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We study the problem of finding a point in the relative interior of the optimal face of a linear program. We prove 
that in the worst case such a point can be obtained in O(n3L) arithmetic operations. This complexity is the same 
as the complexity for solving a linear program. We also show how to find such a point in practice. We report and 
discuss computational results obtained for the linear programming problems in the NETLIB test set. 
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1. I n t r o d u c t i o n  

Consider the primal linear program (LP): 

min cTx 

s.t. Ax=b, x>~0, 

and its dual (LD) : 

max b Ty 

s.t. ATy+s=c, s>~O, 

where A ~ ~m X n, C E ~ n  and b ~ R". Feasible solutions x* and (y*, s*) are optimal for 
(LP) and (LD) respectively, if and only if, 

x ' s * = 0  f o r j = l , 2  ..... n. 

Let ~r(x) represent the index set of positive components in x >~ 0, that is, 

o-(x) = {i: xi > 0}. (1) 

Correspondence to: Prof. Sanjay Mehrotra, Department of Industrial Engineering and Management Sciences, 
Northwestern University, Evanston, IL 60208-3119, USA. 

*Research supported in part by NSF Grant CCR-8810107, CCR-9019469 and a grant from GTE Laboratories. 
**Research supported in part by NSF Grant DDM-8922636 and NSF Coop. Agr. No. CCR-8809615 through 

Rice University. 



498 s. Mehrotra, Y. Ye / Finding an interior point in the optimal face of linear programs 

Among all the optimal solutions for (LP) and (LD),  there exists at least one optimal 
solution pair (x*, s*) which is strictly complementary, that is, 

o-(x*) (3 o-(s*) = 0 and o-(x*) U o-(s*) = { 1, 2 . . . . .  n}. (2) 

This property has been known since the early days of linear programming (Goldman and 

Tucker [ 9 ] ). Moreover, o-(x* ) and o-( s * ) remain invariant for every strictly complementary 
solution (x*, s*). Hence, we can denote or(x*) by o-* and let 6-* = { 1 . . . . .  n}\o-*.  The 

partition { o-*, 6-* } of  { 1, 2 . . . . .  n } is called the optimal partition. One can further show that 

or(x*) co-* and o-(s*) c6-* (3) 

for every complementary solution (x*, s*). Thus, the optimal face for the primal is 

Op = {x: A x = b ,  x ) O ,  xj = 0  f o r j ~ * } ,  (4) 

and the one for the dual is 

Oa = {(y, s): a r y + s = c ,  sj = 0  f o r j ~  o-*}. (5) 

The primal optimal face has a point x ~ Op with xj > 0 for any j ~ o-* and the dual optimal 
face has a point (y, s) ~ Od with s j> 0 for a n y j ~  6-*. In other words, the relative interior 

(subsequently called interior) of these two faces is nonempty. 
The standard complexity analyses for linear programming are based on finding an optimal 

primal and dual solution pair, i.e., a solution on Op and a solution on Od. This pair does not 

necessarily present enough information to determine the partition o-* (unless the optimal 

solution is nondegenerate). Therefore, the identification of o-* itself is an interesting com- 

binatorial problem associated with (LP).  
The ability to identify the optimal partition would lead to practical and more reliable 

termination criterion for interior-point algorithms. In this context, some of the ideas used 
in this paper were also used by Gay [7] to perform computational tests. If the LP is the 
Phase 1 problem to find a feasible solution, the knowledge of o-* allows us to eliminate all 

the variables that are zero in every feasible solution. The information of o-* and an interior 

point in the optimal face are also useful for the parametric analysis (e.g., see Adler and 

Monteiro [ 1 ] ). Furthermore, this knowledge allows us to construct all the distinct optimal 

vertices by identifying all the feasible vertices on the optimal face. This motivates us to 
study the problem of finding the optimal partition and a pair of points in the interior of Op 

and Oa. This work is related to the earlier work of Gtiler and Ye [ 11 ] and Ye [22] on the 
convergence behavior and finite termination of some interior-point algorithms. 

To our knowledge, the previous " b e s t "  algorithm for finding the optimal partition is 

given by Freund et al. [6],  who combine the primal and dual problems into a feasibility 
problem and then use Karmarkar 's  projective transformation to construct a homogeneous 
linear system and an artificial linear objective function. After solving this system, one can 
identify o'* and a strict complementary solution for the original LP problem. Another 
approach is given by Tardos [ 19], who solves a sequence of (at most n) LP problems, 
where the size of the rational data of c in each problem is relatively small. (Her analysis 
does not work if the data are real numbers.) 



s. Mehrotra, Y. Ye / Finding an interior point in the optimal face of linear programs 499 

This paper is organized as follows. In the next section we show that the optimal partition 

can be identified in O(n3L) arithmetic operations where the data in (LP) are rational and 

L is their input length. We also develop a practical and (column) scaling-independent 
criterion for identifying the optimal partition. In Section 3 we give a simplified method for 
finding an interior solution on the optimal face. Our approach is based on solving a system 
of linear equations, rather than the projection technique employed in [22]. Section 4 
discusses computational results on the problems in the NETLIB test set [8]. Finally, we 

make some additional remarks in Section 5. 

2. Finding the optimal partition in interior-point algorithms 

In this section, we show that the optimal partition can be identified in O(n3L) arithmetic 
operations by several polynomial interior-point algorithms. We use the result of Giiler and 
Ye [11 ] and Ye [22] in our analysis. Gtiler and Ye demonstrated that many O(n3L) 

interior-point algorithms (e.g., Gonzaga [10], Kojima et al. [12], Mizuno et al. [15], 
Monteiro and Adler [ 16], Renegar [ 17], Todd [20], Vaidya [21] ) generate a sequence 
of feasible pairs (x k, s k) such that 

min(X~s ~) 
(xk) Ts ~ > ~Q(1/n), (6) 

where X k = Diag(x k) and min(Xks k) = mini( x~i ski ). 

The following theorem is an enhanced version of a theorem given in Ye [22], where he 
gave a finite convergence argument but no complexity result. 

Theorem 1. At iteration k of  an 0 (n 3L) interior point algorithm whose iteration sequence 

satisfies inequality (6), let 

o -k= {j: x~ >~s}}. (7) 

Then, in O(n3L) arithmetic operations 

o-k= 0,~. 

Proof. First, for any j ~ o-* there exists a complementary solution (x*, s*) for (LP) such 
that 

x* >~/~1 -/>2-c and s~ =0,  

and for a n y j ~  6-* there exists a complementary solution (x*, s*) for (LP) such that 

s*~>62>~2 L and x * = 0  

where 61 and 6 2 a r e  fixed positive numbers (e.g., see Schrijver [ 18] ). Second, since 

(Xk--X*)T(S~--S *) =0  
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for any complementary solution (x*, s*),  we have 

E x?s  + E si* f = (x (8) 
i~cr(x*) i~o-(s*) 

Thus, if (x ~)TSk< O ( 1/n) 2-2L, then for any j ~ (r*, 

-< (xk) Vsk - O( 1/n)2-2c/2 -r= O( l / n ) 2  -L. (9) 

On the other hand, (8) can be written as 

x*  s*  t k k t k k ---~(Xi S,) (xk) Ts ~'. -X-( (-'c i s , ) + = 
i~o-(x*) i i~o-(s*) Si  

Thus, we have for a n y j ~  o-*, 

x*  

X j  

which together with inequality (6) gives 

-, x ; s ;  . .  
x ~ ~ j  > ~ 2 ( 1 / n ) 2  -c.  (10) 

Therefore, for any j  ~ or*, 

s~ < O( 1/n)2-L<~ g2( 1/n) 2 -L <x~. 

Similarly, for any j ~ 5-* the condition (x ~) Ts k ~< O ( 1 / n ) 2 - 2L implies 

x~ <s~.  

Thus, we must have o-k=o -* when (X~)TSk<<.O(1/n)2-ZL, which can be achieved in 

O(n3L) ar i thmet icoperat ionsusinganO(n3L) interior-point algorithm satisfying (6).  [] 

Note that o -k could be defined differently. For example, we could construct 6 -~ as 

6 -~ = {j: x]  >~ ~2( 1 In) 81, 

where 6 = rain( 61, 62). Whenever (x~)Vs k < O( 1/n) 82, we have from the proof of Theorem 

1 that for any j ~ o'*, 

x~ >12(1/n)8, 

and for any j ~ 6-*, 

x~ <~ (x k) TSk/S* < O( 1/n) 8. 

Thus, 6 -k = o-% In practice, one can use some heuristic to select 8. Theorem 1 is of  theoretical 
interest only, because it involves the input length. A drawback of the above two criteria for 
finding o-* is that the construction of o -k is (column) scaling-dependent. 

We now give a new way to find o-*, which is (column) scaling-independent for some 
primal-dual interior-point algorithms. In general, the direction d~ and d~ at the kth step of 
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the primal-dual algorithms [ 1, 12, 15] are generated by solving the following system of 

linear equations: 

k T k 
k k -k ~k (X ) S X ds +S  dx = Y  e--Xks~, l l a )  

n 

Ad~=O and k _  T k d s - - - A  dy l l b )  

where 0 ~< y <  1 is a constant. Then, a fixed step-size 0 < 0<  1 is chosen to generate 

Xk+x=xk+Od~ and sk+l=s~+Od~ l l c )  

such that the iteration sequence satisfies 

min(Xks k) 1 - / 3  
(x k) Ts~ > n ( l l d )  

for some constant 0 </3  < 1. 

Theorem 2. At iteration k of  the primal-dual interior-point algorithm with properties ( 11 a), 

( l l b ) ,  ( l l c ) ,  ( l l d ) , l e t  

,~k={j: Ix¢ +'J -xjlk/xy<ls¢+,j -silk/sy}. 
Further assume that Y < 1 - / 3  and 11 d~ [I and Ild~ 11 converges to zero for k ~ ~2, where B2 is 

a subsequence of  { 1, 2 .... }. Then there exists a finite K such that for  all k >~ K and k ~ ~2, 

o "k= o'*. 

Proof. Let k ~ k .  Then, from system ( 1 la) we have for any j, 

k k (d~)j + (d~)j = -  (x k) Tsk 

sff x,~ y ~  1. nx j  s j  

Recall inequality (10),  for any j  ~ o-*, 

xjsj /3 l -  
X ; >  

n n 

Thus, we have 

Ix ¢+~ - x ~ l  I (d~)j I lim J - 0 lim = 0, j E o-*. k k ~  Xj k---~ X; 

Hence, we must have 

(dks)j ( ( X k )  Tsk ) T 
l i m s u p ~ = l i m s u p  y k ~ 1 ~< - 1 ,  

k ~ ~ Sj k-~ ~ nxj sj 1 - fl 

Since y is strictly less than 1 - / 3 ,  we have 

j ~  o-*. 
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- s  j[  01iminf  >~ >0 ,  lim inf [sk+l k [ (d~)j ] O ( 1 - f i - y )  
k k ~ ~ sj k ~ ~ s~ 1 - / 3  

This shows that there is a K such that for all k>~K, we have 

0( 1 - / 3 -  y) 
Ig + l -X~l /g<  2 ( ~ - ~  ~ 14+~-41 /~  

for any j ~ o-*. 

Similarly, we can prove that for all k >_- K, 

[xk÷l k /X k 0 ( 2 ~ - - ~ )  S/~÷I 
-~j l  >/ i > , - ~ 1 / ~  

for any j ~ 6-*. This concludes the proof of  Theorem 2. [] 

j ~ o ' * .  

The criterion in Theorem 2 is related to Tapia 's  indicator described by E1-Bakry et al. 

[4]. The assumptions in Theorem 2 are consistent with some primal-dual interior-point 

algorithms. In particular, all these assumptions are satisfied in the predictor step of the 
O(n3L) predictor-corrector algorithm of Mizuno et al. [ 15], where 

y = 0 ,  /3=½, ~ ( 1 / ~ n ) ~ < 0 < l ,  

and 

IIdx ~ II ~ 0 and IId~ II ~ 0 

The latter was recently proved by Mehrotra [ 14] and Ye et al. [23]. In fact, they have 

shown that as long as ( 1 ld) holds, the primal-dual affine scaling direction (d~, d2) resulted 

from ( 1 la)  and ( 1 lb)  with T= 0 approaches to zero as the primal-dual gap (x~)Ts k tends 
to zero. 

3. Finding an interior point in the optimal face 

In this section we discuss procedures for finding a feasible primal-dual solution pair in the 
interior of the optimal face. Our procedure is based on testing the optimality of  a partition 
o -~ at some stage of the algorithm. For simplicity, let those columns in A corresponding to 
cr k form matrix B and the remaining columns form matrix N. Let us represent the corre- 
sponding variables by x~ and XN, respectively. Note that we have not made any assumptions 
on B. To find a point in the interior of the primal face, we solve the system of linear equations 

BAx B = b - B x ~  =NX~N (12) 

by the Gaussian elimination for Axs. Linearly dependent rows and/or  columns of B are 
deleted during the Gaussian elimination. In other words, we find a largest nonsingular 
submatrix/~ of B, then solve 

g ~ .  = Ux~-, 
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where the rows of S/correspond to the rows of/]. The components of 2~x8 corresponding to 

the linearly dependent columns are set to zero. A primal solution is then generated as 

x* =x§  + zLr8 andx* =0.  
To find a point in the interior of the dual face, we solve the system of linear equations: 

B r A y  = c8 - B'r y ~ = s~ (13) 

by the Gaussian elimination for Ay. Linearly dependent rows and/or columns of B T are 

deleted during the Gaussian elimination. The components of Ay corresponding to the linearly 

dependent columns are set to zero. A dual solution is then generated as y* = y k +  Ay and 

s* = c - - A T y  *. Note that the factors of/~ used to solve (12) can be used to solve (13). 

Thus, two systems (12) and (13) can be solved using only one factorization of/~. 

Since the procedure for solving systems (12) and (13) does not interfere with the main 
course of the interior-point algorithms, we can solve the systems at an arbitrary iteration k. 

If the solutions x* and (y*, s*) generated from systems (12) and (13) satisfy 

and 

B x * = b  and s * = c s - - B T y * = O  

x ~ > 0  and S~=CN--NTy*>O, 

then, x* and (y*, s*) are strict complementarity solutions for (LP) and (LD),  and therefore 

o "k must equal o-*. Otherwise, we repeat the procedure in the next iteration. 
The next theorem shows that for the interior-point algorithms described in Theorem 1, 

the solution x* and (y*, s*) generated above eventually becomes feasible and strictly 
complementary. 

Theorem 3. Let o "~ be defined in Theorem 1 for  the 0 ( n 3L) interior-point algorithms whose 

iteration sequences satisfy inequality (6). Then, in O(n3L) arithmetic operations the 

solution x* and (y*, s* ) generated above satisfies 

B x * = b  and s * = c s - - B T y  *=0 ,  

and 

x * > 0  and s * > 0 .  

Proof. From Theorem 1, o-* = o -k after (xk)Ts k ( 0 ( 1 / n ) 2  -2L. Then, systems (12) and 

(13) are consistent, and we shall have 

B x ~ = b  and s * = c s - - B T y * = O .  

Moreover, if (x~)Ts k < O( 1/n 2) 2-SL, then from the proof of Theorem 1 we have 

x ~ > g 2 ( 1 / n ) 2  L and s ~ < O ( 1 / n 2 ) 2  4L for jeo_k 

and 

k < O ( 1 / n 2 ) 2 - 4 L  and s ~ > g 2 ( 1 / n ) 2  -L f o r j ~ c r  ~. xj  
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Let/~ be one of the largest nonsingular submatrices of  B used to solve (12) and ( 13 ). Since 
for all nonsingular matrices that can be used to solve (12) and ( 13 ), [[/~ - l I[ ~< 22c ( Schrij vet  
[18]), 

j~o-k 

~< 11/~- '[10(1/n2)2 -4L ~ [[Aj 11 < 2 2 L O ( 1 / n e ) 2 - 4 L n 2 L = O ( l / n ) 2  -L,  
j~ o-k 

where A t is thejth column of A. This implies that 

[[ AxB [[ ~<0( l / n ) 2  - t  

since the components of  ZLr8 corresponding to the linearly dependent columns are set to 
zero. Thus 

I ~ l  < ~ O ( I / n ) 2 - - L < ~ , Q ( I / n ) 2 - - L < x ~  f o r j ~ o  "k, 

or 

x ~ + 2 ~ c j > 0  f o r j ~ c r  k. 

Similarly, we can prove that (xk) T s ~ < O ( 1 / n 2) 2 -  5L implies 

s~ + Asj > 0 for j ~ o -~. 

Again, the condition ( x k) x s k < O ( 1 / n 2 ) 2 - 5c will be sati stied in O ( n 3L) arithmetic oper- 

ations upon using O (n 3L) primal-dual algorithms. [] 

To find an interior point in the optimal face, Ye [22] considers problems 

min []x~ - x §  I[ 

s.t. Bx~ = b, 
(14) 

and 

rain Ily-y~l[ 

s.t. BTy = CB. 
(15) 

Problem (14) computes the projection of x§ onto the affine space {xs: BXB = b}, and (15) 
projects yk onto the affine space {y: B r y  = CB}. 

The solution of (12) and (13) can be found more efficiently than the solution of (14) 
and (15).  The use of (14) and (15) requires the solutions of  two least-squares problems. 
In our computational experience we found that solving (12) and ( 13 ) is much more efficient 
and numerically stable than solving (14) and (15),  while both approaches find an interior- 
point in the optimal face at nearly the same iteration. All the computational results reported 
in the next section were obtained while solving (12) and (13).  



S. Mehrotra, Y. Ye / Finding an interior point in the optimal face of linear programs 505 

4. Computational results 

We now present our computational results involving the practical implications of the theory 
developed in the previous sections. We used a FORTRAN 77 implementation of the algo- 
rithm described in Fourer and Mehrotra [5] and the papers referenced in there. All com- 
putations were performed using double precision on a Sun 4/110 Workstation. 

We used NETLIB test problems for our experiments. We removed variables which are 
fixed in the MPS file before calling the interior-point solver. No further preprocessing was 
performed, except for problems Greenbea and Greenbeb. For these two problems, free 
variables which are formulated as two non-negative variables in the problem data were 

replaced by a free variable. No scaling was done. 
We called our procedure for finding a point in the interior of a face after 

I cTxk - -  bTykl / ( 1 -t- I bTykl ) <~ 10--8 

is satisfied in the algorithm. We used a combination of Theorem 1 and Theorem 2 to partition 
the variables. In particular, we used 

k Is kisS}  k=i/:4 <10-14or 4 ÷l-xjl/g < j --sj 

in all of our experiments. A complementary solution pair x* and s* was declared"optimal" 
if it satisfied 

x * > 0  f o r j ~ o  -~ and s * > 0  f o r j f f o  -k 

and 

IcTx*--bTy* I/(1 + IbTy* I ) <~*, 

IIAx* -- bll/(1 + Ilbll) <Sx*, 

[IA ~y* + s*-c l I /  (1 + Ilcll) <es*- 

* = e * - - 1 0  11 The values of s* ---- ex were used as a default for all the problems. If the 
complementary solution obtained at the current iteration failed to satisfy this criterion, this 
procedure was called at the subsequent iteration. 

Table 1 gives the problem data of the NETLIB problems used in our experiments. 
Problems with bounds and(or) ranges are indicated by B and (or) R in Column 5. The 
objective values given here are those reported by Bixby [2] using CPLEX. To obtain the 
objective values for these problems Bixby [2] first solved these problems using default 
CPLEX settings, and then "reoptimized" with tighter optimality and feasibility tolerances 
using a threshold pivoting factor equal to 0.99999. Note that for several problems the 
objective values reported by Bixby [2] are different from the NETLIB objective value 
currently available. The objective values obtained in our implementation are the same as 
those reported by Bixby [2]. 

Table 2 gives computational results on the optimal face problem. The second column of 
this table gives the iteration number at which we tried to guess the optimal partition by 
solving system (12) and (13) for the first time. The third column gives the iteration at 
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Table 1 

Problem data summary  

Name Rows  Cols Nonzeros  B R  Opt imal  value* 

25fv47 822 1571 11127 5 .5018458883 E + 3 

80bau3b 2263 9799 29063 B 9.8722419241 E + 5  

Adlitt le 57 97 465 2 .2549496316 E + 5 

Afiro 28 32 88 - 4 .6475314286  E + 2 

A g g  489  163 2541 - 3 .5991767287 E + 7 

A g g 2  517 302 4515 - 2 .0239252356  E + 7 

Agg3  517 302 4531 1 .0312115935 E + 7 

B a n d m  306 472 2659 - 1 .5862801845 E + 2 

Beaconfd  174 262 3476 3 .3592485807 E + 4 

Blend 75 83 521 - 3 .0812149846 E + 1 

Bn l l  644 1175 6129 1.9776295615 E + 3 

Bnl2 2325 3489 16124 1 .8112365404 E + 3 

Boeing 1 351 384 3865 B R  - 3 .3521356751 E + 2 

Boeing2  167 143 1339 B R  - 3 .1501872802 E + 2 

Bore3d  234 315 1525 B 1.3730803942 E + 3 

Brandy  221 249 2150 1.5185098965 E + 3 

Capri  272 353 1786 B 2 .6900129138 E + 3 

Cycle  1904 2857 21322 B - 5 .2263930249 E + 0 

Czprob 930 3523 14173 B 2 .1851966989 E + 6 

D2q06c  2172 5167 35674 1.2278421081 E + 5  

Degen2  445 534 4449 - 1 .4351780000 E + 3 

Degen3 1504 1818 26230 - 9 .8729400000  E + 2 

E226 224 282 2767 - 1 .8751929066 E + 1 

Etamacro  401 688 2489 B - 7 .5571523337 E + 2 

Ffff f800 525 854 6235 5 .5567956482 E + 5 

Finnis 498 614 2714 B 1.7279106560 E + 5 

Fit 1 d 25 1026 14430 B - 9 .1463780924  E + 3 

Fit 1 p 628 1677 10894 B 9 .1463780924  E 4- 3 

Fit2d 26 10500 138018 B - 6 .8464293294  E + 4 

Fit2p 3001 13525 60784 B 6 .8464293294  E + 4 

Forplan 162 421 4916 B R  - 6 .6421896127 E + 2 

Ganges  1310 1681 7021 B - 1 .0958573613 E + 2  

Gfrd-pnc  617 1092 3467 B 6 .9022359995 E + 6 

Greenbea  2393 5405 31499 B - 7 .2555248130  E + 6 

Greenbeb 2393 5405 31499 B - 4 .3022602612  E + 6 

Grow 15 301 645 5665 B - 1 .0687094129 E + 8 

Grow22  441 946 8318 B - 1 .6083433648 E + 8 

Grow7  141 301 2633 B - 4 .7787811815 E +  7 

Israel 175 142 2358 - 8 .9664482186 E + 5 

Kb2 44 41 291 B - 1 .7499001299 E + 3  

Lotfi 154 308 1086 - 2 .5264706062  E + 1 

Maros  847 1443 10006 B - 5 .8063743701 E + 4 

Nesm 663 2923 13988 B R  1.4076036488 E + 7 

Perold 626 1376 6026 B - 9 .3807552782 E + 3 
Pilot 1442 3652 43220  B - 5 .5740430007 E + 2 

Pilot. ja 941 1988 14706 B - 6 .1131364656 E + 3 

Pilot .we 723 2789 9218 B - 2 .7201075328 E 4- 6 

Pilot4 411 1000 5145 B - 2 .5811392589 E + 3 

Pi lotnov 976 2172 13129 B - 4 .4972761882  E 4- 3 
Recipe 92 180 752 B - 2 .6661600000 E + 2 
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Table 1 (continued) 

Name Rows Cols Nonzeros BR Optimal value* 

Sc105 106 103 281 - 5.2202061212 E +  1 
Sc205 206 203 552 -5.2202061212 E +  1 
Sc50a 51 48 131 -6.4575077059 E +  1 
Sc50b 51 48 119 -7.0000000000 E +  1 
Scagr25 472 500 2029 - 1.4753433061 E +  7 
Scagr7 130 140 553 - 2.3313898243 E + 7  
Scfxml 331 457 2612 1.8416759028 E + 4  
Scfxm2 661 914 5229 3.6660261565 E + 4  
Scfxm3 991 1371 7846 5.4901254550 E + 4  
Scorpion 389 358 1708 1.8781248227 E +  3 
Scrs8 491 1169 4029 9.0429695380 E +  2 
Scsdl 78 760 3148 8.6666666743 E +  1 
Scsd6 148 1350 5666 5.0500000078 E +  1 
Scsd8 398 2750 11334 9.0499999993 E +  2 
Sctapl 301 480 2052 1.4122500000 E +  3 
Sctap2 1091 1880 8124 1.7248071429 E +  3 
Sctap3 1481 2480 10734 1.4240000000 E +  3 
Seba 516 1028 4874 BR 1.5711600000 E + 4  
Sharelb 118 225 1182 - 7.6589318579 E+  4 
Share2b 97 79 730 - 4.1573224074 E +  2 
Shell 537 1775 4900 B 1.2088253460 E +  9 
Ship041 403 2118 8450 1.7933245380 E + 7  
Ship04s 403 1458 5810 1.7987147004E+6 
Ship081 779 4283 17085 1.9090552114 E +  6 
Ship08s 779 2387 9501 1.9200982105 E +  6 
Shipl21 1152 5427 21597 1.4701879193 E +  6 
Shipl2s 1152 2763 10941 1.4892361344E+6 
Sierra 1228 2036 9252 B 1.5394362184 E + 7  
Stair 357 467 3857 B - 2.5126695119 E +  2 
Standata 360 1075 3038 B 1.2576995000 E+  3 
Standmps 468 1075 3686 B 1.4060175000E+3 
Stocforl 118 I l l  474 - 4.1131976219 E + 4  
Stocfor2 2158 2031 9492 - 3.9024408538 E + 4  
Tuff 334 587 4523 B 2.9214776509E-1 
Vtp.base 199 203 914 B 1.2983146246 E + 5  
Woodlp 245 2594 70216 1.4429024116 E + 0  
Woodw 1099 8405 37478 1.3044763331E+0 

*The objective value reported here is from Bixby [2]. 

which the optimal partition was identified. Column 4 gives the total number of guesses. 
Columns 5 and 6 give primal and dual objective values recorded at the point generated in 
the optimal face. 

Table 3 provides additional information on the quality of primal and dual solutions. 
Column 2 of this table gives the relative error in the objective value at optimality 
t Ty*--CTX*[/(I+ [bTy*[). Columns 3 and 4 give the relative primal feasibility 
II b -  Ax* II / ( 1 + 11 b II ) ,  and the dual feasibility II c -  A Ty, _ S* II / ( 1 + II c II ), respectively. The 
solutions generated in our experiment are strictly complementary for all of the test problems. 
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Table 2 

Results for facet finding problem 

Name it8 itf try Objective value 

Primal Dual 

25fv47 

80bau3b 

Adlittle 

Afiro 

Agg 

Agg2 

Agg3 

Bandm 

Beaconfd 

Blend 

Bnl l  

Bnl2 
Boeing 1 

Boeing2 

Bore3d 

Brandy 

Capri 

Cycle 

Czprob 

D2q06c 

Degen2 

Degen3 

E226 

Etamacro 

FffffS00 

Finnis 

F i t l d  

F i t l p  

Fit2d 

Fit2p 
Forplan 

Ganges 

Gfrd-pnc 

Greenbea 

Greenbeb 
Grow 15 
Grow22 

Grow7 

Israel 

Kb2 
Lotfi 

Maros 
Nesm 
Perold 

Pilot.ja 
Pilotnov 
Pilot.we 

Pilot4 
Recipe 

26 26 1 5.5018458882867 E +  3 

49 51 2 9.8722419240909 E + 5  

10 10 1 2.2549496316238 E +  5 

7 7 1 -4 .6475314285714  E +  2 

26 26 1 -3 .5991767286577  E + 7  

23 23 1 - 2.0239252355977 E +  7 

20 20 1 1.0312115935089 E + 7  

17 17 1 - 1.5862801845012 E + 2  

7 7 1 3.3592485807200 E + 4  

10 1 0  1 - 3.0812149845828 E +  1 

29 29 1 1.9776295615229 E +  3 

36 36 1 1.8112365403585 E + 3  

26 26 1 - 3.3521356750713 E +  2 

19 19 1 - 3 . 1 5 0 1 8 7 2 8 0 1 5 2 1 E + 2  

18 18 1 1.3730803942085 E + 3  

19 19 1 1.5185098964881 E +  3 

19 19 1 2.6900129137682 E +  3 

31 31 1 - 5 . 2 2 6 3 9 3 0 2 4 8 9 4 1 E + 0  

35 35 1 2.1851966988566 E + 6  

30 30 1 1.2278421081419 E + 5  

12 12 1 - 1.4351780000000 E +  3 

16 16 1 -9 .8729400000000  E + 2  

20 20 1 - 1.8751929066371 E +  1 

30 32 3 -7 .5571523337491 E +  2 

38 38 1 5.5567956481750 E + 5  

25 27 3 1.7279106559562 E + 5  

18 18 1 - 9.1463780924209 E +  3 

18 18 1 9.1463780924209 E +  3 

23 23 1 -6 .8464293293832  E + 4  

22 22 1 6.8464293293833 E + 4  

23 23 1 -6 .6421896127220  E +  2 

18 18 1 - 1.0958573612928 E +  2 

16 16 1 6.9022359995488 E + 6  

41 42 2 -7 .2555248129846  E + 6  

41 44 3 -4 .3022602612066  E +  6 
12 12 1 - 1.0687094129358 E +  8 

13 13 1 - 1.6083433648256 E +  8 
12 12 1 -4 .7787811814712  E +  7 

24 25 2 - 8.9664482186305 E + 5  

20 20 1 - 1.7499001299062 E +  3 
14 14 1 -2 .5264706061882  E +  1 
27 27 1 - 5.8063743701126 E + 4  

35 38 4 1.4076036487563 E +  7 
33 34 2 -9 .3807552782352  E +  3 
43 43 I -6 .1131364655813  E +  3 
25 26 2 -4 .4972761882189  E +  3 
50 51 2 -2 .7201075328450  E +  6 
43 44 2 - 2.5811392588839 E +  3 
11 11 1 -2 .6661600000000  E +  2 

5.5018458882867 E + 3  

9.8722419240909 E +  5 

2.2549496316238 E + 5  

-4 .6475314285714  E + 2  

- 3.5991767286576 E +  7 

-2 .0239252355977  E +  7 

1.0312115935089 E +  7 
- 1.5862801845012 E + 2  

3.3592485807200 E + 4  

- 3.0812149845829 E +  1 

1.9776295615229 E +  3 

1.8112365403585 E +  3 

-3 .3521356750712  E +  2 

- 3.1501872801520 E + 2  

1.3730803942085 E +  3 

1.5185098964881 E +  3 

2.6900129137682 E + 3  

- 5 . 2 2 6 3 9 3 0 2 4 8 9 4 1 E + 0  

2.1851966988566 E +  6 

1.2278421081419 E + 5  

- 1.4351780000000 E + 3  

-9 .8729400000000  E + 2  

- 1.8751929066371 E +  1 

-7 .5571523337491 E +  2 

5.5567956481750 E + 5  

1 .7279106559561E+5  

- 9.1463780924209 E +  3 

9.1463780924209 E +  3 

- 6.8464293293832 E + 4  

6.8464293293832 E + 4  
- 6.6421896127220 E + 2  

- 1.0958573612928 E + 2  

6.9022359995488 E + 6  
-7 .2555248129846  E +  6 

-4 .3022602612066  E +  6 

- 1.0687094129358 E + 8 
- 1.6083433648256 E +  8 
-4 .7787811814712  E + 7  

- 8.9664482186305 E +  5 

- 1.7499001299062 E +  3 
-2 .5264706061880  E +  1 
-5 .8063743701126  E + 4  

1.4076036487562 E + 7  

-9 .3807552782352  E + 3  
- 6.1131364655813 E + 3  
-4 .4972761882189  E +  3 
-2 .7201075328450  E +  6 
-2 .5811392588839  E + 3  
-2 .6661600000000  E + 2  
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Table 2 (continued) 
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Name it8 itf try Objective value 

Primal Dual 

Sc105 9 9 
Sc205 11 11 
Sc50a 8 8 
Sc50b 6 6 
Scagr25 17 17 
Scagr7 13 13 
Scfxml 18 18 
Scfxm2 20 20 
Scfxm3 20 20 
Scorpion 12 12 
Scrs8 21 21 
Scsdl 8 8 
Scsd6 10 12 
Scsd8 9 9 
Sctapl 15 15 
Sctap2 13 13 
Sctap3 14 14 
Seba 18 18 
Sharelb 22 22 
Share2b 12 12 
Shell 20 20 
Ship041 12 12 
Ship04s 13 13 
Ship081 14 14 
Ship08s 14 14 
Ship 121 18 18 
Shipl2s 16 16 
Sierra 21 21 
St~r 16 16 
Stand~a 14 14 
Standmps 22 22 
Stocforl 16 16 
Stocfor2 24 24 
Tuff 20 20 
Vtp.base 28 28 
Woodlp 31 31 
Woodw 40 40 

-5.2202061211707 E+ 1 
-5.2202061211707 E+ 1 
-6.4575077058565 E+ 1 
-7.0000000000000 E+ 1 
- 1.4753433060769 E+7 
-2.3313898243310 E+7 

1.8416759028349 E+4 
3.6660261564999 E+4 
5.4901254549751E+4 
1.8781248227381 E+ 3 
9.0429695380079 E+ 2 
8.6666666743334 E+ 1 
5.0500000077144 E+ 1 
9.0499999992546 E+ 2 
1.4122500000000 E+ 3 
1.7248071428571E+3 
1.4240000000000 E+ 3 
1.5711600000000 E+4 

-7.6589318579186 E+4 
-4.1573224074142 E+ 2 

1.2088253460000 E+ 9 
1.7933245379704 E+ 7 
1.7987147004454 E+ 6 
1.9090552113891 E+ 6 
1.9200982105346 E+ 6 
1.4701879193293 E+ 6 
1.4892361344061 E+ 6 
1.5394362183632 E+ 7 

-2.5126695119297 E+ 2 
1.2576995000000 E+ 3 
1.4060175000000 E+ 3 

-4.1131976219436 E+4 
- 3.9024408537882 E+4 

2.92147765093610 E -  1 
1.2983146246136 E+ 5 
1.4429024115734 E+0 
1.3044763330842 E+0 

- 5.2202061211707 E+ 1 
-5.2202061211707 E+ 1 
- 6.4575077058565 E+ 1 
-7.0000000000000 E+ 1 
- 1.4753433060769 E+7 
- 2.3313898243310 E+7 

1.8416759028349 E+4 
3.6660261564999 E+4 
5.4901254549751E+4 
1.8781248227381 E+ 3 
9.0429695380079 E+2 
8.6666666743334 E+ 1 
5.0500000077144E+ 1 
9.0499999992546 E+2 
1.4122500000000 E+ 3 
1.7248071428571 E+ 3 
1.4240000000000 E+ 3 
1.5711600000000 E+4 

- 7.6589318579186 E+4 
-4.1573224074142 E+2 

1.2088253460000 E+9 
1.7933245379704 E+7 
1.7987147004454 E+6 
1.9090552113891E+6 
1.9200982105346 E+6 
1.4701879193293 E+6 
1.4892361344061E+6 
1.5394362183632 E+7 

- 2.5126695119297 E+2 
1.2576995000000 E+3 
1.4060175000000 E+3 

-4.1131976219436 E+4 
- 3.9024408537882 E+4 

2.92147765093610 E -  1 
1.2983146246136 E+5 
1.4429024115734 E+0 
1.3044763330842 E+0 

Co lumns  5 to 8 give  in format ion  on the range o f  posi t ive  pr imal  and dual variables  on the 

opt imal  face. In particular,  Co lumns  5 to 8 give  m a x { x *  }, r a in{x*  }, m a x { s *  }, and 

min{sN* }. W e  find that the range o f  pr imal  and dual pos i t ive  slacks in the opt imal  face  is 

of ten  a good  indicator  for  the pe r fo rmance  o f  in ter ior-point  a lgor i thms and the ef f ic iency 

wi th  wh ich  the opt imal  face  can be found.  

W e  first d iscuss  the quali ty o f  solut ions we  obta ined in the inter ior  o f  the ident i f ied face. 

The results  show that accurate  solut ions were  obta ined on all the problems.  For  all the 

p rob lems  the pr imal  and dual objec t ive  value ma tched  up to thir teen signif icant  digits.  
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Futhermore, for all the problems these objective values were same (to all eleven significant 

digits reported) as those reported by Bixby [2]. 
Although the accuracy of primal and dual solutions varied, all problems had approxi- 

mately twelve digits of accuracy in both primal and dual solutions. For a majority of the 

problems the accuracy was close to fourteen digits. (The FORTRAN double precision on 

Sun 4/110 uses 11 bits for exponent, and it has 53 significant bits. This is an equivalent of 

15 to 17 digit precision on one floating point operation.) 
We now discuss the work required to identify the optimal partition. First note that for 74 

out of the 86 tested problems the partition was declared optimal at the first attempt. We 

needed more than two attempts only for problems Etamacro, Finnis, Greenbeb, Nesm, and 

Scsd6. For all of these problems, positive dual slacks with relatively small values are present. 

The influence due to the presence of small dual slacks is best seen when we consider the 

results on Scsd problems. For problems Scsdl  and Scsd8 the optimal partition was found at 
the first attempt. The smallest possible dual slack for these problems is greater than 10 -3 . 

However, for problem Scsd6 we needed three attempts. The smallest positive dual slack for 

this problem is less than 10 -9. For problem Scsd6 the smallest dual slack variable gave no 

indication of staying positive until ten digits of accuracy was achieved in the solution. 

Since, an attempt to identify the optimal partition only requires us to factor one basic 

matrix, the cost is equivalent to, or even less than, one iteration of interior-point algorithms. 

The results given in this section clearly indicate that the number of attempts we need is 

typically small. Obviously, if we wait long enough we will always be able to identify the 
optimal partition in one attempts, but this would cost extra iterations of interior-point 

algorithms. The question about the choice of iteration at which we should attempt to find 

the optimal partition remains to be addressed. 

5. Additional remarks 

Computations on a finite precision machine 

We first discuss the importance of feasibility tolerances while testing for the optimality of 
a partition. We need these tolerances because of finite machine precision. The machine 

precision becomes important in at least two ways. At each iteration of interior-point algo- 

rithms the search direction is computed by inverting a matrix. This matrix may become ill- 

conditioned. As a result of this ill-conditioning, the computed direction may not be accurate. 

Even if the matrix inverted at each iteration remains well conditioned, it is possible that 
some primal and/or dual slacks may have very small positive values at solutions in the 

optimal face. The partition for such variables may never become clear on a finite precision 
machine, because it could require accuracy in the iterates which may not be possible. 

Obtaining an optimal vertex solution 

Once a solution on the optimal face is available, a primal optimal basic solution (vertex 
solution) can be obtained in strongly polynomial time, e.g., see Megiddo [ 13]. In fact, it 
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can be obtained in no more than n - m pivots of the simplex method. For example,  if the 

cardinali ty I o-* [ = [ o-(x* ) ] ~< m, then x*  generated from our procedure is already a basic 

solution. In the fol lowing,  we assume that I ~ ( x  *)  [ > m and B has full row rank, which is 

without loss of generality. We  emphasize that a basic matr ix/~ of B was already factorized 

when solving systems (12)  and (13)  in our procedure to identify the optimal partition. 

Furthermore,  we have 

B x *  = b  and x*  > 0 .  

Let B be written as B = (B, H)  and let/~ be the initial basis for the (dual)  s implex method. 

I f / J= /~  l b >~ 0, then x ,  =/~ is a basic feasible solution and/~ is an opt imal  basis. Otherwise, 

let 

Therefore, there must  exist an 0 < a < 1 such that 

B x  B = b and XB >~0, 

and at least one componen t  of Ya is zero. Thus, the corresponding co lumn can be deleted, 

permanent ly  in this case, from the basis/~.  Select an incoming  co lumn from H to form a 

new basis, and cont inue this process. Thus, in no more than ] o-(x* ) I - m pivot steps, we 

shall obtain a basic feasible solution, since the system {xs: Bx~ = b, x8 >~ 0 } is known  feasible. 
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