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Introduction 

Principal objectives of the theory of equilibrium in economics (as well as regional 
science, transportation theory, game theory etc.) are to establish existence of equili- 

brium, to discuss conditions under which the equilibrium is unique, to perform 

sensitivity analysis (comparative statics) and, finally, to develop algorithms for the 

efficient computation of equilibria. There is voluminous literature on the subject in 

which the above issues are being addressed by means of a variety (often ad hoc) 

techniques. Over the last few years the author has been pursuing a research program 

whose goal is to demonstrate that the theory of variational inequalities provides the 
most natural, direct, simple and efficient framework for a unifying treatment of all 
equilibrium problems. 

It is by now familiar that the equilibrium conditions of virtually every equilibrium 

problem may be formulated as a variational inequality: This has been observed in 

the context of numerous specific examples (see, e.g., Dafermos, 1980, 1982; Gabay 

and Moulin, 1980; Florian and Los, 1982, Dafermos and Nagurney, 1984, 1987; 
Border, 1985). To the above list we should add all cases in which the equilibrium 
conditions have been reduced to a complementarity problem which in turn is a 

special case of a variational inequality (see, e.g., Lemke, 1965; Karamardian, 1969; 

Eaves, 1972; Scarf, 1973; Todd, 1976). This reduction provides the opportunity for 

developing a unifying and integrated theory of equilibria that encompasses qualita- 

tive study as well as computations. It seems that this potential has not been yet 

fulfilled, especially in economics. In this paper, an attempt is being made to illustrate 

this approach by means of  the simple and familiar example of a pure exchange 
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economy. Other, more elaborate models will be discussed in the same vein in future 
publications. 

In Section 1 we show that Walrasian equilibrium price vectors can be characterized 
as solutions of a remarkably simple variational inequality (see also Border, 1985, 
Section 8). As a first indication of the usefulness of this observation, we show how 
the theory of variational inequalities provides a simple direct proof  of the existence 
of Walrasian equilibrium price vectors under quite weak assumptions on the aggre- 
gate demand function. 

The situation in which the power of the theory of variational inequalities becomes 
particularly obvious is when we impose on the aggregate excess demand function 
certain monotonicity assumptions which, though restrictive, are in the spirit of  the 
'law of demand'.  To demonstrate this, we derive, under the monotonicity assumption, 
an alternative, even simpler, characterization of  Walrasian equilibrium from which 
we immediately infer that the set of Walrasian equilibrium price vectors is convex. 
Under strict monotonicity, we show that the Walrasian price equilibrium vector is 
unique and depends continuously on the aggregate demand function. Some of our 
results are slight generalizations of propositions that can be found in the literature; 
however, our derivations, based on the theory of variational inequalities, are more 
direct, short, unifying and, I believe, conceptually simpler. Furthermore, the charac- 
terization of Walrasian price equilibrium vectors as solutions of a simple variational 
inequality induces efficient algorithms for their computation (see Dafermos, 1983; 
Zhao, 1988). The issue of local uniqueness and sensitivity of equilibrium can also 
be settled effectively through the theory of variational inequalities (see Dafermos, 
1988; Zhao, 1988). 

As stated above, the goal of this paper is only to provide an example of the 
application of  an approach which is very general. Other applications will follow. 
For instance, the general equilibrium problem with production economies has 
recently been studied via the present approach (Zhao, 1988; Dafermos and Zhao, 
1989). 

1. Exchange price equilibrium and variational inequalities 

We consider here an exchange economy with price vector p = (p~, . . . ,  Pk), taking 
values in the positive orthant N~, and induced aggregate excess demand function 
z(p).  In order to take into consideration the possibility that aggregate excess demand 
may become unbounded when the price of a certain good vanishes, we assume that 
z(p) is generally defined on a subcone C of Nk+ which contains the interior k R++ of 
Rk+, i.e. ~ +  ~ C c Rk+. As usual z(p) will be homogeneous of degree zero in p on 
C and will satisfy Walras' law,  namely p. z(p) = 0, on C. By virtue of homogeneity, 
we may normalize prices so that they take values on the simplex 

S k = {  pc"k+:i=t~ P i = l }  (1.1) 
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and, accordingly, we restrict the aggregate demand function z(p)  to the intersection 
D of S k with C. Note that Sk+ c D c S k, where Sk+ denotes the intersection of S k 
with k ~++. We assume tht the function 

z ( p ) : D ~ R  k 

is continuous. By Walras'  law, we have in particular 

p . z ( p ) = O ,  p c D .  (1.2) 

A price vector p* c D is called a Walrasian equilibrium if 

z(p*)<~O. (1.3) 

We show in the next theorem that Walrasian equilibrium price vectors can be 
characterized as solutions of  a variational inequality (see, e.g., Kinderlehrer and 
Stampacchia, 1980; Border, 1985). 

Theorem 1.1. A price vector p* c D is a Walrasian equilibrium if and only if  it satisfies 
the variational inequality 

z ( p * ) . ( p - p * ) ~ O ,  p c S  k. (1.4) 

Proof. First note that, by virtue of Walras' law (1.2), inequality (1.4) is equivalent 

to 

z(p*).p<~O, p c S  ~'. (1.5) 

Assume now that p * c  D is a Walrasian equilibrium price vector, i.e., it satisfies 
(1.3). Then (1.5) obviously holds. Conversely, assuming (1.5) holds for all p c  S k 

and choosing p - ( 0 , . . . ,  0, 1 , 0 , . . . ,  0), with 1 located at the ith position, we deduce 
z~(p*)<~O, i =  1 , . . . ,  m. The proof  is complete. [] 

The above characterization allows us to utilize the well-developed theory of 
variational inequalities in order to establish the existence and other properties of  
Walrasian equilibria and to formulae efficient algorithms for their computation. 

2. Existence of Walrasian equilibria 

In general, the existence of solutions of a variational inequality over a convex and 
compact set is established by the following standard theorem (see, e.g., Kinderlehrer 
and Stampacchia, 1980, Theorem 3.1). 

Theorem 2.1. Let K c ~k be compact and convex and let 

f : K ~  k 

be continuous. Then there is at least one p* c K such that 

f ( p * ) ' ( p - p * ) > ~ O ,  p c  K. [] (2.1) 
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We observe that, in particular, if the aggregate excess demand function z (p)  is 
defined and is continuous on all of S k, i.e., D = S k, then the existence of at least 
one Walrasian equilibrium price vector in S k follows directly from Theorems 1.1 

and 2.1. 
Since D is not necessarily compact,  Theorem 2.1 is not directly applicable to 

variational inequality (1.4). However, we may still use this theorem to deduce the 
existence of an equilibrium, provided z (p)  exhibits the proper  behavior near the 
boundary of S k, namely that at least some components  of z (p)  become 'large' as p 
approaches points on the boundary of S k that are not contained in D. Several 

existence theorems of this type are recorded in the literature (see, e.g., Border, 1985). 
We choose here to prove an existence theorem under a hypothesis on the boundary 
behavior of  z (p)  proposed by Grandmont  (1977), which is perhaps the weakest 
considered so far in the literature. The reader will realize, of  course, that the pattern 

of  our proof  is very general and may be adapted easily when alternative assumptions 
are imposed on z(p) .  

Theorem 2.2. Assume that the aggregate excess demand function z (p)  satisfies the 
following assumption: if s k \ D  is nonempty, then with any sequence {Pn} in Sk+ which 
converges to a point of  Sk \  D there is associated a point ~ ~ sk+ (generally dependent 
on {Pn}) such that the sequence {z(pn)./~} contains infinitely many positive terms. 
Then there is a Walrasian equilibrium price vector p* ~ D. 

Proof. Let K,  denote the set of  all p c S k whose distance from the boundary Sk\sk+ 
is greater than or equal to 1/n. Note that for n sufficiently large Kn is a nonempty, 
compact,  convex subset of  Sk+ and Un Kn = sk+. By virtue of  Theorem 2.1, the 
variational inequality 

z(p*)"  ( p - p * )  <~ O, p c K, ,  (2.2) 

has at least one solution p* c K, .  Because of (1.2), 

z(p*).p<~O, p c K , .  (2.3) 

The sequence {p*} contains a convergent subsequence denoted again by {p*}, say 

p * ~ p * ,  n~eo ,  (2.4) 

where p* c S k. We claim p* c D. Indeed, if p* ~ S k \ D  then, by hypothesis, there is 
p c sk+ such that the sequence {z(p*)-/~} has infinitely many positive terms. However, 
p 6 K,  for n sufficiently large and so, by virtue of  (2.3), z(p*)  .~ <~ O, for n sufficiently 
large, and this is a contradiction. 

Since p* c D and z (p)  is continuous on D, we may pass to the limit in (2.2), to infer 

z ( p * ) . ( p - p * ) < ~ O ,  p c U g ~ , = - S  k, (2.5) 
n 

and so, by Theorem 1.1, p* is a Walrasian equilibrium price vector. This completes 
the proof. [] 
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3. Monotone aggregate excess demand 

395 

Here we consider a special class of aggregate excess demand functions for which 
the theory of  variational inequalities gives particularly strong results (see, e.g., 
Kinderlehrer and Stampacchia, 1980). 

We say that - z (p )  is monotone on D if 

( z (p) - z (q) ) . (p -q)<~O,  p, qcD.  (3.1) 

Though restrictive, assumption (3.1) is in the spirit of  the 'law of demand'. 
Hildenbrand (1983), for example, showed that if the income of the individual does 
not depend on the price system, then individual demand functions which satisfy 
the weak axiom of revealed preference induce monotone aggregate demand func- 
tions. Conditions in the same spirit on the aggregate demand function have frequently 
been resorted to in the economics literature (cf. Mas-Colell, 1985) in order to 
establish uniqueness and other desirable properties of equilibrium price vectors. 

Theorem 3.1. Assume - z (p )  is continuous and monotone on D. Then p*c D is a 
Walrasian equilibrium price vector if and only if 

z(p).(p-p*)<~O, poD,  (3.2) 

or, equivalently, if and only if 

z(p).p*>~O, poD.  (3.3) 

Proof. Assume first p* ~ D is a Walrasian equilibrium vector, in which case, in view 
of Theorem 1.1, it satisfies the variational inequality 

z(p*).(p-p*)<~O, p c S  k. (3.4) 

We note, 

z (p) . (p  p*) z(p*) . (p  p * ) + ( z ( p ) - z ( p * ) ) . ( p  p*), p c D .  (3.5) 

The right-hand side of (3.5) is nonpositive, by virtue of (3.4) and the monotonicity 
assumption (3.1). Hence (3.2) holds. 

Conversely, assume (3.2) holds. Fix any q c Sk+ and set p (1 - A ) p * +  Aq, where 
A c(0,  1). It follows that pcSk+c D and therefore (3.2) holds, i.e., 

z((1 - A ) p *  + Aq). (q-p*)<~O. (3.6) 

Since z(p) is continuous on D, letting A -* 0, (3.6) yields 

z(p*).(q-p*)<~O 

for all q6  Sk+ and so, by completion, for all q c  S k. Hence, by Theorem 1.1, p* is a 
Walrasian equilibrium price vector. The proof  is complete. [] 
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As an immediate corollary of Theorem 3.1, we obtain the following. 

Corollary 3.1. Assume - z ( p )  is continuous and monotone on D and D is convex. 

Then the set of Walrasian equilibrium price vectors is a convex subset of  D. [] 

Remark 3.1. When the economy is regular, i.e. z(/~)= 0 implies rank[Oz(fi)/Op] = 
k -  1, the set of equilibrium price vectors is finite (see, e.g., Mas-Colell, 1985), and 
hence an immediate consequence of the above corollary is that in a regular economy 
with - z ( p )  monotone there is at most one interior equilibrium price vector. 

We now proceed to strengthen the monotonicity assumption (3.1). We say that 
- z ( p )  is strictly monotone on D if 

( z ( p ) - z ( q ) ) . ( p - q ) < O ,  p, q c D ,  p # q .  (3.7) 

Theorem 3.2. Assume - z  is strictly monotone on D. Then there exists at most one 
Walrasian equilibrium price vector. 

Proof. Assume p*, q* ~ D are Walrasian equilibrium price vectors. They satisfy, by 
Theorem 1.1, the variational inequalities 

z (p* ) ' (p -p* )<~O,  p c S  k, (3.8) 

and 
z (q*) ' (p -q*)<~O,  p c S  k. (3.9) 

We write (3.8) for p = q* and (3.9) for p = p* and combine to obtain 

(z(p*) - z(q*))" (p* - q*) >10. 

By virtue 

(3.10) 

of (3.7), (3.10) cannot hold unless p* = q*. The proof is complete. [] 

Remark 3.2. We say that - z ( p )  is strictly monotone about a particular point p* ~ D 
if 

( z ( p * ) - z ( q ) ) . ( p * - q ) < O ,  q c D ,  q ¢ p * .  

It is clear from the proof  of Theorem 3.2 that the following weaker statement holds: 
If p * c  D is a Walrasian equilibrium and - z ( p )  is strictly monotone about p*, then 
p* is the only equilibrium point. At this point it is appropriate to recall that in the 
economics literature uniquess is usually derived from the weak axiom of revealed 
preference, namely, 

q'z(p)<~O implies p . z ( q ) > O ,  p, q c D ,  p ~ q .  

For a fixed point p* in D, we say that the weak axiom of revealed preference holds 
about p* if 

q.z(p*)<~O implies p * . z ( q ) > O ,  q c D ,  q ~ p * .  
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Because of Walras' law (1.2), it is clear that strict monotonicity implies the weak 
axiom of revealed preference and strict monotonicity about p* 6 D implies the weak 
axiom of revealed preference about p*. In particular, if p* is a Walrasian equilibrium 
such that p* > 0, in which case z (p*)  = 0, it is easily seen that, conversely, the weak 
axiom of revealed preference about p* implies strict monotonicity about p*. We 
thus see that for interior equilibrium points our uniqueness result derived from strict 
monotonicity about the equilibrium point p* is completely equivalent with the 
standard uniqueness result derived from the weak axiom of revealed preference 
about p*. 

We now turn to the question of comparing equilibria. The following lemma is 
useful in analyzing the effects of a change in an economy. 

Lemma 3.1. Consider two aggregate excess demand functions z and z'. Let p and p' 
be Walrasian equilibrium price vectors associated, respectively, with z and z'. Then 

(z ' (p ' )  - z ( p ) ) .  ( p ' -  p) >~ o. 

Furthermore, when - z  is strictly monotone 
z'), then 

(z ' (p ' )  z ( p ' ) ) . ( p ' - p ) > ~ O ,  

with equility holding only when p = p'. 

(3.11) 

without  any monotonicity restriction on 

(3.12) 

Proof. Being Walrasian equilibrium price vectors, p and p' must satisfy, by Theorem 
1.1, the variational inequalities 

z ( p ) . ( q - p ) < ~ O ,  q c S  ~', (3.13) 
and 

z ' ( p ' ) . ( q - p ' ) < ~ O ,  q c S  k. (3.14) 

We write (3.13) for q - p '  and (3.14) for q p and sum the resulting inequalities 
thus obtaining (3.11). 

From (3.11), 

( z ' ( p ' ) - z ( p ) + z ( p ' ) - z ( p ' ) ) . ( p '  p )>O.  (3.15) 

When - z ( p )  is strictly monotone, (3.15) yields 

(z ' (p ' )  - z (p ' ) ) .  ( p ' - p )  >~ - ( z ( p ' )  - z ( p ) ) .  ( p ' - p )  >~ 0 (3.16) 

and hence (3.12) follows with equality holding only when p ~p ' .  

Applying Walras' law to (3.11) and (3.12), above, we deduce the following 
corollary. 
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Corollary 3.2. Consider two aggregate excess demand functions z and z'. Let p and 
p' be Walrasian equilibrium price vectors associated with z and z', respectively. Then 

p. z'(p') +p' .  z (p)  <~ O. (3.17) 

Furthermore, assuming that - z  is strictly monotone, 

p. z'(p')<~ p. z(p')  (3.18) 

with equality only where p = p'. [] 

In particular, if z' is induced by a binary change in z (in which case z ( q ) -  z'(q) 
has only two nonzero components) and if, for definiteness, z~(q) > z~(q) and z'2(q) < 
z2(q) for all q c D, then (3.18) and Walras' law yield 

Pl/Pl ~ P2/P2 

with equality holding only if p = p'. 
When the assumption of monotonicity is strengthened even further, we deduce 

that Walrasian price equilibria depend continuously upon the aggregate excess 
demand function. 

We will say that - z ( p )  is strongly monotone on D if 

( z ( p ) - z ( q ) ) . ( p - q ) < ~ - a l p - q ]  2, p , q ~  D, (3.19) 

where a is a positive number. 

Theorem 3.3. Let z and z' be aggregate excess demand functions. Let p and p' be 

corresponding Walrasian equilibrium price vectors. Assume z satisfies the strong 
monotonicity assumption (3.19). Then 

[P ' -Pl  ~ l l z ' ( P  ') - z(p')]. (3.20) 
o~ 

Proof. By Lemma 3.1, (3.11) holds. From (3.11), 

(z'(p') - z (p)  + z(p')  - z (p ' ) ) .  ( p ' - p )  >~ O. (3.21) 

On account of the strong monotonicity condition (3.19), (3.21) yields 

( z ' ( p ' ) - z ( p ' ) ) . ( p ' - p ) > ~ - ( z ( p ' ) - z ( p ) ) . ( p ' - p ) > ~ a l p ' - p ]  2. (3.22) 

By virtue of Schwarz's inequality, (3.22) gives 

I p ' - p l  2 <~ Iz '(p ')  - z(p ' ) l  I p ' - p l ,  (3.23) 

whence (3.20) follows and the proof is complete. [] 

Being nonlocal conditions, (3.1), (3.7) and (3.19) do not generally provide an 
easy test for determining whether a given aggregate excess demand function is 
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monotone,  strictly monotone or strongly montone.  However, when z(p) is con- 
tinuously differentiable on Sk+, the issue of monotonicity may be resolved through 

a straightforward computation. Specifically, consider the Jacobian matrix 

J(p) = [Ozi(p)/Opi], p c Sk+. (3.24) 

It is known that a necessary and sufficient condition for -z(p)  to be monotone on 
k C is that -J(p)  be positive semi-definite on N++, and a sufficient condition for 

-z(p)  to be strictly (strongly) monotone on C would be that -J(p)  be positive 
k (uniformly positive) definite on N++. This last condition, however, can never hold 

because no function which is homogeneous of degree zero may be strictly (strongly) 
monotone on a cone C. This has discouraged researchers from using monotonicity 
techniques in the study of the general equilibrium problem (see, e.g., Mathiesen, 

1987). We should emphasize, however, that all the results obtained above require 
only monotonicity, strict monotonicity, or strong monotonicity on D. It is clear that 
-z(p)  may be strictly (strongly) monotone on D even though it is not strictly 

monotone on C. 
In order to test the monotonicity of -z(p)  on D, we let V be the ( k -  

1)-dimensional subspace of ~k which is parallel to S k, i.e., 

Then a sufficient condition for strict monotonicity on D is that 

-v 'J (p)v>O,  vc V, v¢O, pcSk+. (3.25) 

A sufficient condition for strong monotonicity on D is that there is a positive number  

c~ such that 

- v ' J ( p ) v > a ,  vcV,  ]v ]= l ,  pcSk+. (3.26) 

The above may be nicely illustrated by means of the aggregate demand function 
obtained from a population of n individuals, each with a Cobb-Douglas  utility 
function. The aggregate demand function is 

z(p) = ~ zJ(p) (3.27) 
i 1 

where 

z{(p)=--I oe{(wJ.p )_w(, i = l , . . . , k .  
Pi 

To show that -z(p)  is strongly monotone it suffices to show that for each fixed j, 
-zJ(p) is strongly monotone. Therefore, without loss of  generality, we may consider 
the case of a single consumer and examine the monotonicity of  the function z(p) 
with components 

ai(w'p) 
zi(p)= wi, i = l , . . . , k ,  (3.28) 

Pi 

where a c S~ and w c l/~+ are given vectors. 
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The Jacobian J(p) is here  given by 

Jij(P)-  aiwj ai(w.p) ~u 
Pi p2 

where 6 u = 1  if i=j,  and 6 0 = 0  if i ¢ j .  Then 

- v ' J ( p ) v = ( w ' p )  a d_ 2 (w.v) --vi .  i=l p~ v i -  i=l  pi  
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(3.29) 

(3.30) 

With an eye on (3.26), we estimate f rom below the r ight-hand side of  (3.30) for 
v c V such that Ivl = 1. In the first place, we note that  

k 

w'p= ~ wipi>~ rnin wi, p ~ S  k. (3.31) 
i--1 l ~ i ~ k  

Next,  we introduce the vector  e = (1, . . . ,  1) in R ~ and scalar 

1 1 k 
w = ~ w . e = ~  2 We. (3.32) 

i = l  

Since v c  V and Iv l= 1, 

]w. v I = I ( w -  we) .  v I ~< Jw - we]. (3.33) 

Using Schwarz 's  inequali ty and since a c S~+, 

- -  v~ ~< ~ v 2 . (3.34) 
i=1 Pi i=l Pi 

Moreover ,  

v ~> rain ~a~,. (3.35) 
k i = l  Pi l~i~k 

Combining the above estimates, we obtain 

vZ] ' /Z{(mi!n  k Jh-~i) (lmii<n k w i ) - I w - w e l } .  (3.36) 

Therefore ,  if 

min a ~ > [ ~  ( w ~ - w ) 2 ] /  2 
l~i~k i=l lmiink w i ,  (3.37) 

then it follows from (3.36) and (3.26) that  the excess demand  funct ion given by 
(3.28) is strongly mono tone  on Sk+. We note that (3.37) will hold when the endowment  
vector  w forms a small angle with the vector  e. In particular,  (3.37) always holds 
when w = we, i.e., when wl . . . . .  Wk = to. As we shall see below, this 'symmetric '  
case has other  special propert ies  as well. Of  course, (3.37) is just a sufficient condit ion 
for strong monotonici ty .  

It is interesting to consider  the problem of  whether  the Walrasian equilibrium 
price vector  minimizes a scalar funct ion ~b(p) on S k. This will be the case when the 
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projection of the Jacobian matrix J ( p )  on the subspace V is symmetric. (As it was 

pointed out by one of the referees, when the aggregate demand function z ( p )  is 
homogeneous of degree zero and satisfies Walras'  law, the Jacobian J ( p )  itself 
cannot be symmetric, unless z ( p )  is identically zero.) The precise result is stated in 
the following theorem whose proof  is standard. 

Theorem 3.4. Assume  z ( p )  is a continuously differentiable funct ion on S k whose 

Jacobian matrix J ( p )  satisfies the symmetry  condition 

s . J ( p ) r = r . J ( p ) s ,  p c S  k, s, r c  V. (3.38) 

Then there is a real-valued, twice continuously differentiable function OS( p)  on S k such 

that 

O r d ) ( p ) = - r ' z ( p ) ,  p ~ S  k, r e  V, (3.39) 

where Or denotes differentiation in the direction r. A n y  minimum p* q f  4)(P) on S k is 

a Walrasian price equilibrium. Moreover, - z ( p )  is (strictly, strongly) monotone on 

S k ( / a n d  only i f O ( p )  is (strictly, uniformly) convex on S k. When oh(p) is convex, 

then p* c S I~ is a Walrasian price equilibrium i f  and only i f  p* is a minimum o f  ch(p) 

on S k. [] 

As an illustration of the above, consider again the aggregate excess demand 
function given by (3.27). Again, it is clear that (3.38) will hold for the Jacobian of 
z ( p )  if it holds for the Jacobians of z i ( p ) , j  - 1 , . . ,  n. Therefore, as before, it suffices 

to consider, without loss of generality, the case of  a single consumer (3.28). Using 

the expression (3.29) for J ( p )  we find 

- -  si (w" p) - Z  siri . 
i = 1  Pi i = 1  Pi 

(3.40) 

We now note that the second term on the right-hand side of (3.40) is symmetric in 
(s, r), for all p ¢ S~. On the other hand, the first term on the right-hand side of  
(3.40) may be symmetric in (s, r) only if it is identically zero, i.e., only if w. r = 0 

for all r c V, i.e., only if the components of  w are equal, Wl . . . . .  wk - ~o. So, it is 
only in that case that (3.39) may hold for some function qS(p). In fact, it holds for 

k 

& ( p ) = - w  ~ a~logp~+wp.e .  (3.41) 
i I 

In this case the unique Walrasian equilibrium p* is given by 

p~=a~,  i = l , . . . , k .  (3.42) 
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