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Abstract 

We consider conceptual optimization methods combining two ideas: the Moreau-Yosida regular- 
ization in convex analysis, and quasi-Newton approximations of smooth functions. We outline several 
approaches based on this combination, and establish their global convergence. Then we study theo- 
retically the local convergence properties of one of these approaches, which uses quasi-Newton updates 
of the objective function itself. Also, we obtain a globally and superlinearly convergent BFGS proximal 
method. At each step of our study, we single out the assumptions that are useful to derive the result 
concerned. 
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1. Introduction 

We consider in this paper algorithms to solve 

min{f(x): x ~  N} , (1.1) 

where f is always assumed closed proper convex (we follow the terminology of [ 3 0 ] : f  

takes its values in R U { + ~} but is not identically + ~ ;  closedness means lower semi- 

continuity). Additional assumptions onfwi l l  also be made, when studying rates of conver- 

gence. 

Our algorithms are based on the use of  the proximal mapping: given x ~ R  N and a 

symmetric positive definite N X N matrix M, f i s  perturbed to the strongly convex function 

1 
cpM(z) :=f(z)  + ~ ( M ( z - x ) ,  z - x )  ; (1.2) 
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(U, v)  := UTV is the usual dot product in R ~v and I " I the associated norm. Note that q~M has 

a unique minimizer. The image of x under the proximal mapping is 

pM(X) := arg min{ q~M(Z) : Z ~ R u} • ( 1.3) 

Throughout, we will find it convenient to use the notation 

x p :=pM(X) • 

A traditional way of solving problem (1.1) via the proximal mapping (1.3) is the 
proximal point algorithm (see [ 19,31 ] ). This method generates a minimizing sequence 
{x,} by the recurrence formula 

x~ + 1 := x p =pM(X,)  , (1.4) 

with a possibly varying matrix M of the form M =  c,,I, cn > 0. In view of the optimality 
condition for (1.3),  

x P = x - M - l g  p, for some gP~Of (x  p) , 

the proximal point algorithm can be seen as a 'preconditioned implicit gradient method'  to 
m i n i m i z e r  The method is implicit since the subgradient used in the formula is evaluated 
at x p, not at x, and the preconditioning is realized by the matrix M. 

Another motivation for this approach is the Moreau-Yosida regularization of f (see 
[21,31 ] ). This is the func t ionf  p whose value at x ~ R N is 

1 
f P(x) := q~M(X p) = min {f(z) + ~ ( M ( z - x ) ,  z - x ) :  z E ~N} . (1.5) 

Indeed, the minima of f coincide with those o f f  p and this latter function is convex, finite 
everywhere, and fairly smooth: with no additional assumption,f  v has a Lipschitz continuous 
gradient given by the formula 

V f P ( x )  = M ( x - x  v) = g P .  (1.6) 

Then the proximal point algorithm written in the form 

x.+ 1 :=xP~ = x .  - m -  1M(x. - x  p) = x .  - m -  1Vf P(x.) 

can also be viewed as a preconditioned 'explicit '  gradient method to min imizef  P. 
Thus, the Moreau-Yosida  regularization provides a link between classical and non- 

smooth optimization: a natural and attractive idea is to minimize f p by a variable metric 
method of the type 

x .+ l  :=x .  - t . m y  ~ VfP(xn)  = x .  - t . m ~ l m ( x .  - x  p) . (1.7) 

The stepsize t. > 0 can be computed as usual, and the matrix M.  can be generated according 
to a quasi-Newton formula [8],  M,,+I := qN(M. ,  y., s . ) ,  using 

s.  :=X.+l  - x . ,  Y. :-~VfP(Xn+l) - Vf P(x.) =m(xn+l  - x P + I  --Xn +XPn) (1.8) 

(other choices for s. and y.  are possible, see [ 18] ). 
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For example, the BFGS formula can be used; because its convergence just requires 
Lipschitz continuity of the gradient [ 25 ], the resulting method will converge always glob- 
ally, and superlinearly in the 'good' cases whenff  has a Lipschitz continuous Hessian. Now 
come implementation issues: how can we compute x p ? and how will its computation - or 
rather its approximation - affect convergence properties? As pointed out in [9,1 ], bundle 
methods are a possible proposal. Given x = x~, they provide a way of constructing a sequence 
{p k} tending topM(x) when k--* ~; more importantly, they also provide an efficient stopping 
criterion to apply a recurrence formula such as (1.4), the proximal point being replaced by 
its approximation p k. We refer to [ 15,5 ] for an accurate account of bundle methods from 
this point of view. 

Starting from these ideas, we distinguish three possibilities. 

Algorithmic Pattern 1 (AP1) 
Step O. The symmetric positive definite matrix M is fixed throughout, say M =  L Start 

with an initial xl and some matrix M1. Set the iteration counter n = 1. 
Step 1. Given xn, generate a sequence p ~ ~ PM (xn), for example by a bundling algorithm, 

until the associated stopping criterion is satisfied. 
Step 2. Compute a stepsize tn > 0 to obtain 

X n ÷ l  :=Xn  --  tnM;lM(xn __pk) . 

Step 3. Update Mn by a quasi-Newton formula using (1.8). Increase n by l and loop to 
Step 1. 

Unfortunately, bundle methods, which produce the estimatep~ in Step 1, rely heavily on 
the update formulaxn+ 1 =P~- The reason is that Step 1 is stopped whenf(p~) is sufficiently 
smaller thanf(x,) ;  but this decrease does not seem to allow f(xn+ 1) <f(x , )  in Step 2. We 
refer to [20] for first steps into the analysis of the above strategy. 

Remark 1.1. Incidentally, a second question is the choice of M: after all, the best matrix 
for ( 1.1)-(1.3) should be M = 0, in which case no update of x,, would be needed. Among 
other things, M should somewhat take into account the scaling of the problem. 

A way round this difficulty is to take in (1.5) a varying matrix M yielding xn+~ =x~. 
This results in the following variant: 

Algorithmic Pattern 2 (AP2) 
Step O. Start with some initial point x 1 and matrix M~. Set n = 1. 
Step 1. Given xn and Mn, generate a sequence p~ ~pM,,(xn), for example by a bundling 

algorithm, until the associated stopping criterion is satisfied. 
Step 2. Take 

x.+l :=pk. 

Step 3. Update Mn by a quasi-Newton formula using (1.8). Increase n by 1 and loop to 
Step 1. 



18 J.F. Bonnans et aL / Mathematical Programming 68 (1995) 15-47 

The need for an artificial M is thus eliminated (barring the initial M~), and the spirit of 
bundle methods is preserved; but now, the difficulty is in the quasi-Newton field: we no 
longer have a fixed Moreau-Yosida regularizationf p, whose Hessian is going to be approx- 
imated by {M,}: we rather have a varying functionf p which depends on Mn, giving birth 
to a sort of vicious circle. 

Remark 1.2. Exploratory experiments with this latter algorithm indicate that some eigen- 
values of 3"/, may have a tendency to approach 0; in view of Remark 1.1 this is not bad (fP 
becomes closer to the true objective f ) ,  but will certainly result in delicate analysis and 
numerical implementation. On the other hand, preliminary experiments also indicate that 
this pattern deserves study: the algorithm behaves quite well on a benchmark of test problems 
for non-smooth optimization [ 32]. 

In this paper, we concentrate on a third alternative, based on an idea of [28]: 

Algorithmic Pattern 3 (AP3) 
Take (AP2) but, instead of (1.8), let the quasi-Newton update use more simply 

s, =xn+~ -xn ,  y, = Vf(Xn+l) - Vf(xn) . (1.9) 

Then the algorithm is just that of (AP2) with the following last step: 
Step 3. Update 3"/, by a quasi-Newton formula using (1.9). Increase n by 1 and loop to 

Step 1. 

Naturally this has little meaning in the framework of non-smooth optimization: (1.9) 
requires differentiability f r o m f  Furthermore, we will pay little attention to implementability 
issues, i.e., on the actual computation of each proximal point xP~. Our ambition here is 
limited to exploring preliminary results to combine methods for non-smooth optimization 
and classical quasi-Newton methods. 

The paper is organized as follows. In the next section we state an abstract algorithmic 
pattern which accommodates any of the above strategies (AP 1-3), and we give conditions 
guaranteeing global convergence. This section does not rely on the actual computation of 
proximal points x p, neither on specific formulae generating the matrices 3'/,. We obtain in 
Section 2 our global results without any additional assumption on f In the following sections, 
when we consider the local analysis of specific quasi-Newton formulae, we require Vfto 
be locally Lipschitzian, we assume also that it admits directional derivatives at Y. In Section 
3, we adapt to our case the criterion of [6] for superlinear convergence. Then we give 
superlinear convergence results for a wide class of quasi-Newton methods, including PSB 
and DFP, assuming that f has aty a Hessian, in a 'strong' sense. Under the same assumptions, 
we concentrate in Section 4 on both global and superlinear convergence of a conceptual 
algorithm using the BFGS update. Finally Section 5 gives some concluding remarks. 

2. Global convergence 

In this section we prove the global convergence of the algorithms described abstractly 
by the General Algorithmic Pattern (GAP) below. Let (x., Mn) be the current iterate with 
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3/= symmetric positive definite. Then, according to (1.4) and (1.5), the corresponding 
proximal point will be: 

1 
x p :=p~t,,(x~) =arg min{f(z) + ~ ( M n ( z - x ) ,  z - x ) :  z ~ R  s} , (2.1) 

We set 

W n :=Mn I . 

Lemma 2.1. With the notation and assumptions of  Section 1, the following holds: 

(i) The proximal point x~ is well defined and given by 

with 

xP. = x.  - W.gP. , (2.2) 

g~ ~ Of(x p) . 

(ii) 

f(xP~) <.f(x.) - (W.g~,  gP~) . 

(iii) x.  minimizesf • x .  =xP~ ~ ~ =0. 
(iv) For all y with f ( y )  6f(xP~), there holds 

( M , ( y - x P ) ,  y - x  p) <~ ( M , ( y - x , ) ,  y - x , ) .  

(2.3) 

(2.4) 

(2.5) 

Proof. The minimand in (2.1) is lower semi-continuous and strongly convex; moreover, 
for any z ~ dom(0f) it has the subdifferential Of(z) + M n ( z -  xn). Existence and uniqueness 
of its minimum (that is the proximal point) is therefore clear, as well as the optimality 
conditions (2.2), (2.3). To obtain (2.4), multiply (2.2) by gP and use (2.3). The equiv- 
alences in (iii) follow easily from (i) and (ii). As for (iv), take y withf(y) <<.f(xP). Using 
(2.3), 

f ( x  p) >f (y )  >~f(x p) + (gP, Y - x P )  , 

so that, with (2.2), 

(Mn(x n - x  p) ,y -xP~) <-< O. 

Then develop the relation 1/2 12 = l/2 p IM= ( x = - y )  IM= ( x = - x n + x P - y )  12toobtain(2.5).B 

Thus, the decrease o f f  from xn to x p is at least (g~, Wng p), a positive number unless x,, 
is optimal. The Moreau-Yosida regularization takes the value 

1 
fP(x~)  =f(x~) + ~ (x~ -Xn, M~(XP~ -x~)  ) (2.6) 

and, using (2.2) we set 
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1 
6n :=f(x.)  - - f P ( x . )  = f ( x . ) - - f ( x  p) -- ~ <gP., W . g P ) .  

Observe that, in view of (2.4), 

(2.7) 

1 
(gP., W .g  p > <~ 6. <<.f(x,z) - f ( x  p) . (2.8) 

We consider in this section a very general pattern, in which f is simply required to 
decrease at each iteration by at least a fixed fraction m of 3,, interpreted as a 'nominal 
decrease'. 

General Algorithmic Pattern (GAP) 
Step O. Start with some initial point x 1 and matrix M~; choose some descent parameter 

m ~  ]0,1 [; s e t n =  I. 

Step 1. With 6n given by (2.7), compute x,+~ satisfying 

f (x .+ l )  <.f(x,,) - m 3 .  (2.9) 

(note: for this, Proposition 2.2 below is helpful). 

Step 2. Update Mn, increase n by 1 and loop to Step 1. 

For a nominal decrease, the use of the valuef(x.) - f ( x  p ) in (2.9) may seem more natural 
than our 6.. A substantial advantage of (2.7), however, is that implementable methods are 
known to guarantee (2.9) without computing any proximal point. In fact, if f is replaced 
by some smaller function q, in the proximal problem (2.1), we get a smaller optimal value, 
which can be used to overestimate the nominal decrease. 

Proposition 2.2. With the notation above, let tp be a closed convex function on R N satisfying 
t~ <~ f and set 

1 
7r:= arg min{~(z) + ~ ( M n ( z - x ~ ) ,  z - x , > :  z ~  ~} . (2.10) 

(i) I f  

f (  Tr) < f(x, ,)  -- m[ f ( x . )  - ~b(~-) ] , (2.11) 

then (2.9) is satisfied by x .  + 1 = ~. 

(ii) I f  xn does not minimize f ,  there exists ¢~ > 0 such that f(7r) - ~(  ~r) <. en implies 

f(zr) - $(Tr) ~< ( 1 - m )  [f(x.) - ~b(1r) ] , (2.12) 

which is equivalent to (2.11 ). 

Proof. In the inequality 

1 
~b( Tr) - f ( x . )  < $( Tr) + ~ (Mn( v - x . ) ,  7r-x~> - f ( x . )  , 
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over-estimate the right-hand side by replacing successively 7rby XPn and ~0byf. Using (2.2), 
(2.7) we obtain 

1 
~b( Tr) - f ( x , )  <f(xP,) + ~ (W,g~, gP) - f ( x , )  = - 8 ,  ; (2.13) 

because m > 0, (i) is clearly proved. 
Now the equivalence between (2.12) and (2.11) is straightforward. If xn does not 

minimize f, then x~ 4:Xn and g~ 4:0. In view of (2.13), we see that (2.12) = (2.11) is 
satisfied whenever, for example, 

f ( q ' r ) - - t ~ ( ~ ) < ( 1 - - m ) S n = : ~ > O .  [] 

The idea underlying (2.11 ) is classical in line-searches and trust region algorithms, if we 
interpret ~0 as a model for f, whose value at the trial iterate ~-is a target for f(x,+~). 
Proposition 2.2 only says that our descent test (2.9) is passed whenever the model is 
accurate enough at ~-. Bundle methods, precisely, construct such a model which is piecewise 
affine, resulting in a quadratic program for the proximal program (2.1); see for example 
[5]. 

In the convergence result below, h mXn (W) denotes the smallest eigenvalue of a symmetric 
matrix W; (2.14) is natural to rule out perturbed functions q~M of (1.2) departing too much 
fromf. 

Theorem 2.3. Assume that the closed convex function f has a nonempty bounded set of 
minima, and let {x,} be a sequence generated by (GAP). Then {xn} is bounded, and if 

E ~min(Wn)  = ~ ' ( 2 . 1 4 )  
n= l  

any accumulation point of { x, } minimizes f. The same properties hold for the sequence of 
proximal points {XPn } and it also holds lim inf I gP~ I = 0. 

Proof. Our starting assumption implies that the level sets o f f  are bounded (see [30], 
Theorems 8.4 and 8.7 and [13], Proposition IV.3.2.5); the sequences {xn} and {x~ } are 
therefore bounded by construction. In what follows,f will denote the minimal value off. 

Combining (2.8) and (2.9), we have 

1 1 
" (WngP,,, g~) <. -- (f(x,) - f ( x , + , ) )  , (2.15) 
2 m 

which gives by summation 

(W,,gP,,g~) <<- _2 (f(xl) _f.) <oo 
m n=l  

and therefore 
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E /~min(Wn)Ig~ I z < ~ -  
n=l 

In view of (2.14), the sequence { Ig p [ 2} cannot be bounded away from 0: there exists a 
subset N~ c gq such that lim, ~N, g~ = 0. 

P Extract from N1 a further subset, say Nz cN~, such that {xn }n ~N2 tends to some limit g. 
Because of (2.3), the closedness of the subdifferential mapping implies that 0 ~ 0f(g): g 

minimizesf  and f( y) =f 
Now {f(x,)} is non-increasing and has a limit f *; also (W,g~, gP,)~ 0 in view of 

(2.15). Pass to the limit in (2.9), written for n ~N2; we obtain 

f * ~ < f * - m ( f * - f ) ,  

which impliesf  * =3~ Then any accumulation point of {x.} is also optimal. [] 

3. Local convergence 

From now on, f is assumed differentiable (and therefore finite everywhere). We use the 
notation g(x) for the gradient of f a t  x, as well as gn = g ( x , )  and gP =g(xP) .  

We specialize in this section the General Algorithm Pattern of Section 2 along the lines 
of (AP3) in Section 1: we suppose the proximal point x~ is computed exactly and the 
symmetric positive definite matrix Mn is updated at each iteration by a formula such that 
the quasi-Newton equation holds: 

Mn+as. =Yn, (3.1) 

where 

Sn :=Xn+  1 - -Xn,  Yn : = g n + l  - -gn  • 

In these circumstances, the pure prox-form of (AP3) is clumsy, as observed in [ 28,20]. 

Indeed, take the 'ideal' situation in which f is quadratic with a positive definite Hessian 
matrix A, and take Mn =A in the algorithm. Then, x, p, is the minimizer of 

1 
(gn, X--X.) + ~ (2A(X--Xn),X--X.) , 

which is only half-way towards the real minimum o f f  A natural cure would be to do a line- 
search along the direction x~ -xn .  This idea will be used in Section 4, but in the present 
local study, we assume that the 'ideal' step size of 2 is taken. 

In a word, we consider in this section the following algorithm: 

Quasi-Newton proximal algorithm (qN-AP3) 
Step O. Start with some initial point x~ and a positive definite matrix M1. Set n = 1. 
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Step 1. Compute x p :=pm.(X.). 
Step 2. Update 

X.+l :=x. - 2 M ~ l g  p =x.  + 2 ( x  p - x . )  . (3.2) 

Step 3. Update M. by a quasi-Newton formula satisfying (3.1). Increase n by 1 and loop 
to Step 1. 

Keeping here the notation of the preceding sections, we set 

en:=xn-E, eP:=xP-Y  and o - . : = l e . + l l + l e .  I . (3.3) 

Recall that we have from Lemma 2.1, with g~ :=g (xP), 

gP, +Mn(xP, - x , )  = 0 .  (3.4) 

Finally, remark that (3.2) gives 

x p ~  1 1 5x,+sx,+l  and eP=½e, +lgen+ 1 • (3.5) 

In this section, we study the local convergence properties of the sequence {x, } generated 
by Algorithm (qN-AP3). We always assume that the gradient of f has directional deriva- 
tives at $, a minimum point off;  our smoothness assumptions are reviewed in Section 3.1. 
In Section 3,2, we prove the linear convergence of {x,}, assuming that (xl, M1) is 'good 
enough' and that a bounded deterioration property holds for {M,} as is done in [ 14] for 
standard quasi-Newton algorithms. We characterize the superlinear convergence in Section 
3.3, giving the prox-version of the well-known characterization for superlinear convergence 
of [6]. Finally, under stronger smoothness assumptions, we obtain local and superlinear 
convergence results for a wide class of quasi-Newton formulae, including the prox-versions 
of the PSB and DFP algorithms. For this we extend the approach of Grzeg6rski [ 12] to 
variational quasi-Newton methods with variable norms and to the 'proximal' framework. 

3.1. Smoothness assumptions 

In this subsection we state the assumptions needed for the sequel. We start by recalling 
some classical notions. An operator H from R ~v to R u is positively homogeneous when 
H(tv) = tHv, for all v ~ R N and all t~> 0. Such an operator is said bounded if 

In l : - -  sup Invl 
Ivl = 1  

is finite. It is equivalent to say that H is continuous at 0. Observe that we use the same 
notation for the Euclidean norm in ~N and for the induced operator norm. 

For the local analysis, only the behaviour of f i n  some neighbourhood of $ is relevant. 
Actually, our assumptions throughout involve a convex neighbourhood g2 of $. 
- First of all, we require the gradient to be locally Lipschitzian around $: there is a constant 
L~ such that 

Vx, y~g2, I g ( x ) - g ( y ) [  <~L~ [x -Y l  • (3.6) 
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- We postulate that g admits at y a directional derivative g'(J?, d), for all d ~ ~N. To stress 
that we are only interested in g '  at the fixed solution point ~, we will generally use the 
notation H for the mapping d ~ g '  (2, d). In other words, 

Hd:= H(d)  = lim g ( y  + td) - g ( ~ )  (3.7) 
t~o t 

Observe that H is positively homogeneous by definition and bounded because of (3.6): 

I~rl ~<L~. 
- We will often suppose that the directional derivative (3.7) exists in a strong sense at 
([22,23], see also [4], where the word strict is used). This means 

g(x)  - g ( y )  - f I ( x - y )  
lira = 0 .  (3.8) 

(x,y~-+ (~s~ I x -  y l 
xv~y 

- O u r  final results need the difference quotient in (3.8) to converge at a specific rate, 
namely: for some positive constant L and all x, y ~/7, 

Ig(x)  - g ( y )  - H ( x - Y )  I ~<L( I x - ~ l  + ly -£1  ) I x - y l  • (3.9) 

Needless to say, (3.9) implies (3.8), which in turn implies (3.7). 
It is interesting to relate our assumptions with some other notions of weakened differ- 

entiability already stated in the literature; see for example [23,16,14,24]. We recall first 
that, under the Lipschitz property (3.6), the limit in (3.7) becomes uniform in d: (3.7) is 
then equivalent to 

g ( Y + h ) = g ( Y ) + f i l h + o ( l h l ) ,  when h ~ 0 ,  (3.10) 

that is,/St is the B-derivative of g at ~, in the sense of [ 29 ]. 
Assumption (3.8) turns out to be rather strong, even though it is a purely punctual 

condition. In fact, it can be seen as in the proof of [23, Theorem 2], that it implies the 
linearity of/] ;  and this just means that/q is the strong Fr6chet derivative of g at Y. To grasp 
the essence of (3.8), consider the case when g has directional derivatives in a neighbourhood 
of Y: (3.8) just expresses the continuity of the mapping x ~ g ' ( x ,  • ) at ~; this comes from 
the following theorem, which is an equivalent formulation of Theorem 2 in [23]. 

T h e o r e m  3.1. Let g: R N ~ g~ N be a mapping satisfying (3.6) and having directional deriv- 

atives g ' (x ,  • ) f o r  all x ~ £2. Then the three statements below are equivalent: 

(i) the directional derivative IZI o f  (3.7) satisfies the stronger limit property (3.8), 
(ii) g is Fr6chet differentiable at • in the strong sense, 

(iii) the mapping x ~ g '  ( x, • ) is continuous at Y~; in other words, 

sup Ig'(x,  d ) - g ' ( Y , ,  d) l --+0, when x ~ Y .  
Idl =1 

For an interpretation of our last assumption (3.9), assume again the existence of 
g' (x ,  • ) in a neighbourhood of g: (3.9) connotes something stronger than the above 
continuity property (iii), namely the 'radially Lipschitz' property stated in (3.11). This 
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comes from the next result, an equivalent formulation of Lemma 2.2 in [ 14]. It is here that 
the convexity of g2 is important. 

Theorem 3.2. The hypotheses are those of Theorem 3.1. In addition, assume there exists a 
constant L such that 

sup Ig'(x, d ) - g ' ( £ ,  d) I <<.Llx-£ I for a l l x~g2 .  (3.11) 
Idl =1 

Then,for all x and y ~ 52: 

Ig(x) - g ( y )  -B(x-y )  I <L max{ Ix-£1, ly-~l}lx-yl,  

so that (3.9) holds. 

3.2. Linear convergence and bounded deterioration 

In this subsection, we prove the linear convergence of Algorithm (qN-AP3) when the 
generated matrices M, satisfy a 'Bounded Deterioration' property (Theorem 3.4). Before 
doing this, it is useful and instructive to analyze one step of the algorithm (Lemma 3.3). 
Our results are obtained under an extra assumption: there exists a positive definite matrix 
37I such that 

I I - M - I H I  <~:< 1. (3.12) 

Assumption (3.12) is just a way of expressing that the positively homogeneous operator/4 
is not too far from the open set of positive definite matrices that is convenient for the 
convergence analysis. This assumption was also made by Ip and Kyparisis [ 14]. When/ )  
is linear, condition (3.12) implies the non-singularity of/) .  When/-) is only a continuous 
positively homogeneous operator, however, the surjectivity of /4  is guaranteed (see the 
proof of Lemma 2 in [23] ) but not its injectivity. 

Lemma 3.3. Suppose that (3.6), (3.7) and (3.12) hold. Then, for all r > ~ / ( 2 -  f), there 
exist positive constants ~1, ~2 and ~ such that if one iterate (x,, Mn) of Algorithm (qN-  
AP3) satisfies 

Ixn-~Zl ~ 1  and IMn-MI ~ 2 ,  (3.13) 

then M, is positive definite with I M #  l ] <<. ~ and the next iterate xn + 1 satisfies 

Ix,,+1 - £ [  <~rlx , -x l  • (3.14) 

Proof. Let r > ~ / ( 2 - f ) ;  there exists r ' > r  such that r = r ' / ( 2 - r ' ) :  just take r ':=2r/  
( 1 + r). Now, choose 42 > 0 so that 

1 -( .  1 )-1 r'--7 (3.15) 
~2 < IA~_ll and a 2 l ~ r - l l l n [  i~-_ll  gz ~ < - - - ~ ,  
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~2) -~ . (3.16) 

By the first inequality of (3.15),/z is a positive constant. Now, because g (2) = 0, we have 
in (3.10) g(x)  - I r I ( x - g )  = o (  Ix-Y[ ). Therefore, there exists el > 0  such that 

I x - £ l  ~ E~ 

Then, define ~ > 0 by 

r t - - ~  
[g(x) - / t ( x - £ )  I ~< ~ I x - £ [  . (3.17) 

~1 := tz l /z(  i/1~ I +~z)l/z.  (3.18) 

Having determined the positive constants ~1, ~2 and/z, we now prove the conclusions of 
the lemma, assuming (3.13). 

First, by (3.13) and (3.15), we have 

1 
IMn-i(/l] ~<~2< 1~_,-------']-. 

Then, the identity/14, = /17 / [ I+~-1(M n -/14)] and the Banach perturbation lemma imply 
that Mn is non-singular (in fact positive definite) and that IMp- 1 I ~< tz, with/z defined in 
(3.16). 

Next, we observe that Xn+l =Xn - 2 M ~ l  g p = x  p -1 p - M n  g, .  Thus an easy calculation 
gives 

en+~ = e  p - M n l g  p 

- - 1  - p - - 1  p = ( I - m  n H ) e , - M ,  (g,- f f lePn) 

= ( I -  M -  1/t) e~,~ + M - ~ ( M ,  -M)M,TIIZle", - M y ~ ( g  p - f i e  p) . (3.19) 

We are going to bound the norm of the right-hand side of (3.19) by a multiple of [eP[. 
There is no difficulty with the first two terms. For the last term we shall use the implication 
(3.17) after having shown that [e p ] ~< e~. To do this, observe that Lemma 2.1 (iv) with 
y = 2  gives 

1 
]M#, I [ePlZ<~lM, l l e ,  I z" 

Hence, using (3.13), I en [ ~< el and (3.18), we get 

lef', I ~ IM~l l l / 2 lMn l l /= l e~  I ~</zl/=( I~)1 + ~=)~/=~ = El. 

Now, using (3.12) and (3.17), (3.19) gives 

r' -- ?~1 
]e,+l 1~< F+ I ~ - ~ ] ~ t z ] ~ l  + tz--Z---/le',  [ <<.r'leP[, 

z / x /  
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where we used the second inequality of (3.15) and (3.16). Finally, by (3.5), le~l~< 
( l en I + [en+ l [ ) /2 ,  and the last inequality becomes 

( r 2 )  r '  1 -  [ e n + l l ~  < - ~ l e . [ .  

The conclusion of the lemma follows from the definition of r': 

r t 

le~+ll<~ ~ _ r ,  le, l = r l e ,  I . [] 

Since ? / ( 2 - ? )  < 1, Lemma 3.3 allows us to take r <  1. Then an easy consequence of 
this result is: if the matrices M, are maintained in a ball of radius ~2 around aT/and if the 
first iterate x~ is taken sufficiently close to $, the sequence {xn} generated by Algorithm 
(qN-AP3) converges to $ linearly with rate r. As we shall see, this property of the matrices 
M~ is satisfied when they are updated by a large class of formulae, namely those satisfying 
the bounded deterioration assumption defined below. This assumption depends on a partic- 
ular matrix norm I1" II possibly different from ] • 1. Note that, since all norms are equivalent 
in R N×N, there exists a positive constant ~7 such that 

1 
- II'l[~ l" ] ~<711"11 • (3.20) 
~7 

Bounded Deterioration Assumption (BDA). Let there exist a positive constant CBo, a 
symmetric positive definite matrix 57/and a neighbourhood ~" = g2 x × g2M of (Y, M), with 
I2M containing only non-singular matrices, with the following property. If (xn, Mn) is in ~ ,  
if (xn + 1, Mn + 1 ) is generated by Algorithm (qN-AP3) from (xn, M, ) and if xn + 1 is also in 
g2x, then 

IlM.+a -All  ~< ( 1 + CsD o'.)IIM. -All  + CBDO'., (3.21) 

where the matrix norm I1" II satisfies (3.20) and or, is defined by (3.3). 

This assumption is weaker than the one usually obtainable in standard quasi-Newton 
methods (see [2] ) in the sense that here inequality (3.21) is only assumed to be satisfied 
when x, and xn +1 are close to ~. Usually no restriction of this type is supposed for (3.21) 
to be valid, but when variational quasi-Newton updates with variable norms are involved 
(see Section 3.4), only the above weak form of BDA can be obtained. As far as local 
convergence is concerned, however, our weaker form suffices: indeed, as shown in Lemma 
3.3 (with r <  1), once (x,, Mn) is close enough to (Y, .~7/), x,+ 1 is even closer to • than xn. 

Conditions for linear convergence are given in the next theorem. We denote by B(z, p) 

the ball of radius p > 0 centered at z (in a normed space depending on the context). 

Theorem 3.4. Suppose that (3.6), (3.7) and (3.12) hold and that the update of the matrices 

in Algorithm (qN-AP3) satisfies (BDA) with the same matrix )91 as in (3.12). Then, for 

all r ~  ] ? / ( 2 -  ~), 1[, there exist positive constants el and ez, such that 
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Ix1 - x l  <~el and [M1 -1141 ~<E2 (3.22) 

imply the following statements: 

(i) Algorithm (qN-AP3) is well defined in the sense that, for  all n >~ 1, M,  is positive 

definite and x~ and x,  lie in g2~. 

(ii) The sequences {M,} and {Mn  1 } are bounded and the sequence {IIMn-MII} con- 

verges. 

(iii) The sequence {x,} converges linearly to ~ at rate r: 

Ix,+~ -:?1 <~rlx, - :?[ ,  Vn~> 1. (3.23) 

Proof. Take r ~  ] ~/(2 - ?), 1 [ ~ ~b and let gl > 0 and g2 > 0 be given by Lemma 3.3. Then 
choose e2 > 0 such that 

B(IQ, 2r/e2) CI2M and 2r/2e2 ~< @2 ; (3.24) 

here r/is defined in (3.20), 12M is introduced in (BDA) and B( . ,  • ) refers to I1" II. Next, 
choose el > 0 such that 

1 
B(Z, el)Cg2x, el ~<~a and 2CBDel(2~e2+I ) ~ ~T]e2, (3.25) 

where g2 x and CBD were introduced in (BDA). 
The positive constants el and e2 being determined, suppose that (3.22) holds and let us 

prove by induction that for all n ~> 1: 

Ilm,, -MII ~< 2~7e2, 

Ix ,+a- :? l  <~rlxn-x l  • 

First, by (3.20), 

IIM~ -'QII < ~[M~ --~1 < ~7e2. 

(3.26) 

(3.27) 

(3.28) 

Therefore, (3.26) is satisfied f o r n =  1. As el ~<gl and e2 ~<~2 (by (3.24) and r/~> 1), we 
have 

[x~-:?] ~<~ and IMI--MI ~<g2. 

By Lemma 3.3, this implies that the next iterate x2 is well defined and that (3.27) holds for 
n = l .  

Now, assume for induction that (3.26) and (3.27) are satisfied for n = 1 . . . . .  m - 1. By 
(3.27), (3.22) and (3.25), the points xl . . . . .  X m are in B(Y, el) COx, and by (3.26) and 
(3.24), the matrices M1 . . . . .  Mm_ 1 are in B (/14, 2r/e2) c 12 M. Therefore, we can use (BDA) 
for n = 1 . . . . .  m - 1 to obtain: 

IIM,+ ~ - ' ~ 11 -  IlMn-MII < CBD O'n( IIM, -MII + 1) 

~<2CBD Ixn -:?1 (IIM. -MII + a) 

<~ 2CBDrn- l el ( 2~Tez + 1) , 
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where we have used (3.22), (3.26) and (3.27). Adding up from 1 to m -  1 and using 
(3.28) and (3.25), we get 

1 
IIM., -MII < IIM1 -MII + 2CsDel(2~e2 + 1) ~ ~< 27/e2. 

This proves (3.26) for n=m. To get (3.27) for n=m, we use as before Lemma 3.3 after 
having observed that Ixn -)?1 ~< ~1 (by (3.27) and (3.22)) and IM, - ~ r  I ~< ~z (by (3.26) 
and (3.24)). This completes our induction argument. 

The boundedness of {M,71 } is given by Lemma 3.3. 
Finally, the proof of the convergence of { IIMa-MII} follows a classical scheme. The 

sequence {Mn } being bounded, the sequence { IIM.- MII } has limit points. Then, we proceed 
by contradiction, supposing that there are two limit points: ll < 12. As the series E :=  lo-, 
converges, there is an index no such that 

E o - . ~ <  CffDl(2~?e2 + 1) -1 
n=no 

We can also choose an index nl/> no such that IIM.1 - lf/l II < ll + (12 - ll) / 3. Then, using 
(BDA) and (3.26), we can write, for all n >/nl, 

n--1 
IIMn -MII < IIM.1 -MII +CBD ~ (o-~(llM; -MII + 1)) 

i=nl 

<.<IIMn,-l(111+CBo(2~?e2 +1 ) ~ cr~ 
i=no 

< IlMn, -MII + t2 - t.______!~ 
3 

12 - -  l l  

3 

contradicting the fact that 12 is another limit point. [] 

Let us point out that the 'implicit' form of (qN-AP3) allows a better rate of convergence 
than the one obtained in [ 14] for 'standard' quasi-Newton formulae, namely r e  ] r, 1 [. 

3.3. Characterization of superlinear convergence 

In this subsection we characterize the q-superlinear convergence of a sequence {xn} 
generated by Algorithm (qN-AP3) by comparing the effect of Mn and/-) on ( - s , ) .  In 
[ 14 ], ~7/in (3.12) is used as an intermediate matrix in the comparison. A similar result can 
be obtained here but, instead of assuming (3.12), we prefer to impose more regularity on 
/). When / )  is linear, both results are similar to the well-known characterization of Dennis 
and Mor6 [ 6 ]. 
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L e m m a  3.5. Let H: R N ~ R N be positively homogeneous, continuous and injective. Then 

the following properties hold: 

(i) there exists a constant CH such that [ Hu [ >1 Cn ] u [ for  all u ~ ~ N, 

(ii) for  any two bounded sequences { un } and { v, } in R N, 

Hu.  - Hv . --*0 ~ u n - -  O n " - > 0 ,  

(iii) i f u . ~ O  then 

n(u. + o ( l U n  f ) )  =Hun +o(fUnl) • (3 .29)  

Proof.  (i) Let C/~ := mini ,  t= 1[ Hu[ >1 0; by continuity there exists Uo of norm 1 such that 
I Huo l  = C~/. Then the injectivity of  H implies C ~ >  0; the conclusion follows from positive 
homogeneity. 

(ii) Having an arbitrary cluster point w of { u , - v , } ,  extract a subsequence such that 
u, --* u, v,, ~ v and u n - -  V n "-'> W = U - -  U. By continuity, Hu, --* Hu, Hv,  ~ Hv and by assump- 
tion, Hu = Hr. Since H is injective, u = v, w = 0; the result follows. 

( iii ) If  H is continuous, it is uniformly continuous on the ball B ( 0, 2) c R N. When u, ¢ 0, 

u, / lun  I + o (1) ~ B (0, 2) for large n. Hence, by uniform continuity, 

) Un H(u"LIu. I +o(1) =H~-ff~- +o(1). 

Thanks to positive homogeneity, we have proved (3.29). [] 

T h e o r e m  3.6. Let { x,  } be a sequence generated by the recursion formula (3.2) converging 

to a solution point ~. Suppose that (3.6),  (3.7) hold and that 171 is continuous and injective. 

Then 

Xn--~£q-superlinearly ¢* (M.-fl)(-s.)=o(Is.I). (3.30) 

Proof.  First, remembering that sn = -2M~-~gP,, we have, due to (3.10),  

M, sn = - 2 g  p = - 2 H e ~  + o (  leP, I ) .  

Hence, 

(3/,, - H ) ( - s n )  = 2 H e  p - H ( - S n )  +o(]eP~[) . (3.31) 

Let us prove the ' ~ '  part. As en+ 1 = o( l e, [ ), we have 

2e p = e n +  1 W e  n = e  n + o (  [e, l) , 

- s n  = - e n + l  +en =en + o ( [ e n  [) . 

The last estimate also implies that en = O([sn 1). Combining these estimates with (3.31) 
and using (3.29) with H=/ - ) ,  we get 
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( M ~ - ~ ) ( - s n ) = o ( l e n l ) = o ( I s ~ l )  • 

Consider now the ' ~ '  part. From (3.31), 

if1(-s,,) +o(  ISn ]) =H(2e~) + o (  le'. I) • 

Taking norms and applying Lemma 3.5(i), we get 

CHIsel ~< I H ( - s n )  l ~< I/~(2e'.)l + o ( l e ' . l )  + o ( I s n l )  • 

Using the boundedness of/~ we conclude 

Is~l-----O(le'n I) • 

On the other hand, after division of (3.32) by [ePnn 1: 

o(le'n I) O(Is,, I) /~(2e p ) H ( - s n )  

le'.l leP. I lePl [e'.l 

(3.32) 

(3.33) 

Thanks to (3.33), the left-hand side tends to 0. We are in a position to apply Lemma 
3.5(ii) with un = 2ePn/le'nl and vn = -sn/le'.l. Thus 

2e p +sn 2en+l 
---> 0 ,  

leP. I lePl 

which can be written e,+l = o ( [ e P [ )  = o (  ]en+l q-en l) = o (  [en+ 1 [) +o (  [en [). This 
implies en+ 1 = o( [ en I ) and the q-superlinear convergence of {x,}. [] 

With this result, the relation corresponding to the classical characterization of [ 6] can be 
recovered. Note, incidentally, that the above proof still works for non-smooth equations 
(instead of minimization) where g is not a gradient. When assuming more regularity on f, 
we can also establish a very useful characterization: 

Corollary 3.7. Let {x,} be a sequence generated by Algorithm ( qN-AP3 ) converging to a 
solution point g. Suppose that (3.6)-(3.8) hold and that ffl is invertible. Then 

xn ~ £ q-superlinearly ¢~ ( Mn + l - M~) s~ = o (  [sn [) • (3.34) 

Proof. Due to the quasi-Newton equation ( 3.1 ), the second statement in (3.34) is equivalent 

to y n - M ,  sn=o( Is.I ). Apply (3.8) with x=xn+l, y=xn: we have yn=IZlsn+o( [Snl ); 
since (3.8) also implies the linearity of/-t, the conclusion follows from Theorem 3.6. [] 

3.4. Superlinear convergence of variational quasi-Newton algorithms 

In this subsection, we go more concretely into the specification of the matrices Mn for 
Algorithm (qN-AP3). We propose an update scheme and show (Lemma 3.8) that it satisfies 
(BDA) in Section 3.2. Then, the linear convergence follows from Theorem 3.4 (Theorem 
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3.9). We also show (Theorem 3.10) that the scheme can provide the q-superlinear conver- 
gence of the generated sequences. 

The analysis relies on a Hilbert matrix norm I " In (e.g., a weighted Frobenius norm); 
typically ]. [n depends on xn and Xn+l. With tr, defined in (3.3), the norm [ • In is said 
locally comparable to a fixed norm 11.11 if 

30"LC > 0 ,  3 C L c  > 0 ,  VOr n ~O-Lc , V M E ~  N×N , 

we have I IMIn - IIMII I ~ CLc IIMIIo'~ • (3.35) 

Our approach follows that of [ 12]. Let 2U be a closed convex set of symmetric matrices 
intersecting the set {M ~ R N× N: MS n = Yn }, when o'n is small. By a variational quasi-Newton 
formula, we mean a method associating to the current matrix Mn the (symmetric) update 
Mn+t: = qN(M,,  Yn, s ,) ,  unique solution of 

min{ [M-M,  [2: M ~ ; ' ,  Msn =Yn} • (3.36) 
M 

We state here a 'technical hypothesis' expressing that a fixed matr ix /~  is close enough 
to the feasible set of (3.36) : 

3371~ ~N×N symmetric positive definite, 30"TEX > 0, 3CT~x > 0, 

V o .  n ~ O.TEX, ~1~i n ~ ~N)<N, such that (3.37) 

l~In ~ r ,  l~lnSn =Yn, [I~In --IVI[n ~ CTExO" n . 

Before giving the convergence theorems, let us check that (BDA) is satisfied for the 
scheme above. 

L e m m a  3.8. Suppose that Algorithm (qN-AP3)  updates the matrices Mn according to the 
scheme (3.36) and that conditions (3.35) and (3.37) are satisfied. Then Assumption 
(BDA) holds with l~l given by (3.37). 

Proof.  Let 

( L) o-:= min O'LC, O'rZX, 3 " 

Since M~+ 1 is the orthogonal projection of M~ onto a closed convex set containing ~'/n, we 
have 

[Mn_M,+ll2+lMn+l_l~l,,lZ<lMn ^ 2 - M ,  ln. (3.38) 

In particular, 

[M~+~ -)~, ,  [~ ~ [Mn -/14n In. (3.39) 

Let us show that (BDA) holds with CBD := 3max(CLc, CTEx) and/14 given by (3.37), 
when o-, ~ or. We have, using (3.39) and (3.37), 
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IM.+l--~ln ¢ IM.+, - ~ .  In + I ~ n - M I .  

<~ IM. -~to In + CT~X~n 

]Mn -)l~rl n + 2CTExO" n . 

Then, using (3.35), we get 

(1  - CL¢ O'.)[IMn + a -M[I ~ ( 1 + CLC O'n)IIM. -MU + 2C~Ex o'., 

1 +Ctco-n . 

- CLcO'J " 

Since cr n ~< o'~< 1 / (3CLc): 

1 + CLC O'~ 2CTEx 
~ 1 +3CLcO'n and ~3CTEx. 

1 - CLC O-n i - -  CLC O" n 

Hence 

[[Mn + ~ -,~l[ ~< (1 + 3 CL¢ O'n) JIM n -MII + 3C~-Ex o-n, 

which is just a bounded deterioration property of the type (BDA). [] 

Then, we can show linear convergence under the assumptions of Theorem 3.9 and 
superlinear convergence when (3.8) holds (Theorem 3.10). 

Theorem 3.9. Suppose that (3.6), (3.7) and (3.12) hold. Suppose also that Algorithm 

(qN-AP3) updates the matrices M, according to the scheme (3.36) and that conditions 
(3.35) and (3.37) hoM, the latter with the same matrix IV1 as in (3.12). Then, if ( xl, M1) 
is close enough to ( g, ~I) , Algorithm (qN-AP3) is well defined and generates a sequence 

{ x, } converging q-linearly to g and a sequence of symmetric positive definite matrices { Mn } 
such that 

(Mn+ 1 - M n )  ---~0. (3.40) 

P r o o f i  According to Lemma 3.8, (BDA) is satisfied with the same matrix 37/as in (3.12). 
Then, Theorem 3.4 gives the first part of the result (the linear convergence of the sequence 

{Xn}), as well as 

[[M, -MII--' ~. (3.41) 

It remains to prove (3.40). 

Due to the linear convergence of {xn } to ~, we can suppose that ~rn ~< min (crLC, O'TEX) for 
all n ~> 1. As in the proof of Lemma 3.8, we have the inequality 

IMn__Mn+ll2n+lMn+ _~4, lZ<<.lMn ^ z n - M n l n ,  (3.42) 

and we proceed to show that both [Mn+l -)Qnln and I M n - ' f / n  I n tend to 8. From (3.35), 
(3.41) implies 
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IMn-MIn~ and I M n ÷ l - ~ r l n ~ 6 .  (3.43) 

Using (3.37), we get 

[IM, -~ r  In - ]Mn -hT~t[ n [ ~< I3)n -h,~tl ~ ~ 0 ,  

I IM~+I-,~. In- IM.+I-~1.  I< IMn-~1.--,0. 

From this and (3.43), we deduce 

IMn-~. l .~a  and IMn+~-~/.In~a. 

Then, (3.42) implies 

[ M n + , - M .  I.--*0 

and by (3.35), 

[IMn+l -M. II ~0.  [] 

Theorem 3.10. Suppose that (3.6)-(3.8) hoM and that [-I is positive definite. Suppose also 
that Algorithm (qN-AP3) updates the matrices M, according to the scheme (3.36) and 
that conditions (3.35) and (3.37) hoM, the latter with M=H.  Then, if (xl, M1) is close 

enough to (y, H), Algorithm (qN-AP3) is well defined and generates a sequence {x,} 
converging q-superlinearly to Y. 

Proof. Assumption (3.8) implies that H is linear, hence (3.12) holds with 3~r =/~; we can 
apply then Theorem 3.9, which gives the q-linear convergence of the sequence {x,} and 
(Mn+ 1 -M,)--*0.  Now the q-superlinear convergence of {x,} follows from Corollary 
3.7. [] 

3.5. Application to some quasi-Newton methods 

We now apply the theory of the previous subsection to some particular quasi-Newton 
update formulae. The main issue is to check condition (3.37), and it is here that assumption 
(3.9) comes into play. 

We first show that (3.37) holds for general quasi-Newton methods, providedfis suffi- 
ciently smooth. As in the previous subsection, ~ is a general closed convex set of symmetric 
matrices. 

Proposition 3.11. Suppose that f is twice Frdchet differentiable in a neighbourhood ~/Y of 
~, with a Lipschitz continuous Hessian./f V2f(x) ~ ~ for all x ~ ~ /  and (3.35) holds, then 
(3.37) is satisfied for )9/= V2f(£). 

Proof. Let ~rLC> 0 be given by (3.35) and take ~r~ ]0, trLC] such that B(2, tr) c J .  When 
cry< ty, the segment [xn, xn+~] is in J ,  so that we can define 
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1 

~. ,= ~ v2f(x. + "gsn)d~'. 
# 

0 

Clearly, )~/, ~ ~ and h~/,sn =y, .  Furthermore, with 37/= V2f(yO, 
1 

I , ~ . - M I  <. f IWf(x. +Ts~)-fflldT<<. LH -~- ¢rn, 
0 

where Ln is a Lipschitz constant of the map ~ l ~ x ~  V2f(x).  Combine this, (3.20) and 
(3.35) to obtain 

I~ .  - , ~ 1 .  ~< ( 1 + c~c ~.)IIMn -MII -< n( 1 + Ctxz o'.) IM. -,Q[ 

LH 
< r/(1 + Ct~ cruc) -~- o'.. 

We recognize (3.37). [] 

We consider now the prox-versions of the PSB and DFP algorithms. Let ~%{ be the set of 
symmetric matri~ces and take the Frobenius norm I " I F for I " I, and I1" II. Then the solution 
of (3.36) is given by the PSB update formula (see [ 7] ): M, +l = PSB (M~, Yn, s,),  where 

PSB(M, y, s) M +  ( y - M s ) s V + s ( y - M s ) V  ( y - M s ,  s)  
:~-  S S  T . 

Isl 2 Isl 4 

Recall that (u, v) and uTv denote the same operation. We note here that more general scalar 
products can also be used, as described for example in [ 11 ] and in the appendix of [ 10]. 
Reproducing the present theory in this framework is then an easy exercise. 

For this method, we have 

Proposition 3.12. Suppose that (3.6)-(3.9) hold and that Ft is positive definite. Assume 

that Algorithm (qN-AP3) uses the PSB formula: M ,  + I =PSB(Mn, y,,, Sn) . I f  (Xl,M1) is 

close enough to ( Y~, IZl), then the algorithm is well defined and x ,  ~ ~ q-superlinearly. 

Proof. Take 

]~n : =  P S B ( / - t ,  Y n ,  S n )  

and define 6,, :=Yn-/ ls , .  Then 

~ . - ~ =  a~s.  ¢ + s . 6 .  • 

Is . I  z 

Taking x = x ,  and y=xn+l  in 

l uvTI = l ul Iv I- Therefore 

I.'~,,-~1 = o ( I , r .  I) • 

(6.,  s . )  T 
S n S  n • [sn[ 4 

(3.9), we obtain 6, = O ( I s, [ I ~rn [ ). Recall also that 
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On the other hand, since/9/n ~ ~ "  and l~lnSn=Yn, condition (3.37) holds with l" I ,  = l" IF 
and il7/= ~ .  We can now apply Theorem 3.10 to terminate the proof. [] 

Consider now the DFP formula ( [7] ): 

DFP(M,y ,s ) := M+ (y--Ms)yT +y(y--Ms)T ( y - M s ' S )  yy T. 
(y, s) (y, s) z 

This formula is well defined when (y, s)  4:0 and gives a symmetric positive definite matrix 

when M is itself symmetric positive definite and (y, s)  > 0. The updated matrix can be 
characterized as the solution of a variational problem. For this, let us introduce the weighted 
Frobenius norm associated to a symmetric positive definite matrix W: 

M e  IMlw,v:= I W-11zMW-11ZIF. 

Then, when (yn, s , )  is positive, DFP(Mn, Yn, Sn) is the solution of problem (3.36) in which 
is the set of symmetric matrices and [ • In is the norm [ • [W.,F where Wn is any matrix 

satisfying W,s, =y,  (see [7] ). As we shall see in the proof of  the next proposition, an 
appropriate choice of  the matrix W, will allow us to satisfy (3.35) and (3.37). 

Proposi t ion 3.13. Suppose that (3 .6 ) - (3 .9 )  hold and that [-I is positive definite. Assume 
that Algorithm (qN-AP3)  uses the DFP formula: Mn+l = DFP(M,,  Yn, Sn). I f ( x1 ,  M1) is 
close enough to ( g, IZl), then the algorithm is well defined and xn ~ g q-superlinearly. 

Proof.  Because/-) is positive definite, it is easy to see that when o-, := I xn - ~ [ + I xn + 1 - -  2~ [ 

is sufficiently small, we have 

(yn, sn)>~alSn[ 2 and [ynl<~Llsn[, (3.44) 

for some positive constants a and L. From now on, we suppose that o-, is sufficiently small 
to have (3.44). 

The matrix 

M.  := DFP( / t ,  y . ,  sn) 

is positive definite and verifies ~l.s.=yn. Then M.+ l  is solution of (3.36) with 
I. I ° =  I. I,~..p. 

Defining 6n := y.  - Hsn, we have 

(Y,, Sn) (Yn, Sn )2 Y"Y~" 

By (3.9),  6n=O( Is.l Io~1 ). Therefore, using (3.44),  

IM~ - H I  -- O( I on I) • (3.45) 

It follows that M~-1/2 is bounded for ~rn small enough, then 

IM,, - S-7I. = I kT~-'/~(~,, -ST" )~  -'/~ I~ = 0 (  IM. - / 71 ) .  
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Since 3;/n is symmetric and ~/,s,  = y,, condition (3.37) holds with M = H. 

Let us now prove condition (3.35) with I1" II = I" I•,F- Observe that 

IMI vc, v = ( t r ( W  - l / 2 M W  - 1 M W  - 1 / 2 ) )  1/2 = ( t r ( M W  - 1) 2) l/Z 

Then, for M ~  R NxN with IIMII = 1, 

IlMIn IIMIII IIMIn2-11MII21 _ = <<. I tr(M~121)Z--tr(Mff1-1)21,  
IMI,, + IIMII 

because IMI.+ IIMll 1> 1. Now, A ~ ~N×N~tr A is linear. Therefore, for some constant 

C 1 ~>0, 

I IMI. -IIMll I < c,  I (MM21) 2 -  (MH -~) 2 I 

Using the relation I BE-A21  = ] B ( B - A )  + ( B - A ) A [  < ( I AI + I B I )  I B - A I ,  we get 

I lgl .-IIM[[I <c11gl ( lM211 + In ~l)lM~ - 1 - n  11 

Because the norms ] • [ and II" II are equivalent and A ~ A  - 1 is infinitely differentiable on 
the set of non-singular matrices, one has for o-~ sufficiently small 

I I M I , - I l g l l  I =O(Io 'n  l ) ,  

where we used (3.45). Now condition (3.35) holds by homogeneity in M. 
The conclusion of the theorem follows from Theorem 3.10. [] 

4. A BFGS-proximal method 

In this section, we study the particularization of the algorithm pattern (AP3), in which 

the proximal point x~ is computed exactly and the BFGS formula is used to update the 

matrices Mn. In this case, satisfactory global and q-superlinear convergence results can be 
obtained, in the sense that, given any initial pair (xl, M1), with M1 symmetric and positive 
definite, the generated sequence {x,} converges superlinearly to a solution of problem 
(1.1). The precise results are given in Theorems 4.2 and 4.8 below. 

To obtain these convergence results, f is always supposed differentiable (and therefore 
finite everywhere). Then we will again use the notation g(x)  for the gradient of f a t  x, as 
well as gn =g(xn) and gP~ =g(x~) .  

For given vectors s and y in R jr, the BFGS update of an N × N symmetric matrix M is the 
matrix 

Mss T M yy T 
BFGS(M, y, s) :=M S - -  + - -  (4.1) 

(Ms,s)  (y, s) 

(see [7] for instance). Observe that the trace of the matrix M+ = BFGS(M, y, s) is given 

by 

Ims l  z lYl z 
tr M+ = t r  M -  ~ + ~ (4.2) 

(Ms, s) (y, s)  



38 J.F. Bonnans et  al. /Mathemat ica l  Programming 68 (199.5) 15-47  

When M is positive definite, the BFGS formula is well defined if (y, s)  v~ 0. However, the 
stronger condition 

<y, s>>0 

is generally required since this is a necessary and sufficient condition to have the updated 
matrix positive definite. 

The algorithm considered in this section is stated as follows: 

BFGS-proximal algorithm (BFGS-AP3) 
Step O. Choose an initial point x~ ~ R N and an initial symmetric positive definite matrix 

MI. Take m in ] 0, 1 [. Set n = 1. 

Step 1. Given x,  and Mn, compute XPn :=pu,,(xn) and set SPn :=XPn --Xn- 

Step 2. Compute the next iterate by: 

Xn+ 1 : = X  n -]-tnSPn . 

The stepsize t~/> 1 is chosen to satisfy the general descent condition (2.9) and 

(y , ,  sn) > 0 ,  (4.3) 

where sn = xn + ~ - x. and y~ = g ,  + ~ - g~. We also suppose that tn = 2 is taken when the line- 
search conditions (2.9) and (4.3) allow it. 

Step 3. Update M,  by the BFGS formula: 

Mn+l =BFGS(Mn,  yn, s ,)  . 

Increase n by 1 and loop to Step 1. 

In Step 2, the additional condition (4.3) is only required to guarantee the well posedness 

of  the BFGS formula and the positive definiteness of  the generated matrices. Note also that 
from Section 3 it is important to take tn = 2 whenever possible for the sake of superlinear 
convergence. Step 2 is actually a line-search generating trial stepsizes t>~ 1 until (2.9) and 
(4.3) are simultaneously satisfied. 

R e m a r k  4.1. Feasibility of  this line-search is easy to establish. First of  all, the requirement 
t~> 1 is not classical but x~, obtained for t =  1, satisfies the descent test (2.9) with a strict 

inequality. Then, by convexity of f ,  the stepsizes that satisfy (2.9) form a closed interval, 
say $ 1 ,  containing 1 in its interior. As for (4.3),  remark that the function 

O~< t ~  <g(x n + tSPn) --gn, S p)  =:d( t )  

is non-negative and non-decreasing and cannot be identically zero whenf i s  bounded below 
in the direction s p. This implies that the stepsizes satisfying (4.3) form an open interval 
J ' 2  = ] t  a, + ~ [ ,  with finite t a. We have to show that J l  and J ' 2  intersect. There are 2 
cases: 

1. I f  t a < l, J 1  ~ ~e'2 contains some neighbourhood of 1. 
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2. I f  1 ~< t~< + ~, the key is to observe that f(xn + ts p) has the constant slope (gP,, 

s ~ ) = -  " " (M~s., s .  ) at any t ~  [0, t a] (recall (2.2)).  Hence 

(Mn Sp, SPn) =f (x , )  --f(x~) >f ~n" 

Then, since t a >~ 1 > m, we can write 

f ( x .  + tas p) =f(xn) -- ta(MnsP., SPn ) <f (x . )  -- mS. .  

Thus, there is e >  0 such that any stepsize in ] t °, t ° + e] satisfies (2.9) and (4.3). 

Exploiting these properties, the line-search can then be implemented by a simple brack- 
eting algorithm as in [ 17]. Start from t =  2 and, at the current trial stepsize t>~ 1, 

(i) perform the descent test; if it is not satisfied, t is too large, compute a smaller t; 
(ii) if satisfied, test 'd(t)  > 0'; if yes, we are done; otherwise t is too small, compute a 

larger t. 

4.1. Global convergence 

Our global convergence result is a simple consequence of Theorem 2.3. 

Theorem 4.2. Assume that the convex function f has a nonempty bounded set of  minima 
and that its gradient mapping is locally Lipschitz continuous. Let {xn} be the sequence 
generated by Algorithm (BFGS-AP3).  Then, all the accumulation points of  {xn} and 

{ x p } minimize f . 

Proof. In view of Theorem 2.3, we only have to prove (2.14). Let L be a Lipschitz constant 
for g on the set {x:f(x)  ~<f(x~) } which, as already seen in the proof of Theorem 2.3, is 
compact. Applying for example [25] or Theorem X.4.2.2 of [ 13], we obtain 

L(yn,  sn)>/ [Yn [ 2 , 

and the trace relation (4.2) gives 

t rM,+ t  ~<trMn +L~< trMt +nL<.<(n+l)C,  

where C := max(tr M1, L). 
As the largest eigenvalue is less than the trace, we get 

1 1 1 
A~'i~(Mn-1) Am~(M~) ~> ~ >~ n---C" 

Therefore, the convergence condition (2.14) holds and the result follows. [] 

4.2. The r-linear convergence 

To prove superlinear convergence, it is known that a technically useful property is the r- 
linear convergence. This last property, interesting per se, can be established for (BFGS- 
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AP3) under rather mild assumptions onf. We start with a result of general interest in convex 
analysis. 

Lemma 4.3. Assume that the convex function f is differentiable. With ~ minimizing f, let 

a > 0 and x ~ ~N satisfy 

f (x)  >.f(O£) + a l x - 2 1 2  . (4.4) 

Then 

f (x )  <~f(2) + ( l / a ) [ g ( x ) I  z . (4.5) 

Proof. Write the subgradient inequality at x and obtain with the Cauchy-Schwarz inequality 

f ( x )  ~<f(2) + Ig(x) I I~Z - x l ,  

so that with (4.4) and the non-negativity of f (x)  - f ( 2 ) ,  

f (x )  - f ( ~ )  < Ig(x) l~/be(x) - - f (~)  ]/ot.  

The result follows. [] 

The next lemma is part of the theory of BFGS updates and can be stated independently 
of the present framework. We denote by 0, the angle between M,s, and s,: 

(M.s., s,,) (MJn, s~.) 
C O S  O n : =  = 

[Mnsnl ISnl IM.s~.I Is~.l ' 

and by [. ] the roundup operator: Ix] = i, when i - 1 < x ~ i and i ~ N. 

Lemma 4.4. Let {Mn} be generated by the BFGS formula using pairs of vectors (Yn, s,) 
satisfying 

(y,,sn)>~cxlls, I 2 and ( y . , s n ) > ~ 2 1 Y .  I z (4.6) 

for all n >>. 1, where a 1 > 0 and ot 2 > 0 are independent of n. Then for any r~  ] O, 1 [, there 
exist positive constants 7~ and 72, such that 

C O S  Oj/> ~/1 , (4.7) 

!Mjsjl <<- 72, (4.8) 
Isjl 

for at least [rn 1 indices j in { 1 . . . . .  n}. 

Condition (4.7) on cos 0j was proved by [25], when the BFGS update is used for 
unconstrained problems with the Wolfe line-search. Byrd and Nocedal [ 3 ] showed that this 
result is true independently of any line-search: it can he stated, as above, only in terms of 
the updated matrices M~ and the vectors y~ and s~. We found condition (4.8) also in [3]. 

We recall that the differentiable function f is said strongly convex on a domain D c ~N, 
if it satisfies the equivalent properties for some a > 0 ( see [ 13 ] Theorem VI.6.1.2): 
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ol 
f ( y )>~f (x )+(g (x ) , y - x )+  -~ ly -x l  2, forallx, y E D ,  

(g(y)--g(x),  y - x )>>aly -x l  2, forallx, y ~ D .  

Theorem 4.5. Assume that {x~} converges to a minimum point g, in the neighbourhood of 
which f is strongly convex and has a Lipschitz continuous gradient mapping. Then the 
convergence of {x~} is r-linear; this implies in particular that ~>~ l [ x~ - g[ < oo. 

Proof. Since this is an asymptotic statement, we limit our attention to large enough n in all 
the proof below. The Lipschitz property of g ensures the second condition in (4.6) (see 
again [25] ). The first one, as well as the growth condition (4.4), are ensured by strong 
convexity (i.e., strong monotonicity of the gradient mapping). Then our proof is based on 
an over-estimation off(xn) - f i g )  and begins by over-estimatingf P(xn) - f (Y) .  

Inequality (2.8) gives (MnsP,, sP)/2 <~ 6~ =f(xn) - fP(xn),  so that 

1 
f P(x,) - f l Y )  <~f(x~) - f l Y )  - -~ (M, sP,, sP) . (4.9) 

To obtain an over-estimation o f f  P(x,,) - f (g) ,  we under-estimate (M,,s p, sP,), first in terms 
of I g p I s and next in terms o f f  P(x,) - f (g) ,  using (4.5). 

We start from 

(M~sP,, s~) = IMns~ll sp [cos 0n, for all n>/1 . 

Fixing r in ]0, 1 [, we denote by N7 the set of indicesj in { l . . . . .  n} for which (4.7) and 
(4.8) hold. Using successively (4.7), (4.8) and (4.5), and remembering from Lemma 2.1 
that gP = -M~s p, we write for al l j~Nr",  

< Mjsy , sy > >t ~,, I Mjsy I Is'; I >i ~'~ I M S  I ~ = "L_' [ gp 12 >1 C, Oe( x f  ) - f l  % ) ) ,  
72 Y2 

where C~ = a71/7z. Adding (C~/2) (Mjsy, sy ) to the extreme sides and using (2.6) give 

( I+ ~)(MjsP, sP)>~C1(fP(xj)-f(~)), for a l l j ~ N 7 ,  

so that, as wished, 

1 
(Mjs p, sP)>~C2(fP(xj)-flY)), f o r a l l j ~ N , " ,  

where C 2 -- C1 / (2 + C~ ). Combining this with (4.9) gives 

f P ( x j ) - f ( ~ )  <~ ( f(x~)- f(£)) ,  for a l l j ~ N ~ .  

Now, using the line-search condition (2.9), we have for j ~ N r ~, 
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f(xj+l) - - f (~)  <~ (1--m) (f(xj) - f ( ~ )  ) +m(fP(xj )  - f ( ~ )  ) 

<(1 , m + ~ z ) ( f ( x j ) - f ( £ )  ) . 

Remark that we can write 1 -mC2/(1 +C2) =-'r  l/r for some ~'in ]0 ,  1[ .  Furthermore, as 
INr" I >/rn (Lemma 4.4) andf(xj+l) -f(X) <~f(xj) - f ( y )  for all j, we have 

f (x ,+l)  - f ( £ )  <~ "rIN"rllrff(x,) - - f (x) )  ~< ~'n(f(xl) - - f (x)) ,  for all n>/1.  

Finally (4.4) allows us to deduce 

This implies that lira SUpn-+~ IX~ --Xl ~/n~< V FT< 1, characterizing the r-linear convergence 
Of Xn to X. Finiteness of 2~,~ l [x~--xl follows. [] 

4.3. Acceptability of the ideal stepsize 

An important point for fast convergence is whether the stepsize t, = 2 is accepted asymp- 
totically by the line-search conditions (2.9) and (4.3). For this, and in particular for the 
descent condition (2.9), the candidate 

x + :=x~ +2SPn (4.10) 

must be 'superlinearly closer' to the minimum point g than x,. This is the last condition 
involved in the next result. 

Theorem 4.6. Assume that Y is a minimum point of f a t  which (3.6) and (3.7) hold, and 
such that the directional-derivative operator FI of g satisfies the following property: 

::lc~> 0 such that (l~z, z> >~ c~lzl z for all z ~  ~N.  (4.11) 

/f 

IXn + --21 =O( IXn --Y[),  (4.12) 

then the point x + of (4.10) is accepted by the line-search of Algorithm (BFGS-AP3) for 
n large enough. 

Proof. From (3.10), we have for z arbitrary in the neighbourhood of Y: 

g(z) = / 1 ( z - Y )  +o (  [z-J?[ ) ,  (4.13) 

so that in particular, 

<g~, s p > = (/~e~, s~ > + o( l e p [ [s~ I ) • 

For n large enough, we write (4.13) with z=Y+ ~'(xn-~); we multiply by Xn--Y and we 
integrate from ~-= 0 to ~-= 1: 
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1 
f(xn) = f ( 2 )  + ~ (/~en, e n ) + o (  len 12) • 

The same operation with xP. instead of xn gives 

1 
f(xV.) =f ( - r )  + ~ ( ~ep"' eP} + o (  lee 12) . 

A C l [ ~ p  sp>: These three relations give an estimate of 3n =f(xn)  - f ( x  p) ~\~;~, 

1 1 
6 . =  ~ (Hen, e n ) -  ~ (HeP, e n ) + o ( L e n l 2 )  , 

where we have used (4.12): sP~ and eV~ have the order of magnitude of e.. In the second 

term, use the relation 

e. = 2 e  p -  (x .  + - ~ )  =2e~ + o ( l e . I )  

to obtain 

1 
3 n =  2 ( f f Ien '  e n ) - - ( f f l e  p,  eP~) +o( len [ z) . 

In summary, we have the following estimate for the right-hand side in (2.9): 

1 - m  
f(x.) -m6 .  =f( :? )  + - -7 - "  ( / l e . ,  e.)+m(ISIeV,,, e V ) + o (  [e. [2) 

1 - m  
>~f(:?) + ~ ale.  12+o(le. 12) , 

because m ~ ] 0, 1 [. On the other hand, (4.1 3) can again be used to obtain the estimate (we 

set e + :=x + -97) 

1 
f (x  +) = f ( . f )  + ~ (/4e + , e + ) + o (  [e + ]2) =f( :? )  + o (  ]e. [ 2) . 

Because ( 1 - m) c~/2 > 0, we conclude that our q-superlinear assumption ensures that (2.9) 

is eventually satisfied. 
It remains to take care of (4.3).  From (4.13),  setting s + :-----Xn + --X. = -- e. + o( [e. [ ), 

we write 

(g(x2-), s + ) =  (/4e, + , s + ) + o (  I e+ II s.+l) = 0 (  le.  I z) , 

(g(x.), s + ) = (/~e.,  s + ) + o( l e.  [ 2) = - (He . ,  e. ) + o( ]e. 12) . 

We therefore obtain 

(g(x. + ) -g(x,,), s, + ) = (/4e.,  e . ) +  o( le.  I% >/'~len 12+0( le.  I 2) • 

and this again is eventually positive. []  
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4.4. The q-superlinear convergence 

Let us give one more general result from the theory of BFGS updates (see [ 3 ] ). 

Lemma 4.7. If  {Mn } is generated by the BFGS formula using pairs of vectors (y,, s,) such 
that 

[yn-Ms.[ 
(y,,, sn ) > O for all n >>- i and ~ I Sn [ < ~ ' 

n ~ l  

where M is a fixed symmetric positive definite matrix, then 

( M n - M ) s ,  = o ( I s ,  I ) .  (4.14) 

We now have all the necessary material to give our superlinear convergence result. 

Theorem 4.8. Assume that the sequence {x,} generated by Algorithm (BFGS-AP3) con- 
verges to an optimal point y, and that (3.6), (3.9) hold. Assume also that 1=1 is positive 
definite. Then, the convergence Of Xn tO Y, is q-superlinear. 

Proof. First of all, we establish the necessary local properties of the gradient mapping. Take 
x and y in the neighbourhood of ~ and apply (3.10): 

g(x) - g ( y )  = H ( x - y )  + o ( I x - Y [ )  • 

This implies the Lipschitz continuity ofg near Y. Multiply this last relation by x -  y: because 
/-) is positive definite, g is (locally) strongly monotone, i .e. ,f  is (locally) strongly convex. 
Thus, starting with Theorem 4.5 (all the assumptions required are satisfied): {xn } converges 
r-superlinearly to Y. 

Now, since (3.9) holds, we have 

[yn -Its, ,  [ 
<~L( Ix,+1 - Y l  + Ix, - x l  ) • Is.I 

Therefore, by the r-linear convergence of {xn}, 

lYn --ftS. I 
E IS.I < + ~ "  n > l  

This and Lemma 4.7 give (M,,- /q)  sn = o(Is.I). 
Finally, the latter estimate and Theorem 3.6 imply that xn +2s p - ~ = o (  [e, ]). Then 

Theorem 4.6 shows that the stepsize &=2 is accepted by the line-search. Hence 
e,+l =o( lenl ) and the convergence is q-superlinear. [] 

Let us conclude this section by a consequence of Theorems 4.2 and 4.8: if g is locally 
Lipschitzian, and if f has a minimum point ~ satisfying the assumptions of Theorem 4.8, 
then Algorithm (BFGS-AP3) is globally and q-superlinearly convergent. 
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5. Conclusion 

The essential content of this paper is a theoretical investigation of algorithms for non- 
smooth optimization combining quasi-Newton techniques with Moreau-Yosida regulari- 
zations. When doing so, we have privileged approaches lending themselves to 
implementations via bundle methods. 

Ideally, this should be achieved by the algorithmic pattern AP2; see [ 18] for imple- 
mentable proposals. However, the local properties of this algorithm turn out to be rather 
hard to analyze; as for AP1, studied by [20], some technicalities are needed when turning 
to implementation aspects. We have therefore adopted here AP3, which appears as a good 
compromise between theoretical simplicity and practical significance. 

As stated in Sections 3 and 4, AP3 is quite comparable to a standard quasi-Newton 
algorithm. By analogy with differential equations, AP3 could be viewed as a trapezoidal 
integration scheme: two successive iterates are computed using the derivatives g and H at 
their mid-point x p. As a by-product, the tools of the present work could therefore be applied 
to standard quasi-Newton algorithms (i.e., explicit integration schemes). Keeping this in 
mind, our local theory of Section 3 is then fairly comparable to that of [ 14]. In particular, 
it should be pointed out that the relevant smoothness assumptions are basically the same. 
Our role in this matter has been to extract from [ 14] the key properties off,  to be satisfied 
at the solution point y only. In other words, we used the conclusions of Theorems 3.1 and 
3.2 instead of their premises. 

On the other hand, such a local study with weakened assumptions is related to the 
resolution of non-smooth equations, studied in [ 23,27,16,26,24 ], among others. There exist 
Newton formulae which converge superlinearly under fairly general assumptions (semi- 
smoothness of g). Indeed, a Newton scheme uses directly the Hessian V2f(xn), which gives 
by definition reliable second-order information at xn; the role of semi-smoothness is then to 
ensure that this information remains valid all the way to convergence. By contrast, we need 
here apparently restrictive assumptions such as (3.8) ; in a quasi-Newton context, however, 
they seem rather minimal. For the quasi-Newton equation (3.1) to be any good, the values 
g(xn) and g(x,+~) must reflect the values g(x) at neighbouring x's; this is precisely the 
role of (3.8). 
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