9] KROÓ, A., SWETITS, J. J.: On density of interpolation points, a Kadec-type theorem and Saff's principle of contamination in L_p-approximation. Constr. Appr. 8, 87-103 (1992).
- [10] LANDKOF, N. S.: Foundations of Modern Potential Theory. Berlin: Springer. 1972.
- [11] NEVAI, P.: Orthogonal Polynomials. Mem. Amer. Math. Soc. 213. Providence: Amer. Math. Soc. 1979.
- [12] PINKUS, A., ZIEGLER, Z.: Interlacing properties of zeros of the error function in best L^p approximation. J. Approx. Theory 27, 1-18 (1970).

H. P. BLATT Mathem.-Geogr. Fakultät Katholische Universität D-85072 Eichstätt Federal Republic of Germany and

H. N. MHASKAR Department of Mathematics California State University Los Angeles, CA 90032 USA