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I. Introduction 

T h e  quadratic assignment problem ( Q A P )  c a n  b e  d e s c r i b e d  as  fo l l ows :  g i v e n  t h e  se t  

N = {1, 2 , . . ,  n} a n d  t h r e e  n x n m a t r i c e s  A = (aik), B = (bil) ,  a n d  C = (ci j ) ,  f ind  a 

p e r m u t a t i o n  ~- o f  t h e  se t  N w h i c h  r n i n i m i z e s  

B «i~(i)+ ~ ~ aikb~(o~(k ). (1 .1)  
i - - 1  i - - I  k - 1  

E q u i v a l e n t l y ,  f i nd  a n  n x n p e r m u t a t i o n  m a t r i x  X w h i c h  m i n i m i z e s  t h e  t r a c e  

m i n  t r (  C + A X B t ) X  t, (1.2)  
X E FI 

w h e r e  t d e n o t e s  t r a n s p o s e ,  H d e n o t e s  t h e  se t  o f  p e r m u t a t i o n  m a t r i c e s ,  a n d  t r  is t h e  

t r a c e  (see ,  e.g., I-4]). 
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This model arises in, e.g., location problems, where N describes the set of sites 
on which plants are to be built; a~k is the distance between sites i and k; bit describes 
the flow between plants j and l; while c o is the building or running cost for plant 
j in location i (see, e.g., [4] for further references and applications for this model). 

The QAP is an NP-hard problem. (It contains, as a special case, the Travelling 
Salesman Problem.) Moreover, even the problem of  finding an e-approximation of 
the optimal solution is NP-hard (see [18]). Thus from a worst case point of view, 
QAPs are extremely difficult to solve. Recently, it has been shown [3] that solving 
the average case takes exponential time, when the QAPs are taken from some simple 
sample space of random problems. In [17], a parallel branch and bound technique 
failed to solve problems of dimension larger than 15. The main reason for this seems 
to be the lack of strong lower bounds that can be computed efficiently. 

The present theory and solution techniques for QAP are surveyed in [4]. Solution 
techniques often require lower bounds. In [4] an "opt imal"  reduction scheme is 
presented which reduces the magnitude of the quadratic part, and thus augments 
the influence of the linear part. Then a lower bound for the quadratic part is found 
using eigenvalue decompositions, while a lower bound for the linear part is found 
by solving the corresponding linear assignment problem as a linear program. 

In this paper we consider approximate solution techniques which result in lower 
bounds for QAP. In Section 3 we continue the approach in [4], and find a lower 
bound by using an eigenvalue decomposition for the quadratic part and solving a 
linear program for the linear part. Theorem 3.1 finds the exact minimum (and 
maximum) for the quadratic part when the relevant constraints are relaxed to include 
all orthogonal matrices, rather than just the permutation matrices. This yields the 
lower (and upper) bounds obtained in [4]. We then apply a steepest ascent algorithm 
to increase the sum of the two bounds. This requires some differential calculus for 
eigenvalue perturbations and subdifferential calculus for a quadratically perturbed 
linear program. We present some numerical experiments in Section 4. 

2. Preliminaries 

We can reformulate the QAP in (1.1) using a permutation matrix X = (xij) to get 
the form (1.2), i.e., X satisfies the transportation and 0, 1 constraints 

B x i j = l ,  i = l , . . . , n ,  
j--1 

B x~;=l ,  j ~ - l , . . . , n ,  (2.1) 
i=1 

xij E {0, 1}, i , j = l , . . . , n .  

Then (1.1) becomes (see [4]) 

t r(C + A X B t ) X  t : ~ ~, cijxij + ~ ~ ~ ~ aikbjlxijXkl. (2.2) 
i j i j k I 
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We let O denote the set of orthogonal matrices, i.e., X ~ O if X t X  = I, the identity. 
Further, we let 12 denote the set of doubly stochastic matrices, i.e., nonnegative 
matrices with row and column sums 1. It is weil known that 

H = O n 12. (2.3) 

We assume that A and B a r e  symmetric with eigenvalues it = (iti) and /z = (/z~), 
respectively. The matrices A and B can be orthogonally diagonalized, i.e., A =  
Pa Aa ptl and B = P2 A2 P~ with orthogonal matrices PI, P2 and diagonal matrices 
A1 = diag(A), A2 = diag(/x). 

3. Eigenvalue approach 

3.1. Orthogonal relaxation 

We now consider bounds for the QAP which are found by a particular relaxation 
of the constraint that X ~/ / ,  a permutation matrix. Since /- /= O c~ 12, i.e., since it 
is the intersection of the orthogonal and the doubly stochastic matrices, we can 
relax the QAP by considering only the orthogonal matrices. This allows us to derive 
bounds for the pure quadratic assignment problem. We then combine this with a 
reduction mechanism to bound QAP. 

Recall that A and B are symmetric matrices with eigenvalues it and/z, respectively, 
and with orthogonal diagonalizations A = P1 Aa ptl and B = P2 A2 P~. Permuting 
the columns of Pi is equivalent to permuting the order of appearance of the 
eigenvalues. We let ~ denote the ordered vector of eigenvalues with Äa/>" " • ~> Än, 
while A denotes the reverse order so that Aa ~<" • • ~<_An. We similarly define/2 and 
~. We then get the maximal scalar product 

(it,/z)+ := (Ä,/2) (3.1) 

and the minimal scalar product 

(it,/x)_ := ([,  ~). (3.2) 

The following theorem finds the optimal solutions for the relaxed pure quadratic 
assignment problem. The corollary following the theorem yields the maximal and 
minimal scalar product  bounds obtained in [4]. This theorem shows that the bounds 
in [4] are actually attained. The proof  of the theorem uses Lagrange multipliers to 
find the optimal solutions where the bounds are attained. The theorem can also be 
proved using double stochastic matrices as in [4], or using the Hottman-Wielandt 
Theorem [ 10]. (See, e.g., [5].) We include the Lagrange multiplier proof for complete- 
ness and interest. In particular, the commutativity condition (for X t A X  and B) 
derived in the proof  seems to appear in these types of best approximation problems, 
and might be of independent interest. Moreover, this proof  has led to an extension 
for the case when A and B a r e  general matrices, not necessarily symmetric. (This 
extension is to appear in a forthcoming study.) 
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Theorem 3.1. Suppose that the orders o f  the columns o f  Pi, i = 1, 2, are chosen so that 
(A,/z) = (A,/z)_. Then 

min tr A X B X  t= tr APIPt2BP2Pt~ = (A,/~)_. (3.3) 
X ~ O  

On the other hand, i f  we choose P~, i = 1, 2, so that (A,/z) = (A,/z)+, then 

max tr A X B X  t = t t tr AP~P2BP~P1 = (A,/z)+. (3.4) 
X c O  

Proof.  Let 

k ( X )  := X B X  t, g ( X )  := X t X  - 1, f ( X )  := tr A X B X  ~. (3.5) 

Then the cor responding  differentials are 

d k ( X ;  h) = X B h t +  hBXt;  

d g ( X ;  h) = X t h  + h tX;  (3.6) 

d f ( X ;  h) = tr A ( d k ( X ;  h)) = tr A ( X B h t +  hBXt) ;  

and the minimizat ion  p rob lem can be stated as 

m i n { f  (X) :  g ( X )  = 0}. (3.7) 

Since the feasible set is compact ,  the op t imum exists. We can now apply  the theory  
of  Lagrange multipliers.  Note  that  g ( X )  is a symmetr ic  matr ix  so that  we can assume 
that  the Lagrange  multiplier,  call it S, is a symmetr ic  matrix.  Also, for  given Q = Qt 

let h = ~ X Q .  Then d g ( X ;  h) = Q, which implies that  the derivative, g' ,  is onto  or 
full tank,  and so a constraint  qualif ication holds at the op t imum.  Thus, the Lagrange  
mult ipl ier  S exists. 

The Lagrangian  is 

f ( X ) + t r  S g ( X ) .  

Therefore ,  

0 = d f ( X ;  h) + t r  S d g ( X ;  h) (3.8) 

for  all matr ices h. This yields, for  all h, 

0 = t r [ A ( X B h t +  h B X  t) + S ( X t h  + htX)]  

= t r ( B X t A  + S X t ) h  + tr h t ( A X B  + X S ) .  

Thus 

o r  

A X B  + X S  = 0 (3.9) 

X t A X B  = --K 
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Since S is symmetric, this implies that X t A X  and B commute,  and so are mutually 

orthogonally diagonalizable, by P2 say. Therefore 

t t t tr A X B X  t = tr P2X AXP2P2BP2 = tr Aa A2. (3.10) 

The minimum value is then (h,/x)_ and is attained with XPt2 = Pta, i.e., X = t PaP2. 
The corresponding proof  for the maximum is similar. [] 

The above theorem yields the following bounds obtained in [4, Theorem 3]. Note 
that one can use these bounds, in conjunction with a solution of the linear part, to 
obtain bounds for QAP. 

Corollary 3.1. For all X c 17, 

(h,/~)_ <~ tr A X B X  t <~ (A , / z )+ .  [] (3.11) 

3.2. Reduction scheme 

In the above we have obtained upper  and lower bounds on the quadratic term in 
QAP. In [4], the following two reduction schemes are presented in order to reduce 
the magnitude of the quadratic term and augment the influence of the linear term, 
which can be solved exactly in polynomial time. In the following, let E = e l t +  le  t, 
and G = g l t q  - l g  t, where 1 denotes the n-vector of  ones and e and g are n-vectors. 

(Rdl)  Set A = Ä + E  and B = B + G .  Then for every X c H ,  t r ( A X B + C ) X  t= 
t r ( A X B  + C ) X  t with C = 2 Ä ( l g t ) +  2 (e l t )B  + C. 

(Rd2) Set A = Ä + R  and B = / ~ + S  with diagonal matrices R = d i a g ( r l , . . . ,  rù) 
and S = d i a g ( s a , . . . , s ù ) .  Then for every X c l - l ,  t r ( A X B + C ) X t =  
tr( A X B  + C ) X t with C = ( ~j ) = ( cij + äiisj + riß« + r~s« ). 

Thus we may reduce a symmetric matrix A to the form A = Ä +  E + R. We could 
then apply Theorem 3.1 to get new lower and upper  bounds (A,/x) and (A,/.~)+. 
Improvements  would result from minimizing the distance between the two bounds.  

The approach in [4] attempts to minimize the fluctuation of the eigenvalues of  
both matrices A and B. This is done by attempting to reduce the spread 

sp(A) := max [b i -  hj]. 
i,j 

It  is mentioned in [4] that since there are no simple formulas for the spread, they 
instead minimize the upper  bound for sp(A) given by Mirsky [12], 

s p ( A ) < ~ m ( A ) : = [ 2 ~ i ~ a ~ j - 2 ( t r A ) 2 ] l / 2 .  (3.12) 

Note that (see [12, 20]), 

ra(A) = (2n )l/2sx, 
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where the variance o f  A, 

Equali ty holds in (3.12) if and only if 

Az = A3 . . . . .  Aù_I =J(A1 + Aù). (3.13) 

Thus in [4] the reduced matrices Ä = A -  E - R and B = B - G - S are found  which 
2 and s~ over all vectors e, g, r, s. A calculus argument  finds minimize the variances s~ 

the reduced matrices explicitly. 
The computa t ional  scheine for  the reduct ion o f  A is 

z . - 2 ( n _ l ~  ai~ - t r A  , 

1 Z e k : = ~ ~ _ 2 ( (  j ak j )  - -akk  - - Z ) ,  k = l  . . . .  ,n ,  (3.14) 

rk := akk -- 2ek ,  k = l ,  . . . , n .  

B is reduced similarly. The reduced matrices Ä a n d / ~  then have row and column 
sums equal to zero as well as zero diagonals.  

Suppose that the vectors A and tx are arranged in non-increasing order. The range 

o f  values, call it v, satisfies 

v =(A, ~)+-(A, ~)_ =Z Ak(~~ - ~ . _ ~ + , )  
k 

= n Cov(A, (/2 - # ) ) ,  (3.15) 

where Cov denotes the covariance.  Thus we would  like to minimize this covariance. 

Note  that 

V_<ytS 2 2 S(~_~).  

Similarly, 

2 2 
/)~-~ r/S~ S(X_~). 

Moreover ,  

2 s(¢ ù} =Z (/zk - - I .~ , -k+, )21n  <~ (#x, -- #x,)2~< 2ns 2 
k 

by  (3.12). We conclude that the range o f  values 

v ~< 2n 2 Var(A) Var(/z) (3.16) 
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with equality conditions determined by the equality in the Cauchy-Schwarz 
inequality applied to Cov, and equality in Mirsky's bound for the spread. Thus 
equality holds if 12 - ~ is a multiple of Ä, and both/2 and Ä satisfy (3.13). Minimizing 
the upper bound for the spread is equivalent to minimizing the upper bound to v. 
In [4], it is shown that v = 0 for 3 × 3 matrices. This is not true in general. 

Though the intention in [4] was to reduce the spread, the compromise was to 
reduce the upper bound given in (3.12). This is equivalent to reducing the standard 
deviation, or variance, of the eigenvalues. In fact, reducing the standard deviation 
seems to be the correct choice as seen by the upper bound of v. This is borne out 
by numerical tests we have done, i.e., we used a minimization routine to reduce the 
spread (see Overton [15]), and noted that the reduction (3.14) consistently gave 
better bounds. 

Example 3.1 (Test example from Nugent et al. [14]). 

A =  

o112j io5241 1 0 2 1 32 5 0 3 0 2 

1 2 0 1 , B =  2 3 0 0 0 

2 1 1 0 4 0 0 0 5 

3 2 2 1 0 J  1 2 0 5 0 

The optimal reduction scheme (3.14) yielded spreads of 2.9814 and 10.0812, while 
the minimization procedure from [15] gave 2.4722 and 9.9330 for the matrices A 
and B, respectively. However, this resulted in lower and upper bounds -16.4915 
and 16.4915 for the optimal reduction scheme, while the minimization gave the 
weaker bounds -23.1276 and 21.7713. Note that the standard deviation of the 
eigenvalues for A and B from the optimal reduction were 1.0328, 3.2660 while the 
minimization yielded 1.2111, 4.1086, respectively. This coincides with the fact that 
a lower standard deviation provides better bounds. 

3.3. lmproving the reduction 

The reduced matrices Ä and /~ above are found independently. Moreover, the 
reduction is found using upper bounds for the spread, and C is not taken into 
consideration. This raises the question of whether one could improve the reduction. 
We will try and improve the lower bound for QAP, and so will need the derivative 
of the minimal scalar product 

ra(A,/x) := ~ Ak/Zn-k+~, (3.17) 
k 

as weil as the subdifferential of the lower bound for the linear part. (Note that the 
eigenvalues 1, /x are arranged in non-increasing order, and are functions of the 
perturbation vector d = (e, g, r, s).) We use the fact that the derivative of a simple 
eigenvalue Xi at 0 is (see, e.g., [7, 11]) 

ut, A'(O)u,, (3.18) 
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where ui is the corresponding normalized eigenvector of  A, and A'(0) denotes the 
derivative of  A at 0. In general, there exist differentiable functions Ai which represent 
the eigenvalues and have derivatives given by (3.18), with ui chosen from appropriate 
eigenspaces (see [7, Theorem 5.1]). Then 

Vere = - 2  Z tXù-k+,(sum(uk))Uk, (3.19) 
k 

where Uk is the normalized eigenvector corresponding to Ak and sum (Uk) denotes 
the sum of the components of  Uk; and, 

V r m : - - Z  /~n k+lSq(Uk), (3.20) 
k 

where sq(uk) denotes the vector with components being the square of the components 
of  Uk; Vgm and Vsm are defined symmetrically. 

The corresponding derivatives of  the range of values 

V : ~ Ak(],£ k --  jU~n_k+l) (3.21) 

are 

and 

V e =2 • /Xù-k+l[Uk sum(uk) -- Uù--k+l sum(un_k+l)] 
k 

Vrv =Z a°-k+l[sq(u~) - sq(uù-k+l)]. 
k 

Since the diagonal elements and the row sums of the reduced matrices A and B a r e  
0, we see that 0 is an eigenvalue with corresponding eigenvector 1. Since the 
eigenvectors are mutually orthogonal, we conclude that Stlm(Uk) = 0, for all but one 
k, which implies that all but one component  of  V«v is 0. Moreover, if 0 =/Xk and 
2k = n + 1, then V«v=0. The equivalent statement holds for Vgv. Thus we cannot 

hope to get rauch improvement  from adding E (or G) alone to the reduced matrix 
A (resp. B). 

We can use the above derivatives to try and improve the bounds for the quadratic 
form tr A X B X  t. However, this affects the linear part  of  QAP according to the 
reduction rules (Rdl)  and (Rd2). To find a lower bound for the linear part, we can 
solve the linear sum assignment problem (LSAP) 

z:= min tr C X  t. (3.22) 
X ~ g2,X ~O 

This can be solved as an ordinary linear assignment problem. The constraint X c H 
is relaxed to X c s2 and X ~> 0. As is well known, every basic feasible solution of  
LSAP is a 0, 1-matrix and so is in H. To improve the lower bound, we want to apply 
a steepest ascent algorithm to the sum of the two bounds m + z. 

Now if A and B a r e  reduced by (Rdl) ,  then the matrix C = (~j) is defined by 

g~j = eij + 2gy Y~ ( aik  - -  ei - e k )  q'- 2e~ ~, bkj .  
k k 
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I f  the matrices are further reduced by (Rd2), then C = (6~j) becomes 

~~: = c U + 2g: ~ ( aik -- e~ -- ek) + 2ei ~ù bkj + ( aù - 2ei -- ri)sj 
k k 

71 

+ ri(bjj - 2gj - sj) + risj 

= e~j+2gj Y~ a~g+2e~ ~ bkj --2gj  ~ eg --2ne~gj 
k k k 

+ (aù - 2 e i  - r~)sj + ri(bjj - 2gj - sj) + r~s:. 

Thus the derivatives are 

(3.23) 

O2Cij = - 2  - 2ailn, O 2 C i j  = -23 i l ,  
Oe~ Ogj Oet Osj 

Ogt 
02ciJ = - 2 ,  

Ogj Ori 

0~~~ = 6,1(-sj  + b:j - 2gj), 02c'j = - 1 ,  
Ort Or~ Osj 

Ogij_ 3~l(-ri + a i i -  2el),  
Ost 

(3.24) 

where 6j/ is the Kronecker delta. The missing second derivatives are 0. The first 
derivatives evaluated at e = g = r = s = 0 are 

0c'~--2 = 2~~1 ~ bk:, 0c«---2 = 2~jt ~ a~k, 
Oe~ k Og~ k 

Or~ OSl 

(3.25) 

I f  X* is a unique opt imum of LSAP which does not change for small perturbations 
(e, g, r, s), then the gradient of  the bound for the linear part  exists and 

V z =  ~ Vgij, (3.26) 
x*>0 

where V6i: is defined by (3.25). We can now state the following about the direction 
of steepest ascent of  the lower bound of QAP. 

Proposition 3.1. Suppose  that the matr ices  A ,  B and  C f o r  Q A P  are given. Moreover ,  

suppose that  A and  B have  s imple  e igenvalues  and  that X *  is a unique o p t i m u m  o f  

L S A P .  Then the direction o f  s teepest  ascent  o f  the lower bound  f o r  Q A P  is g iven  by 

Vm + Vz, where Vm is def ined as in (3.19) and  (3.20) and  Vz is def ined as in (3.26). 
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Proof.  Since the eigenvalues of  A and B a r e  simple,  we have seen that  Vm exists. 
Since X *  is a unique solution, it does not change under  small  per turbat ions  of  C 
and so, Vz is given by (3.26). [] 

Note  that,  since the diagonals  and  the row and co lumn sums of  bo th  A and B 
are zero after  the opt imal  reduct ion (3.14), we see that  the derivatives in (3.25) are 
all zero. This also shows that  Vz, i f  it exists, is zero. 

N o w  suppose  that  X *  is an op t imal  basic feasible solut ion of  LSAP, i.e., x* = 1 
for  exactly n componen t s  of  X*.  Let us app ly  a pa ramet r i c  l inear p rog ramming  
a pp roach  to increase the opt imal  value z. The paramete rs  here are quadratic.  Since 
there are 2 n -  1 l inearly independen t  constraints,  the solut ion X *  is a degenerate  
solution. Let d r =  (dri) and d c =  (dcj) denote  the row and co lumn dual variables,  
respectively,  and  let ~ := {(i , j) :  x* is a basic variable} denote  the opt imal  basis set. 

The reduced costs are then 

~ j  : Ci j  - -  dr~ - dc/. 

I f  we per turb  LSAP according to (3.23) in the direct ion (e, g, r, s) with step size 
ce I> 0, then the new costs as a funct ion of  a are 

~: = ci: + ak~j + a 21~:, (3.27) 

where 

and  

l~j = --2{ gj ~k ek + 2ne~gj-(2ei + ri)sj-- r~(2gj + s«) + r:~ }. (3.28) 

With the above  definitions we conclude the fol lowing abou t  the stepsize « and the 
value z (a ) .  

Proposition 3.2. Let dr*, dc* (resp. dr**, dc**) denote the row and column dual 
variables f ound  by replacing the costs c~j by kij (resp. lij), but with the same basis set 
~ .  Let the reduced costs for  the perturbations be denoted 

and 

c~ = kij - dr/* - dc~ 

cij'** = lij - dr** - dc**. (3.29) 
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Let 

ä = min{nonnegative real roots of the quadratic cij + a~*+ a 2~/**}. (3.30) 
t ,J 

Then the optimal basis ~3 is unchanged if a stepsize 0<~ ce <~ ä is chosen. Moreover, 
the new optimal value of LSAP is 

z (a )=z (O)+ E (ak~j+a21~j) • (3.31) 
x/~.> 0 

Proof. The result follows as in the usual  LP sensitivity analysis,  i.e., for  0 ~< a <~ 6 
with basis set ~ ,  the opt imal i ty  criteria is unchanged ,  since the reduced  costs for  
the per tu rbed  p rob l em remain  nonnegat ive.  El 

Thus we do not  need to resolve LSAP if we restrict the stepsize a ~< ä. I f  we 
choose  the stepsize a = d, e.g., when  ä---0 ,  then we need to change the op t imal  
basis.  We choose (i , j)  where ä is a t ta ined in (3.30), and  let the cor responding  xij 
enter  the basis,  and possibly  increase to 1 f rom 0. Since the cor responding  reduced  
cost  ?ij = 0, this can be done.  

In  the case that  the current  X* ,  ob ta ined  after  a stepsize a = ä, is an op t imal  
nonun ique  solut ion of  LSAP, it can h a p p e n  that  z is non-differentiable.  In  this case 
we can use subdifferential  calculus to find the direct ion of  steepest  ascent  o f  z. (See 
[2, 16].) 

Lemma  3.1. The direction of steepest ascent of z is 

d = arg min  I] ~b 1[, 
4,e~z(O) 

where the subdifferential of z is 

0 z ( 0 ) = { & :  dè= ~ x~V cij, X* is an optimal solution of LSAP} .  
(i,j) 

Proof. Let z(ad)  denote  the solut ion of  LSAP if the costs are changed using ad, 
where  a 1> 0, d = (e, g, r, s), and the cost matr ix  C is changed  using (3.23). Then  

the direct ion of  steepest  descent  d of  - z  is the solut ion of  

min l iö~ ( ( - z ) ( a d ) - ( - z ) ( O ) ) / a ,  (3.32) 
IIdll<~l 

or  equivalent ly 

min (--z) ' (0;  d) ,  (3.33) 
Ildll~<l 

where  ( - z ) ' ( 0 ;  d)  denotes  the direct ional  derivat ives of  - z  in the direct ion d at 0. 
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Since the subdifferential is a convex compact set, we get 

min ( -z) ' (0 ;  d ) =  min max qStd 
Irdll ~1  IId]l ~1  ,bmo(-z)(O) 

= max min qS~d= max ~bt(-q~/ll~b[I) 
d~¢O(--z)(O) IId[]~ 1 dgaO(-z)(O) 

= - min [[~bll. (3.34) 
4,~oz(o) 

Thus the direction of steepest ascent for z is found to be the element of minimal 
norm of the subdifferential 

d = a r g  min [[qS[[. (3.35) 
4)coz(O) 

Note that we found the direction of steepest descent for - z ,  since the theory of 
subgradients works for minimization rather than maximization (see [2]). 

If  the optimum X* is unique, then the optimal value z i s  differentiable. By 
applying the chain rule we see that 

Oz/Oet= Z Ocij/Oe» (3.36) 
x ~ > 0  

The other partial derivations are found similarly. By (3.36) and since (see [2]) 

Oz( O ) = conv{ eb : qb = lim ~T z( u, ), uù -~ O } , 

we conclude that 

0 z ( 0 ) = { & : Ó =  ~ x*Vcq, X*  is an optimum solution of LSAP}, (3.37) 
(i,j) 

where Vcq denotes the gradient with respect to the change (e, g, r, s). Thus the 
direction of steepest ascent d in (3.35) is found by solving the quadratic program 

min{]]VCX*]]2: X* solves LSAP}, (3.38) 

where VC is the Jacobian matrix with columns Veij. [] 

Since IIVCX*[[<~ [[~TC[[[[X*I[ , we can get an approximate solution to (3.38) by 
finding the minimal norm solution of  LSAP, 

min{ II X* [[: X* solves LSAP}, 

i.e., if there are k basic optimal solutions, X*, then the minimal norm approximate 
solution to (3.38) is the mean 

k 

X * = ( 1 / k )  E X*. (3.39) 
i=1 

To summarize, we now present an algorithm which increases the lower bound for 
QAP. 
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Input: Matrices A, B and C; w* (estimate of the maximum of the objective function 
value); A (fixed stepsize factor); im~x (maximum number of iterations); e (bound 
on the norm of the subgradient); 

lnitialization: i = 0 (iteration number); d i=  0 (perturbation vector); 

Iteration: while i < im~x do Steps 1 to 5: 

Step 1. Compute the current objective function value with perturbation di, i.e., 
w, = m( d,) + z( d~); 

Step 2. Compute the gradient Vm at d~ and a subgradient 4, of z at d~; 
Step 3. Test i f the  norm of the subgradient is small, i.e., if IIVm + 4' II < e then stop; 
Step 4. Compute the increment 

( W *  - -  - w.)  
~d = ~ ii-U~~ + ~-~2 (Vm + 4'); 

Step 5. Update 

di+l~di+6d,  i~ - i+ l .  

The composition of the increment 6d is done analogous to the subgradient 
optimization technique analysed in [9]. The sequence (wi)i~-i is in general not 
monotonically increasing. It is not clear whether the function ra(d) + z (d)  is indeed 
concave. Therefore, the convergence results of [9] cannot be applied. The practical 
experience, however, shows that the chosen approach is well suited for the problem. 

We choose w* to be a certain percentage p below the best known feasible solution 
of the QAP, where 0% <~ p <~ 10%. The stepsize factor A was chosen from the interval 
[0.05, 0.5]. The procedure stops when either the norm of the gradient gets too small 
or when a certain maximum number of iterations is reached. 

The computational effort for one iteration can be estimated as follows 

m(di) requires the diagonalization of A and B, so is O(n3). 
z(d~) is computed in O(n 3) steps by solving LSAP. Given the eigenvectors and 

eigenvalues, Vm and 4, can be determined in O(n3), yielding a total of O(n 3) per 
iteration. 

All computations were programmed on an IBM PC/AT in FORTRAN. The running 
time to obtain all the improved eigenvalue bounds contained in Table 1 was less 
than one hour. 

4. Numerical results and conclusion 

We have taken the eight examples from Nugent et al. [14], which were also used 
in [4]. First we applied the above mentioned steepest ascent algorithm to increase 
the lower bound. The results are summarized in Table 1. Column GLB corresponds 
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Table 1 

Lower bounds  for QAPs 

Size n Best known GLB EVB MEVB 
value 

5 5O 5O 47 5O 
6 86 82 70 7O 
7 148 137 123 130 
8 214 186 160 174 

12 578 493 446 495 
15 1150 963 927 989 
20 2570 2057 2075 2229 
30 6124 4539 4982 5349 

to the Gi lmore-Lawler  bound applied to the unreduced problems. These are the 

bounds commonly used in branch and bound algorithms (see, e.g., [1, 17]). Column 
EVB contains the eigenvalue bounds obtained in [4] using the reduction scheme 
(3.14). MEVB corresponds to the new bound using the nai've ascent algorithm 
described above. 200 iterations were allowed (imax = 2 0 0 ) ,  and e = 0.1 was chosen. 
It turns out that for n ~> 12 the new bound outperforms all the existing bounds. 

Ultimately, the new bound should be used in a branch and bound scheme, so 
the following two issues become relevant: 

(i) efficient computation of the new bound; 
(ii) computation of the new bound in each node of the branch and bound decision 

tree. 
In answer to (i), Table 1 shows that the steepest ascent method of Section 3.3 

works well, but takes many (200) iterations to reach the given bounds. Using more 
refined techniques for nonsmooth optimization allows us to speed up the computa- 
tions. We used the BT-algorithm for minimizing a non-smooth function (see [19] 
and [21]) and obtained the results summarized in Table 2. We only focused on the 
problems for n ~> 12. The number  of  iterations was (arbitrarily) limited to 70. The 
first of  the pair  of  numbers in each column i ~ {1, 5, 10, 20, 70} contains the current 
lower bound, while the second number  gives the norm o f a  subgradient after iteration 
i. Note that after only five iterations, the lower bounds obtained by the BT-algorithm 
outperform the Gi lmore-Lawler  bound GLB for n/> 15. 

Table 2 

The new bound using the BT-algorithm [191 

Size n 1 5 10 20 70 

12 -909,  405.2 470,20.3 474, 6.3 483, 3.7 498,0.7 
15 -1745,  630.2 967,42.7 976, 8.5 982, 3.5 1002, 1.5 
20 -3198,  1007.0 2166, 52.7 2197, 27.3 2214, 9.7 2286, 2.9 
30 -7836,  1954.5 5239, 59.5 5263, 23.6 5326, 11.1 5443, 3.0 
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The actual  C P U - t i m e  for  the p r o b l e m  of  size n = 30 was roughly  10 seconds  per  

i t e ra t ion  on a S U N  3/60  works ta t ion .  This seems an accep tab le  pr ice  for  the  

cons ide rab le  i m p r o v e m e n t  o f  the  lower  b o u n d .  

F o r  ques t ion  (ii),  it should  be  po in t ed  out  tha t  the i m p r o v e d  e igenvalue  b o u n d  

can  be  used  in a b r anch  and b o u n d  scheme,  because  fixing an ass ignment  l eads  to 

a Q A P  of  lower  d imens ion .  So in pr inc ip le ,  the  i m p r o v e m e n t  s trategies can  be  used  

at  each  node  o f  the  dec is ion  tree. In  prac t ice ,  it seems adv isab le  to spend  a b ig  

effort at the roo t  node  of  the b ranch ing  tree to have a g o o d  qual i ty  b o u n d  to s tar t  

with.  Then  the or ig inal  da t a  A, B, C shou ld  be  r ep l aced  by  the r e duc e d  da t a  A, B, C 

c o r r e s pond ing  to the  bes t  reduc t ion  at the roo t  node .  This impl ies  that  on ly  a few 

i te ra t ions  are l ikely to be necessary  to ob ta in  good  b o u n d s  in subsequen t  nodes  o f  

the  b ranch ing  tree. As po in t ed  out  above,  this can be ach ieved  in a r ea sonab le  t ime  

frame.  In summary ,  the p r o p o s e d  i m p r o v e m e n t  t echn ique  has to be cons idë red  a 

new powerfu l  tool  to solve QAPs.  
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