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The inverse shortest paths problem in a graph is considered, that is, the problem of recovering the arc 
costs given some information about the shortest paths in the graph. The problem is first motivated by 
some practical examples arising from applications. An algorithm based on the Goldfarb-Idnani method 
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I. Introduction 

The best way to introduce the inverse shortest paths problem is p robably  by its 

fol lowing application,  drawn f rom mathematical  traffic modell ing.  

In  this field o f  applied mathematics,  it is often assumed that  the users of  a given 

network of  roads tend to use the shortest  route f rom the origin of  their trip to its 

destination, the cost of  a trip being evaluated in time, distance, money  or some 

other more complex  measure. The road network planners  are obviously extremely 
interested in the reparti t ion o f  the traffic flow along those shortest routes. They also 

have an a priori  measure of  the tos t  of  a given arc in the network,  and hence they 

could compute  the shortest routes quite easily, using one o f  the well developed 

algorithms for  this problem (see [4, 5, 14], for  instance).  However,  the precise 
assessment o f  the cost o f  a route (in the user 's mind) is complex,  and orten different 

f rom that  used by the planners. It is therefore very useful to know some of  the 

routes that are actually used, and then to incorporate  this knowledge  into the model ,  

modifying the a priori costs to guarantee that  the given route is indeed shortest  in 

the modified network.  Care must  also be exercised in avoiding large changes in the 
costs compared  to their a priori values. 
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This is an instance of the inverse shortest paths problem. One is given a directed 
graph and a set of  nonnegative costs on its arcs. The question is to modify these 
costs as little as possible to ensure that some given paths in the graph are shortest 
paths between their origin and destination. 

Another interesting example is in seismic tomography (see [9, 10, 13, 15]). The 
network represents a discretization of the geologic zone to study into a large number  
of  "cells", and the costs of the arcs represents the transmission time of certain 
seismic waves from one cell to the next. Earthquakes are then observed, and the 
arrival time of  the resulting seismic perturbations is recorded at various observation 
stations on the surface. The question is to reconstruct the transmission times between 
the cells from the observation of shortest time waves and a priori knowledge of  the 

geological nature of  the zone under study. 
Obviously, the list of  applications is rar from being exhaustive: the determination 

of the internal transmission properties of  an inaccessible zone from outside measure- 
ments is a very common preoccupation in many scientific fields. But we believe 
that, because of their practical importance, the two examples above are enough to 
motivate the study of the inverse shortest paths problem. 

The authors are unaware of other methods specifically designed for solving inverse 
shortest paths problems. As a consequence, no comparison will be presented in the 
section relative to numerical experiments. 

2. The inverse shortest paths problem 

More formally, we describe the problem as follows. 
We define a weighted oriented graph as the triple (72, s¢, c), where (72, ~~¢) is an 

oriented graph with n vertices and m arcs, and where c is a set of  nonnegative costs 
{c~}~=~ associated with the arcs. We denote the vertices of  72 by {vk}~=~ and the arcs 

V m of d by {aj = (vs~«~, ,~j~)}j=l, with s(j) being the index of the vertex at origin of  

the j th  arc and t(j) the index of the vertex at its end. 
We assume that such a weighted oriented graph G = (72, M, 6) is given, together 

with a set of  acyclic paths 

pj = ( a ) ,  a j 2 , . .  , a),(»)  ( j  = 1 . . . .  , p),  (1) 

where l(j) is the number  of  arcs in the j th  path (its length), and where 

t(jl)=s(ji+O f o r i = l , . . . , l ( j ) - l .  (2) 

I f  we define ~ as the vector in the nonnegative orthant of  ~ "  whose components 
are the given initial arc costs {Oi}, the problem is then to determine c, a new vector 
of  arc costs, such that 

min IIc - cll (3) 
C 
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is achieved under the constraints that 

c,>~O ( i = l , . . . , m ) ,  (4) 

and that the paths {Pj}~'-I are shortest paths in G + = (T', M, c). 
Clearly, a number  of  interesting variants of  this basic problem can be constructed 

by considering various norms in (3). In particular the dl, d2 and (~,~ norms seem 
attractive. In this paper, we will restrict ourselves to the {2 norm, or least squares 

norm, mostly because it is widely used and leads to tractable computational  methods. 
Other choices will be examined in future work° One could also modify the problem 
by introducing other objective functions of  the {ci} to minimize. These objective 
functions may be linear, quadratic or generally nonlinear. Investigation of  these 
alternatives is again deferred to further research. 

As a consequence, we can rewrite the problem (3) as 

min ½ ~ ( c i -  ~i) 2 (5) 
ci i= 1 

subject to (4) and the p shortest path constraints. These last constraints may be 
expressed as a (possibly large) set of linear constraints of  the type 

ck>l ~ Ck ( j = l , . . . , p ) ,  (6) 
klak~q k[akcp~ 

where q is any path with the same origin and destination as pj. As a consequence, 
the set of feasible costs, O% say, is convex as it is the intersection of a collection of 
half space. The problem of minimizing (5) subject to (4) and (6) is then a classical 
quadratic programming (QP) problem. This QP is, however, quite special because 
its constraint set is (potentially) very large 1, very structured, and possibly involves 
a nonnegligible amount of redundancy. Also the problem of minimizing (5) on the 
set O% of feasible costs may be considered as the computat ion of a projection of the 
unconstrained minimum onto the convex set o%. Again, the special structure of  O% 
distinguishes this problem from a more general projection. 

3. Algorithm design 

3.1. The Goldfarb-Idnani method for convex quadratic programming 

The algorithm we present below is a specialization of the dual QP method by 
Goldfarb and Idnani [7]. The idea of this method is to compute a sequence of 
optimal solutions to the quadratic programming problems involving only some of 
the constraints that are present in the original problem, that is a sequence of  dual 
feasible points. An active set of constraints is maintained by the procedure,  that is, 
a set of constraints which are binding at the current stage of the calculation. A new 
violated constraint is incorporated into this set at every iteration of the procedure 
(some other constraint may be dropped from it), and the objective function value 

In general, the number of constraints can be exponential. 
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monotonically increases to reach the desired optimum. This approach was chosen 
for two main reasons: 

• Since the Goldfarb- Idnani  (GI) algorithm is a dual method, it is extremely 
easy to incorporate new constraints once a first solution has been computed. In our 
context, this means that, if a new set of  prescribed shortest paths is given, modest  
computational  effort will be required to update the solution of  the problem. 

• The G1 method has an excellent reputation for efficiency, especially in the case 
where the number  of  constraints is large and near-degeneracy very likely. In par- 
ticular, the method avoids slow progress along very close extremal points of  the 
constraint set ~. 

Also, the GI  method and its efficient implementation are discussed in the literature, 
by Goldfarb and Idnani in their original paper, but also by Powell [11, 12], for 
example. 

Because our method heavily relies on the GI  algorithm, we now state this method 
in its full generality. In this form, it is designed for solving the QP problem given by 

min f(x) = a T x  + l x T G x ,  
x 

(7) 
subject to Ei(x) aeß nlx-bi>10 (i= 1 , . . ,  h), 

where x, a and {ni})_l belong to ~m, G is an m x m symmetric positive definite 
matrix, b is in Nh and the superscript T denotes the transpose. As indicated above, 
the GI  algorithm maintains a set of  currently active constraints, A say, and relies 
on the matrix N whose columns are the normals nl of  the constraints in the active 
set A. The matrix N is thus of  dimension m x [A[, where IAI is the number  of  
constraints in A. The algorithm also uses two additional matrices, namely 

N* ~f (NTG-'N)-1NTG 1, (8) 

which is the Moore-Penrose  generalized inverse of  N in the space of variables 
under the transformation y = G1/2x, and 

H ~r G-I(I_  NN*), (9) 

which is the reduced inverse Hessian of  the quadratic objective function in the 
subspace of points satisfying the active constraints. Using these notations, the G I  
algorithm may now be stated as follows (see [7]): 

Step O. Find the unconstrained minimum. 
Set x~--G-la,  f ~-½aTx, H ~ G -1, A~O and u ~  (0). 

Step 1. Choose a violated constraint, if  any. 
Compute the constraint value {Ei(x)}~=~. Ifal l  constraints are satisfied, the current 
x is the desired solution. Otherwise, a violated constraint is chosen, that is, an 
index q is selected in { 1 , . . ,  h} such that E t (x)  <0 .  Also set 

u+~ - 0 (10) 

if [AI = o. 
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Step 2. Compute the primal and dual step directions. 
These directions are computed by the relations 

d = Hnq, (11) 

and if lA] > 0, 

r = N*nq. (12) 

Step 3. Determine the maximum steplength to preserve dual feasibility. 
Define 

S - - { j e { 1 , . . ,  [AI}I r, > 0}, (13) 

The maximal steplength that will preserve dual feasibility is then given by 

[ " : = m i n [ " ; ]  if S # 0 ,  (14) 
/ f=~  r l jes L rj _1 

~+ oO otherwise. 

Step 4. Determine the steplength to satisfy the qth constraint. 
This steplength is only defined when d # 0, and is then given by 

Eq(x) (15) 
tc = d T l , l q  • 

Step 5. Take step and update the active set. 
If tr = oo and d = 0, then the original QP (7) is infeasible and the algorithm stops 
with suitable message. 

Otherwise, if d = 0, update the Lagrange multipliers by 

u+~- u++ t f ( 1  r) (16) 

and drop the /th constraint, that is A ~ A \ { 1 } ,  where l has been determined in 
(14). Then go back to Step 2 after updating H and N*. 

If d ~ O, to is well-defined, and one sets 

t = min[tr, te], (17) 

x « x + t d ,  (18) 

f « f + t(½t + U~AI+I) dTno (19) 
and 

I ( l r )  u + + t if ]A I > 0, 
ù+ <-- (20) 

[. u + + t i f  IAI = o.  

If t =  te, then set u ~ u  +, add constraint q, that is A ~ A u { q } ,  and go back to 
Step 1 after updating H and N*. Il, on the other hand, t = tf, drop the /th 
constraint, that is A ~ A \ { 1 }  and go back to Step 2 after updating H and N*. 
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Note that u, the vector of Lagrange multipliers, has a dimension equal to the 

number  of  active constraints. 
We observe that the GI  algorithm involves three types of  possible iterations: 
1. The first is when the new violated constraint is linearly independent from those 

already in the active set, and all the active constraints remain active at the new 
solution of the QP subject to the augmented set of  constraints. This occurs when t = to. 

2. The second is when the new violated constraint is linearly dependent on those 
already in the active set. This occurs when d = 0 of, equivalently, when N r  = nq. In 
order to preserve independence of the active set (that is, linear independence of 
the columns of N) ,  an old constraint (the /th) is dropped from the set before 
incorporating the new one. As a result, N is always of full column tank. 

3. The tbird is when the solution of the QP subject to the augmented set of  
constraints is such that one of these constraints is not binding. This occurs when 
t = tl, in which case the /th constraint ceases to be binding. As one wishes to keep 

only binding constraints in the active set, this constraint is dropped. 
We refer the reader to [7] for further details on the general GI  algorithm, and in 

particular for the proof  that it indeed solves the QP (7), provided a solution exists. 
Our purpose, in the next paragraphs,  is to specialize the GI  algorithm to the 

inverse shortest paths problem given by (5), (4) and (6). We will therefore examine 
the successive stages of  the algorithm presented above, where the structure of  the 
problem allows some refinement. 

3.2. Constraints  in the active set 

We first wish to analyze how to detect the violation of constraints (6), as required 

in Step 1. 

3.2.1. Shortest  paths  constraints 
For each of the given paths p» we first define Pj as the set of  vertices in V that are 
attained by this path, that is 

Pj @f" {s( ajl), t( ail), t( aj2), . . , t( aj.t(j))}. (21) 

The vertex s(aj l )  is called the origin or source of the j th  path, and denoted sj. For 
every such path pj with source sj and for a given vector c of arc costs, it is then 
possible to compute all the shortest paths in (~,  ~g, c) from the source sj to all the 
other vertices of  ~ .  We will then detect a violated constraint if, for some vertex 
v ~ Pj\{sj},  one has that the predecessor of  v on the shortest path from sj to v is 
different from the predecessor of  v in the path pj. 

In this situation, it is easy to verify that there taust be a vertex w c Pj closest to 
v (possibly sj), such that w is also on the shortest path from sj to v. Furthermore, 
there exist two distinguished paths from w to v, the first one, noted I ÷, being the 
shortest path, and the second one, noted I , being given as a subpath of p» The 
set of  both these paths is called a violating island, and is denoted by I. The path I + 
is called its posit ive shore, while I is called its negative shore. Furthermore, the 
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~)i v2 ?33 ~4 

T o>,T o=/~T o,/T 
a4 a8 a5 a9 a6 a lo  a7 

v5 a l l  V6 a12 v7 a13 v8 
Fig. 1. A first example. 

excess of the island, denoted by E, is defined as the cost of  the positive shore minus 
the cost of the negative shore. The constraint associated with the island I is therefore 
violated when its excess is negative. 

On the small example given in Figure 1, we assume that the cost vector c is given 
by the relation c~ : j  (that is the arc aJ has a cost of j ) ,  while the constraint paths 

are given by 

P l =  (a l ,  as, a12, al3) and P2= (al l ,  a12, al0). (22) 

At this point, it is not difficult to verify that the shortest path from vl to v8 is the path 

(a l ,  a2, a3, a7). (23) 

Hence a constraint related to the path pl is violated at the vertex rs, because the 
predecessor of  vs on its shortest path from vl, that is v4, is different from its 
predecessor on the constraint path, which is v7. The vertex v above is then vB, while 
inspection shows that the relevant vertex w is v2. The corresponding violating island 
is then 

I = ((a2, a3, a7), (as, al~, al3)), (24) 

where I + = (az ,  a3, a7) is its positive shore, 1-  = (as,  a~2, a~3) its negative shore, and 
whose associated excess E is (2 + 3 + 7) - (5 + 12 + 13) = -18 .  This violating island, 
is not the only one for this example. A second one, related to the path P2, is given, 
for instance, by 

I ' =  ((as,  a2, a3), ( a u ,  a,2, al0)), (25) 

whose excess E '  is equal to -20.  
A violated constraint of the type (6) therefore corresponds to a violating island 

in (T', a/, c). When it is incorporated in the active set, the constraint is enforced as 

an equality and the costs of its negative and positive shore are exactly balanced 
(see Section 3.4). The corresponding island is then called active. 

3.2.2. Nonnega t i v i t y  constraints and bounds  on the arc costs 

The nonnegativity constraints (4) must also be taken into account. When one of 
them is violated, which is easy to detect, it may also be incorporated in the active 
set, along with the active islands. These bounds are then also called active. They 

will be regarded in the sequel as active islands with only one arc in the positive 
shore and no negative shore. 
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The active set at a given stage of the calculation will therefore contain a number 
of  active islands (with or without negative shore). This will be denoted by A = ( V, Y), 
where V is the set of currently active islands with a negative shore and Y the set 
of active islands without negative shore, that is the set of active bounds. 

3.3. The dual step direction 

The next stage of the specialization of the Goldfarb-Idnani  algorithm to our inverse 
shortest paths problem is the computation of the dual step direction r in (12). As 
in [7, 12], this calculation, which is equivalent to 

r = ( N T G - 1 N ) - I N T G  'nq, (26) 

can be performed by maintaining a triangular factorization of the matrix N r G  IN. 

However, our problem has the very important feature that the Hessian matrix G of 
the quadratic objective is the identity L This obviously induces a number of useful 
algorithmic simplifications, the first one being that (26) can be rewritten as 

r = (NTN)  1Nrnq. (27) 

The matrix N* is then nothing but the unweighted Moore-Penrose generalized 
inverse of N. Therefore, we will only maintain a triangular factorization of the form 

N T N  = RTR, (28) 

where R is a upper triangular matrix of  dimension ]A I. Since N is of full rank, this 
is equivalent to maintaining a QR factorization of N of the form 

~~~~ ~~~(ô)~«« ~~9~ 

as is the case in the numerical solution ofunconstrained linear least squares problems. 
Indeed, it is straightforward to verify that (27) may be reformulated as 

min l] Nr - nq 112. (30) 
r 

The second useful simplification due to the special structure of the problem arises 
in the computation of the product NTnq in  (27). The resulting vector indeed contains 
in position i the inner product of  the /th active constraint normal with the normal 
to the qth constraint. As both these constraints may be interpreted as islands, the 
question is then to compute the inner product  of the new island, corresponding to 
the qth constraint, with all already active islands. We then obtain the following 
simple result: 

Lemma 1. The vector NXnq appearing in (27) is given componentwise by 

[ NT nq]i = ]I; ¢~ [q[ q-Il j- (~ I q [ -  [Il (~ l q [ -  [Ij ('~ Iq[ 

for  i = 1 , . . ,  ]A[ and j equal to the index of  the ith active island. 

(31) 
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Proof. Since 

[ N'rnq]i = nTnq (32) 

it is useful to note that, because of (4) and (6), 

[nl] k = 1 if a k C I~ ,  (33) 

otherwise, 

for k = 1 , . . . ,  m and l ~ A w {q}. This equation holds for both types of islands (with 
or without negative shore). Taking the inner product of two such vectors (for l = j  
and l =  q) then yields (31). [] 

As a consequence, the practical computat ion of r may be organized as follows: 
1. Compute  the vector y c N/AI whose /th component  is given by (31). 

2. Perform a forward triangular substitution to solve the equation 

RTz = y  (34) 

for the vector z ~ ~ IA[. 

3. Perform a backward triangular substitution to solve the equation 

Rr = z (35) 

for the desired vector r. 
This calculation will be a very important  part of the total computational  effort 

per iteration in the algorithm. 

3.4. Determination o f  the costs 

We now examine the way in which changes in the costs may be computed. In the 
original GI  method, both primal and dual step directions are computed once a new 
constraint has been selected for inclusion in the active set (as described in Step 2). 
In our framework, the computation of the new values of  the primal variables may 
be completely deferred after that of  the dual step in a rather simple way, as will 
now be shown. This adaptation may be viewed as another consequence of the fact 
that G - -  I for our problem. 

Before stating this result more precisely, we introduce some more notation. In 
order to complete the description of the set { 1 , . . . ,  m} given an active set A = ( V, Y), 
we recall the definition of Y as 

y d__ef {i C { 1 , . . ,  m}[ci = 0}, (36) 

and we define the sets 

X «~ {i c { 1 , . . . ,  m}\ YI 3j  ~ V, a, 6/j} (37) 
and 

Z d_ef { 1 , . . ,  m } \ ( X  k.) V).  (38) 
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The set X thus contains the indices of  the arcs that are involved in one of the active 
islands of  V but are not fixed at their lower bounds. The set Z contains the indices 
of  the arcs that are not involved at all in the active constraints of  A. 

For i c  X, we also define 

I+(i) d~f {j~ V]a ic l f }  and I (i) de=f {jE V[aicI f} .  (39) 

Hence, I+(i) (resp. I-(i)) is the set of  active islands of  V such that the arc as belongs 

to its positive (resp. negative) shore. 
We finally define the logical indicator function 6[. ] by 

[1  if condition is true, 
6[condition] = t0  if condition is false. (40) 

We can now state out lemma. 

Lemma 2. Consider a dual feasible solution for the problem of minimizing (5) subject 
to the constraints given by an active set A = ( V, Y). Assume furthermore that, among 
the Lagrange multipliers {Uk}~ll, those associated with the active islands of V are 
known. Then the eost cector c corresponding to this dual solution is given by 

c i = 6 [ i c X u Z ] « i + 6 [ i c X ] [  ~+ uk-  ~ uk] (41) 
kz  (i) k ~ l - ( i )  

for i= l , . . . ,  m. 

Proof. We first note that we can restrict out attention to the costs that are not at 
their bounds (i c X u Z) ,  because we know, by definition, that cs = 0 for i ~ Y. Every 
active island in V thus corresponds to a constraint of  the form 

Z «k - Z «k = o. (42)  
klak~ l+Ak¢ y k]ak E l -^k¢- Y 

The desired expression for cs (i ~ X u Z )  immediately follows from the Lagrangian 

equation 

oL(c, u) 
= 0, (43) 

OG 

where the Lagrangian function for the problem is given by 

L(c,u)=½ E (c,-~) 2- u~ Z c,-  Z c~ 
SeXvoZ k= l  I.-ilaiEl~Ai~e Y ilai¢.l~Ai;~ Y 

(44) 

:½ Y~ (q-«~f -E  c~[ 2+ ~~- Z u~], 
i ~ X ~ Z  i ~ X  kc (i) k c l  (i) 

where we restrict the last major sum to the set X because all other terms are zero. [] 

The lemma simply means that the /th cost can be obtained from cs by adding to 
it all Lagrange multipliers corresponding to active islands such tbat as belongs to 
the positive shore of  the island, and by snbstracting all the multipliers of  active 

islands such that as belongs to the negative shore. 
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Consider now the computation of the primal step direction d and of the inner 
product d+nq. Note first that, when (15) is reached in the algorithm, the primal step 
direction d is nonzero, and nq is linearly independent from the columns of N. The 
value of d+nq is then given by the following result: 

Lemma 3. Assume the (31 algorithm is applied to the inverse shortest paths problem 

under consideration, and that it has reached the point where equation (15) should be 

evaluated. Assume furthermore that A = ( V, Y)  is the active set at this stage of  the 
calculation. Then the primal step direction d is given componentwise by 

d i = 6 [ a ~ C I q ] - ~ [ a ~ C l q ] + 6 [ i ~ X ]  rk-- • rk (45) 
kz (i) k~l+(i) 

for i = 1 , . . ,  m. As  a consequence, 

dTnq= l + ~ rk-- ~ù rg (46) 
kc1 (q) k~l+(q) 

in the case where the qth constraint is the lower bound on the qth cost, and 

dT nq Z + 1+ Z rk Z rk 
i[ai~l,ll k« l  (i) kel+(i) i]ai~l,t k~l+(i) k~I-(i)  

in the case where the qth constraint is a violating island. 

Proof. We first note that d, the change in the cost c corresponding to a unit step 
in the dual step direction, can be viewed as the sum of two different terms d = nq - Nr. 

The first term corresponds to the incorporation of the qth constraint in the active 
set and its contribution to di is +1 if ai belongs to the positive shore of the qth 
island, and is - 1  if ai belongs to its negative shore. This is because the ({A{ + 1)th 
component  of the dual step direction, corresponding to the qth constraint, is equal 

to +1. Hence we have that this first contribution is equal to 

B[ai ~ Iq] - 8[a, c Iq] (48) 

for t he / th  arc. Note that only one of the indicator functions can be nonzero in (48). 
The second contribution corresponds to the modifications to c~ caused by the fact 
that a~ may also belong to islands that are already active. In other words, the nonzero 
components of - r  have to be taken into account. The equation (41) then implies 
that this second contribution from the Lagrange multipliers associated with all 
constraints already in the active set must be equal to 

«,~~~[ ~ r~ ~ r~] ~4~~ 
k~ (i) kEl+(i) 

Summing the contributions (48) and (49) gives (45). 
Assume now that the qth constraint is a lower bound. In this case, orte has that 

nq = eq, the qth vector of the canonical basis in R m. Hence the product  dTnq is equal 
to dq. Equation (41), the nonnegativity of  the {~~}," ~, and the fact that eq < 0 imply 
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that q c X, and (46) then follows from (45). On the other hand, i f the qth constraint 
is a violating island, the normal nq is then given componentwise by (33) with l = q. 
Hence we obtain (47) from (45). [] 

3.5. Modifying the active set 

The active set modifications (in Step 5 of the GI algorithm) finally require the 
updating or downdating of the triangular matrix R, as introduced above in (28). 

Assume first that the / th  constraint is dropped from the active set A. This amounts 
to dropping a column of N in (29), which, in turn, is equivalent to dropping a 
column of the upper triangular matrix R. The resulting matrix is therefore upper- 
Hessenberg, and a sequence of Givens plane rotation is applied to restore the upper 
triangular form. This technique is quite classical, and has already been used in the 
more general implementations of the GI method, both in [7] and [12]. The reader 
is referred to those papers for further details in the context of the GI algorithm, 
and to [8] for general information on Givens plane rotations and their practical 
computation. 

If one now wishes to add the /th constraint to the active set, then N has one 
more column, namely nq, and the resulting U in (29) then has the form 

(ô o~< ~»0~ 
O~ùq/' 

where Q~ and Q2 are defined in (29). Again, this matrix should be restored to 
triangular form, and again this can be done by premultiplying it by suitable 
orthogonal transformations. In fact, the only necessary modification to (50) is the 
premultiplication of the vector QTnq by an orthogonal transformation T, say, such 
that 

TQT nq = II OT nq II el, (51) 

where el is the first vector of the canonical basis of •,--[AP. Note also that 

T (52) Q l n q = R  TNTnq=Z,  

where z has already been computed in (35). Moreover, one has that 

[fn«ll == [[(01 Q2)Wnq]] 2= ][zll =+ I[Q~nql[ == IIzl] =+ II TQ~n«[[ 2. (53) 

Hence the updated matrix R is given by 

Rupdated .~_~ (~  Z ) ,  (54) 

where ce =~/[Inqll 2 -  Ilzll 2. The updating of the triangular factor R is therefore 
extremely cheap to compute, mainly because of the fact that z is available from 
previous calculations. It is also interesting to note that, because of the equivalence 
between (28) and (29), the technique presented hefe is in fact identical to the 
computation of the Cholesky factor of (N+)TN + using the bordering method (see 
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[6], for example),  where N ÷ = ( N  r/q). A similar procedure is also used in [7] and 
[12]. 

We finally note that d, the primal step direction, is zero if and only if the residual 
of  the problem (30) is zero, which, in turn, is equivalent to [Inq]] = IIz[[. This last 
relation provides a possible way for testing the equality d = 0 without explicitly 
computing d. 

3.6. The algorithm 

We are now in position to describe our algorithm for solving our inverse shortest 
paths problem, as described by (5), (4) and (6). For this description, we use a small 
(machine dependent) tolerance e > 0 to detect to what extent a real value is nonzero, 
and we define the integer v = ]A I. 

Step O. Initialization. 
Set c~-6, f ~-O, A~O, v~-O and u~-0. 

Step 1. Compute  the current shortest paths. 
For j = 1 , . . . ,  p, compute the shortest paths from sj to every vertex in Pj\{sj}. 

Step 2. Choose a violated island or exit. 
Select Iq, an island whose excess Eq is negative, if any. I f  no such island exists, 

then c is optimal and the algorithm stops. 
Otherwise, if u = 0 ,  then a~~/]I+l+[lql and go to Step 5. 
Otherwise (that is, if v > 0) set 

u «  , ( 5 5 )  
0 

Step 3. Revise the triangular factor R. 
3a. Add the previous constraint normal nq to N. I f  v = 1 then set R = («)  and 

go to Step 4. 
Otherwise (that is if v > 1), update the upper  triangular matrix R using (54) and 

go to Step 4. 
3b. Drop nt from N. Remove from R the column corresponding to t he / t h  island, 

and use Givens rotations to restore it to upper  triangular form, as described in 
Section 3.5. 
Step 4. Compute  the dual step direction. 

Compute  the vectors z and r, using Lemma 1, (34) and (35). Compute  also o~ 
according to 

O/ = Nfll r/q ]]2 __ [[ 2' [I 2. (56) 

Step 5. Determine the maximum steplength to preserve dual feasibility. 
Determine the set S according to (13), tf (and possibly l) using (14). 

Step 6. Determine the steplength to satisfy the qth constraint. 
I f  « <~ e then go to Step 7b. 
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Otherwise, compute tc according to (15), and d and dVnq as described in 
Lemma 3. 

Step 7. Take the step and revise the active set. 

7a. Compute the steplength t as in (17), set c ~ e + td, revise f according to (19) 
and u using 

u~- (57) 

u + t  if ~ = 0 .  

I f t = t o ,  s e t A ~ - A ~ { q } ,  ~ ,~-u+l  a n d g o t o S t e p  1. 
Otherwise (that is if t -- t0, set A ~- A \ { l } ,  v ~- ~,- 1 and go to Step 3b. 

7b. I f  t l= +oe, then the problem is infeasible, and the algorithm stops with a 
suitable message. 

Otherwise, update the Lagrange multipliers according to (16). Set A ~ A \ { l } ,  

~,~ v -  1 and go to Step 3b. 

Note that, in our current implementation of the algorithm's second step, we 
choose the current violated island as that whose excess is most negative. This 
technique appears to be quite efficient in practice. 

3. Z Nonor ien ted  arcs 

An important variant of  the basic problem occurs when some arcs in the graph are 
undirected. In this case, it is quite inefficient to replace each of these arcs by two 
distinct arcs of  opposite orientation, because it increases both the dimension of the 
problem and the number  of  constraints. Indeed, one has to impose that the two 
new oriented arcs have the same cost. 

Fortunately, the algorithm described above can be applied to the case where arcs 

are nonoriented without any modification, provided the shortest paths method used 
in Step 1 can handle such arcs. 

3.8. N o t e  

Similar implementation techniques have been used by Calamai and Conn for solving 
location problems with a related structure (see [1, 2, 3]). Their technique is, however, 
different from ours, and a comparison of both approaches will be examined in 
future work. 

4. Preliminary numerical experience 

In order to verify the feasibility of the above described algorith, a FORTRAN program 

was written and tested on an Apollo DN3000 workstation, using the FTN compiler. 
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We present  here a set of  seven typical examples extracted from a large col lect ion 

of tests. The first five arise from the traffic model l ing  p rob lem presented in Section 

1, with graphs for two different cities. The next  one is ob ta ined  on a r andomly  

generated graph while the last one is bui l t  from the graph of a two d imens iona l  

rec tangular  grid. The problems '  characteristics are reported in Table 1. We recall 

that n, m and  p are the n u m b e r  of vertices in the graph, the n u m b e r  of arcs and  

the n u m b e r  of shortest path constraints  respectively. 

We summarize  the results of the tests in Table 2, where the following symbols  

are used: 

iter: the n u m b e r  of major  i terations of the algorithm, that  is, the n u m b e r  of full 

steps in the pr imal  space (adding a constraint  in the active set and  requir ing the 

calculat ion of the shortest paths and  the choice of a new violated constraint) .  

drops:  the n u m b e r  of is lands dropped  at Step 7 of the algorithm, that is, the 

n u m b e r  of minor  i terations (partial  and  dual  steps, involving only the computa t ion  

of the step directions in the pr imal  and  dual  space). 

lA*I: the n u m b e r  of active islands at the solution.  

We note that the first of these numbers  is always one larger than  the sum of the 

two others, because orte i terat ion is required for cons ider ing  the empty active set. 

Despite the l imited character  of these experiments ,  one can nevertheless observe 

the following points:  

Table 1 

The test examples 

n m p Graph type Constraint paths generation 

P1 246 351 245 city 1 
P2 246 351 600 city 1 
P3 246 351 6724 city 1 
P4 822 1447 821 city 2 
P5 822 1447 6806 city 2 
P6 500 1469 100 random 
P7 3600 7063 650 2D grid 

a tree in the graph 
all paths between a subset of the nodes 
all paths from a node subset to another hode subset 
a tree in the graph 
all paths from a node subset to another node subset 
randomly generated paths 
all paths from one side of the grid to the other sides 

Table 2 

Results 

iter. drops lA* I 

P1 35 2 32 
P2 77 17 59 
P3 167 34 132 
P4 246 55 190 
P5 468 238 229 
P6 436 54 381 
P7 171 8 162 
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• The algorithm is relatively efficient in the sense that it does not, at least in our 
examples, add many constraints that are not active at the solution, with the necessity 
to drop them at a later stage. 

• One also observes in practice that a fairly substantial part  of  the total computa- 
tional effort is spent in calculating the necessary shortest paths in order to detect 
constraint violation. Choosing a set of constraint paths from a single tree induces 
significant savings in the determination of the most violated constraint, because 

only one shortest path tree is needed. 

5. Complexity of the inverse shortest paths problem 

During the refereeing period of this paper,  an alternative formulation of the inverse 
shortest paths problem was communicated to the authors by S. Vavasis. Representing 

the cost of  the shortest paths from node vi to node vj by the new variables wi.j for 
i, j = 1 . . . . .  n, we may then add the constraints 

Is(at) = vk and t (  at)  = vj] ~ wi, j ~ Wi, k -~- Cl, (58) 

together with the equalities 

wi, i = 0 (59) 

for all i = 1 . . . . .  n. The constraints on the shortest paths (6) may then be rewritten 

a s  

Wi, q >! cj, + "  • • + cj,<» (60) 

for any path of  the form (1) with s(ajl) = vi and t(aj,<») = vq. 

There are at most m n  inequalities o f  type (58), n equalities of  type (59) and p <~ n 2 
inequalities of  type (60). Hence the total number  of  constraints in this formulation 
is polynomial. As a consequence, the problem is solvable in polynomial time by an 

interior point algorithm. 
This interesting observation is clearly of  theoretical importance, but the inclusion 

of n 2 additional variables could generate inefficiencies in practical implementations. 

6. Conclusion and perspectives 

In this paper, the inverse shortest paths problem has been posed and a computational 
algorithm has been proposed for one of the many problem specifications, namely 
that where the variational criterion used is the E2 deviation from a priori known 
costs and where the constraints are given as a set of  shortest paths and nonnegativity 
constraints on the costs. 

The proposed algorithm has been programmed and run on a few examples, in 
order to prove the feasibility of  the approach.  
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The  poss ib l e  e x t e n s i o n s  are m a n y .  C o n s i d e r a t i o n  o f  o the r  n o r m s  a n d  o the r  types  

o f  c o n s t r a i n t  spec i f ica t ions  are o f  o b v i o u s  interest .  The  au tho r s  are p r e sen t l y  w o r k i n g  

o n  e x t e n d i n g  the  exis t ing  a l g o r i t h m a n d  p r o g r a m  to h a n d l e  gene ra l  l ower  a n d  u p p e r  

b o u n d s  o n  the  to ta l  cost  o f  p r e d e f i n e d  or  shor tes t  paths .  

A p p l y i n g  the  t e c h n i q u e s  d e s c r i b ed  in  this  p a p e r  to p rac t i ca l  s i tua t ions ,  in  u r b a n  

traffic m o d e l s  a n d  t o m o g r a p h y  for  i n s t ance ,  is also a c h a l l e n g i n g  research  area.  
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