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We investigate new bounding strategies based on different relaxations of the quadratic assignment
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by applying a steepest ascent algorithm to the sum of the two bounds.
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1. Introduction

The quadratic assignment problem (QAP) can be described as follows: given the set
N={1,2,..., n} and three n x n matrices A= (ay), B=(b;), and C=(¢;), find a
permutation 7 of the set N which minimizes

Y Cont XY Qb (1.1)
1

i=1 i=1k=
Equivalently, find an n X n permutation matrix X which minimizes the trace

gxig tr(C+ AXBY)X", (1.2)

where t denotes transpose, IT denotes the set of permutation matrices, and tr is the
trace (see, e.g., [4]).
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This model arises in, e.g., location problems, where N describes the set of sites
on which plants are to be built; a; is the distance between sites I and k; b; describes
the flow between plants j and I; while c; is the building or running cost for plant
j in location i (see, e.g., [4] for further references and applications for this model).

The QAP is an NP-hard problem. (It contains, as a special case, the Travelling
Salesman Problem.) Moreover, even the problem of finding an e-approximation of
the optimal solution is NP-hard (see [18]). Thus from a worst case point of view,
QAPs are extremely difficult to solve. Recently, it has been shown [3] that solving
the average case takes exponential time, when the QAPs are taken from some simple
sample space of random problems. In [17], a parallel branch and bound technique
failed to solve problems of dimension larger than 15. The main reason for this seems
to be the lack of strong lower bounds that can be computed efficiently.

The present theory and solution techniques for QAP are surveyed in [4]. Solution
techniques often require lower bounds. In [4] an “optimal” reduction scheme is
presented which reduces the magnitude of the quadratic part, and thus augments
the influence of the linear part. Then a lower bound for the quadratic part is found
using eigenvalue decompositions, while a lower bound for the linear part is found
by solving the corresponding linear assignment problem as a linear program.

In this paper we consider approximate solution techniques which result in lower
bounds for QAP. In Section 3 we continue the approach in [4], and find a lower
bound by using an eigenvalue decomposition for the quadratic part and solving a
linear program for the linear part. Theorem 3.1 finds the exact minimum (and
maximum) for the quadratic part when the relevant constraints are relaxed to include
all orthogonal matrices, rather than just the permutation matrices. This yields the
lower (and upper) bounds obtained in [4]. We then apply a steepest ascent algorithm
to increase the sum of the two bounds. This requires some differential calculus for
eigenvalue perturbations and subdifferential calculus for a quadratically perturbed
linear program. We present some numerical experiments in Section 4.

2. Preliminaries

We can reformulate the QAP in (1.1) using a permutation matrix X = (x;;) to get
the form (1.2), i.e., X satisfies the transportation and 0, 1 constraints

Zx,":l, j=l,...,n, (21)
L ij

x;€{0,1}, ij=1,...,n
Then (1.1) becomes (see [4])
tr(C+HAXBYX' =YY ¢;xi; Y LYY aubyxijxu. (2.2)
P i ok I
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We let O denote the set of orthogonal matrices, i.e., X € O if X'X = I, the identity.
Further, we let {2 denote the set of doubly stochastic matrices, i.e., nonnegative
matrices with row and column sums 1. It is well known that

I=0n0. (2.3)

We assume that A and B are symmetric with eigenvalues A =(A;) and u =(u;),
respectively. The matrices A and B can be orthogonally diagonalized, ie., A=
P, A, P\ and B= P, A, P} with orthogonal matrices P,, P, and diagonal matrices
Ay =diag(A), A,=diag(p).

3. Eigenvalue approach

3.1. Orthogonal relaxation

We now consider bounds for the QAP which are found by a particular relaxation
of the constraint that X < I, a permutation matrix. Since IT=0n {2, i.e., since it
is the intersection of the orthogonal and the doubly stochastic matrices, we can
relax the QAP by considering only the orthogonal matrices. This allows us to derive
bounds for the pure quadratic assignment problem. We then combine this with a
reduction mechanism to bound QAP.

Recall that A and B are symmetric matrices with eigenvalues A and u, respectively,
and with orthogonal diagonalizations A= P, A, P} and B= P, A, P,. Permuting
the columns of P, is equivalent to permuting the order of appearance of the
eigenvalues. We let X denote the ordered vector of eigenvalues with A, =+ - -=1,,
while A denotes the reverse order so that A, <-.-=<),. We similarly define & and
w. We then get the maximal scalar product

(A, whi =k, @) (3.1)
and the minimal scalar product
A )= (L ). (3.2)

The following theorem finds the optimal solutions for the relaxed pure quadratic
assignment problem. The corollary following the theorem yields the maximal and
minimal scalar product bounds obtained in [4]. This theorem shows that the bounds
in [4] are actually attained. The proof of the theorem uses Lagrange multipliers to
find the optimal solutions where the bounds are attained. The theorem can also be
proved using double stochastic matrices as in [4], or using the Hoffman-Wielandt
Theorem [10]. (See, e.g., [5].) Weinclude the Lagrange multiplier proof for complete-
ness and interest. In particular, the commutativity condition (for X'AX and B)
derived in the proof seems to appear in these types of best approximation problems,
and might be of independent interest. Moreover, this proof has led to an extension
for the case when A and B are general matrices, not necessarily symmetric. (This
extension is to appear in a forthcoming study.)
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Theorem 3.1. Suppose that the orders of the columns of P,,i=1, 2, are chosen so that
(A, w)=(A, u)_. Then

min tr AXBX'=tr AP, PBP,P\=()\, u)_. (3.3)

XeO

On the other hand, if we choose P;,i=1,2, so that (A, u)={(A, w), then

I)I{la())( tr AXBX'=tr AP, PSBP,P} = (A, u).. (3.4)
Proof. Let
k(X)= XBX", g(X)=X'X—-1, f(X)=tr AXBX". (3.5)

Then the corresponding differentials are
dk(X; h)= XBh'+ hBX";
dg(X; h)=X'"h+h'X; (3.6)
df(X; h)=tr A(dk(X; h)) =tr A(XBh'+ hBX");
and the minimization problem can be stated as
min{f(X): g(X)=0}. (3.7)

Since the feasible set is compact, the optimum exists. We can now apply the theory
of Lagrange multipliers. Note that g(X) is a symmetric matrix so that we can assume
that the Lagrange multiplier, call it S, is a symmetric matrix. Also, for given Q = Q"
let h=35XQ. Then dg(X; h)= Q, which implies that the derivative, g’, is onto or
full rank, and so a constraint qualification holds at the optimum. Thus, the Lagrange
multiplier S exists.

The Lagrangian is

f(X)+tr Sg(X).
Therefore,

0=df(X; h)+tr Sdg(X; h) (3.8)
for all matrices h. This yields, for all h,

0=tr[A(XBh'+hBX ")+ S(X'h+h'X)]

=tr{BX'A+SX")h+tr h'(AXB+ XS).

Thus

AXB+XS=0 (3.9)
or

X'AXB=-S.
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Since S is symmetric, this implies that X'AX and B commute, and so are mutually
orthogonally diagonalizable, by P, say. Therefore

tr AXBX'=tr P,X'AXPSP,BPs=tr A, As,. (3.10)

The minimum value is then (A, w)_ and is attained with XP5= P}, i.e., X = P\ P,.
The corresponding proof for the maximum is similar. [

The above theorem yields the following bounds obtained in [4, Theorem 3]. Note
that one can use these bounds, in conjunction with a solution of the linear part, to
obtain bounds for QAP.

Corollary 3.1. For all X €11,
(A, wW)_<tr AXBX (A, u),. O (3.11)

3.2. Reduction scheme

In the above we have obtained upper and lower bounds on the quadratic term in
QAP. In [4], the following two reduction schemes are presented in order to reduce
the magnitude of the quadratic term and augment the influence of the linear term;
which can be solved exactly in polynomial time. In the following, let E = el'+1e,
and G =gl1'+1g", where 1 denotes the n-vector of ones and e and g are n-vectors.

(Rd1) Set A=A+E and B=B+G. Then for every X e I, tr(AXB+ C)X"'=
tr(AXB+ C) X" with C =2A(1g")+2(el1)B+ C.

(Rd2) Set A=A+ R and B= B+ S with diagonal matrices R = diag(r,, ..., )
and S=diag(s,,...,s,). Then for every Xecll, tr{(AXB+C)X'=
tr(AXB+ C) X" with C =(&;) = (c;; + ays; + riby + 1:5;).

Thus we may reduce a symmetric matrix A to the form A=A+ E+ R. We could
then apply Theorem 3.1 to get new lower and upper bounds (A, u)_ and (A, u),..
Improvements would result from minimizing the distance between the two bounds.

The approach in [4] attempts to minimize the fluctuation of the eigenvalues of
both matrices A and B. This is done by attempting to reduce the spread

sp(A)==max [A; — ;.
L]

It is mentioned in [4] that since there are no simple formulas for the spread, they
instead minimize the upper bound for sp(A) given by Mirsky [12],

sp(A)=m(A) = [ZZZ afj—%(tr A)z]l/z. (3.12)

Note that (see [12, 20]),
m(A) = (zn)l/zs)u
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where the variance of A,

, A’ (tr A)2
Sy = - 1.
n n

Equality holds in (3.12) if and only if
Az=Az=-" ':An~1=%(Al+An)' (3.13)

Thus in [4] the reduced matrices A= A—E — R and B= B— G — § are found which
minimize the variances s; and st over all vectors e, g, r, s. A calculus argument finds
the reduced matrices explicitly.

The computational scheme for the reduction of A is

=y ((Fra)-wa)

1
ek;z_«z akj)_akk—z>, k=1,....n, (3.14)
n—>2 j

rk1=akk—26k, k=1,...,n.

B is reduced similarly. The reduced matrices A and B then have row and column
sums equal to zero as well as zero diagonals.

Suppose that the vectors A and w are arranged in non-increasing order. The range
of values, call it v, satisfies

v=(A, w) — (A, ) =§ Ml = Mn—ir1)

=§ A (per = pon—ser1) — <§k: Ak)(},; (1tx _:u’n/k+l)>/n
=n Cov(A, (& —u)), (3.15)

where Cov denotes the covariance. Thus we would like to minimize this covariance.
Note that

VS NSAS (-
Similarly,
V= nSLSG_y)
Moreover,
Sti—uw) =§ (ke = fen—re1)°/ =< (= ) > < 2157,
by (3.12). We conclude that the range of values
v=<2n”Var(A) Var(u) (3.16)
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with equality conditions determined by the equality in the Cauchy-Schwarz
inequality applied to Cov, and equality in Mirsky’s bound for the spread. Thus
equality holds if & ~ u is a multiple of X, and both j and X satisfy (3.13). Minimizing
the upper bound for the spread is equivalent to minimizing the upper bound to v.
In [4], it is shown that v =0 for 3 x 3 matrices. This is not true in general.

Though the intention in [4] was to reduce the spread, the compromise was to
reduce the upper bound given in (3.12). This is equivalent to reducing the standard
deviation, or variance, of the eigenvalues. In fact, reducing the standard deviation
seems to be the correct choice as seen by the upper bound of v. This is borne out
by numerical tests we have done, i.e., we used a minimization routine to reduce the
spread (see Overton [15]), and noted that the reduction (3.14) consistently gave
better bounds.

Example 3.1 (Test example from Nugent et al. [14]).

01123 05 2 41
1 0 2 1 2 503 0 2
A=|1 2 0 1 2], B=|2 3 0 0 0
21101 4 0 0 0 5
32210 1 20 5 0

The optimal reduction scheme (3.14) yielded spreads of 2.9814 and 10.0812, while
the minimization procedure from [15] gave 2.4722 and 9.9330 for the matrices A
and B, respectively. However, this resulted in lower and upper bounds —16.4915
and 16.4915 for the optimal reduction scheme, while the minimization gave the
weaker bounds —23.1276 and 21.7713. Note that the standard deviation of the
eigenvalues for A and B from the optimal reduction were 1.0328, 3.2660 while the
minimization yielded 1.2111, 4.1086, respectively. This coincides with the fact that
a lower standard deviation provides better bounds.

3.3. Improving the reduction

The reduced matrices A and B above are found independently. Moreover, the
reduction is found using upper bounds for the spread, and C is not taken into
consideration. This raises the question of whether one could improve the reduction.
We will try and improve the lower bound for QAP, and so will need the derivative
of the minimal scalar product

m(A, p)= %Ak“n—kﬁ—l, (3.17)

as well as the subdifferential of the lower bound for the linear part. (Note that the
eigenvalues A, u are arranged in non-increasing order, and are functions of the
perturbation vector d = (e, g, r, 5).) We use the fact that the derivative of a simple
eigenvalue A; at 0 is (see, e.g., [7,11])

uiA'(0)u;, (3.18)
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where u; is the corresponding normalized eigenvector of A, and A’(0) denotes the
derivative of A at 0. In general, there exist differentiable functions A; which represent
the eigenvalues and have derivatives given by (3.18), with u; chosen from appropriate
eigenspaces (see [7, Theorem 5.1]). Then

Vem==2% p, ji(sum(u))u, (3.19)
k

where u, is the normalized eigenvector corresponding to A, and sum (u,) denotes
the sum of the components of u,; and,

Vrm=—% Mon— g +18Q( U ), (3.20)

where sq(u, ) denotes the vector with components being the square of the components
of u; Vym and Vm are defined symmetrically.
The corresponding derivatives of the range of values

=) Al = fon-r+1) (3.21)

are

Ve=2% thyier[the sum(ue) — vy, gy sum(u,_seiq)]
k

and

VrU:%.:‘ :U/n~k+l[sq(uk) "SQ(kaH)]-

Since the diagonal elements and the row sums of the reduced matrices A and B are
0, we see that 0 is an eigenvalue with corresponding eigenvector 1. Since the
eigenvectors are mutually orthogonal, we conclude that sum(u, ) =0, for all but one
k, which implies that all but one component of V_ v is 0. Moreover, if 0= g, and
2k=n+1, then V,v=0. The equivalent statement holds for V,v. Thus we cannot
hope to get much improvement from adding E (or G) alone to the reduced matrix
A (resp. B).

We can use the above derivatives to try and improve the bounds for the quadratic
form tr AXBX". However, this affects the linear part of QAP according to the
reduction rules (Rd1) and (Rd2). To find a lower bound for the linear part, we can
solve the linear sum assignment problem (LSAP)

zi= min trCX" (3.22)
Xe2,X=0
This can be solved as an ordinary linear assignment problem. The constraint X € IT
is relaxed to X € 2 and X =0. As is well known, every basic feasible solution of
LSAP is a 0, 1-matrix and so is in II. To improve the lower bound, we want to apply
a steepest ascent algorithm to the sum of the two bounds m+z.
Now if A and B are reduced by (Rdl), then the matrix C =(¢;) is defined by

Gy =c¢;+2g; % (aw—e—e,)+2e {j by
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If the matrices are further reduced by (Rd2), then C =(g,;) becomes

Cj=ci;t+2g; Ek: (ax—e—e)+2e % bkj+(aii —2e;~1,)s;

J
+r(b; —2g —s;)trs;
=¢;+2g; Zk‘, ayt2e; ) b —2g; Y e, —2neg;
k k

+(a;—2e;—r)s;+r(b;—2g —s;)+rs;. (3.23)

Thus the derivatives are

aC;;
__i::—2g3+'28”<%:bﬁ'_ngi_'%),
3¢, 3°¢,;
—t= —2 _25ilna L= _28ila
ae Bg] ae; 8Sj
dC;; 3°c..
—= 1(2 A — . ek_nei—ri)’ —L=-2, (3.24)
k ag] 61‘1«
8%, 5’c,
—=8,(—s;+b;—2g), T——-=-1,
ar Bu(= %) ar; as;
ac,j
=8(—rta;—2e),
851 jl( )

where 8, is the Kronecker delta. The missing second derivatives are 0. The first
derivatives evaluated at e=g=r=s=0 are

0z, o8,

=28, bkj, zZ A,
€ k agl
(3.25)
BE ac;
8;b; — =84,
(9", ik 8S, ﬂa"

If X* is a unique optimum of LSAP which does not change for small perturbations
(e, g, 1, 5), then the gradient of the bound for the linear part exists and
Vz= ) V&, (3.26)
xf,»>0
where V¢;; is defined by (3.25). We can now state the following about the direction
of steepest ascent of the lower bound of QAP.

Proposition 3.1. Suppose that the matrices A, B and C for QAP are given. Moreover,
suppose that A and B have simple eigenvalues and that X* is a unique optimum of
LSAP. Then the direction of steepest ascent of the lower bound for QAP is given by
Vm+ Vz, where Vm is defined as in (3.19) and (3.20) and Vz is defined as in (3.26).
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Proof. Since the eigenvalues of A and B are simple, we have seen that Vm exists.
Since X* is a unique solution, it does not change under small perturbations of C
and so, Vz is given by (3.26). [J

Note that, since the diagonals and the row and column sums of both A and B
are zero after the optimal reduction (3.14), we see that the derivatives in (3.25) are
all zero. This also shows that Vz, if it exists, is zero.

Now suppose that X* is an optimal basic feasible solution of LSAP, i.e., x}=1
for exactly n components of X*. Let us apply a parametric linear programming
approach to increase the optimal value z. The parameters here are quadratic. Since
there are 2n —1 linearly independent constraints, the solution X* is a degenerate
solution. Let dr=(dr;) and dc=(dc;) denote the row and column dual variables,
respectively, and let B = {(i, j): x}; is a basic variable} denote the optimal basis set.
The reduced costs are then

G = ¢;;—dr; ~dc;.

If we perturb LSAP according to (3.23) in the direction (e, g, r, s) with step size
a =0, then the new costs as a function of a are

C_ijzcij+akij+a2l,«j, (3'27)

where
k= Z[gj % ay +e; % bkj] +as;+rb;
and
L= —2{g,~ % et 2neg —(2e,+r,)s;—r(2g+5)+ rl-s_,}. (3.28)

With the above definitions we conclude the following about the stepsize o and the
value z(a).

Proposition 3.2. Ler dr*, dc* (resp. dr**, dc**) denote the row and column dual
variables found by replacing the costs c;; by k;; (resp. l;;), but with the same basis set
B. Let the reduced costs for the perturbations be denoted

and

EF =1, —dr¥* —dc. (3.29)
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Let

a :nl;,ijn{nonnegative real roots of the quadratic &;+ aéf+a’¢E*}. (3.30)

Then the optimal basis B is unchanged if a stepsize 0< a < & is chosen. Moreover,
the new optimal value of LSAP is

xF>

2(a)=2(0)+ ¥ (aky+a’ly). (331)
0
Proof. The result follows as in the usual LP sensitivity analysis, i.e., for 0<a<a
with basis set %, the optimality criteria is unchanged, since the reduced costs for
the perturbed problem remain nonnegative. []

Thus we do not need to resolve LSAP if we restrict the stepsize a < a. If we
choose the stepsize a = @, e.g., when @ =0, then we need to change the optimal
basis. We choose (i, j) where @ is attained in (3.30), and let the corresponding x;;
enter the basis, and possibly increase to 1 from 0. Since the corresponding reduced
cost ¢;; =0, this can be done.

In the case that the current X*, obtained after a stepsize « = @&, is an optimal
nonunique solution of LSAP, it can happen that z is non-differentiable. In this case
we can use subdifferential calculus to find the direction of steepest ascent of z. (See
[2,16].)

Lemma 3.1. The direction of steepest ascent of z is

d=arg min ||,
$€az(0)

where the subdifferential of z is

8z(0) = {dx ¢ =Y x¥Ve;, X* is an optimal solution of LSAP}.
on)

Proof. Let z(ad) denote the solution of LSAP if the costs are changed using ad,
where a =0, d =(e, g, r, s), and the cost matrix C is changed using (3.23). Then
the direction of steepest descent d of —z is the solution of

min lir{)l+ ((=z)(ad)—(—2)(0))/ e, (3.32)

fdi=1 a-
or equivalently

min (—z)'(0; d), (3.33)

lidl=1

where (—z)'(0; d) denotes the directional derivatives of —z in the direction d at 0.
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Since the subdifferential is a convex compact set, we get

min (—z)(0;d)= min max ¢'d
Idil=<1 ldl=<1 ges(—z)0)

= max min ¢'d= max Y~
Jmax o min ¢ d)ég(ﬂ)(())(b( s/l¢l)
=-,min |]. (3.34)

Thus the direction of steepest ascent for z is found to be the element of minimal
norm of the subdifferential

d=arg min |4]. (3.35)

Note that we found the direction of steepest descent for —z, since the theory of
subgradients works for minimization rather than maximization (see [2]).

If the optimum X* is unique, then the optimal value z is differentiable. By
applying the chain rule we see that

dz/de = *Z ac;;/der. (3.36)

x{j>0

The other partial derivations are found similarly. By (3.36) and since (see [2])
9z(0) = conv{¢: ¢ =lim Vz(u,), u, > O},
we conclude that

0z(0) = {q&: ¢ =Y xfVc;, X*is an optimum solution of LSAP}, (3.37)
(i, )

where V¢;; denotes the gradient with respect to the change (e, g, r, s). Thus the

direction of steepest ascent d in (3.35) is found by solving the quadratic program

min{||VCX*||>: X* solves LSAP}, (3.38)
where VC is the Jacobian matrix with columns V¢;. [
Since ||[VCX*( = (VC|[[X*|, we can get an approximate solution to (3.38) by
finding the minimal norm solution of LSAP,
min{|| X*|: X* solves LSAP},
i.e., if there are k basic optimal solutions, X ¥, then the minimal norm approximate
solution to (3.38) is the mean

X*=(1/k) f X*, (3.39)

To summarize, we now present an algorithm which increases the lower bound for
QAP.
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Input: Matrices A, B and C; w* (estimate of the maximum of the objective function
value); A (fixed stepsize factor); i,,, (maximum number of iterations); ¢ (bound
on the norm of the subgradient);

Initialization: i =0 (iteration number); d; =0 (perturbation vector);

Iteration: while i <i,., do Steps 1to 5:

Step 1. Compute the current objective function value with perturbation d, i.e.,
w; =m(d;)+z(d;);

Step 2. Compute the gradient Vm at d; and a subgradient ¢ of z at d;;

Step 3. Testif the norm of the subgradient is small, i.e., if ||[Vm + ¢ || < € then stop;

Step 4. Compute the increment

(w*—wy)

dd=rA———"—"5
IVm+o|?

(Vm+¢);

Step 5. Update
diy < d;+8d, i<it+l.

The composition of the increment 8d is done analogous to the subgradient
optimization technique analysed in [9]. The sequence (w;);», is in general not
monotonically increasing. It is not clear whether the function m(d)+ z(d) is indeed
concave. Therefore, the convergence results of [9] cannot be applied. The practical
experience, however, shows that the chosen approach is well suited for the problem.

We choose w* to be a certain percentage p below the best known feasible solution
of the QAP, where 0% < p < 10%. The stepsize factor A was chosen from the interval
[0.05, 0.5]. The procedure stops when either the norm of the gradient gets too small
or when a certain maximum number of iterations is reached.

The computational effort for one iteration can be estimated as follows

m(d;) requires the diagonalization of A and B, so is O(n?).

z(d;) is computed in O(n’) steps by solving LSAP. Given the eigenvectors and
eigenvalues, Vm and ¢ can be determined in O(n?), yielding a total of O(n’) per
iteration.

All computations were programmed on an IBM PC/AT in FORTRAN. The running
time to obtain all the improved eigenvalue bounds contained in Table 1 was less
than one hour.

4. Numerical results and conclusion

We have taken the eight examples from Nugent et al. [14], which were also used
in [4]. First we applied the above mentioned steepest ascent algorithm to increase
the lower bound. The results are summarized in Table 1. Column GLB corresponds
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Table 1
Lower bounds for QAPs

Size n Best known GLB EVB MEVB
value
5 50 50 47 50
6 86 82 70 70
7 148 137 123 130
8 214 186 160 174
12 578 493 446 495
15 1150 963 927 989
20 2570 2057 2075 2229
30 6124 4539 4982 5349

to the Gilmore-Lawler bound applied to the unreduced problems. These are the
bounds commonly used in branch and bound algorithms (see, e.g., [1, 17]). Column
EVB contains the eigenvalue bounds obtained in [4] using the reduction scheme
(3.14). MEVB corresponds to the new bound using the naive ascent algorithm
described above. 200 iterations were allowed (i, =200), and £ =0.1 was chosen.
It turns out that for n =12 the new bound outperforms all the existing bounds.

Ultimately, the new bound should be used in a branch and bound scheme, so
the following two issues become relevant:

(i) efficient computation of the new bound,;

(ii) computation of the new bound in each node of the branch and bound decision
tree.

In answer to (i), Table 1 shows that the steepest ascent method of Section 3.3
works well, but takes many (200) iterations to reach the given bounds. Using more
refined techniques for nonsmooth optimization allows us to speed up the computa-
tions. We used the BT-algorithm for minimizing a non-smooth function (see [19]
and [21]) and obtained the results summarized in Table 2. We only focused on the
problems for n = 12. The number of iterations was (arbitrarily) limited to 70. The
first of the pair of numbers in each column ie {1, 5, 10, 20, 70} contains the current
lower bound, while the second number gives the norm of a subgradient after iteration
i. Note that after only five iterations, the lower bounds obtained by the BT-algorithm
outperform the Gilmore-Lawler bound GLB for n=15.

Table 2
The new bound using the BT-algorithm [19]

Sizen 1 5 10 20 70
12 ~909, 405.2 470, 20.3 474, 6.3 483, 3.7 498, 0.7
15 —1745, 630.2 967, 42.7 976, 8.5 982, 3.5 1002, 1.5
20 —3198,1007.0 2166, 52.7 2197,27.3 2214, 9.7 2286,2.9

30 —7836,1954.5 5239,59.5 5263, 23.6 5326, 11.1 5443,3.0
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The actual CPU-time for the problem of size n =30 was roughly 10 seconds per
iteration on a SUN 3/60 workstation. This seems an acceptable price for the
considerable improvement of the lower bound.

For question (ii), it should be pointed out that the improved eigenvalue bound
can be used in a branch and bound scheme, because fixing an assignment leads to
a QAP of lower dimension. So in principle, the improvement strategies can be used
at each node of the decision tree. In practice, it seems advisable to spend a big
effort at the root node of the branching tree to have a good quality bound to start
with. Then the original data A, B, C should be replaced by the reduced data A, B, C
corresponding to the best reduction at the root node. This implies that only a few
iterations are likely to be necessary to obtain good bounds in subsequent nodes of
the branching tree. As pointed out above, this can be achieved in a reasonable time
frame. In summary, the proposed improvement technique has to be considered a
new powerful tool to solve QAPs.
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