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This paper considers local convergence and rate of  convergence results for algorithms for 
minimizing the composite function F(x) = f ( x ) +  h(c(x)) where f and c are smooth but  h(c) may 
be nonsmooth .  Local convergence at a second order rate is established for the generalized 
Gauss -Newton  method when h is convex and  globally Lipschitz and the minimizer is strongly 
unique. Local convergence at a second order rate is established for a generalized Newton method 
when the minimizer satisfies nondegeneracy, strict complementarity and second order sufficiency 
conditions. Assuming the minimizer satisfies these conditions, necessary and sufficient conditions 
for a superlinear rate of  convergence for curvature approximating methods are established. 
Necessary and sufficient conditions for a two-step superlinear rate of  convergence are also 
established when only reduced curvature information is available. All these local convergence 
and rate of  convergence results are directly applicable to nonlinearing programming problems. 
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1. Introduction 

This paper  considers local convergence and rate of convergence results for 

algorithms for minimizing the composite function F: •" --> R defined by 

F(x) = f ( x )  + h(c(x)), (1.1) 

where f :  ~" ~ • and c: ~" ~ R"  are smooth (at least once continuously differentiable) 
but h : R " ~ R  may be nonsmooth. The function h is always locally Lipschitz, 
moreover it is often a convex or a polyhedral convex function in which case F is 
regular. Differential properties, optimality conditions a n d  model algorithms for 
minimizing the composite function (1.1) are discussed by Womersley [-21 ], providing 
a background to the current work. The problem of minimizing the composite function 
has also been considered by Fletcher [7, Chapter  14] when h is a polyhedral convex 

function, and by Osborne [15] and Powell [19] when h is a norm. Numerous special 
cases have also been considered by various authors. 

This work was done while the author  was a Research fellow at the Mathematical  Sciences Research 
Centre, Austral ian National University. 
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70 R.S. Womersley / Local properties of algorithms 

The algorithms considered here are based on modelling the function F at the 
point x (k) by 

gr(6; x(k)) = f (k )+  (~Tg(k)+ ½(~TB(k)( ~ -t- h(c (k) + A(k)T(~), (1.2) 

where f (k)=f(x(k)) ,  g(k)=Vf(x(k)), C(k)=C(X (k)) and A(k)=[Vc~ k) . .  .Vc~)]. A 
minimizer 6 (k) of (1.2) is used as a correction term to try and improve the estimate 
x (k) of a minimizer x* of F. This general framework includes a large number of 
published algorithms for minimizing F (see [7], [15] or [19] for reviews). In particular 
if B(k)=0 for all k then minimizing q r ( 6 ; x  (k~) corresponds to the generalized 
Gauss-Newton method, which has received a great deal of attention for nonlinear 
discrete approximation problems. If  f and c are twice continuously differentiable 
and one takes B (k)= W (k), for all k, where 

W (k) = G (k)+ ~ --~(k)V2~(k)-- ~i , (1.3)  
i=1 

G (k) = V2f(x (k)) and •(k+l) E Oh(c(k)+A(k)T~ (k)) is used to calculate W (k+l), then 

minimizing (1.2) corresponds to a generalized Newton method. If h is a polyhedral 
convex function this is closely related to the Successive Quadratic Programming 
(SQP) method for nonlinear programming (see [7] or [21]). Another very popular 
idea is to use an approximation B (k) to W (k), often based on quasi-Newton methods. 

This paper establishes local convergence at a second order rate for the generalized 
Gauss-Newton method when h is convex and globally Lipschitz and the minimizer 
is strongly unique, extending the work of Jittorntrum and Osborne [1 l] for the case 
when h is a norm. It is also shown that if h is just locally Lipschitz and the generalized 
Gauss-Newton method converges to a strongly unique minimizer then the rate of 

convergence is second order. 
Local convergence at a second order rate is also established for the generalized 

Newton method when h is a polyhedral convex function and x* satisfies a non- 
degeneracy condition, a strict complementarity condition and a second order 
sufficiency condition. This corresponds to the well known result for the SQP method 
[7] for nonlinear programming problems. 

Under the above conditions on h and x* necessary and sufficient conditions on 
the matrices B (k) for a superlinear rate of convergence for methods based on the 
model function (1.2) are established. These correspond to the results of Dennis and 
Mor6 [6] when h is twice continuously differentiable, of Boggs, Tolle and Wang [1] 
and Powell [18] for nonlinear programming problems, and Powell and Yuan [20] 
for 11 and l~ approximation problems. Finally necessary and sufficient conditions 
for a two-step superlinear rate of convergence when only reduced curvature informa- 
tion is available are given. These results generalize those of Powell [18] for nonlinear 
programming problems, Han [10] for the minimax problem, and Coleman and Conn 
[3] for an exact 11 penalty function method. Throughout only mild conditions are 
imposed upon the matrices B (k), namely that they are uniformly positive definite 
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on an appropriate subspace, which is the natural condition to be satisfied if second 

order sufficiency conditions are to be satisfied. 
In all cases these results deal with the sequence {x (k)} generated by taking 

x(k+l)~x(k)-[-¢~ (k), where ~(k) is a minimizer of (1.2). However modifications to 

ensure global convergence of the method (for example adding a line search or a 
trust region) may prevent this (see [12] and [24] for examples). Consequently the 
results of this paper represent local properties that are achievable by algorithms. 
An area for further work is modifications which guarantee global convergence but 
do not affect these local convergence properties (see Chamberlain et al. [2] and 

Fletcher [9] for example). 
In Section 7 the connection with smooth problems is discussed. The results of 

Sections 5 and 6 are presented in such a way that they are all applicable to the 

nonlinear programming problem 

minimize f ( x ) 
xC~ n 

(1.4) 

minimize 6~R n 

subject to ci(x) = 0, i6E ,  

ci(x)>~O, i c I ,  

where f and c are twice continuously differentiable, and E and I are finite index 
sets. The subproblem corresponding to that of minimizing (1.2) is 

f ( k )  + ~Tg(k)+ 16TB(k) ~ 

subject to  Clk)+6TVclk)=o for iEE,  (1.5) 

elk)'4-(~Tvelk)~0 for i e I .  

All the local convergence and rate of convergence results established for the com- 
posite function (1.1) also hold when the subproblem (1.5) is used to solve (1.4). In 
this case many of the results are known (see Powell [18] and Boggs, Tolle and Wang 
[1] for example). However the necessary and sufficient conditions for a two-step 
superlinear rate of convergence when only reduced curvature information is available 
are new. 

2. Preliminaries 

A key to the uniform treatment of local convergence and rate of convergence 
results is the use of a concise representation of the generalized gradient in terms of 
structure functionals, introduced by Osborne [17] for polyhedral convex functions 
and extended to piecewise smooth functions in [21]. For any piecewise smooth 
function h there exists a minimal linearly independent set of l=-l(c) smooth 
functionals Cj(c) : R m ~ R such that 

%(e) =o, j-- 1, . . . ,  I, (2.1) 
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and 

Oh(c)={A ~Nm: A = Ao(c)+ Cl)(c)u, u~ U(c)}, (2.2) 

where q)(c) = [V~l(c) • • • Vq~l(c)] and U(c) is a nonempty compact  convex set in 
R I. The pj(c) are referred to as structurefunctionals. The function h is smooth at c 
if and only if l = 0  so Oh(c)={Ao(C)}={Vh(c)}. By definition q)(c) has rank l and 
0 ~  < 1<~ m so there is a one-to-one correspondence between A ~ Oh(c) and u e U(c). 

Note that if h is a piecewise linear function (for example a polyhedral convex 

function) the structure functionals are linear so q~j(c) = q~Tc+ ~.. The explicit depen- 

dence of )to, @ and U upon c may be omitted for notational convenience when no 
ambiguity results. 

The generalized gradient of the composite function (1.1) is given by 

OF(x) = {v c ~": v = g(x) + a(x)A,  A 60h(c(x))} 

= {v ~ ~": v = g(x) + a (x )Ao+  a ( x ) ~ u ,  u ~ U(c(x))}.  (2.3) 

The problem is said to be degenerate at the point x if the vectors Vq~j(c(x)) are 

linearly dependent  on the space spanned by the rows of A(x) .  Thus a common 
nondegeneracy assumption is that the n x l matrix A(x)4)  has rank l, which of 

course cannot hold if l >  n. It is important that this nondegeneracy assumption is 

no stronger than the usual one made in nonlinear programming problems, as it 

corresponds to an assumption that the gradients of  the active constraints are linearly 

independent. 

The point x* is a stationary point if 0 c OF(x*). From (2.3) equivalent expressions 

are 

or  

3A* c Oh(c*) such that 0 = g* + A 'A*,  (2.4) 

3u* ~ U* such that 0 = g*+A*h*o+A*~*u*.  (2.5) 

I f  x* is nondegenerate the multipliers u* (and A*) are uniquely determined by (2.5). 

Strict complementarity holds at a stationary point x* if u* lies in the interior of  U* 
(regarded as a set in Rt*). 

The following second order sufficient conditions (see [7] or [21]) are also required. 

They assume f and c are twice continuously differentiable. 

Proposition 2.1. Let h be a regular locally Lipschitz function (for instance a convex 

function). I f  x* is a stationary point of (1.1), so (2.4) holds, and if  

where 

sTW*s)O VscS*, (2.6) 

rn 
W *~- G*'-~ ~ /~/~V2C/~, (2.7) 

i=l 
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and 

s*=Ks~R°: Ibsll = l ,  F'(x*; s )  = 0} ,  

then x* is a strict local minimizer of F. 
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(2.8) 

Remarks .  (i) I f  strict complemen ta r i ty  holds at x* then, f rom l emma  4.1 of  [21], 

s *  = { s  c ~ " :  Ilslt = 1, sXA*q )* = 0}, (2 .9)  

which (excluding the [Is[] = 1 condi t ion and  assuming x* is nondegenera te )  is the 

tangent  space  to the surface of  nondifferent iabi l i ty  at x*. 
(ii) I f  l* = n and strict complementa r i ty  holds at x* then S* = 4~, so the first order  

condi t ions (2.4) or (2.5) are sufficient. In this case the solut ion x* is strongly unique. 
This is equivalent  to the usual  definition of  strong uniqueness  (see [11] or [16] for  
example) ,  name ly  there exists a y > 0 such that  

F(x) >1 F(x*) + ~ II x - x *  II ( 2 . 1 0 )  

for  all x in a ne ighbou rhood  of  x*. Note  that  if F is convex then the inequal i ty  

(2.10) holds for  all x. 

Many  of  the results in this p a p e r  assume that  an a lgor i thm generates  a sequence  
of  points  {x ~k~} converging to x* and establish necessary and sufficient condit ions 
for  var ious rates of  convergence.  The rate of  convergence  is superlinear (in fact 
Q-super l inear )  if  and only if 

l im I[x(k+l~-x*l[ 
k~oo iIx(k~-x*ll-0,  (2.11) 

or equivalent ly  

x (k+l~ = x* + o (11 x(k) - x* II). (2.12) 

The rate o f  convergence  is two-step superlinear if and only if 

aim ---[[x(k+l~- x* [[ = 0, (2.13) 
~ 1Ix ~-'~-x*N 

or equivalent ly  

X(k+'~ = X* + O([]X(k-I~-- X*]]). (2.14) 

Finally the rate of  convergence  is second order if  and only if 

IIx<k+'~-x*ll <oo (2.15) 
l i m  iix<k>_x.ll= 

or equivalent ly  

x(~+'>= x* +O(llx(k>-- x*ll2). (2.16) 
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3. Strong uniqueness 

Strong uniqueness of the solution (that is (2.10) holds) is a powerful condition 
which ensures local convergence at a second order rate for the generalized Gauss- 
Newton method applied to nonlinear discrete approximation problems (see [11] or 

[16] for example). In fact strong uniqueness of the solution produces local conver- 
gence at a second order rate for a wide class of methods applied to the composite 
function F(x)  = f ( x ) +  h(c(x))  when h is convex and Lipschitz on R m. This includes 
all norms and polyhedral convex functions h. When h is just locally Lipschitz strong 
uniqueness of  the solution implies the rate of convergence is second order if the 
method is convergent. 

Consider modelling the composite function F in a neighbourhood of a point y by 

~b(x; y) = f ( y )  + (x - y)T g(y) + ½(X -- y)TB (y)(X -- y) 

+ h(c(y) + A(y)T(x --y)). (3.1) 

A new estimate of a minimizer of F(x)  is obtained by solving the subproblem 

min q,(x; y), (3.2) 
X E ~  n 

so the generalized Gauss-Newton method corresponds to B ( y ) ~  O. 

Lemma 3.1. Let h be locally Lipschitz and let the matrix B(x*) be bounded. Then x* 
is a strongly unique minimizer o f F ( x )  if and only if it is a strongly unique minimizer 
ofO(x;  x*). 

Proof. From the smoothness properties o f f  and c, the boundedness of B(x*), and 
the locally Lipschitz nature of h it follows that 

442, x * ) =  f ( x ) + o ( l l x - x * l l ) .  

If F is strongly unique at x* then, as ~(x*;  x*) = F(x*),  

~(x; x*)i> F(x*)+ ~llx-x*ll + o(llx-x*ll)/> 4,(x*; x*)+ ?llx-x*ll 

for all x in a small enough neighbourhood of x*. The argument can be reversed to 
complete the proof. [] 

The next result generalizes the local convergence results of [5], [11] and [16] for 
the generalized Gauss-Newton method when x* is strongly unique. The proof  of 
the theorem is along similar lines to that given in [11]. It is assumed that f and c 
are smooth and their first derivatives satisfy a Lipschitz condition. 

Theorem 3.1. Let h be a function Lipschitz on ~'~, i.e. there exists a positive constant 
L such that 

Ih(c)-h(e)l~gllc-~ll Vc, ~ m .  (3.3) 
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Let O(x; x*) be a convex function of x and let x* be a strongly unique minimizer of 
O(x; x*). Let the sequence {x (k)} be generated by taking x (k+l) as a minimizer of 
41(x; x (k)) and let the matrices B (k) in &(x; x (k~) be uniformly bounded. Then if x (k) 
is sufficiently close to x* the sequence {x (k)} converges to x* and the rate of convergence 
is second order. 

Proof.  By the continuity propert ies o f f  and c and the uni form boundedness  of  the 
B (k~ there exists a ne ighbourhood  S2 o f  x* such that for  all y 6 g2 and for all x c ~n 

(i) I f(y)--f*+g(y)T(x*--y)+½(x*--y)TB~k)(x*--y)[<~K, IIx*--ylt 2, 

(ii) I(g(y)-g*)~r(x-x*)l<~ga[Ix*-yll IIx-x*H, 

(iii) IIc(Y)- c* + A(y)T( x* --Y)I] ~< K~llx*-Yll ~, 

(iv) II(A(y) -e*)T(x - -x*) l l  <~ Ka}lx*-yll t l x -  x*ll, 

(v) (g2+ LK4)[Iy-x*I[ <~ 3,/2, 

(vi) 4(K~+LK3)Ily-x*[{/7<~O<I, 

where K1 to K4 are positive constants. From (i) to (iv) and (3.3) one has that for  
x (k) E 0 

IO(x; x ~k~) - 4,(x; x*) I ~ (K, + LK3)IIx* - x ~k~ [[2 

+ (K2 + LK4)[I x* - x (k)ll [I x - x* 11, (3.4) 

for  any x. Now strong uniqueness  yields 

O(x*;  x*) + Y [I X(k+l) - x*ll -- (KI + LK3)Ilx* - x(k)ll 2 

-(K2+LK4)IIX*-X(k)]I f/x¢k+'>- x*]] 

<~ 4,(x(k+'); x*) -10(x(~+'); x (~) - 0(x(k+'); x*)l 

<~ 0(X(k+l); X (k)) ~< I/t(X* ; X (k)) ~ ~(X*; X*)q-(KI + LK3)]IX*-X(k)[[ 2. 

Hence 

(3' - ( K2 + LK4)Hx ¢k)- x*l[)IIx (k+~) - x*ll ~< 2(K,  + LK3)[Ix (k) - x* II =, 

Condit ions (v) and (vi) now yield 

IIx(k+'~--X*I] ~<4(K, + LK3)[[x(k~- x*II=/ 7<~ oIJx(k~- x*ll. 

Thus x ;k+~) ~ ~2, the sequence {x ;k~} converges to x* and the rate o f  convergence is 
second order.  [] 

Remark. The convexi ty  of  O(x; x*) is only needed  to ensure that 

~(x(k+'); x*)I> 0(x*; x*)+ ~,llx (k+')-x*lf 

without any requirement  that x (k+~ is close to x*. I f  h is convex and B(y)  -= 0 then 
O(x; y) is a convex funct ion of  x for  all y. The Lipschitz condi t ion (3.3) is needed  
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for (iv) to hold for all x (in particular x(k÷~). If  h is locally Lipschitz then (3.3) 
can be replaced by an assumption that the sequence {x (k~} is uniformly bounded. 
If one only has that h is locally Lipschitz then the above proof  (without any convexity 
assumption on 0) shows that if x(k~ ~ x* then the rate of convergence is second order. 

4. Basic estimates 

Two basic results for algorithms applied to the composite function (1.1) when h 
is a polyhedral convex function are established in this section. Both results assume 
that we are in a neighbourhood of a minimizer x* satisfying 

and 

A*~*  has full rank l* (nondegeneracy) (4.1) 

u* e int U* (strict complementarity), (4.2) 

where U* is regarded as a set in R ~*. The first result is that the generalized gradient 
of h at the solution of the subproblem is the same as the generalized gradient of h 
at x*. This result directly corresponds to the nonlinear programming result that 
sufficiently close to a minimizer satisfying a strict complementarity condition a 
subproblem produced by linearizing the constraints correctly predicts the set of 
active constraints at the solution. The second result establishes the estimates which 
are the basis of all the succeeding local convergence and rate of convergence results. 
The only condition on the matrices B (k~ appearing in the model function (1.2) is 
that B (k) is uniformly positive definite on the tangent space to the surface of  nondifferen- 
tiability at x*, that is 

sTB(k)s~t~sTs~>O VS: sTA* riD* = 0, s ~ 0 .  (4.3) 

If x is sufficiently close to x* then the nondegeneracy assumption and the smoothness 
properties of c(x) imply A(x)CI)* has full rank l* and (4.3) can be replaced by 

sTB(k)S~fisTs>O VS: sTA(x)C2~*=O, s#O.  (4.4) 

If l* = n then x* is strongly unique and both (4.3) and (4.4) are trivially satisfied. 
It is natural to impose (4.3) or (4.4) as they guarantee that any stationary point of  
(4.5) is a local minimizer of (4.5). Also if (4.1) holds and x is sufficiently close to 
x* the second order necessary conditions ([7] or [21]) for (4.5) imply sTB(k)S >1 0 
for all s such that sTA(x)4~*= 0. Moreover the second order sufficient conditions 
for F require that W* satisfies (4.3), and hence if x (k~, A (k~ are sufficiently close to 
x*, A* that W (k) satisfies (4.3) and (4.4). Thus as B (k) is approximating W (k> 
conditions (4.3) or (4.4) do not impose any unwanted structure upon B (k~. Techni- 
cally (4.3) and (4.4) can be replaced by an assumption that, for all k, B (k~ is 
nonsingular on the appropriate subspace, but one then needs an assumption that 
the stationary point of (4.5) one has is a minimizer of (4.5). 
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Lemma 4.1. Let h be a polyhedral convex function and let x* be a stationary point o f  
the composite function F ( x ) = f ( x ) + h ( c( x ) ) satisfying the nondegeneracy condition 
(4.1) and the strict complementarity condition (4.2). Consider modelling the function 
F at the point x by 

qt(6;  x) = f ( x )  + 3Tg(x) q- ½c~TB~ q- h(c (x )  + A(x)T~), (4.5) 

where B satisfies (4.3). I f  x is sufficiently close to x* then the unique minimizer 6(x)  

o f  ~(r5 ; x)  satisfies Oh(c(x) + a ( x ) T 6 ( x ) )  = Oh(c*). 

Proof. Consider the system of linear equations 

[ B (4.6) 
(A(x)cib*) T 0 . J L u J  L ( f f ) :CT(c~ ' - -C(X))  J" 

From (4.1) and (4.3) the matrix 

Aoq 
is nonsingular, and as x* is a stationary point 3 = 0 and u = u* solve the correspond- 

ing system (4.6). Thus, by the implicit function theorem, there exists a neighbourhood 

of x* such that for any x in this neighbourhood the unique solution 6(x) ,  u (x)  to 
(4.6) changes smoothly with x and 6(x*) = 0, u(x*)  = u*. As u * c  int U* there exists 
a neighbourhood of x* such that u(x )  c i n t  U*, and hence )t(x) = A* + @*u(x)  c 
Oh(c*). Moreover  from (4.6) 

g(x )  + B6(x )  + A ( x ) h  (x) = 0. (4.7) 

Now as h is a polyhedral convex function, we have 

h ( c ) =  max hTc+~i.  
i -  1 ,...,r 

Let 

and 

~ ( c )  = { i c  1 , . . . ,  r: h T c + f l i = h ( c ) } ,  

8(x)  = c(x)  + A (x )T3 (x ) .  

Then there exists a neighbourhood of x* such that 

h( 8(x))  = max h T?(x) + fli. (4.8) 
ic,~¢* 

Also, for any i e s¢* one has hi c Oh(c*), so there exists a ui e U* such that hi = 
• ~*+ ~*ui. Thus for any i, j c  sd* 

h Tc + fli - hTc -- ~j = (ui - uj)TI~*C ~- ~ i  -- ~j- 

Using this equation with c = Y(x) and c -- c*, the definition of sO* and (4.6) yield 

h T c(x)  + ~i -- hT c(x)  -- ~j = (ui -- Uj)T O*( ~(X) -- c*) = O. 
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Then (4.8) implies sC(?(x)) = ~1" and Oh(?(x)) = Oh(c*) for all x in a neighbourhood 
of x*. It now follows from (4.7) that 6(x) is a stationary point of qt(6; x), and 
uniqueness follows as 6(x), u(x )  is the unique solution of (4.6) with 6(x*) = 0 and 

u(x*)  = u*. Also as B satisfies (4.3) and hence (4.4), 8(x) satisfies the sufficient 
conditions (Proposition 2.1) for a minimizer of gz(6; x). [] 

Remark. An immediate consequence of Oh(c(x)  + A ( x ) 8 ( x ) )  = Oh(c*) is that 

(/)*T(c(x) "4- A(x)Tt~(X)) = (ib*Tc *, 

which corresponds to (2.1) and is established directly in the proof. 

(4.9) 

For the rest of the paper it is assumed f and c are twice continuously differentiable, 
and their second derivatives satisfy a Lipschitz condition. 

Lemma 4.2. Let  h be a polyhedral convex function and let x* be a stationary point o f  

the composite function F(  x ) = f (  x ) + h( c( x ) ) satisfying the nondegeneracy condition 

(4.1) and the strict complementarity condition (4.2). Let 8 (k) be a stationary point o f  
the model function (1.2) where B (k) satisfies (4.3), and let A (k+l) e Oh (c (k) + A(k)T6 (k)) 
be the corresponding multipliers. Define e (k) = x (k) - x* and e (k+l) = x (k) + 8 (k) - x*. I f  

x (k) is sufficiently close to x* then A (k+l) = )to* + ~*u  (k+l) and 

B(k) , e ( k + l )  

(A(k) (/)*)T A(;(]b~][u(k+l) u, ] 

O(lle(k)ll 2) J 
where 

(4.10) 

r n  

= ~(k)v2 ~(k) (4.11) W (k) G (k)+ }~ ..i - ci • 
i = 1  

Proof. The smoothness properties of f and c imply 

g ,  = g(k)_ G(k) e(k) + O(lle(k)]12 ) (4.12) 

and 

Vc* =VClk)--V2Clk)e(k)+O(lle(k)ll2 ) for i =  1 , . . . ,  m. (4.13) 

As 8 (k) is a stationary point of ~(8;  x (k)) and Z(k+')e Oh(c(k)+A(k)T6 (k)) are the 

corresponding multipliers 

g(k) + B(k)6(k) + A(k)A (k+~) = 0. (4.14) 

Also as x* is a stationary point of F there exists a )t*e Oh(c*) such that 

g*+A*A* =0.  (4.15) 
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Now (4.11) to (4.15) yield 

B(k)e(k+l) + A(k)(h (k+l) -- h *) 

= ( B  ( k ) -  w<k~)e(~>+o(lle(~>ll2)+o(lle(~>[I IIA<~>-A*II). (4.16) 

For x ¢k~ sufficiently close to x* Lemma 4.1 implies Oh(c(k~+ A(k)T6(k))= Oh(c*), so 

A ~k+l~- A* = ¢*(u  ~k+l)- u*) (4.17) 

and 

tP*T(c  (k) -t- A(k)Tt~ (k)) = ~):~Tc*. 

Now c*= c (k~- A(k~e(k)+ o(lle(~)l[2) and 8(g)= e (k+l)- e (g) so (4.18) gives 

( A * ~ * )  T e ( k  + ~ ~ = O([le(k>ll2). 

Combining (4.16), (4.17) and (4.19) gives the desired result. [] 

(4.18) 

(4.19) 

Remarks. (i) The minor role played by the multipliers is illustrated by the fact that 
H X (k) _ X * II appears only linearly on the right hand side of (4.10). Also the multipliers 
used in (4.1 l) are those generated by the subproblem (1.2). 

(ii) Equation (4.19) shows that there is a second order decrease in the error terms 
in the space orthogonal to the surface of nondifferentiability at x*. Significantly 
(4.19) does not depend upon the matrix B (k~. 

5. Newton like methods 

When h is a polyhedral convex function then the problem of minimizing F is 
equivalent to a nonlinear programming problem. Also the SQP method (see [7] for 
example) is equivalent to minimizing the model function 

gr(6 ; x(k)) = f (k)  + 6V g(k) + 16T W(k)6 + h (c (k) + A(k)T6) (5.1) 

(see [7] or [21] for more details). As the SQP method is known to converge locally 
at a second order rate a corresponding result is available when using (5.1) to minimize 
the composite function (1.1). In fact using Lemma 4.1 the proof of this result for 
the SQP method (see [7, p. 141] for example) directly extends to (5.1). 

Theorem 5.1. Let h be a polyhedral convex function and x* a minimizer o f  the composite 

function F ( x ) = f ( x ) + h ( c( x ) ) satisfying (4.1), (4.2) and the second order sufficiency 
condition 

sTWg~s>O VS sTA*tP*=0, S~0.  (5.2) 

Let 6 (k~ be a minimizer of (5.1) and let A (k+l~ C Oh(c (k) + A(k~T6 (k~) be the correspond- 
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ing multipliers.  I f x  (~) is sufficiently close to x* and A (1) is chosen so that  the matr ix  

(A(i) (/),) T (5.3) 

is nons ingular  and ~ ( 6 ;  x (1)) has a well defined minimizer  6(~), then the sequence 
{x (k)} genera ted  by x (k+~) = x (k) + 6 (k) converges  to x* and the rate of  convergence  

is second order.  

Proof.  F rom (5.2) it fol lows that  for x (k), A (k) in some ne ighbourhood  of  x*, A* 

sTw(k)S >1 [3sTs > 0 VS: sTA(k)(D * = 0, s ~ 0. 

Hence  f rom (4.1) the matr ix  

W (k) A(;O* 1 
[ (A(k)q) , )  T (5.4) 

is nons ingular  in a ne ighbourhood  of  x*, h*. L e m m a  4.2 yields 

[ e(k+~) 1 
u ( k + l ) -  u * / :  °(ll e(k)ll2)+ °(]le(k>ll Ila(~>- a*ll). (5.5) 

I f  x (k) is sufficiently close to x* l emma  4.1 shows that  A(k+~)6 Oh(c*) so 

A (k+l) -- A* = ( / ) $ ( U  (k+x)  - -  U * ) .  

From (5.5) it follows that  there exists a constant  K~ > 0 such that  

max(]]e(k+X)[[, IlA(k+l)--h*[[)<~ Kxlle(k)l! max(He(k)[[, Ilh(k)--h*[I). (5.6) 

NOW there exists a ne ighbourhood  of  x*, A* such that  0 = K~ max([[e(k)[I, ]]A (k)- 
a * l l ) <  1 so  

max(lld~+~)ll, lia(~+')- a*ll) ~< 011e(~)ll <~ e max(lle(k)ll, II;l(~- a*ll). 
Thus the i teration converges and the rate is second order  f rom (5.6). Now suppose  
only x (l) is in a ne ighbourhood  of  x* and h (~) is chosen so (5.3) is nonsingular .  

Then ItA(~>-a*ll/> Ile(X)ll and as above there exists a constant  K 2 >  0 such that  

max(lle(~ll, Ila(~)-a*ll)<~ K~lle(~)ll I la")-  a*ll. 
Let x (~) be close enough  to x* so that  Ile(~)II<I/(K~K2IIA(')-A*If) then 
max(lle(=)ll, Ila(=)-A*ll)< 1/K,. Thus x (=~, a(~)is in the ne ighbourhood  for  which 
convergence  occurs. [] 

6. Curvature approximating methods 

In this section necessary and sufficient condi t ions on the matr ices B (k) in (1.2) 
for a quadrat ic ,  superl inear ,  and two-step super l inear  rate of  convergence  are 

established. The results generalize those of  Dennis  and Mor~ [6] for  twice con- 
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tinuously ditterentiable functions, of Powell [18] and Boggs, Tolle and Wang [1] 
for the nonlinear programming problem, and Powell and Yuan [20] for 11 and l~ 

approximation problems. 
Throughout this section the following assumptions are used. 

Assumptions A 
(i) f and c are twice continuously differentiable, the second derivatives o f f  and 

c satisfy a Lipschitz condition, and h is a polyhedral convex function. 
(ii) x* is a stationary point of the composite function (1.1) satisfying the non- 

degeneracy condition (4.1), the strict complementarity condition (4.2) and the second 
order sufficiency condition (5.2). 

(iii) g(k) is a stationary point of the model function (1.2) where the matrices B (k) 

satisfy the second order sufficiency condition (4.3), so 6 (k) is a minimizer of (1.2), 
and A (k+l~ C Oh (c (k~ + A(k)Tt~ (k)) are the corresponding multipliers. 

(iv) the sequence {x(k~}, generated by x (k+l~= x(k~+ 6 (k), converges to x*. 

The results of this section are in terms of the orthogonal projection matrices p(k) 
and Q(k) = I -  p(k) where 

P~k):R" ~ S(o k) = {s ~ Nn: sTA(k)@* = 0}. (6.1) 

Note that for x (k~ sufficiently close to x* the nondegeneracy condition (4.1) ensures 
that the n x l* matrix A(k~cl) * has rank l*. When 0 <  l *<  n this implies S(o k) is the 

tangent space at the point x (k~ to the surface of nondifferentiability of F which 
passes through x*. If l* = n then the surface of nonditterentiability reduces to the 
point x* so p(k~= I and Q(k~= O. Alternatively if l*=  0 then F is smooth in a 
neighbourhood of x* so p(k~ = 0 and Q(k) = I. Also a s  p(k) and Q(k) are orthogonal 

projection operators, when 0 <  l*<  n there exist an n x ( n -  l*) orthogonal matrix 
Z (k~ and an n x l* orthogonal matrix y(k) such that z ( k~Ty  (k)= O, 

p(k) = z ( k ) z ( k ) T ,  Q(k) = g(k) g(k)T, (6.2) 

z ( k ) T A ( k ) t l  9 .  = 0 and A(k)~ * = Y(klR(k~, (6.3) 

where R (k) is nonsingular. In a neighbourhood of x* the matrix A(k~cI '* depends 
continuously upon x (k) so p(k), Q(k~, y(k~ and R (k~ depend continuously upon x (k). 
In particular p(k~ ~ p , ,  Q(k) o Q , ,  y(k~ ~ y ,  and R(k)~ R* as x(k) ~ x *. However 

Z (k) may be chosen in a number of ways so a particular method may not produce 
a Z (k~ which depends continuously upon x (k). The continuity properties of Z (k~ are 
discussed in [4]. 

Theorem 6.1. Let the assumptions A be satisfied. Then the rate o f  convergence is 

(a) superlinear if  and only i f  

lim ]1 p(k) (w(k)  _ B(k))(x(k) _ X*)II = 0, (6.4) 

k ~  Ilx<k)-x*ll 
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quadratic if and only if 

lim 1[ p(k)(W(k) _ B(k)) (x(k) _ x*)11 (6.5) 

Proof. The nondegeneracy condition (4.1) ensures that A* = ho* + (b 'u* is the unique 
solution of  (4.15), and for x (k~ sufficiently close to x* that h (k+1~ = ho* + q~*u (g+l) is 
the unique solution to (4.14). Thus u(k)-~ u* and A(k)~A * as x(k)--~X *. Moreover 
from (4.10) 

Hence 

a(k)c71)*(U (k+l)-  U*) = - -B(k )e (k+ l )+  (B (k~- W(k))e(k) +o(lte(k)[[). 

U (k+l) -- U* = O(11 e(k) 1[), (6.6) 

as (4.1) implies A(k)cp * has full rank for x (k) sufficiently close to x* and convergence 
of  the sequence {x (k~} implies e (k+l)= O([[ e(k)[[). Consequently (4.10) reduces to 

Q(k)e(k+l) = O([] e (k)][2), (6.7) 

and 

P(k)B(k)e(k+l) = P(k)(B(k) - W(k))e (k) + O(I] e(k)[12) - (6.8) 

Now for x (k) sufficiently close to x* (4.3) implies 

B ~  ) = z(k)T B ( k ) z  (k) (6.9) 

is uniformly positive definite. Thus (6.2), (6.7), (6.8) and p(k)+ Q(k)= I yield 

P(k)e(k+l) = Z(k)B~)-'Z(k)T(B (k) - W (k)) e (k) + O( [[ e (k) []2). (6.10) 

As B~  ) is uniformly positive definite and e (k)= x (k)- x* equations (6.7) and (6.10) 
show that (6.4) is equivalent to the superlinear rate of  convergence condit ion (2.11), 
and that (6.5) is equivalent to the second order rate of  convergence condit ion (2.15). 

Remarks. (i) As 6 (k)= x(k+l ) -x  (k) it follows from (2.12) that  when the sequence 
converges superlinearly 5(k)= _(X(k)_ X*)+ O(][X (k)- X*[I). Thus (6.4) is equivalent 
to 

lim ][ p(k)(W(k) _ B(k)) 6(k)[[ k~oo [l~(k)ll - 0 .  (6.11) 

Also p(k)~ p , ,  h(k) o A* so w(k)-+ W* as x(k)~ x*. Thus (6.11) is equivalent to 

lira lIP*( W* - B(k)) 6(k)ll 
k~oo [16(k)[I - 0 ,  (6.12) 

which corresponds to the results of  Powell and Yuan [20] when h(c )= licit, and 
h(c) = Ilcll~. 
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(ii) When the sequence is converging at a second order rate it follows from (2.16) 
that 6 (k~= --(X(k)--X*')+O([[X(k~--X*I[2). Thus (6.5) is equivalent to 

1] p(k)( W(k~ _ B(k~) 6(k)[j 
lim < oe. 

As above p(k) and W (k~ may be replaced by P* and W* respectively. 

Condition (6.4) has the disadvantage that x* is not known when B (k~ is calculated, 
whilst (6.11) has the similar disadvantage that 6 (k~ is not known. However sufficient 
conditions which contain only information available at the point x (k~ are easily 

obtained from theorem 6.1. 

Corollary 6.1. Let the assumptions A be satisfied. Then the rate of convergence is 

(a) superlinear if 

lim p(k)( w(k)_  B(k~) = 0, (6.13) 

(b) quadratic if  for all k sufficiently large 

p(k)( W(g~ _ B(k~) = O. (6.14) 

Proof. The result comes directly from Theorem 6.1. [] 

Remarks. (i) As p(k)+ Q(k) = / ,  equation (6.13) can be resolved in two components, 

namely 

lim P(k)(W(k)--B(k))P(k)=O and lim P(k)(W(k)--B(k))Q(k~=O (6.15) 
k ~ o o  k ~ o o  

and similarly for (6.14). 
(ii) As before the matrices p(k~, Q(k) and W (k~ can be replaced by P*, Q* and 

W* respectively to yield equivalent results. 
These conditions can easily be expressed in terms of the matrices Z (k~ and y(k~ 

using (6.2) and their orthogonality. The disadvantage of this form is the possible 
lack of continuity in the matrices Z (k~. If it is assumed that Z (k)-~ Z* as x (k) ~ x* 

then (6.13) and (6.14) are equivalent to 

lim z(k)TB(k)Z (k) = z N T w : g z  * 
k ~ o o  

and 

lim Z(k~T B (g) Y(g~ = Z*TW * Y*. 
k ~ o o  

Thus if the reduced curvature term z(k)TB(k)z (k~ and the cross curvature term 
z(g)TB(g) y(k~ are correct in the limit one obtains superlinear convergence. Similarly 
(6.15) shows that if this reduced curvature term and this cross curvature term are 
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exact one obtains a second order rate of convergence. An example of an algorithm 
that exploits this result is that of Fletcher [8] for an exact l~ penalty function. 

If one uses only the reduced curvature information P(k)B(k)P(k) then significant 
reductions in storage and gains in efficiency can be obtained for problems with large 
n and n - l * ~  n. Murray and Overton for minimax [13] and 11 [14] calculations, 
Coleman and Conn [3] for an exact 11 penalty function, and Womersley and Fletcher 
[22] have proposed methods of this type. When h (c )=  Ilcll~, Han [10] gives a 
sufficient condition for a two-step superlinear rate of convergence, namely 

lim lIP*( W* - B(k))P*8(k)[[ = 0. (6.16) 

This condition also comes directly from Powell's work [18]. The following result 
generalizes this result to provide necessary and sufficient conditions for a two-step 
superlinear rate of convergence using only reduced curvature information. 

Theorem 6.2. Let the assumptions A be satisfied. The rate of  convergence is two-step 
superlinear i f  and only if  

lira I[ p(k)( W(k)_ B(k))p(k)(x(k)  X*)II _ 0 .  (6.17) 

Proof. From (6.8) 

p(k) B(k) e(k+l) = P(k)( B(k) - W(k))( P(k) + Q(k))e(k) + O(ll e(k~ 112), 

and, from the continuity properties of the Q(k) and (6.7), 

Q(k) e(k) = Q(k-l) e(k) + ( O(k)_ Q(k l))e(k) 

= o (  II e(k-1)[I 2) + o( II e (k)II) = o(  tl e(k-l)ll ) ,  

as convergence implies e (k) = O(l] e ( k - l ) [ [ )  • Hence 

p(k)e(k+l) = Z(k)B~)-Iz(k)T(B(k)- W(k))P(k)e<k)+o(lte(k-~)ll). (6.18) 

Also, from (6.7), 

e(k)e(k+l) = O( tJ e(k)II 2) = O( II e(k-1)[I 2). (6.19) 

As the matrices B~ ) are uniformly positive definite equations (6.18) and (6.19) show 
that (6.17) is equivalent to the two-step superlinear rate of convergence condition 

(2.13). [] 

Remarks. (i) From (2.14) a two-step superlinear rate of convergence is equivalent 
to 8 (ki= -e(k)+o(]le(k-1)H). Also e (k)= e(k-1)+8 (k-l~ so (6.17) is equivalent to 

lira lip(k)( w(k)_  B(k))p(k)6(k)]] = 0. (6.20) 

Han's condition (6.16) is obviously sufficient for (6.20) to hold. 
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(ii) A sufficient condition for a two-step superlinear rate of convergence is that 

lim p ( k ) ( W ( k )  _ B(k))p(k)  = 0, (6.21) 
k~oo 

so that in the limit the reduced curvature information is correct. 
(iii) As before the matrices p(k> and W (k~ can be replaced by P* and W* to 

obtain expressions equivalent to (6.17), (6.20) and (6.21). 
When l* > 0 the surface 

33"* = {X C An: ( / )*Tc(x)  = (/)*Tc*}, (6.22) 

is the surface of nondifferentiability of F passing through x*. From (4.9) the solution 
of the subproblem, which linearizes these equations, satisfies 

tP*T(c (k) -t- A(k)(~ (k)) = tiO*Tc *. (6.23) 

This produces the second order rate of convergence (6.7) in directions orthogonal 
to the surface ~-*. When only reduced curvature information is used this second 
order rate of convergence in directions orthogonal to ~-* on the second step corrects 
any errors caused by the lack of the cross curvature information P(k)B(k)Q(k),  

producing a two-step superlinear rate of convergence. 
In the proofs of the preceding results the step 6 (k) has been split into two 

components, one orthogonal to the surface ~-* at x (k~ and one tangential to the 

surface ~r* at x (k), giving 

(~(k) = p ( k )  6(k)  -I- o ( k )  3(k)  = V (k) + W (k). (6.24) 

Some algorithms (for example [3] and [22]) generate 3(k) by generating the com- 
ponents v (k) and w (k) separately. As long as w (k) is generated so that (6.7) is satisfied 

the results of  this section still hold. One possibility is the Newton-like step 

W (k) = ( A ( k ) o * ) + T t j ) * T ( c  * -- C (k)) = Y ( k ) R ( k ) - T t p * T ( c *  -- c (k) ) ,  (6.25) 

where V ÷T denotes the generalized inverse of V transposed, produced by (6.23). 
An alternative, used by Coleman and Conn [3] because of global considerations, is 
to replace c (k) by C(x(k)+ V (k)) in (6.23) and (6.25). Using a Taylor series expansion, 
(6.24) and the fact that 8 (k) = e (k+l)- e (k) = O(I ] e<k>ll) one has 

C(X (k) "t'- V (k)) -}- a ( k ) V s ( k )  -- C* = A ( k ) T  e (k+l)-}- A ( k ) T p ( k ) 8  (k) + O (  l] e(k)]l 2). 

Thus (6.23) with C(X(k) + V (k)) replacing c (k) gives 

which, using (6.2) and (6.3), implies (6.7). 
If  the surface ~r* is linear then one can obtain a superlinear (rather than two-step 

superlinear) rate of convergence using only reduced curvature information. Note 
that the surface 7r* being linear does not necessarily imply the functions c are linear, 
but that q~*Tc(x) is linear. For example if h ( c ) =  I]cllo~ this condition is satisfied if 
the functions es(x),  i c sg* are quadratic with identical Hessians. 
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Corollary 6.2. Let the assumptions A be satisfied. I f  the surface zr* is linear then the 
rate of  convergence is 

(a) superlinear if  and only if  

lim IIp(k)(w(k) _ B ( k ) ) p ( k ) ( X ( k )  x*)ll = 0, ( 6 . 2 6 )  

(b) quadratic if  and only if  

lim II p(k)(w(k) _ B(k))p(k)(x(k) _ X*)I[ < oC. (6.27) 

Proof. As zr* is linear it follows that for K sufficiently large a step of 6(K-I) results 
in x (K), and hence all successive iterates, lying on zr*. Also p(k) = p ,  and Q(k)= Q,  
for all k ~> K, hence 

Q(k)e(k+l)= Q(k)e(k)= 0 Vk>~ K. 

Equation (6.10) then reduces to 

p(k) e(k+ 1) = Z(k) B(Rk)-l z(k)T (w(k )  _ B(g))p(k) e(k) 4- o ( l l  e(k)[12), 

which gives the desired results, as B(R k) is uniformly positive definite. [] 

Remark. As before the vectors x (k)- x* in (6.26) and (6.27) can be replaced by 6(k), 
whilst p(k) and W (k) can be replaced by P* and W* respectively. Also as before 
there are obvious sufficient conditions for (6.26) and (6.27) which do not involve 
the vector x (k)- x*. 

7. Smooth problems 

If h is smooth then Oh(c)= {Vh(c)}, so the multipliers /~(k+l) generated by the 
subproblem (1.2) are given by h (k+~) = Vh(c(k)+A(k)6(k)). If  h is twice continuously 
differentiable and its second derivatives satisfy a Lipschitz condition then Taylor 
series expansions can be used to show that when B ~k)= W ~k) 

gt(6;  x (k)) = F(k)+ •TvF(k) 4.1•TvZF(k)64.o([lA(k)T•]]3), (7.1) 

where g~(~; x (k)) is given by (1.2). Thus methods based on minimizing gt(6; x (k)) 
have the same local properties as Newton's method. 

Again Taylor series expansions produce a result corresponding a (4.10), namely 

F(k)e(k+') = (B (k)- W(k))e(k)+ O(H e(k)[12 ) + O(]la(k)r6(k)ll~), (7.2) 

where F (k)= B(k)+A(k)V:h(c(k))A (k)T. Let /x (k)= Vh(c (k)) then 

V 2 F  (k) = G(k) 4. ~ • (k)l'72~(k) ± A(k)l"r21. d~(k)hA(k)T t~i v ~i ~-,'~ v , , ~  ~ . (7.3) 
i=1 



R.S. Womersley / Local properties of algorithms 87 

Second order necessary conditions ensure V2F * is positive semidefinite, whilst 
second order sufficient conditions require that V2F * is positive definite. Thus for 
x (k) sufficiently close to x* a reasonable condition to impose upon a B (k) which is 
to approximate W (g~ is that 

sT(B (k) -b A(k)v2h(c(k))A(k)T)s ~ fisTs > 0 VS e •", s # O. (7.4) 

This corresponds to condition (4.3) or (4.4) in the nonsmooth case, and guarantees 
a stationary point of (1.2) is a minimizer of (1.2). 

If  (7.4) holds so F (k) is uniformly positive definite, equation (7.2) provides 
necessary and sufficient conditions for a superlinear rate of convergence correspond- 
ing to that of Powell [19] and Dennis and Mor6 [6]. 

Theorem 7.1. Let f ,  c and h be twice continuously differentiable, and let their second 

derivatives satisfy a Lipschitz condition. Let  t$ (k) be a stationary point o f  (1.2) where 

the matrices B (k) satisfy (7.4) so 6 (k) is a minimizer o f  (1.2). Let  the sequence {x (k)} 
generated by X (k+ l )  ~-- x(k)-~ 6(k) converge to a stationary point x* o f F  where VEF * is 

positive definite. Then the rate o f  convergence is 

(a) superlinear i f  and only i f  

lim II(B(k)- 
~ iix~)_x,ll  =0, (7.5) 

(b) second order i f  and only i f  

lim H(B(k) -- W(k))(X(k)-- X*)II 
k~oo [[x(k)-- X:~[[ 2 <00. (7.6) 

Proof. As the sequence converges 6(k)= e(k+l)_ e(k)= O([[ e(k)[[), and as the matrices 
F (k) are uniformly positive definite equation (7.2) shows that (7.5) is equivalent to 
the superlinear rate of convergence condition (2.11) and that (7.6) is equivalent to 
the second order rate of convergence condition (2.15). [] 

Remarks. (i) The matrix 

w(k) = G(k) _+. ~ Ai(k)v ~(k) 
i=1 

can be generated using either A (k)= •h(c (k)) in W (k) o r  A (k+ l )  = Vh(c  (k) + A(k)Tt5 (k)) 
in W ( k + l ) .  

(ii) As before /~(k) can replace e (k) and W* replace W (k) in (7.5) and (7.6) to 
obtain equivalent results: Also there are obvious suffÉcient conditions for (7.5) and 
(7.6) which do not involve e (k) or  t$ (k). 

If h is only once continuously differentiable the subproblem (1.2) is well-defined 
although Newton's method is not. Equation (4.16) with A (k+D= Vh(c(k)+ A(k)Tt$ (k)) 

and h*=Vh(c*)  still holds, but the possibilities of discontinuities in the second 
derivatives of h makes it difficult to estimate the rate at which A (k+l) _..>/~ :~ a s  X (k) "> X :~. 
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Minimizing the subproblem (1.2) may also face difficulties caused by discontinuities 
in the second derivatives of h. 

Finally it is important to note that all the results of Sections 5 and 6 apply directly 
to the nonlinear programming problem (1.4), when the subproblem (1.5) is used to 
generate ~k~. In the context of nonlinear programming problems many of these 
results are known (see Powell [18] and Boggs, Tolle and Wang [1]). The matrix qO* 
of gradients of the structure functionals at x* simply corresponds to a matrix which 
picks out the active constraints at x*. Let m = IEI+ III and 

ag(x)= { ic  E w I: ci(x)=O}. 

Then with l* = to~1"1 and ei the ith unit vector in Rm one has 

4 "  = [ei, i ~ a¢*], 

As A(x )  = [Vci(x), i = 1 , . . . ,  m] the nondegeneracy assumption (4.1) that the n × l* 
matrix A*@* has rank l* simply corresponds to an assumption that the gradients 
of the active constraints at the solution are linearly independent. The set U* becomes 

U * = { u c R t * : u i ~ > 0 f o r  i c M* c~ I}, 

and A0* = 0. The set U* is nonempty, closed and convex but is not bounded as in 
the nonsmooth problem. The strict complementarity condition (4.2) corresponds to 
the condition that ,~*>0 V i ~ * ~ I .  The condition (4.3) on the matrices B ~k~ 
requires that they are uniformly positive definite on the tangent space to the active 
constraints at the solution. The surface of nondifferentiability of F which passes 
through x* (namely 7r* in (6.22) corresponds to the constraint surface 

7r* = { x  ~ Rn: c , (x )  = c* V i  c ~*}. 

Lemma 4.1 corresponds to the well known result that under nondegeneracy and 
strict complementarity conditions the set of active constraints at the solution of the 
subproblem (1.5) is ~ *  when x ~k~ is sufficiently close to x*, or equivalently 

(~*T(c(k) ~- A(k)Tr~(k))  = (~w'T cq:" 

This is precisely (4.9), which in turn gives (4.19). The Lagrange multipliers at the 
solution 8 (k) of the subproblem (1.5) can be used as the multiplier estimates A (k+l). 

With the above correspondences Lemma 4.2 and all the results of Sections 5 and 
6 apply to the nonlinear programming problem (1.4) when it is solved using the 
subproblem (1.5). For example Theorem 6.2 gives necessary and sufficient conditions 
for a two-step superlinear rate of convergence using only reduced curvature informa- 
tion when successive quadratic programming methods are used to solve nonlinear 
programming problems. 
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