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Recently several new results have been developed for the asymptotic (local) convergence of polynomial-time 
interior-point algorithms. It has been shown that the predictor-corrector algorithm for linear programming (LP) 
exhibits asymptotic quadratic convergence of the primal~lual gap to zero, without any assumptions concerning 
nondegeneracy, or the convergence of the iteration sequence. In this paper we prove a similar result for the 
monotone linear complementarity problem (LCP), assuming only that a strictly complementary solution exists. 
We also show by example that the existence of a strictly complementarity solution appears to be necessary to 
achieve superlinear convergence for the algorithm. 
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1. Introduction 

Consider  the l inear complementar i ty  p rob lem ( L C P ) :  

min  xTs 

s.t. s = M x + q ,  (x, s)>~O, 

where  M ~  ~n  × n and q ~ ~n.  As usual, we assume without  losing generali ty:  

( A 1 )  The feasible region of  L C P  has a nonempty  relat ive interior, i.e., there exists 

(x °, s °) such that s o = M x  ° + q and x ° > 0, s o > 0. 

Note  that M may  not be symmetr ic .  However ,  for (x, s) feasible in LCP,  the objec t ive  

may  be writ ten as x Xs = ½x v ( M  + M T) x + q Xx, and M + M x is symmetr ic .  The  L C P  prob lem 

is cal led mono tone  ( c o n v e x )  i f  and only if  M + M  x is posi t ive  semi-definite,  which we  

assume throughout  this paper: 

Correspondence to: Prof. Yinyu Ye, Department of Management Sciences, University of Iowa, Iowa City, IA 
52242, USA. 

*Research supported in part by NSF Grants DDM-8922636 and DDM-9207347, and an Interdisciplinary 
Research Grant of the University of Iowa, Iowa Center for Advanced Studies. 



538 Y. Ye, K. Anstreicher / Convergence of an algorithm for LCP 

(A2) M is a positive semi-definite matrix, that is xTMx = ½x v ( M + M V ) x > ~ O  for every 
x ~  ~n. 

We call a feasible point (x, s) strictly feasible if it is feasible and positive. A feasible 
point (x *, s *) is optimal (complementary) if and only if 

x ' s * = 0  f o r j = l ,  2 . . . . .  n. 

A strictly complementary solution is an optimal solution satisfying 

x * + s * > 0  f o r j = l , 2  . . . . .  n. 

Consider a sequence of strictly feasible points { (x ~, s k) } such that the (complementary) 

gap (x k) T s ~  0. Then we say that this gap sequence converges Q-superlinearly to zero if 

(xk+ l) Tsk+ 1 
lim = 0, 
~ (x ~)Ts~ 

and Q-quadratically to zero if 

(xk+I)  Tsk+I 
lim sup TS~ ) 2 < + ~" ~ ( (x  ~) 

In the context of the present work it is important to emphasize that the notions of conver- 
gence, superlinear convergence, or quadratic convergence of the gap sequence, { (x ~) TS k }, 

in no way require the convergence of the iteration sequence { (x k, s k) }. Of course, from 

Hoffman's lemma [7] and Luo and Tseng's theorem [ 15] it follows that in a particular 

sense the iteration sequence converges to the optimal solution set with the corresponding 
R-rate. 

Recently, there has been an exciting outbreak of activity in the area of constructing 

primal-dual interior-point algorithms for either the linear programming problem (LP), or 
the monotone linear complementarity problem (LCP) possessing a strictly complementary 

solution, that are demonstrably superlinearly or quadratically convergent under certain 

assumptions (e.g. Ji et al. [9, 10], Kojima et al. [11, 13], McShane [16, 17], Mehrotra 
[ 18], Ye et al. [28-30], and Zhang et al. [31-33] ). 

The issue of the asymptotic convergence of interior-point algorithms was first raised in 
Iri and Imai [8]. They showed that their multiplicative barrier function method (also see 

de Ghellinck and Vial [4] ), with an exact line search procedure, possesses quadratic 
convergence for nondegenerate LP. Then, Yamashita [27] showed that a variant of this 

method possesses both polynomial O (nL) complexity and quadratic convergence for non- 
degenerate LP, and Tsuchiya and Tanabe [ 25 ] showed that Iri and Imai' s method possesses 
quadratic convergence under a weaker nondegeneracy assumption. Zhang and Tapia [ 31 ] 
showed that a primal-dual algorithm exhibits O (nL) complexity, and superlinear conver- 
gence, under the assumption of convergence of the iteration sequence, with quadratic 
convergence under a nondegeneracy assumption. Kojima et al. [ 13] also showed quadratic 
convergence of a path-following algorithm for nonlinear complementarity problems under 
the nondegeneracy assumption. Other algorithms, interior or exterior, with quadratic con- 
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vergence for nondegenerate LP include Coleman and Li's [3]. Some negative results on 
the asymptotic convergence of Karmarkar's original algorithm and a potential reduction 

method ( with separate primal and dual updates) were given by Bayer and Lagarias [ 2 ] and 

Gonzaga and Todd [ 51, respectively. 
Quadratic convergence for general LP was first established by Ye, G~ler, Tapia and 

Zhang [29], Mehrotra [ 18], and Tsuchiya [24]. The algorithm of Ye et al., and Mehrotra, 
is based on the predictor-corrector algorithm of Mizuno et al. [ 19]. Each iteration of the 

algorithm needs to solve two systems of linear equations or two least squares problems - -  
one in the predictor step and one in the corrector step. Tsuchiya's result is based on Iri and 
Imai's method, which requires knowledge of the exact optimal objective value in advance. 
A standard way of dealing with this difficulty is to integrate the primal and dual problems 
into a single LP problem, whose size is twice that of the original problem. The "currently 
best" result, to our knowledge, was given in [28] where it is shown that the Q-order of 
convergence of a variant of the O ( ~n L) -iteration predictor-corrector algorithm for general 
LP, counting each iteration as solving one system of linear equations of the size of the 

original problem, equals 2. 
While superlinear or quadratic convergence results for LP have been established with no 

assumptions, all superlinear convergence results for LCP to date use some combination of 

the following assumptions: 

(A3) The LCP has a strictly complementary solution. 
(A4) The LCP is nondegenerate, meaning it has a unique solution. 
(A5) The iteration sequence { (x ~, s k) } generated by the interior-point algorithm con- 

verges, and it converges to a strict complementarity solution. 

(Note that (A3) automatically holds for LP.) The "currently best" results for LCP are 

given by Kojima et al. and Ji et al., and they can be cataloged as follows: 

- global and quadratic convergence assuming (A3) and (A4) (Kojima et al. [ 11, 13] ). 
- 0 ( n L )  iteration complexity and superlinear convergence assuming (A3) and (A5) 

(Ji et al. [ 10] ). 
- O ( ~n L) iteration complexity and superlinear convergence assuming (A3) and (A5) 

(Ji et al. [9] ). 

In these bounds L represents the data length for a problem with all integer data. 
Certainly, the global property of polynomiality and the local property of superlinearity 

are desirable. However, (A4) is not realistic, and (A5) may not hold in general. Thus, the 
current asymptotic convergence result for LCP is quite behind that for LP. In what follows 
we consider the LCP extension of the predictor-corrector algorithm (e.g., Mizuno et al. 
[19] and Sonnevend et al. [23] ) suggested by Ji et al. [91. We show that this O(~n L) 
iteration algorithm for LCP actually possesses Q-quadratic convergence, without assuming 
either (A4) or (A5), where one iteration consists of two steps - -  one predictor and one 
corrector. Of course, we assume (A1), (A2), and (A3). Among these assumptions, (A1) 
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is the standard assumption for any interior-point algorithm, and (A2) is necessary for the 
LCP to have a convex objective, but (A3) is restrictive since in general it does not hold for 
LCP. We will actually show by example, however, that (A3) appears to be necessary in 
order to achieve superlinear convergence for the algorithm. We also show that a modification 
of the algorithm achieves Q-order of convergence equals 2 (i.e., Q-subquadratic conver- 
gence), counting one iteration as one step. Our results thus completely fill in the asymptotic 
convergence gap between LP and LCP. 

The paper is organized as follows: In Section 2 we review the predictor-corrector algo- 
rithm and collect several previously established estimates. Section 3 contains several tech- 
nical results. Our main convergence results are given in Section 4. A summary and 
concluding remarks are contained in Section 5. 

2. The predictor-corrector algorithm 

In this section, we briefly describe the predictor-corrector LCP algorithm (Ji et al. [9] ). 
We employ the notation X= diag(x), S = diag(s), etc., and we let ~ denote the collection 
of all strictly feasible points (x, s). Consider the neighborhood 

~/ ' (a)  = {(x, s) ~ :  IlXs/t~-e]l <~o!}, 

where ]1 " ]] represents the l 2 norm,/~ =xXs/n ,  e is the vector of all ones, and a is a constant 
between 0 and 1. 

To begin with choose 0 < 13 ~< ¼ (a typical choice would be ¼). All search directions d~ 
and ds will be defined as the solutions of the following system of linear equations (Kojima 
et al. [ 14] ) 

Xds + Sdx = y t~e - Xs, (1) 

ds =Mdx,  

where 0~<y~<l. A typical iteration of the algorithm proceeds as follows. Given 
(x ~, s k) ~ J ( / 3 ) ,  we solve the system (1) with (x, s) = (x ~, s k) and y=0 .  Denote by d p 

and d p the resulting directions. For some step length 0/> 0 let 

x(0) =xk+  Od p, s( O) =sk+  Od p, 

and/~(0) =x(  0)Xs(0)/n. This is the predictor step. Our specific choice for 0 will be stated 
after we consider the following lemma [9, 19]. 

Lemma 2.1. l f  for  some positive Ok <~ 1 we have 

]]X(O)s(O)/~(O) -e l l  ~< c~< 1 for  all 0<<, 0<~ O k, 

then (x(  Ok),s( Ok) ) ~ 4 / ( o l )  C ~ .  [] 

(2) 

Lemma 2.1 basically says that the interior feasibility of (x(Ok), s( O k) ) is guaranteed as 
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long as (2) is satisfied. Thus, we can choose the largest  step length 0k~ 1 such that (2) is 

satisfied for a = / 3 +  r, for some 0 < r~</3, and let 

2 k = x ( 0  k) and g k = s ( O k ) .  

We can compute the largest O k by finding the smallest positive root, r k, of  a quartic 
polynomial ( if  r k does not exist, then r k = 0o) and assigning 0 h = min ( r  k, 1), or simply 

choosing it as the lower bound in Lemma 2.2 below. 
Next we solve the system (1) with (x, s ) =  (2 k, ~ k ) ~ j ( / 3 +  r) ,  /x= (2k)Tgk/n,  and 

y = 1, resulting in d~ and d~. Let x k + 1 = 2 k  ..[_ dz~ and s k + l = g~ + d~. It has been proved [ 9, 

19] that (x k + 1, s k + ~) e j (/3) as long as 0 < /3  ~< 1 and 0 < r ~</3. This is the corrector (or 

centering) step. 
Observe that the algorithm generates a sequence of feasible points satisfying 

and 

I[X~s~/txk-ell ~</3 (3) 

( 2k)  T g k =  ( 1 -- O k) (X k) T sk-}- ( O k) 2( glP] T ~P 
, - x ,  - s ,  (4) 

(xk+l) Tsk+l=(2k) Tg k-k- (dx)C Tda. ° 

It has also been shown [9] that 

v T p (X k) Tsk /4  ' (d~) ds <. (5) 
c T c (dx)  d~ ~ ( 2 k ) T g k / ( 8 n ) .  

k p p k For convenience, let 6 = D x d s / t z  , where D p = diag(dP),  in the predictor step. Then, 

Mizuno et al. (Lemmas  1, 2 and 4 of [ 19] ) showed that 

[[6k[] ~ ¼V~ n. (6) 

Ji et al. [9] and Ye et al. [30] essentially developed the following lemma. 

L e m m a  2.2. I f  O k is the largest  O k <~ 1 satisfying the condit ions o f  L e m m a  2.1 with a = / 3  + r 

and 0 < r ~ /3, then O k > 2 r / ( l/  r 2 + 4r[[ 6k[[ + r) .  [] 

Clearly, this lemma together with (4) ,  (5) and (6) implies that the iteration complexity 

of the algorithm, with a suitable initialization, is O ( ~ n  L) for a constant 0 <  r~</3. Note 
that 

1 - O k ~ l  
2r ~/T2 q-471l ~kll- T 

V/T2  -~- 4rll •kll ÷ r x/r 2 + 4TII a~ll ÷ r 

4 t  8~11 II akll 
4 -  

(v/r2 +4rllakll + r ) 2  r 

Relations (4) ,  (5) ,  (6) ,  and (7) ,  and Lemma 2.2, imply 

(7) 
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1~+~<~(l+l/(8n))(l lS~lll~k+(dP)TdPs/n ) 

<<. ( l + l / (8n)  ) (l[DPdPl] + (dp~)Td~/n). (8) 

From (8), we see that if 

IId~Vll=O(p~ k) and [[dsPll=O(/z~), 

then the complementarity slackness sequence converges to zero Q-quadratically. (Here and 

in what follows the "big O"  notation represents a positive quantity that may depend on n 

and/or the LP original data, but which is independent of the iteration k.) This fact was first 

established for the LP case in Ye et al. [29], and will be established for LCP in the next 

section. 

3. Technical results 

For a LCP possessing a strictly complementary solution, a unique partition B and N, where 

B A N =  {1, 2 . . . . .  n} and B U N =  O, exists such that x* = 0 and s* = 0 in every comple- 

mentarity solution and at least one complementarity solution has x* > 0 and s* > 0. Gtiler 
and Ye [6] have shown that for all k, relation (3) implies that 

~<~x)<<.l/~ f o r j ~ B ,  ~<s)<~l /~  f o r j ~ X ,  (9) 

where 0 < ~:< 1 is a fixed positive number that is independent of k. 

We now introduce several technical lemmas. For simplicity, we drop the index k and 

recall the linear system during the predictor step 

Xds + Sdx = - Xs, (10) 

ds =Mdx. 

Let/z = x Ts/n, z = Xs and Z = diag (z). Note from (3) that we must have 

(1 - / 3 ) / z  ~<zi ~< (1 +/3)/z f o r j =  1, 2 . . . . .  n. 

Define D=Xt/2S 1/2. We now estimate Ildxll and IIdAI. We start by characterizing the 
solution to (10). 

Lemma 3.1. l f  d~ and ds are obtained from the linear system (10), and tz =xTs/n, then 

liD 'dxll<ll(XS)'/2ell=~n~, IlDdsll<.ll(xa)'/2ell=~n~. 

Proof. The proof is straightforward, e.g., see Kojima et al. [ 14]. [] 

Lemma 3.2. If  dx and d~ are obtained from the linear system (10), and tz = x T s / n, then 

II(d~)ull=O(m) and II(d~)BIl=O(m). 
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Proof .  From Lemma 3.1 and (9) ,  we obtain 

[I (dx)u II = UDNDN l(dx)u 11 <~ IIDN I[ HDNI( dx)N II < IIDN I l O ( f ~ )  

= IlZb'~s? l IIO(vr-~) < IIZ,t? IiO( 1 / ~ ) o ( 4 - ~ )  

This proves that I] (dx)Nl] = O(/.L). The proof that [] (ds)BII = O(/~) is similar. []  

The proofs of I (dx)B][ = O ( / ~ )  and I] (ds)Nl] = O(/~) are more involved. Towards this 

end, we first note 

S(x+dx) = -Xds ,  X(s+ds) = -Sdx,  

and therefore 

x + d ~ = - ( X S - ' ) d s = - - D 2 d s ,  s + d s = - ( X  1S)dx=-D-2dx .  ( l l )  

Before proceeding, we need some results regarding (non-symmetr ic)  positive semi-definite 

(p.s.d.) matrices that may be of independent interest. In what follows, we will consider M 

to be partitioned (following a re-ordering of rows and columns) as 

M = (  MBBMBN ) 
MNB MN u . (12)  

L e m m a  3.3. Let M be a p.s.d, matrix, partitioned as in (12). Then MBBXB = 0 if and only if 
MTsxB = O. Furthermore, MBBXB = 0 implies that ( MNt ~ + MTN )X B = O. 

Proof .  Let x = (x T, 0 T) T. If  either MBsXB = 0 or MTsxe = 0, then xTMx = 0, so x is a global 

minimizer of the quadratic form yTMy. Consequently ( M +  MT)x = 0, which is exactly 

(MBB q-MTBB)XB = 0 ,  (MNB -[-MTN)xB =0. [] 

Lemma 3.4. Let M be a p.s.d, matrix, partitioned as in (12). Then 

where R( • ) denotes the range of a matrix. 

Proof .  From the fundamental theorem of linear algebra, it is equivalent to prove that 

N tMTN I \MN~ -- I 

where N( - ) denotes the nullspace of a matrix. To begin, assume that 

From Lemma 3.3, MsBXB = 0. Also xN = - M~NXs, SO showing that MNsX8 -- XN = 0 is equiv- 

alent to showing that (MNB + M~N)XB = 0, which also holds by Lemma 3.3. Thus 
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The argument that (14) implies (13) is similar. [] 

L e m m a  3.5. I f  d~ and ds are obtained from the linear system (10) ,  and tz=xTs/n ,  then 

u = (d~)8 and v = (ds)N are the solutions to the (weighted) least-squaresproblem 

min ½IIDB'UH2-k ½IIDNV[I 2 
u, t" 

s.t. MBBU= - M B N ( d x ) N + ( d , ) 8 ,  (15) 

M N B U  -- U = --  M N N (  d x )  N. 

Proof.  Note that from (10),  u = (dx)8, v = (ds)N is certainly feasible in the problem 15). 

Next, from (10) and ( 11 ), we see that 

x8 + (dx)8 = -D2BMs d~, SN-f-(d~)N = -O~v2(dx)N . (16) 

Since s*  = 0  for all optimal s*,  with x*  =0 ,  we must have q8 = - M s d c *  ~R(M88) .  

Therefore, 

D ~ 2 x B = s8 = 1148. x + qB = M88( X8 -- x*  ) + MsNXN. 

Substituting this into the first equation of (16) obtains 

D~2(dx)8  = - M 8 8 ( x 8  - x *  + (dx)8) --MsN(XN + (dx)u).  (17) 

Also SN = D N 2Xu, which substituted into the second equation of (16) yields 

D~(ds)N = --XN -- (dx)N. (18) 

Then (17) and (18) together imply that 

Applying Lemma 3.4, we conclude that 

( D ~ 2 ( d x ) 8 ~  M T ( MT8 

D2(ds)  N ] ~ R \  
BB 

- I  }' 

which shows exactly that u = (d X) 8, v = (d,) N satisfies the Karush-Kuhn-Tucker  conditions 
for optimality in the least squares problem (15).  [] 

The LP version of Lemma 3.5 was first established by Adler and Monteiro [ 1 ] and 
Witzgall et al. [26]. We are now ready to prove the following key result. 

T he o rem 3.6. I f  d, and ds are obtained from the linear system (10),  and I.L =xTs/n,  then 

Ild~[I = O ( / x )  and Ild, II = O(tz) .  



E Ye, IC Anstreicher/Convergence of  an algorithm for LCP 545 

Proof. Due to Lemma 3.2, we only need to prove 

II(dx)BIl=O(tO and I I (ds )NI l=0( /z ) .  

Since the least-squares problem (15) is always feasible, there must be feasible a and t7 such 

that 

Ilffll =O(ll(dx)Nll + II(ds)BII) and II~ll =O(ll(dx)NII +ll(ds)BII), 

which together with Lemma 3.2 implies [1 all = o ( ~ )  and II 011 = o ( ~ ) .  Furthermore, from 

Lemma 3.5 and relations (3) and (9) ,  

II (dx) .  II 2 + II (ds)Nll 2 

= IlOsO~X(dx)B II 2 _}_ l ION t DN(Ms)N [I 2 

< IIO~ II IID;'(dx)B II 2 _~_ 110;2 II IIDN(d.~)N II 2 

= II z ~  ' x ~  II II D~(d~), II 2 + + II ZN'S~N II II DN(ds) N II 2 

<. (llz~'g~ II + IIZN'S~N II) (llO~l(dx)~ II 2 + IIDN(d~)N II 2) 

-<< ( IIZ; ~g~ II + IIZN l S~N II) ( l lO~ I all 2 + IIDN~II 2) 

( II Z ~ '  S~  II + IIZN' S~ II ) ( 110 ~ 2 II II all 2 + II O ~ II II ~112) 

O( l / t 0  ( l lO~ = II II all 2+  IIO~ II II ~112) 

= O ( ~ )  ( l i D ;  ~ II + IIO~, 11) 

= O ( ~ )  ( I IZ~X;  2 II + IIZNSN 2 II) 

= O ( / . L 2 ) .  [ ]  

4. Quadratic convergence 

Theorem 3.6 indicates that at the kth predictor step, d p and dE satisfy 

I I (dp) l l=O(/x  k) and II(dP)l l=o(/zk) ,  

where ~k= (xk)Vsk/n. We are now in a position to state our main result. 

(19) 

Theorem 4.1. Let { (x k, s k) } be the sequence generated by the algorithm. Then, with 

constants 0 < ~ <~ 1 and ce = 2 fl: 

(i) The algorithm has iteration complexity O( ~nn L ). 
(ii) ( xk) W s ~ --> 0 Q-quadratically. 

Proof.  The proof of (i) is due to Ji et al. [9]. This also establishes 

lirn /z k = 0. 
k~oc 
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The proof of (ii) directly follows from (8) and Theorem 3.6. [] 

According to the above analysis, we do not need to choose the largest step 0 h in the 

predictor step, but only the lower bound in Lemma 2.2. Thus, we are not required to find 

the roots of a quartic polynomial. 

As we mentioned before, each iteration of the algorithm needs to solve two systems of 

the linear equations (1) - -  one in the predictor step and one in the corrector step. If we 

count each iteration as solving one system of linear equations, as we usually do in the 

analysis of interior-point algorithms, then the (average) order of convergence of the algo- 
rithm is only !/2. Similar to the technique used for linear programming [28] we now show 

how to construct a modification of the algorithm whose Q-order of convergence is at least 

2. Recall that the Q-order of convergence of the sequence to zero is defined as 

(xk+I) Tsk+I } 
sup or> 1: lim 0 k-~= ( ( x  h) Ts~) ~ 

o r  

(x~+ I) TSh+ 1 } 
inf o->l:h~lim ((xh) Tsk)~ =OO 

(see Ortega and Rheinboldt [21] and Potra [22] ). Potra further showed that the Q-order 

of convergence equals 

(xk+I) Ts k+l ] 
inf l° l og 

The convergence with Q-order 2 is also called Q-subquadratic convergence [21 ]. 

Variant 1. An iteration of the variant proceeds as follows. Given (x h, s h) ~ S '( /3) ,  we 

perform T>~ 1 successive predictor steps followed by one corrector step, where in the tth 

predictor step, 1 ~< t ~< T, we choose ~-= ~'t > 0 such that 

T 

~-t =/3. (21) 
t = l  

In other words, on the tth predictor step of these T steps, we solve (1) with (x, s) = 
(2h, gh) ~ J ( / 3 + ~ 5 + " ' + ~ ' , - 1 )  (the initial (2 h, gh) = ( x  h, s h) ~ j ( / 3 ) )  and y = 0 .  

Denote by d~ and d~ the resulting directions. For some 0 > 0 let 

x( O) = 2 h +  Od~, s( O) =gh+ Od~. 

Our specific choice for 0 is similar as before: The largest 0 h such that (2) is satisfied for 

ce=/3+~- 1 + . . . + %  ~+%. 

From (8) and Theorem 3.6, on the tth predictor step we have 

x( 0 h) TS( 0 h) ~<R[ (2 h) Tgk] 2/,rt (22) 
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where R >~ 1 is a fixed number that is independent of  the iteration count k. Now update 

~k:=X(0k) and ~k:=s(0~).  

After T predictor steps we have (2~, gk) ~ ~/7(2/3). Now we perform one corrector step 

as before to generate 

(x~+l, s~+l) ~ ( / 3 ) .  

Based on the previous results, each predictor step within an iteration achieves quadratic 

convergence for any positive constant sequence {~'t} satisfying (21).  For example, one 

natural choice would be ~-t = / 3 / T  for t = 1, 2 . . . . .  T. Since each iteration solves T +  1 systems 

of linear equations, the (average) Q-order of convergence of (xk)Vs k to zero in Variant 1 

is 2 r/~ v + 1) per linear system solver for any constant T>~ 1. 

We now develop a new variant where eventually we let T =  ~, that is, no corrector step 

is used on the remaining iterations of the algorithm. The algorithm becomes the pure Newton 

method or the primal-dual affine scaling algorithm (e.g., Kojima et al. [ 11 ] and Monteiro 

et al. [ 20] ). 

Variant 2. After (x x, s K) ~ J ( / 3 )  for some finite K, we perform only the predictor step, 

where we choose ~-= ~-,> 0 satisfying (21).  A particular choice which we will consider is 

~-,=/3(½)' for t = l ,  2 . . . . .  

For simplicity, let us reset K := 1. Then, in the kth iteration we solve ( 1 ) with 

(x, s) = (x k, s k) ~ J  /3+ ~ , 

and 3, = 0. Denote by d~ and d~ the resulting directions. For some 0>  0 let 

x( O) = x~ + Od~, s( O) = s~ + Od~. 

Our specific choice for 0 is again the largest 0 h such that (2) is satisfied for 

k 

t = l  

Now directly update 

xk+l:=x(O ~) and Sk+l:=s(Ok). 

Theorem 4.2. Let ( xK) TsX > 0 be sufficiently small such that 

0.5 IOgz( (XK) Ts x) +log2(R//3)  + 1 ~<0 and 0.25 log2( (xX) Ts K) + 1 <~0, 

where R is as in (22).  Then, Variant 2 generates a sequence (x ~, s~), with k >~ K such that 
(i) The Q-order of conuergence of (x~)Ts k to zero is at least 2; 

(ii) {x ~, s ~ } is a Cauchy, and therefore convergent, sequence. 

Before we prove the theorem, we prove a technical lemma. 
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L e m m a  4.3. Let the sequence { lr'k }, k >>. 1, be generated as follows: 

F k+l ~<2Fk+L ' + k  

where L' > 0 is a fixed number. Furthermore, let F j be given such that 

0.5F ~ + L ' + I ~ < 0  and 0.25F r + l ~ 0 .  

Then, for all k >~ 1, 

Fk+ l <~ 1 .5U 

and 

0.5Fk+l + L '  + ( k +  1) ~<0. 

Proof.  We use mathematical induction to prove the lemma. For k = 1, the result is obviously 

true due to the choice of F 1. Assume the result holds for k. Then we have 

and 

F ~+1 = 2Fk + L  ' + k =  1.5F~+O.5Fk+L ' +k<~ 1.5F k, 

0.5F*+ ~ + L '  + ( k +  1) ~<0.75Fk+L' + ( k +  1) 

= (0 .5F~+L ' + k )  + 0 . 2 5 F k +  1 

~< 0.25F j + 1 ~< 0 .  

This concludes the induction. [] 

P roof  of Theorem 4.2. Again we reset K := 1. At the kth iteration (k >/1 ) we have from 

(22) 

R[ (xk) Tsk] 2 
(xk+ l ) TS~+ I ~< = R [ (x ~) TS~] 22k/t~, 

Tk 

or 

log2 [ (x  k+ 1 ) TSk+ 1] ~ 2 log 2 [ (X k) TSk] + 1og2(R/]3) + k. (23) 

Using Lemma 4.3 with Fk=log2[  (xk)Ts ~] < 0  and L'  =logz(R/ /3) ,  we conclude that 

{log2[ (xk)Tsk]} is a geometric sequence, bounded above by { -4 (1 .5 )k -~} ,  tending to 

- zc. Since L' is fixed and k is just an arithmetic sequence, we must have 

L'  + k  L' + k  
lim ~< lim ~ 0. (24) 
k ~  ]log2[(xk)Vs~][ k~=4(1 .5 )  k- l  

Then (23) and (24) together imply that 

(Xk+I)TS ~+1] 
lim inf log [ ~> 2. 

~ ~ log[ (x k) Ts~] 

(Note log [ (xk)Vs k] < 0 so that the inequality direction is reversed here.) Then, using (20) 

proves (i) of the theorem. Now from Theorem 3.6, 
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and 

II x ~ + '  -x~ l l  = O~lld~ II < IId~ II = o ( ~ )  

II sk÷~ - s~ll = O~lldks IL < IId~ II = 0 ( ~ )  - 

Hence, {x k, s k} must be a Cauchy sequence, because {/z k= (xk)Tsk/n}  converges to zero 

superlinearly from (i) .  This proves (ii).  [] 

TO actually achieve the Q-order 2 of convergence of the gap (x~)Ts k, we need to decide 

when to start the primal-dual affine scaling procedure described in Variant 2. Although R 

in Theorem 4.2 is unknown, we can start the procedure when 0.25 log2[ (xX)Ts x] + 1 <~ 0 

or log2 [ (xK)Ts K] <~ _ 4. Again for simplicity, let K :=  1. Then we add a safety check to see 

if for k =  1, 2 . . . . .  

log [ (x k+ 1) T s ~ + 1] ~< 1.5 log [ (X ~) TSk]. (25) 

(We choose 1.5 in (25) because it is used in Lemma 4.3. Actually, 1.5 can be replaced by 
any positive constant strictly between 1 and 2 to guarantee that (Xk)TS k converges to zero 

Q-subquadratically.) If (25) is satisfied, we continue the primal-dual  affine scaling pro- 

cedure. Otherwise we conclude that (x~)Vs x was not sufficiently small, do one corrector 

step, and then restart the primal-dual affine scaling procedure. This safety check will 

guarantee that the algorithm maintains O( V~n L) polynomial complexity, and achieves the 

Q-order 2 of convergence of the gap to zero, since eventually no corrector (or centering) 

step will be needed, according to Theorem 4.2 and Lemma 4.3. 
Note that we have now shown that after the gap (Xk)TS ~ becomes sufficiently small, the 

pure primal-dual affine scaling algorithm, or Newton method, with the step size choice in 

Variant 2 generates an iteration sequence not only polynomially converging to an optimal 
solution pair, but one whose convergence is at least Q-subquadratic. It is also interesting to 

see that the step parameter 0 h of the primal-dual affine scaling procedure, or Newton method, 

in Variant 2 converges to 1 superlinearly, while the solution sequence {x k, s k} remains 

"centered"  without any explicit centering. For linear programming (M is skew-symmetric) ,  
if the step size equals 1, then from (4) the new iterate is a complementary solution and it 

must hit the boundary of the feasible region g2. Thus, our step size eventually becomes 

larger than the step-size choice commonly used in practice: a fixed fraction (say 0.99, or 
0.9995) of  the way to the boundary. 

Note that although the Q-order of convergence of the gap sequence to zero in Variant 2 
is at least 2, this sequence fails to meet the standard quadratic convergence criterion, since 
possibly 

(x~+~) Ts~+~ 
lim sup = oo 

k s ~  [ ( x  k) Tsk ]2  • 
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5. Concluding remarks 

Recently, several researchers have proved that an interior-point algorithm, while maintain- 

ing O(~nn L) iteration complexity, exhibits quadratic convergence for LP without the 

assumption of nondegeneracy or the assumption that the iteration sequence converges. In 

this paper we have demonstrated a similar result for monotone LCP, which includes convex 

QP. As we see in the above analyses, such an extension is not trivial due to some fundamental 

differences between LP and LCP. One of  these differences is the guaranteed existence of a 

strictly complementary solution. A related question is whether or not assumption (A3) can 

be removed in our analysis. In the following we show a negative result: 

Proposition 5.1. There is a monotone LCP problem, where a strictly complementary 

solution does not exist, for  which the predictor-corrector algorithm or affine scaling algo- 

rithm possesses no superlinear convergence. 

Proof.  Consider the simple monotone LCP with n = 1, M = 1 and q = 0. The unique com- 

plementarity solution is s = x = 0, which is not strictly complementary. Note, the feasible 

solution s = x  = e is a perfectly centered pair for any e >  0. The direction in the predictor 

step (or affine scaling algorithm) is 

d x = - ½ x  and d s = - ½ s .  

Thus, even taking the step size O= 1, the new solution will be s = x  = ½e. Thus, the comple- 

mentarity slackness sequence is reduced at most linearly, with constant ¼, which proves the 

proposition. [] 
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