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Abstract 

We describe a purely combinatorial algorithm which, given a submodular set function f on 
a finite set V, finds a nontrivial subset A of V minimizing f[A] +f[V \ A]. This algorithm, an 
extension of the Nagamochi-Ibaraki minimum cut algorithm as simplified by Stoer and Wag- 
ner [M. Stoer, F. Wagner, A simple min cut algorithm, Proceedings of the European Sympo- 
sium on Algorithms ESA '94, LNCS 855, Springer, Berlin, 1994, pp. 141 147] and by Frank 
[A. Frank, On the edge-connectivity algorithm of Nagamochi and Ibaraki, Laboratoire 
Art6mis, IMAG, Universit6 J. Fourier, Grenbole, 1994], minimizes any symmetric submodu- 
lar function using O(]VI s) calls to a function value oracle. @ 1998 The Mathematical Pro- 
gramming Society, Inc. Published by Elsevier Science B.V. 

Keywords." Symmetric submodular function minimization; Submodular function minimiza- 
tion; Symmetric submodular functions; Submodular functions; Submodular systems 

1. Introduction 

Let V be a finite set, and n - ]V[. A real-valued function f :  2 v H N is submod- 
ular if and only if it satisfies the submodular  inequality, 

f[A UB] +f[A  NB] <~f[A] + f i B ]  (1) 

for all subsets A, B _c V. The pair ( V , f )  is called a submodular system. Submodular i ty  

is one o f  the deepest and most  useful properties in combinator ia l  optimization,  see 
[1-4,31] for further discussion of  submodular i ty  and related properties. We assume 

th roughout  this paper  that  the funct ion f is given by a value oracle which, for any 

input subset A C_ V, returns the numerical  value o f  f[A]. The problem of  finding a 

subset A which minimizes f[A] is impor tan t  in combinator ia l  optimization,  see the 

above references. It is solved in polynomial  time by Gr6tschel et al. [5] with the el- 
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lipsoid method, using O(n 4) value oracle calls [6]. Cunningham [7] proposes a more 
combinatorial algorithm, with running time O(Mn3 log [Mn]), where 

M >~ maxslf[S] [; that is, the algorithm is pseudo-polynomial. Finding a purely com- 
binatorial and polynomial time algorithm for this problem remains one of the impor- 
tant open questions in combinatorial optimization. In this paper we solve this 
problem for the class of  symmetric submodular functions. We present a polynomial 
time algorithm which minimizes such functions using O(n 3) oracle calls. 

A set function s: 2 v H ~ is symmetric if 

s[A]=s[V\A] for a l l A E  V. (2) 

Given two elements t and u of  V, a subset A of Vseparates t from u if exactly one of t 
or u is in A. Cheng and Hu [8] show how to minimize a general symmetric function s 
using n - 1 calls to an oracle which, given any two elements t and u of  V, finds a sub- 
set A separating t and u and with minimum value s[A]. In this paper, we do not as- 
sume such a minimization oracle, but we require the function to be submodular. We 
also require the minimizer A* of s to be a nontrivial subset of  V, that is, (~ c A* c V; 
otherwise, the problem would be trivial since the symmetry and submodularity of s 
imply s[~] = s[V] <~ s[A] for all A c_ V. 

Symmetric submodular functions were introduced in [9] by Fujishige, who pro- 
vides a decomposition theory for such functions. A canonical example of  a symmet- 
ric submodular function is the cut function of an undirected network. Given an 
undirected graph G = (V,E) and an edge cost function c: E H R, the cut function 

f is defined by 

f[A] - Z { c [ e ]  C E: e has one endpoint in A and one in V \ A}. 

This function is symmetric and, when all c[e] are nonnegative, submodular. Well- 
known algorithms for finding a minimum cut separating specified nodes s and t 
are based on network flow techniques; see e.g. [10]. Fixing s and repeating this for 
all n - 1 choices of  node t (t ¢ s) yields a (globally) minimum cut. Hao and Orlin, 
[11] present a fast implementation which also applies to directed networks. Gomory  
and Hu [12] show how to choose n - 1 pairs of  terminals to construct a tree (V, T), 
now known as a cut-equivalent tree (or G o m o r y - H u  tree), satisfying the following 
properties: (i) every tree edge has a value equal to the minimum capacity of a cut 
(in the original network) separating its endpoints; and (ii) the cut determined in 
the tree by a minimum value edge on the path connecting any two nodes s and t 
is a minimum cut separating s and t in the original network. Goemans and Ram- 
akrishnan [30] point out that such a cut-equivalent tree exists for any symmetric sub- 
modular  function, and show how to use it to minimize the function over certain 
families of  subsets. The cut-equivalent tree is related to, but distinct from, the de- 
composition trees in [8,9]. 

Nagamochi  and Ibaraki  [13,14] provide a novel algorithm for finding a globally 

minimum cut in an undirected network. Their algorithm was primarily developed 
for unit capacities (all c[e] = 1) for which case it runs in O(nm) time, where 
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m -- ]E]. Its extension to arbitrary nonnegative edge costs was noted by Nagamochi 
and Ibaraki [14], and simplified independently by Stoer and Wagner [15] and by 
Frank [16], see also Subramanian's expository article [32]. Nagamochi et al. [17] re- 
port on computational experiments indicating that this algorithm is considerably 
faster than the previous fastest known algorithm due to Padberg and Rinaldi [18]. 
See [19] for additional computational results. The algorithm presented in this paper 
is an extension of the Nagamochi-Ibaraki algorithm to arbitrary symmetric submod- 
ular functions. It reduces precisely to the Stoer Wagner and Frank versions of the 
Nagamochi-Ibaraki algorithm when applied to an undirected network cut function; 
see also Section 9.8 in Narayanan's monograph [31] for a presentation of the present 
algorithm closely following the notation of Stoe~Way 

We now discuss some other examples of symmetric submodular functions. First, 
recall that the cut function of a directed network N = (V,A, c) is also submodular 
when the arc costs are nonnegative. Gupta showed ([20], Lemma 2.1) that it is sym- 
metric if and only if the network is pseudosymmetric, that is, if its arc cost function 
c : A ~ ~ satisfies 

~{c[i j] :  /with ij E A} = ~-~{c~/'k]: k wi th jk  E A) 

for all j ~ V. The cut function has also been extended by Granot et al. [21] to mixed 
disconnecting sets, consisting of nodes and edges, in networks that may include both 
directed and undirected edges. The resulting function is submodular and, when the 
network has only undirected edges, it is also symmetric. 

Wagner [22] pointed out the following hypergraph extension of the cut function. 
Let o~ be a family of subsets of V and a weight function w: J{~ >+ ~. Define the set 
function f : 2  V ~-+ ~ as follows: 

f [A]= ~-~{w[H]: H E • ,  H N A  ~ a n d H N ( V \ A )  ¢(~} 

for all A c V. This function is symmetric and, if w ~> 0, submodular (see also Exam- 
ple 9.8.1 (iii) in [31], p. 354). Subsequent to the conference version [23] of this paper, 
Wagner [22] has extended the Stoer-Wagner algorithm to this case, using the special 
hypergraph structure to speed up the algorithm. 

A large class of symmetric submodular functions not related to networks may be 
constructed by the following standard process. Let f be an arbitrary submodular 
function and define its symmetric part sf and antisymmetric part af as follows: 

sf[A] "- ½(f[A] + f I V \ A I )  and auEA ] - ½(f[A] fEV\A] )  (3) 

for all A C V. Then f = ~. + af and s s is symmetric. Further, sj is submodular i f f  is. 
Note that, i f f  is symmetric, then sf - f and af = 0. In fact, the algorithm presented 
below minimizes the symmetric part s j, of any given submodular function f by direct- 
ly using the f function values. 

Cunningham [24] defines the connectivity function cf of the function f by 

cf[A] - f[A] + f I V  \ A] - f[V] 
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for all A C_ V. It is clear that a nontrivial subset A of V minimizes c r if and only if it 
minimizes sf. Cunningham uses the connectivity function cf to develop a decompo- 
sition theory for arbitrary submodular functions f ,  which extends Fujishige's decom- 
position theory [9] for symmetric submodular functions. Special cases include the 
decomposition of cut functions, graph functions and matroid functions, see [24] 
for details. 

Ba'iou et al. [25] consider partition inequalities 

x[6(S1,.. . ,  Sp)] >~ ap + b, 

where (SI, . . . ,Sp) form a partition of the node set V of an undirected graph 
(V,E);cS(S1,...,Sp) is the set of all edges in E with endnodes in different sets of 
the partition; xle I >~ 0 are given edge weights; and a > 0 and b are given constants. 
Partition inequalities with a = 1 and b = -1  define the dominant of the spanning 
tree polytope. They also arise as valid inequalities for facets of polyhedra related 
to k-connectivity problems, including various minimum cost k-edge or k-node con- 
nected subgraph or spanning subgraph problems, the Travelling Salesman Problem, 
and a network loading problem in communication network design; see [25] for de- 
tails and references. Ba'/ou et al. [25] show that, given x ~> 0, a > 0 and b > -1 ,  a 
most violated partition inequality may be found by minimizing the symmetric part 
s / o f  the submodular function f defined by 

f[S] min ~ ( 6 [ ~ ] - 1 ) :  k ~> l a n d ( T l , . . . , T k )  form a partition of S , 
i=1 

and 6IT 1 is the set of all edges in E with exactly one endpoint in T. They use minimum 
cut based algorithms of Cunningham [26] and Barahona [27] when b/a ~< 1, and 
the algorithm from the present paper when b/a > -1 .  

The contents of this paper are as follows. In Section 2 we define pendent pairs and 
present an algorithm for finding a pendent pair for a submodular system (V , f ) ,  
using O(n 2) f -value oracle calls. In Section 3 we use pendent pairs to find a nontrivial 
subset A or V which minimizes the symmetric part S / o f  a submodular function f .  
Our algorithm recursively uses the pendent pair algorithm n - 1 times. It also uses 
the fact that it is easy to enforce, for symmetric submodular functions, the require- 
ment that an optimum set must not separate any two given elements of V. Finally, in 
Section 4, we discuss some related problems. 

2. Pendent pairs 

In this section, we define pendent pairs for a submodular system (V , f ) ,  and we 
present an algorithm which finds a pendent pair using O(n 2) calls to the f-value or- 
acle. Throughout  the paper, we use the simplified notations A + u - A U {u} when 

u ([A;A - u  - A \ {u}; and f[u] - f[{u}l. 
An ordered pair (t, u) of elements of V is called a pendent pair for (V, f )  if {u} has 

minimum sf value among all subsets of V which separate t from u, that is, if 
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sf[u] = min {sf[U]: U C V,t  ~ U andu E U}. (4) 

The existence of pendent pairs follows from that of a cut-equivalent tree [30] for sym- 
metric sub-modular functions; for example, take any leaf and its neighbour in a cut- 
equivalent tree. It will also follow from the constructive algorithm below. 

We now describe an algorithm for finding a pendent pair in V. The algorithm 
constructs an ordering (vl, v2, . . . ,  v,,) of the elements in V, where the first element 
vl may be specified as an (arbitrary) input element x E V. Let W0 - ~ and, for 
i =  1 , . . . , n ,  let W~- {vj: j<~i}. At any step i ( i =  1 , . . . , n - I ) ,  the algorithm 
maintains a data structure Q that contains all the elements u c V \ ~ along with 
the key value 

key[u] - f [ ~  + u] - f l u  I. (5) 

The function UPDATE[key] updates (or recomputes) these key values after the 
counter i and consequently the set ~ have been incremented. The function EX- 
TRACT-MIN[Q] returns an element from Q with least key value, and deletes it from 
the data structure. 

Algorithm PENDENT-PAIR IV, f ,  x] 
1. Vl+~X 

2. f o r i =  1 t o n - 1  
3. do UPDATE[key] 
4. vi+l +- EXTRACT-MIN[Q] 
5. return (vn 1, Un) 

Lemma 1. I f  (V, f )  is a submodular system then for all i = 1 , . . . ,  n - 1, all y C V \ Wi 
and all X c_ Wi 1, 

f[W~] +f~v] ~< f [W~\X] + f i X + y ] .  (6) 

Proof. The lemma trivially holds for i = 1. By induction, assume that Eq. (6) holds 
for all i = 1 , . . . , k -  1. Consider any u c V \  V~, and S c_ Wk-1. From Step 4 of the 
algorithm and the definition (5), we have 

f[Wk] + f lu ]  ~< f[Wk 1 + u] +f[vk]. (7) 

Let j be the smallest integer such that S _c Wj 1. 
I f j  = k, then vk 1 c S and Wk-1 \ S c_ Wk 2. Therefore, 

f[W~ \ S] + f [S  + u] = f[(Wk_l \ S) + vk] + U[S + u] 

~>f[Wk 1] +f[vk] - f[S] + f [S  + u] 

>~ f[Wk-1 + U] +f[vk] 

~> f[Wk] + f[u], 



8 3/L Queyranne / Mathematical Programming 82 (1998) 3 12 

where the inequalities follow respectively f rom the inductive assumption (6) with 

i = k - 1,y = v~ and X +- Wk i \ S; the submodular  inequality (1) with A = Wk 1 

and B = S + u; and inequality (7). 

I f  j ~ < k - 1  then vs 1 C S  and none of  vs-,...,vk is in S. Since 

{Vj, . . . ,  Vk} = Wk \ Wjl 1, we have, 

f [W~\S]  + f I S + u ]  =f[(Wj_ 1 \S )  U(Wk\ Wj l)] + f I S + u ]  

/> f[(Wj_ 1 \ S) U (Wk \ Wj_I)] +f[Wj] - f [ W j  \ S 1 +f[u] 

~> f[Wk] + f lu] ,  

where the inequalities follow respectively f rom the inductive assumption (6) with 

i = j , y  = u and X = S; and the submodular  inequality (1) with 

A = ( W j _ I \ S )  U(Wk\Wj_I)  and B = W  1. Thus Eq . (6 )  holds for i = k  and any 

y = u E V \ W~ and X = S c_ W~ 1. The p roo f  is complete, l~. 

Theorem 2. The algorithm PENDENT-PAIR  returns a pendent pair (v, l, v~) after 
using O(n 2) calls to the f-value oracle and O(n 2) other operations. 

Proof. Lemma 1 with i - n - 1 (and therefore y = v,) implies that the pair (vn 1, vn) 

is a pendent  pair. There are n - 1 calls to UPDATE, each requiring O(n) oracle calls. 

In a simple implementation, the data  structure Q is a linked list, and each of  the n 1 

calls to E X T R A C T - M I N  requires O(n) operations. [ ]  

3. Using pendent pairs for finding an optimum set 

We now present a recursive algori thm using pendent  pairs to find a nontrivial sub- 

set A of  V minimizing the symmetric par t  sf o f  a submodular  function f .  Note  that 

the problem would be trivial without  the restriction that A be a nontrivial subset of  

V, since the submodular i ty  o f f  implies that sf[0] = sf[V] <~ sr[AI for all A c_ V. 
The algori thm is based on the following simple observation. I f  (t, u) is a pendent 

pair for (V , f ) ,  then an op t imum subset A either separates t f rom u, in which case 

sf[A 1 = sf[u], or it does not  separate t f rom u. For  the latter case, we may  "merge"  
elements t and u together as a single element denoted, say, by t. Thus we are lead 

to consider the system (V' , f ' )  where V' =" V - u and f ' :  2 v' ~+ R is defined by 

f'[A'] - ~ f[A' + u] if tEA ' ,  

[ f[A' l otherwise. 

It is easy to verify that  the function f '  is submodular  when f is. Thus (V' , f ' )  is a 
submodular  system, st' [A - u] = sf[A] whenever bo th  t, u c A, and the minimization 

o f  Sr, can be performed recursively in exactly the same fashion as for (V , f ) .  After 

any number  o f  successive mergings, every element o f  the current set V' represents 

a subset o f  the original set V. In effect, V' defines a part i t ion o f  V. After n 1 steps, 
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the current set V' has a single element, so there is no nontrivial subset and the recur- 
sive process stops. At this point, we have identified n -  1 candidate subsets 
A h (h = 1 , . . . ,  n -  1) along with their values sj[Ah]. A globally optimum set is then 
an A h for which sf[Ahl is minimum. We outline below an algorithm implementing this 

recursive scheme. 
In this algorithm, the current submodular system (V' , f ' )  defines a partition 

{Sj:j E V'} of V. Initially V' = V and each S 1 = {j}. The function f ' :  2 v' ~ E is de- 

fined by 

fIA'] - f[U jcA,Sj] (S) 

for all A' C_ V'. It is well known, e.g. [4], that (V ' , f ' )  indeed forms a submodular sys- 

tem when ( V , f )  does. 

Algorithm OPTIMAL-SET[V,  f ,x] 
1. fo r j  E V do Sj +- {j}; let V' ~ {Sj : j E V }; throughout, f '  is as defined in (8) above, 

2. for h = 1 to I V l - 1 ,  
3. do (St,Su) +-- PENDENT-PAIR[V' , f ' ,Sx l ,  
4. store A h ~ S~ and s h +- sf, [S~], 

5. update St ~ St U Su and V' ~ V' \ {S~}, 
6. Choose i c arg rain {sh: h = 1 , . . . , n -  1}, 
7. return A i. 

Theorem 3 follows immediately from the preceding observation, and from Theo- 
rem 2. Note that, in counting operations, we aggregate as a single oracle call to f all 
the operations involved in Eq. (8), including the expansion of subset A' into UjcA,S 1. 

Theorem 3. When (V,f)  is a submodular system, the algorithm O P T I M A L - S E T  
returns a nontrivial subset of  V which minimizes sf, using O(n 3) calls to the f-value 
oracle, and O(n 3) other operations. 

I f f  is a symmetric submodular function, then sf = f and the algorithm described 
in the previous sections directly minimizes f over all nontrivial subsets of V. Thus we 
have described a purely combinatorial algorithm which minimizes a symmetric sub- 
modular function using O(n 3) calls to a function value oracle, improving over the 
O(n 4) oracle calls used by the ellipsoid-based, general submodular minimization al- 
gorithm of [5]. In some applications, one may reduce the running time of the algo- 
rithm by efficiently updating previously computed function values, and by using a 
more sophisticated data structure for Q. This is the case when f is the cut function 
of an undirected network, see [14,15] for details. 

4. Related problems 

The symmetric submodular s, t-cut problem is as follows: given a submodular func- 
tion f and two distinct elements s, t c V, find a subset separating s from t and with 



10 M. Queyranne / Mathematical Programming 82 (1998) 3-12 

minimum ss-value. The existence of a combinatorial algorithm for this problem 
would immediately extend to several related problems. Indeed, the cut-equivalent 
tree for the symmetric function s s can be constructed by solving n - 1 symmetric 
submodular s, t-cut problems. Extending results of  Padberg and Rao [28], Gr6tschel 
et al. [5], and Gabow et al. [29] on network cuts, Goemans and Ramakrishnan [30] 
show that the cut-equivalent tree may then be used to find an ss-minimum subset in 
certain subset families, in particular so-called T-even and T-odd subsets. In addition, 
Cunningham's decomposition [24] for a submodular function f can be constructed 
by solving O(n 3) symmetric submodular s, t-cut problems involving the function St- 

The next result shows that the symmetric submodular s, t-cut problem is just as 
hard as that of  minimizing a general (i.e., nonsymmetric) submodular function. 
Let f :  2 ~' H ~ be a submodular function, and M a positive number  such that 

- M  < minsfIS] and - M < minsf[S 1 - maxsf[S 1. (We may take M = 1 + 2 ~+1 
where fl is a given upper bound on the size of  f[S] for any S, as in [5], or obtain 
m from O(IV'I) calls to the f-oracle.)  Define V - V '  U {s, t} for s, t ¢ V' and the func- 
tion g: 2 v H ~ as follows: 

f[A - s] if s C A and t ~ A, 

g[A]= - M ] A I  i fs ,  t C A ,  and 

g[V\A] i f s  ~A.  

Lemma 4. Let f :  2 v' ~-+ ~ be a submodular function, and V and g as just defined Then 
1. g is symmetric and submodular; and 
2. i f  A is' a g-minimum subset of  V with s E A and t ~ A, then A - s is an f-minimum 

subset of  V'. 

Proofl The symmetry of g immediately follows from the third part  of its definition, 
and statement (2) from the first part. Hence we only need to prove that g satisfies the 
submodular inequality (1). This is immediate ifA N {s, t} = B N {s, t}, or if one of A 
or B contains the other. Otherwise, first assume that s ~ A and t ~ A. If  s ~ B and 

t E B, then 

g[A U B I + g[A NB] ~< - - 2 M < f I A - - s ] + f [ ( V \ B )  s l = g[A] + g[Bl, 

whereas if s, t E B (and A g~ B), then 

g[AUB]-g[B] ~ - M  < f [ A -  s] . f [ ( A N B ) -  s I =g[A]-g[ANB] .  

If, on the other hand, s, t C A and s, t ~ B then g[A U B] <~ g[A] and g[A N B] <~ g[B]. Fi- 
nally, the other cases follow by symmetry. [] 

We now turn to a more general problem for which no efficient combinatorial al- 
gorithm is known at the present: given a submodular function f and a modular func- 
tion m also defined on V, find a subset of  V with minimum (s r + m)-value. (Recall 
that a modular function f satisfies condition (1) as an equality for all subsets A,B 
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of  the g round  set V.) The symmetric submodular  s, t-cut problem is a special case 

where m : Mzt Mzs with M a large positive constant  (as in the p r o o f  o f  L e m m a  

4) and z,[A] = 1 if a E A and 0 otherwise. Minimizing s t + m for a general modula r  

function m is equivalent to the membership problem for the submodular  polyhedron  

P~I (and for P,r+~ for any modular  funct ion #) where 

Pj--  {x C V: x[S] <~ f[S] for all S _c V} 

for any set function f defined on V (see, e.g. [4]). Note ,  however, that  pendent  pairs 

need not  exist for  a submodular  function g = s f  + m with sf symmetric submodular  

and m modular .  Indeed, consider the case where V = {1 , . . .  ,n} with n even, say, 

n = 2 p ;  s f - 0 ;  and m = y ~ s m ~ ) G  with m ~ < 0  for l~<v~< p, and m ~ > 0  for 

p + 1 ~< v ~< n. For  any distinct s, t, C V, the unique subsets separating s f rom t and 

with min imum g-value are Sst ( { 1 , . . . , p } -  t ) + s  and its complement.  Thus 
I&,l ~ > p -  1 and Iv\ss, I ~ > p -  1 and therefore there are no pendent  pairs for  g 
whenever n ~> 6. Note  also that there are (p + 1)2 O(n 2) distinct separating subsets 

Sst for g, and thus their structure must  be more  complex than that  o f  a cut-equivalent 

(Gomory  Hu)  tree. 
By Lemma 4 above, the problems discussed in this section are equivalent to 

that  finding an efficient combinator ia l  a lgori thm for minimizing a general submod-  

ular function, which remains unsolved at present. 
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