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A constructive procedure using Dines-Fourier-Motzkin elimination is given for eliminating quantifiers 
in a linear first order formula over ordered fields. An ensuing transfer principle is illustrated by showing 
that a locally one-to-one affine map is globally one-to-one and onto all over ordered fields. 
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I. Introduction 

Ler q~ be a s ta tement  cons t ruc ted  by var iables ,  integers ,  the funct ions  " a d d i t i o n "  

and  "mu l t i p l i c a t i on" ,  the p red ica tes  " equa l i t y "  and  "g rea t e r  than" ,  the logical  

connect ives  " n e g a t i o n " ,  " a n d "  and  " o f "  and  the logical  quantif iers  " fo r  a l l"  and  

" fo r  some" .  Such a s ta tement  is ca l led  a f irst  order formula  fo r  ordered fields, or 

more  briefly, herein,  a formula .  We call  a fo rmula  quantifier-free or linear if  there  

are no quantif iers ,  or  if  all quant i f ied  var iables  are l inear  with respect  to each other ,  

respect ively .  

A const ruct ive ,  shor t  and  e l emen ta ry  p r o o f  o f  quant i f ier  e l imina t ion  for  l inear  

fo rmulae  over  o rde red  fields using D i n e s - F o u r i e r - M o t z k i n  e l imina t ion  is given (cf. 

Dines ,  1918-1919; Four ier ,  1826; Motzk in ,  1936). Also,  an example  i l lus t ra t ing  the  

use o f  an ensuing  t ransfer  p r inc ip le  is deve loped .  In the  example  we require ,  in 

add i t ion ,  the use of  Tarski ' s  (1951) quant i f ier  e l imina t ion  and  t ransfer  p r inc ip le  

over  real  c losed  fields. 

Van den Dries  (1981) has shown,  using a mode l  theore t i c  test, that  va l id i ty  o f  a 

l inear  fo rmula  over  one o rde red  field impl ies  its va l id i ty  over  all o rde red  fields. He  
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then concludes, again using model theoretic arguments, that linear first order 
formulae over ordered fields are equivalent to quantifier-free formulae. Weispfenning 
(1988), "substituting Skolem terms," has shown that quantifier elimination for linear 
formulae can be executed in doubly exponential time and space. For a survey of 
recent results in quantifier elimination see Grigor 'ev (1986). 

The development herein parallels the classical avenue of Tarski. The proof  of  
Tarski 's Theorem is based on Sturm's Theorem, whereas ours is based on Dines-  
Fourier-Motzkin elimination. In turn, Sturm's Theorem is based on mean value 
existence for polynomials which is valid in real closed fields whereas Dines-Fourier-  
Motzkin elimination is based on mean value existence for linear functions which 
is valid in all ordered fields. Out  construction is weaker than Tarski's in that we 
eliminate the quantifiers only when the quantified variables are linear with respect 
to each other, on the other hand we do so over all ordered fields including those 
that are not real closed. Further, Dines-Four ier -Motzkin  elimination is constructive, 
in that when one eliminates a quantifier "for  some" one can get an explicit representa- 
tion of an element satisfying the concerned statement, when such exists. However, 
the conclusion of Sturm's Theorem is existential, and such explicit identification is 
in general not available; for example,  Sturm's Theorem will assure that the statement 

3x  (x • -Sx 6+2x  5+x  4 - 2 x  3 + x  2 - 1 0 x - 1 9 = 0 )  

is equivalent to the statement 1 = 1 over all real closed fields, i.e. it is true over all 
real closed fields, but neither Sturm's not  Tarski 's method can be used to obtain an 
element that satisfies the above polynomial  equation. However, Sturm's Theorem 
does suggest a procedure for approximating a root of  the equation. 

Our efforts here are motivated by our study of piecewise affine maps over the 
rational field denoted Q and over the real field augmented to include an infinitesimal, 
denoted R(~o) (see Eaves and Rothblum, 1987, 1989). In particular, our interest 
focuses on computat ion with piecewise affine functions and on drawing conclusions 
for restrictions and extensions of  real piecewise affine functions to Q and R(w), 
respectively. We note that Q and R(~o) are neither complete nor real closed. For 
example, Eaves and Rothblum (1987) show how to construct invariant polynomial  
curves of  certain piecewise affine maps; Kohlberg (1980) had obtained sufficient 
conditions for existence of invariant rays, a special t ype  of invariant polynomial 
curves. Other typical questions occuring regarding piecewise affine maps over R(w) 
are as follows: Given a piecewise affine map f :  Rn-~ R n, can f be extended to a 

piecewise affine function f:R (w)n ~ R (w)n? Can f be constructed so that it inherits 
from f properties like locally one-to-one, globally one-to-one or onto? These ques- 
tions can be cast as statements about  the data of  the map f where all the quantified 
variables are linear with respect to each other, So, these statements can be converted 
to quantifier-free statements and their validity over R implies their validity over 
R(w). Hence these questions are answered in the affirmative (see Eaves and 
Rothblum, 1989, for further details). Here we consider one example of the use of  
the transfer principle by showing that a piecewise affine map that is locally one-to-one 
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taust be globally one- to-one and onto over all ordered fields. This fact is known for 

the real field, and we use the transfer  principle together  with Tarski 's to prove the 

result for any ordered field. Fnrther  applications of th is  type o f  the transfer principles 

can be found  in Eaves and Rothb lum (1989). In a b roader  sense, given a fact true 

over a real vector space there is always the question o f  does it remain true over, 

say, a rational vector space. The transfer principle for l inear formulae offers an 

important  device for addressing such questions. 
We introduce background  material in Section 2 and state and prove the quantifier 

elimination result and transfer principles in Section 3. Finally, in Section 4 we 

illustrate the use o f  the ensuing transfer principle. 

2. Preliminaries 

Let 5~ be a first order  language with equality symbol  = whose parameters  are 

three constant  symbols - 1 , 0  and 1, two two-place funct ion symbols • and + and a 

two-place predicate symbol > .  Let the set of  variables for the language be 

{ X ,  y ,  Z ,  X 1 ,  X 2 ,  • • • , Y l ,  Y 2 ,  • - - , Z l ,  2 ' 2 ,  • • . ) .  This language is called the language of 
orderedfields. As usual, for readability, we write x + y  for +(x,y) and x . y  or xy 
for • (x, y). We also use the notat ion x" to denote x when n = 1 and (inductively) 

xx" 1 when n = 2 , 3 ,  . . . .  
Terms of  the language 5g are called polynomials, i.e. polynomials  are expressions 

generated f rom the constant  symbols and variables by the functions • and +. Atomic 
formulae ofSg are obtained via the applicat ion of  the predicate  symbols = and > 

to pairs o f  polynomials ,  e.g. given polynomials  p and q, (p  = q) and (p > q) are 

a tomic formulae.  Finally, (well formed) formulae of 5g are built up from atomic 
formulae via the finite applicat ion o f  the connectives ~ (negation),  ^ (and),  v (or) 

and the quantifiers V (for every) and 3 (there exists) as follows. All a tomic formulae  

o f  5g are formulae o f  Sf, and if q~ and O are formulae o f  ~ then so are ~q~, q~ A Ó, 

q~ V ~, VX¢ and 3x  q~, where x is any variable. For  example,  q~ defined by 

¢: Vy 3x ((y<O) v( (x2=y)v(z>O)))  (2.1) 

is a formula  of  5g. Since the language Lf is the only one we consider in the paper ,  

we will simply refer th roughout  to atomicformulae and formulae without  reference 
to ~ .  Variables occuring in a formula  captured by a quantifier V or 3 are called 

quantified variables, otherwise free variables. In the formula  ¢ in (2.1), x and y are 

quantified variables and z is a free variable. I f  a formula  has no variables, no free 

variables, or no quantifiers we call it variable-free, closed, or quantifier-free, 
respectively. 

A structure o~ for ~ is a tuple consisting o f  a nonempty  set F, called the universe 
of  @ three elements in F, two binary functions on F and a b ina ry  predicate where 
these objects correspond to the parameters  ( -  1, 0, 1, ", + ,  > )  o f  Sf. The elements in 

the universe o f  a structure corresponding to - 1 ,  0 and 1 are called negative unity, 
zero and unity, respectively, the functions cor responding  to • and + are called 
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multiplication and addition, respectively, and the predicate corresponding to > is 

called greater than. As usual, we do not  distinguish between the notat ion for symbols 

of  the language and the cor responding  assignments o f  the structure, indeed,  we 

denote  a structure for ~ by ~ =  (F, - 1 ,  0, 1 , . ,  +,  > ) .  Also, we sometimes identify 
a structure with its universe. Finally, the outcomes of  the applications of  successive 

addit ion operat ions  or successive mult ipl ication operat ions are called, respectively, 

sums or products. 

Given a formula  ~, a structure ~ for ~ and an assignment of  elements in the 

universe of  ~ to the variables, ~ is either satisfied or not satisfied in ~. A formal 

definition of  satisfiability requires an inductive argument.  In particular, given a 

structure ~,  a closed formula ~ is satisfied under  all assignments of  elements o f  the 

universe of  ~- to the variables if and only if o- is satisfied by one such assignment 
and in this case we say that the closed formula  ~r is true over ~. Of course, a closed 

formula  can be true over one ordered field hut  false over another.  For example,  the 

closed formula  Vy 3x  ( (y  < 0 )v  (x 2= y))  is true over the reals hut false over the 

rationals, and vice versa for the negation. Given two formulae ~ and ~ and a 

structure ~ for ~ ,  we say that ~ and 0 are equivalent over ~ if ( ( ~ ~  v ~b) ^ (~ v ~ 0 ) )  

is satisfied by all assignments o f  elements o f  the universe o f  ~ to the variables. 

Let F be a set o f  formulae and let ~ be a formula.  We say that F logically implies 

~, written F ~ ~ ,  if for every structure for the language ~ and every assignment of  

elements of  the universe of  that  structure to the variables we have that ~ is satisfied 

whenever  all the members  o f  F are satisfied. We say that two formulae ~ and ~b 
are logically equivalent if and only if 

~ ~ g f  and 0 ~ ~ ,  

where, as usual, a singleton is represented by its element. 

By renaming quantified variables in a formula,  if necessary, we may and do 

assume that the variables cor responding  different quantifiers are (pairwise) disjoint 

and that the sets o f  free and quantified variables are also disjoint. For  example,  
given the formula  (x  > O) v ( 3 x  (x  2 > 2)) v (Vx (x 2 < 2))) we rename the quantified 

x 's  to y and z, respectively, to get the logically equivalent  formula ( ( x > 0 ) v  

(3y  (y2 > 2)) v (Vz (z 2 < 2))). Hencefor th ,  we drop the formali ty in the use o f  paren- 

thesis and use them only to enhance  readability. Also, sometimes,  when a finite set 

of  formulae {¢i: i c /x}  is given, we write/~i~~, q~~ or ~/~~ù ~ for the corresponding 
formula  obtained from successive use o f  ^ or v ,  respectively. 

A structure o~ for ~ with universe F is called an ordered field if Õ and 1 are 

distinct, 0 is the addit ion identity, 1 is the mult ipl ication identity, - 1  is the additive 

inverse of  1, addi t ion and multiplication are both associative and commutat ive,  

multiplication is distributive over addit ion,  all elements in F have an additive 

inverse, all nonzero  elements in F have a multiplicative inverse, and greater than 

is a total order  that  is preserved under  addit ion and under  multiplication by positive 
elements, the latter means that for x, y and z in F with x > y one has that x + z > y + z 

and if z > 0 then xz > yz. These requirements can be cast as a closed formula  in the 
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language ~7 and we denote such a closed formula by H. We say that two formulae 

q~ and ~ are orderedfield equivalent if and only if 

H,q~~q, and H, 4'~q~. 

Ofcourse, two formulae that are logically equivalent are also ordered field equivalent. 

We say that an ordered field Y(is an extension of an ordered field ~ if the universe 

of Y£ contains the universe of ~ and addition, multiplication and greater than in 

are, respectively, the restriction of addition, multiplication and greater than in 

Y(. We note that every ordered field is an extension of an (isomorphic) copy of the 

rational ordered field Q. 
We say that an ordered field ~ with universe F is real closed if the following 

two conditions hold (see Jacobson, 1964, pp. 273-277): 

(a) Every positive element in F has a square root. 
(b) Any polynomial of odd degree with coefficients in F has a root in F. 

We observe that the statement that an ordered field is real closed can be cast as a 

countable set of closed formulae in the language ~ and we denote by 2; such a 
(countable) set of  closed formulae. We say that two formulae ~o and ~0 are real 

closedfield equivalent if and only if 

2;,H,q~~~O and ~,H,~O~~. 

Call a polynomial simple if it is the sum of products of constants and variables, 

i.e. if one can first execute all multiplications and then execute the additions. An 
atomic formula is defined to be simple if it has the form (p = q) or ( p >  q) where 

p and q are simple polynomials. Clearly, every atomic formula is ordered field 

equivalent to a simple atomic formula. Next observe that as 7 ( ( p  > q) is ordered 

field equivalent to ( ( - 1 ) p >  q) v (p = q)) and ~ ( p  = q) is ordered field equivalent 

to ((p > q) v ( ( -1 )p  > q)), we get from standard arguments, e.g. Tarski (1951), that 

every quantifier-free formula can be rearranged to obtain an ordered field equivalent 

formula having the form 

VA% 
i ö  A .J6 wi 

where A and the ~Ti's, i~ A, are finite (index) sets and where each % is a simple 

atomic formula. A formula having the latter form is said to be in disjunctive- 

eonjunetive-simple form. A formula q~ of form Q ~ x l , . . . ,  Qùx,, ~ where each Qi 
represents V o r  3 and where ~0 is in disjunctive-conjunctive-simple form is defined 

to be in quantifier-disjunctive-conjunctive-simple form. Standard arguments (e.g. 

Tarski, 1951) show that any formula can be rearranged to obtain an ordered field 

equivalent formula which is in quantifier-disjunctive-conjunctive-simple form, with 

the same set of quantifiers and corresponding quantified variables. 

Let W be a finite set of variables, say W = {xl , . .  •, xn}. A polynomial p is defined 

to be linear in W ifit has the form p~xl + • • • +pùxn where p ~ , . . . ,  Pn are polynomials 

that do not contain the variables x ~ , . . ,  xù. An atomic formula is defined to be 
linear in W if it has the form p = q or p > q where p is a polynomial that is linear 

in W and q is a polynomial that does not contain the variables of W. For example, 
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the atomic formula x~x2+x2x3>l is linear in {x~,xs} and in {x2} but not in 
{xa, x2, x3}. A formula is defined to be linear in W i f  all of  its atomic formulae are 
linear in W. We observe that the transformation of a formula into an ordered field 
equivalent formula that is in quantifier-disjunctive-conjunctive-simple form can be 
executed while preserving linearity in W. Thus, we conclude that if ~0 is a formula 
that is linear in W, then there exists a formula ~b that is in quantifier-disjunctive- 
conjnnctive-simple form, has the same set of quantißers and corresponding quan- 
tified variables as ¢, is linear in W and is ordered field equivalent to qz Finally, a 
formula ¢ is defined to be linear (without reference to a set of  variables) if ¢ is 
linear in the set ofits  quantified variables. A formula q~ is defined to be universal-linear 
if it has the form Vxj • • • Vx,, ¢ where q~ is a linear formula. 

3. Quantifier elimination 

In this section we obtain our main result concerning the elimination of quantifiers. 
For readability we use, as usual, the notation (¢ -+ ~0) for ((~q~) v ~0) when ¢ and 
q, are formulae. Also, given polynomials p and q, we write (p # q) for ( p >  q )v  
(q > p) and we write (p < q) for (q > p). Finally, for every finite set ~, let ~* denote 
the set of all partitions of t* into three pairwise disjoint subsets, denoted /~_,/% 
and ~+,  i.e. 

/**~{(/*_,/Xo, tX+):/x UtXoU/*~=t*,/x mt ,  o=/~ontx+=/_~_c~t,+=~}. 

The next lemma, based on Dines-Four ier-Motzkin  elimination, represents the 
critical step for our quantifier elimination procedure. 

Lemma. Let ¢ be the forrnula 

where I~ and v are finite disjoint sets and where each Pi and each qi is a polynomial in 
which the variable x does not occur, and let 0 be the formula 

(,a ,~o , , a+)~ ,a* , ( ,v  ,~,o,u+)~J¢* i c p .  u u  i % a o U V  o 

iG ~ + ~  ~,+ 

~[(i~o~q~:o,) ~(»~o~q~~oO 
A 

( .  ,i~~(Pjq~<P~qj)) ( A (pjq~=piqj))] A z A . A i, je~* u ~ +  

whieh does not contain the variable x. Then q~ and tb are ordered field equivalent. 
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Proof. We establish the ordered field equivalence o f  ~ and 0 by using the Dines-  

Four ie r -Motzk in  elimination that characterizes solvability o f  a system of  linear 
equations and inequalities in a single variable, here x, via necessary and sufficient 

condit ions on the coefficients. Our  p roo f  is somewhat  informal and its main purpose  

is to explain why the condit ions o f  0 characterize solvability o f  the linear system 

that appears in q~ rather than exercise the formalities o f  logical implications. 

Throughou t  this p roof  let o~ be a (fixed) ordered field, i.e. a structure for  the 

language ~ that satisfies H. Also, let a (fixed) assignment o f  variables to elements 

o f  the universe F o f  o~ be given. We will show that ¢ is satisfied by this assignment 

if and only if 0 is also. Of  course, once the specific ordered field and the specific 
assignment are given we may evaluate polynomials  and divide by nonzero  elements. 

Henceforth,  in this proof,  we let Pi and qi, i ~ # ~ z,, represent the evaluations o f  
the polynomials  pi and q~ under  the given assignment,  no confusion should  occur. 

Further, for A =pc or A = ~, let 

A ' = { i ö A : p i < 0 } ,  A ó = { i c A : p ~ = 0 }  and A r + = { i ~ A : p i > O } .  

First assume that q~ is satisfied and that a is an element in F that satisfies pio~ = q~ 

for  all i E/z and p~c~ > q~ for all i c l,. Now,  if i 6/xó then p~ = 0 and therefore 

O = p i ~ = q i ,  (3.1) 

and if i 6 ~,ó then p~ = 0 and therefore 

O = p i a > q i .  (3.2) 

Also, for i c pc and j c 1,' u ~,~ we have from p~a = q~ that  pjp~o~ = pjqi ; hence, if i c pc; 
then from pja  > qj and p~ < 0 we have that p~pjo~ < p~qj and therefore 

pjq i=pjp~ol=pip j«<p~qj ,  (3.3) 

and if i c/x~_ then from pjo~ > qj and p~ > 0 we have that p~pja >p~qj and therefore 

pjq~ = pjpia = p~pja > p~qj. (3.4) 

Next, for i c u'_ and j ~ v~ we have from p~« > qi and pj > 0 that pjp~o~ > pjq~ and 

f rom pjo~ > qi and p~ < 0 we also have that p~pja < p~qj, so, 

p jq i<PjP fa=P~Pj«<Piq i .  (3.») 

Finally, for i , j  c pc'_ u pc'+ we have from pice = qi and pia = qj that pjpia = Piqi and 

p~pjo~ = p~qj, implying that 

p i q i = p j p i a = p i p j « = p i q j .  (3.6) 
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Evidently,  (3.1)-(3.6) establishes the one impl ica t ion  of  ~ with (/x_, /Xo, /X+ , 

, Uo, u+)=  (/x:,/Xo,'  tx+,' ~_,' •ó, ~~). Of  course,  all other  implicat ions of  0 are 
satisfied vacuous ly  as the premise  of  this implicat ions is not  satisfied. So, all o f  the 
implicat ions of  ~ are satisfied, comple t ing  the p roo f  that  ~ is satisfied whenever  

is. 
Next  assume that  ~ is satisfied and we will show that  in this case q~ is satisfied 

as well, i.e. for  some a in F, p~a = q~ for  all i c /x and pic~ > q~ for all i c  u. The  

' ' ~/_ ~,ó and  ' and the fact that  ~ is satisfied assure definition of  the s e t / x ' ,  tXo,/x+, , ~+ 
that  

q i = 0  for  i~ /zó ,  (3.7) 

q~ < 0 for  i c uó, (3.8) 

B q ~ > p ~ q j  for  i c t x ~  and  j e  u 2 u  ~~, (3.9) 

' ( 3 . 1 0 )  Pjqi < P i q j  for  i ~ tx'- a n d j  c z,2 u v+, 

p j q i < p ~ q j  for  i c  ~,'_ and j e  u'+, (3.11) 

piq~ = p~qi for  i, j ~ lx 2 ~ tx'+ . (3.12) 

Our  p roo f  of  the fact that  g~ is satisfied is separa ted  into two cases. 
C a s e  L Ix'- u tx" ~ ~: we consider  only the case where tx~ # ~Ó as the al ternative 

case where /x'=~Õ has /x~¢~), and similar a rguments  apply.  So, let j c t x ' .  Let 
c~ = q J p j .  Then,  for  each i c /x~ u tx~ (3.12) implies that  Pjqi = P i q j  and therefore  

p~c~ = P iq j /P j  = p j q i / p j  = qi. 

Also, (3.7) implies that  for i c txó, 

pic~ = Oc~ = 0 = qi, (3.13) 

and (3.8) implies that  for  i c  uó, 

pic~ = 0c~ = 0 >  qi. (3.14) 

Finally, for i c z, '  • u ' ,  (3.10) and the fact that  pj < 0 (as j ~ tx2) imply that  

pic~ = P iq j /P j  > P jq i /P j  = qi. 

So, indeed q~ is satisfied. 
C a s e  I L  / x ; u / z ~  =0 :  In this case (3.11) assures that  q ~ / p i >  q i /P i  for each i c  ~,2. 

and j 6 ~,+.' Thus,  there exists an « in F with 

qi /P~ > a > q j / P j  for  all i c ~" a n d j  c ~~. 

In part icular ,  for  i c u2 we conclude that  q~ <p~a and f o r j  c ~,~ we have that  pia > qj. 

Also, (3.13) and  (3.14) still app ly  and show that  pi« > q~ for  i ~ vó and p~a = q~ for  
i c /xó .  As / z 2 u / x ' = 0  we conclude that  q~ is satisfied. [] 
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Notice that ~ in the lemma may contain variables other than x, that is, one might 
regard the system, and the solution, as parametric. We have eliminated the existential 
quantifier of x using the Dines-Fourier-Motzkin variable elimination method, and 
note, for example, that one could equally well base the quantifier elimination on 
the use of Cramer's rule via reasoning found in the theory of linear programming 
(e.g. Dantzig, 1963). On the other hand, it is doubtful that elipsoidal methods such 
as Kachian (1979) or Karmarkar (1984) can be adopted for the quantifier elimination. 

Theorem. Let  ~p be a linear formula.  Then one can construct, using D ines -Four i e r -  

Motzk in  elimination, a quantifier-free formula  ~b which is ordered f ield equivalent to ~p. 

Proof. If a formula is linear and is in quantifier-disjunction-conjunctive-simple 
form, perhaps with a negation in front, we shall define it to be in normal form. 
Without loss of generality, we may assume that our initial formula is in normal 
form (see Tarski, 1951); then as we eliminate quantifiers we shall maintain the 
normal form, that is, the generated intermediate formulae will be in normal form. 
Let ~ be in normal form, that is, in the form 

k 

(N) ~: QoQ,x ,  . . . Q~xm V A ~i 
i--I J~~i 

where Qo is ~ or nothing, where Q ~ , . . . ,  Q,, are quantifiers, the r/i's are finite index 
sets and each ~i is a simple atomic formula. Our procedure for eliminating quantifiers 
consists of repeated application of two operations, namely F3 and Fv defined below: 

F3 - Innermost  existential elimination: Given a formula ~ in normal form whose 
inner most quantifier is existential, that is, Q, is 3, then F3 eliminates that quantifier 
as in the Lemma and puts the formula into normal form. The new formula is denoted 
F3(~). 

F r -  Innermost  universal conversion: Given a formula ¢ in normal form whose 
inner most quantifier is universal, that is, Q,, is V, then, Fv converts this formula 
into a formula in normal form whose innermost quantifier is existential. The new 
formula is denoted Fv(~). 

We are now ready to define F3(q~) where q~ is a formula in normal form where 
Q, is :1. First ]Xm V ~ l  Aj~,, % is exchanged with the logically equivalent formula 
V~~ 3Xm Aj~ù~ ~j. The Lemma is then applied to each BXm Aj~ù, ~j to obtain an 
ordered field equivalent formula having the form 

A (Aj-~ ¢,), 

where as before r/* is the set of partitions of r/i into three pairwise disjoint subsets. 
Let #(r/i) indicate the number of elements in the set r/i. Then, each A i is the 
conjunction of  #(r/ i)  simple atomic formula and each ~ is the conjunction of at 
most #(r/i)  z simple atomic formulae. The formula ~i --> ~i is logically equivalent to 
~j A (-»~j). Each ~'kJ is ordered field equivalent to the disjunction of 2#(r/ i)  simple 
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atomic formula. Thus hJ -~ s~j is ordered field equivalent to a formula having the form 

B i :  V 

i i where each h h and ~:h are simple atomic formula. These formulae Pi are next 
converted to ordered field equivalent quantifier-free formulae P'i in disjunctive- 

conjunctive-simple-form and F3(q~) is defined to be Q o Q ~ , . . ,  Qm 1 V ) - I  p'i. 

We next define Fv(q~) for a formula ~ that is in normal form where Qn is V. For 
a quantifier Q define (~ by 3 = V and ~' = 3 The formula q~ is logically equivalent 
to ~ ~ p  and therefore also to 

k 

QoQlx,  . . . (),ùx,, A V ~9~i, 
i 1 J~~li 

where (~o is nothing or ~ as Qo is ~ or nothing, respectively. Of course, Q~ is 3. 
Let 

k 

~': A V ~¢j-  
i 1 .J~~i 

This formula is next converted to ordered field equivalent quantifier-free formula 
z' in disjunctive-conjunctive-simple form and Fr(C)  is defined to be 

QoQ~x~"  • O,,x,p-'. In particular, O,, is 3. 
Given ¢ in normal form ler n be the number of  switches in Q 1 , - . ,  Qm. Then, 

applying F3 m times and Fv n or n + 1 times, we arrive at an ordered field equivalent 
quantifier-free formula 6. [] 

The proof  of  the theorem shows that if a formula in quantifier-disjunctive- 
conjunctive-simple-form is linear in the variables corresponding to the innermost 
quantifiers then these quantifiers can be eliminated (see Corollary 3 below). However, 
the theorem and its proof  do not imply that the formula V y  3 x  ( ( X 2 q - x q - y = O ) V  

( y > 0 ) ) ,  which is linear in {y}, is ordered field equivalent to a formula having a 
single quantifier 3 and no quantifier V. 

We next obtain bounds on the size of  the quantifier-free formula generated via 
the procedure outlined in the proof  of the theorem. Perhaps the most natural measure 
of  the size of a formula is its length where each variable, constant, multiplication, 
addition, equality, inequality, connective, quantifier and, maybe parenthesis, ton-  
tributes a unit. However, for brevity and clarity we shall measure the size of  a 
formula ~p by the following four parameters: 

#q(~)  = the  number  of quantifiers of  ¢, 
#a (~ )  = t h e  number  of  simple atomic formulae in ~p, 
# t (¢ )  = the  largest number  of  terms in a simple atomic formula of ¢, and 
# p ( ¢ )  = the  largest sum of the powers of variables and constants in terms of ¢. 
For a formula in normal form the number  of connectives and pairs of parentheses 

is essentially the number  of  simple atomic formulae, and therefore, it is not necessary 
to count them separately. 
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Let q~ be a formula in normal form. We obtain bounds for the parameters  of  
F~(~) and Fv(~)  in terms of the parameters of  ~. First, the formulae p~ obtained 
in the construction of F3(~) has 

~ a ( O f )  ~ (2#  (tl ,)+ 1)3~~"~)(#(~,))23 #~~i). 

As ~~=, #(r/i) = #a(q~) we have 

k 
#a(F~(~))  <~ ~ #a(Pl)  ~< ( 2 # a ( ~ ) +  1)3~~'~~)#ù(~) 3 e ~o~~~ 

i 1 

Also, trivially, we have #q(F3(~))=#q(q¢)-l, #t(F3(~ß))~(#t(g))) 2, and 

#p(F3(q~)) ~ 2#p(q~). Next consider Fv(q~). As each ~~j  is ordered field equivalent 
to the disjunction of two simple atomic formula, we have that the quantifier-free 
formula ~-' which is in disjunctive-conjunctive-simple form and is ordered field 

equivalent to ~-: V~-I Aj~~~ ~ ~j has 

k k 

#~(~-') = k H (2#(7 , ) )  = k2 k I] #(r/~). 
i --I  i --I  

As max{1]ik_l xi : ~~=1 xi = a, xi ~>0} is attained for xi -~ a / k  for i = 1 , . . ,  k we have 

#~(~-') <~ k 2 k [ # ~ ( ~ ) / k ]  k <~ #a(¢)[2#~(q~)/k]  k. 

A simple calculation shows that this expression is maximized by letting k =  
2#~(~)  e -~ resulting in the bound 

#ù(Fv(q~)) ~< #a(q~) e 2eJ~)/~<~ #ù(q~) e ~~'(~~. 

Of course, we have that #q(Fv(q~)) -- #q(q~), # t (Fv (~ ) )  = # t (~ ) ,  and #p (Fv(~ ) )  = 
#p(~) .  We conclude that given a linear formula q~, the ordered field equivalent 
quantifier-free formula q~ constructed in the p r o o f o f t h e  Theorem has #a(O) bounded 

by a tower of  exponentials in #q(q~) and #a(q~). The parameters #t(q~) and #p(q,) 
are exponential in #q(q~) and polynomial in #~(~) and #p(q~), respectively. 

We next draw a number  of  transferability results from the Theorem. These results 
allow one to conclude validity or satisfiability in one ordered field from the knowl- 
edge of a corresponding fact in another ordered field. 

Corollary 1. Le t  ~r be a linear closed formula .  Then cr is true over one ordered f ie ld  i f  

and only i f  (r is true over all ordered fields. 

Proof. By the Theorem, there exists a quantifier-free formula 4' that is ordered field 
equivalent to q~. In particular, as q~ has no free variables neither does qJ. So, ~b has 
no variables and the assertion whether or not it is satisfied can be determined 

independently of  the underlying ordered field and the assignments of  elements to 
variables. In particular, we conclude that q~ is true over one ordered field if and 
only if it is true over all ordered fields. By the ordered field equivalence of q~ and 

4~ the same conclusion holds for ~. [] 
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Corollary 2. Let  ~ be a linear formula, ler 0% be an ordered field and ler ~( be an 

extension o f  0%. Suppose that q~ is satisfied under 0% and a given assignment o f  elements 

o f  the universe o f  0% to the variables. Then q~ is satisfied under Y{ and that assignment. 

Proof. By the Theorem,  there exists a quantifier-free formula  4' that is ordered field 
equivalent to ~. As 4' is quantifier-free it immediately follows that if ~ is satisfied 

under  0% and a given assignment o f  elements of  the universe of  0% to the variables, 

then 4' is satisfied under  ~g and that  assignments. By the ordered field equivalence 

o f  ~ and 4' the same conclusion holds for ~. [] 

Corollary 3. Let ~r be a universal-linear closed formula. I f  G is true over one real closed 

field then G is true over all ordered fields. 

Proof. Let cr have the form Vx~ • • • Vxn p, where ¢ is a linear formula. The Theorem 

shows that ¢ is ordered field equivalent to a quantifier-free formula,  say 4'. Let 

be the closed formula  Vx~ • • • Vxn 4'. Then o- and ~: are ordered field equivalent. In 
particular, it suffices to show that  if # is true over one real closed field then ~ is 

true over all ordered fields. 

Suppose ~ is true over one real closed field and let 0% be any ordered field. There 

exists a real closed field Y( which is an extension of  0% (see Jacobson,  1964, 285). 

As Tarski 's Transfer  Principle (e.g. Tarski, 1951, or Seidenberg, 1954) assures that 

# is true over all real closed fields, we conclude that SC is true over Y(. This conclusion 

immediately implies that s c is true over 0% since ~ is the closed formula Vxl • • • Vxù 4' 

where 4' is quantifier-free and the domain  o f  the quantifiers V is smaller when 
considered over 0% than when considered over Y( (see Eaves and Rothblum,  1987a, 

Theorem 7.3, for details). [Z 

Corollary 4. Let ~ and 4' be linear formulae which are equivalent over some real closed 

field. Then they are ordered field equivalent. 

Proof.  Apply  Corol lary  3 to the closed formula  V x ( ( ~ ~  4')A ( 4 ' ~  ~)) where x is 

the vector of  free variables o f  ~ and 4'. [] 

Consider  any procedure,  such as Tarski 's (1951) or Gr igor 'ev  (1986), for example, 

for eliminating quantifiers over real closed fields. Given a linear formula  p such a 

procedure  would  generate a quantifier-free formula  4'. From Corol lary 4 we see that 

and 4' are ordered field equivalent. 

The transfer principles permit one to determine validity o f  a statement in one 

ordered field by examining it in a more  convenient  ordered field as the reals where 

completeness is available, that  is, where every set b o u n d e d  f rom above has a least 
upper  bound.  We recall that the real field is the only complete  ordered field. 
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4. An application 

In this section we illustrate an appl icat ion o f  the transfer  principles. Specifically, 
we show that if a piecewise affine map is locally one- to-one  over an ordered field 

then it is necessarily globally one- to-one and onto over the ordered field. We start 
with definitions o f  the concepts  used in the above assertion. 

Throughou t  this section we let ~ be an arbitrary ordered field with universe G. 

We will use matrix notat ion and matrix operat ions  for expressions that involve 

elements f rom G and variables. In particular, for brevity, we substitute elements o f  
G into formulae rather than considering a formula  under  part icular  assignments,  

e.g., we talk about  validity of  " A x  <~ a" rather than of  " Y x  <~ y under  assignments 

which map the elements o f  A and a, to the variables o f  Y and y respectively".  
A set o - c  G n is called a cell if it has the representat ion er= {u c G ' :  Au <~ a} for 

some matrix A c G pxn and a c G p where p is some positive integer. In this case we 
say that (p, A, a)  is a representation of  er. 

Let k be a positive integer and let (k) denote  the set o f  integers { 1 , . . ,  k}. A 
finite collection o f  cells {o-1 , . . . ,  o'k} is called a k-cover of  G" if I._Ji~<Æ> eri -~ G n. We 

define {(Pi, Ai, ai): i c (k)} to be a representation of  such a k-cover  if for each i c (k), 

(Pi, Ai, ai) is a representat ion o f  eri. Evidently, given a vector  q ~  (k, p l , . . .  ,Pk) 
of  positive integers, matrices A i c  G p'×" and vectors aic G ~'~, i c ( k ) ,  the set 

{(Pi, Ai, ai): i c (k)} is a representat ion o f  a k-cover  if and only if 

q~l(q): 'qX V (Aix<~ai) 
i~(k) 

is satisfied over ~. 

A function of  f :  G" ~ G" is called a piecewise affine map, abbreviated a PA map,  
if for some positive integer k there is a k-cover  { e r ~ , . . ,  erk} o f  G ' ,  matrices 

B ~ , . . . ,  Bk in G n×" and vectors b ~ , . . . ,  bk in G" such that for each u c G ~ conta ined 

in o-i, where i c (k), we h a v e f ( u )  = Biu + b» I f  {(pi, Ai, ai): i c (k)} is a representat ion 

o f  the k-cover {~r~, . . . ,  o-k} we say that {(Pi, Ai, a/, Bi, bi): i c (k)} is a representation 
of  f Of  course, each PA map has many  representations. Further,  given a vector 

q -= (k, Pl,  • • •, Pk) of  positive integers, matrices Ai c G p~xn, B i ff G n×n and vectors 

aic G I', and bi c G ' ,  i c (k), the set {(Pi, Ai, ai, Bi, bi): i c (k)} is a representat ion o f  
some PA map if and only if {(Pi, Ai, ai): i c (k)} is a k-cover  o f  G" and 

~P2(q): Vx A ( ( (Aix<~ai)^(Ajx<~aj) )~(Bix+bi=B~x+b7))  
i,.j~(k) 

is satisfied over ~. Of  course, the PA map corresponding  to such a representat ion 

is unique and is defined by f ( u )  = Biu + b, for any vector u c G" which is conta ined 

in tri=- {x c G ' :  Aix<~ai}, i c (k ) .  
A PA map f :  G" ~ G" is defined to be one-to-one i f f ( u )  ~ f ( v )  for distinct vectors 

u and v in G". Let Il ]l~ denote  the (~~ norm over G", i.e. for u c  G", Il ull~ = 
maxi~<ù>l luil, where [ I denotes the usual absolute value. The m a p f  is defined to be 
locally one-to-one if for every u c G" there is a positive e such that f ( v ) C f ( w )  for 
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every distinct pair  v and w in G" that satisfy II v - u  I1~< ~ a n d  II w - u  I1~ < ~. T h e  
map f is defined to be onto if for each vector  v in G n there is a vector u in G" 

with f ( u )  = v. Given a vector q =- (k, P l , . . . ,  Pk) of  positive integers and a representa- 

t ion {(Pi, Ai, ai, Bi, bi): i ~ (k)} o f  a PA map f :  G" ~ G ", then f is one- to-one if and 
only if 

~3(q): VxVy((x¢y)~( A ((Aix<~ai)̂ (Ay<~aj))-)(Bix+bi¢Bjy+bj)) 
i, j e ( k )  

is satisfied over ~q. Further  f is locally one- to-one if and only if 

g)4(q): VX :lê Vy Vz [((11 y - x l I ~ <  ~) ~ ( l l z -  xlloo< «) ^ (y "~ z)] 

~ [  ~ ((Aiy<~ai) A(Ajz<~ai))~(Biy+biCBjy+bj)] " 
i , j  k} 

is satisfied over ~3. Finally, f is onto if and only if 

Ps(q):  V y 3 x (  V ((Aix<~ai)A(Bix+bi=Y))) 
k i e ( k )  

is satisfied over ~. 

We cannot  express by a single closed formula  the assertion that a PA map which 

is locally one- to-one must  be one- to-one and onto. However ,  we can express this 

assertion by a countable  collection o f  linear closed formulae {O(q)}, where q ranges 

over all tuples (k, Pl . . . .  , Pk) of  positive integers and qJ(q) is given by 

~O(q): V{(Ai, ai, Bi, bi): i c  (k)} (~ , (q)  A ~2(q) A q~4(q)) -~ (~3(q) A ~5(q)) 

(here the Ai's,  ai's, Bi's, and bi's have dimension Pi x n, Pi x 1, n x n and n x 1, 

respectively, and denote  variables rather than elements o f  the universe of  the 
underlying ordered field). The explicit expressions for the q?i(q)'s that  we obtained 

earlier show that each q,(q) is a universal-linear sentence; thus, Corol lary 3 implies 

that in order  to establish that the O(q) 's  are satisfied over all ordered fields it suffices 

to show that they are satisfied over the reals (which is a real closed field). 

Recall that  a PA map on the reals is globally one- to-one and onto if it is locally 

one-to-one.  For  example,  Ortega and Rheinbol t  (1970, Theorem 5.3.8, p. 136) and 

Artin and Braun (1969, Corol lary 14.8, p. 156) imply that a map f :  R " ~  R n is 

globally one- to-one and onto if it is cont inuous,  is locally one- to-one and is coercive 

( f  is coercive if for each c~ c R there exists some fi c R such that IIf(x)lloo>~ « 

whenever  Ilxll~~>t~). Now, a PA map  is clearly cont inuous  and the fact that it is 
coercive if it is locally one- to-one is elementary.  So, the q,(q)'s are true over the 

reals and therefore taust be true over all ordered fields. Note  that the proofs o f  

cited results in Ortega and Rheinbol t  and Artin and Braun rely on the completeness 

o f  the reals. 
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