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We consider a pair consisting of an optimization problem and its optimality function (P, 0), and define consistency 
of approximating problem-optimality function pairs, (Pu, Ou) to (P, 0), in terms of the epigraphical convergence 
of the PN to P, and the hypographical convergence of the optimality functions On to 0. We then show that standard 
discretization techniques decompose semi-infinite optimization and optimal control problems into families of 
finite dimensional problems, which, together with associated optimality functions, are consistent discretizations 
to the original problems. We then present two types of techniques for using consistent approximations in obtaining 
an approximate solution of the original problems. The first is a "filter" type technique, similar to that used in 
conjunction with penalty functions, the second one is an adaptive discretization technique that can be viewed as 
an implementation of a conceptual algorithm for solving the original problems. 

Key words: Semi-infinite optimization, optimal control, discretization theory, epiconvergence, consistent approx- 
imations, algorithm convergence theory. 

1. Introduction 

The vast majority of semi-infinite optimization and continuous optimal control problems 
cannot be solved without resorting to some form of discretization: domain discretization in 
semi-infinite optimization and numerical integration in optimal control. There are basically 
two, not altogether disjoint, discretization techniques in current use. 

The first can be viewed as that of implementation of conceptual algorithms, and is 
characterized by a theoretically justified numerical implementation of operations in a con- 
ceptual algorithm. There is a moderate size literature dealing with the implementation of 
conceptual algorithms, see e.g. [ 14, 15, 21, 22, 23, 27]. In fact, one can even find a theory 
of implementation of conceptual algorithms, see [ 14, 18]. Properly constructed implemen- 
tations of conceptual superlinearly converging algorithms remain superlinearly converging 
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(see, e.g., [ 15, 23, 27] ), but, in our experience, implementations of first order algorithms 
perform poorly. A particular aspect of implementations is that the approximations used in 
computing function values and gradients need not be coordinated, which permits the use of 
implicit methods of integration of differential equations in the solution of optimal control 
problems. However, the resulting approximate gradients are not gradients for the approxi- 
mate functions, which explains the degradation of first order optimization algorithms. 

The second technique, sometimes called diagonalization (see [ 7, 9 ] ), emulates the use 
of differentiable penalty functions in nonlinear programming and hence is characterized by 
the fact that it decomposes a semi-infinite optimization problem into an infinite sequence 
of nonlinear programming problems, by domain discretization, and a continuous optimal 
control problem into an infinite sequence of discrete optimal control problems, by explicit 
numerical integration of the differential equations. Discrete optimal control problems are 
nonlinear programming problems with special structure. Obviously, the gradients computed 
for the approximating problems are gradients of the functions appearing in the approxi- 
mating problems, which prevents the degradation of first order methods. As with penalty 
methods, the solution of an optimization problem via diagonalization can be viewed as a 
diagonal progression across minimizing sequences for the approximating problems, i.e., 
one solves an approximating problem until some test is satisfied, and then uses the resulting 
end point to start the solution of the next approximating problem. The choice of termination 
tests is important, since it has a considerable impact on computational effort. In [ 13] we 
find some results on the construction of optimal discretization strategies, while in [ 22, 23] 
rate-preserving strategies are presented for use with first order algorithms for convex prob- 
lems. 

In this paper we examine two major issues associated with the use of diagonalization in 
the solution of a semi-infinite optimization and optimal control problems. The first is the 
establishment of the concept of consistency for the approximating problems, while the 
second one is the expansion of available "cross-over" tests for use with diagonalization. 

In Section 2 we introduce two concepts of consistency based on epiconvergence of the 
approximating problems, as well as on the convergence of stationary points, characterized 
as zeros of optimality functions. As we will see, unless some constraint qualification is 
satisfied, optimality functions may have zeros outside the feasible set. Hence the two 
definitions make distinctions between whether a constraint qualification is satisfied or not. 
In [8] it is shown that epiconvergence implies that sequences of global minimizers of the 
approximating problems converge to global minimizers of the original problem. We 
strengthen this result by showing that, in addition, sequences of "uniformly" strict local 
minimizers of the approximating problems converge to a local minimizer of the original 
problem. To conclude Section 2, we show that differentiable penalty functions in non-linear 
programming, the most analyzed form of problem approximation, are consistent approxi- 
mations in our sense. 

In Section 3 and 4 we define sequences of approximating problems for semi-infinite 
optimization and optimal control problems and show they are consistent in the sense of our 
definitions. Finally, in Section 5 we present four new master algorithm models for use in 
solving optimization problems via diagonalization. 
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2. Preliminaries 

Since we intend to examine more than one type of approximation effect, it is simpler, at 
first, to deal with consistent approximations in abstract form. Thus let 2 be a normed linear 

space, with norm ]l" [1, and consider the problem 

P: m i n f ( x )  (2.1a) 
x~X 

where f :  2 ~ E is (at least) lower semicontinuous, and X c ~  is the constraint set. Next, 

let {~N}~v= 1 be a family of  finite dimensional subspaces of  ~ such that ~ N  = ~ '  if ~ is 

finite dimensional (En) and ~ N C 2 N +  1, for all N, otherwise. Let N & { 1, 2, 3 . . . .  }, and 
consider the family of approximating problems 

PN: min fN(X), N ~ ,  (2.1b) 
x~XN 

wherefu  : ~ N  ----~ ~ is (at least) lower semicontinuous, and X N Q [ ~  N. 

The relationship between the PN and P becomes clearer if we restate them all in epigraph- 

ical terms. Thus, let the epigraphs (actually subsets of epigraphs) E c N × ~ . ~  and 

E N C_ ~ × ~'~N be defined by 

E & {(x °, x) ]x~X,  x°>~f(x) }, (2.1c) 

E N ~ { (x  O, x)  [XE~:XN, xO>/fm(X) }. ( 2 . 1 d )  

Then the problems P and PN can be restated in the following, equivalent form: 

PN: rain x °, (2.1e) 
(x o, x)~E 

PN: min x °. (2.1f) 
(x O, x) ~EN 

In the form (2. le,f) ,  we see that the problems PN differ from the problem P only in the 
constraint set. Hence, it is intuitively clear that for the PN to be of  any use to us at all, the 

epigraphs EN must converge to the epigraph E, in the sense that Lira EN = Lim E N = E in 
the Fell topology. Because of the form of (2. lc,d),  this requirement can be rephrased as 
follows (see [3, 8, 26] ). 

Definition 2.1. We will say that the problems in the family {PN }N= L converge epigraphi- 
cally to P (PN ~Epi P) if 

(a) for every x ~ X, there exists a sequence { XN } N= l, with XN ~ Xu, such that XN ~ X and 

lira sup f N(XN) <.f(x) ; 
(b)  for every infinite sequence {XN} N ~ K, where K c ~ ,  satisfying XN ~ XN, for all N ~ K 

and XN ~ K X, we have that x ~ X and lira inffN(XN) >~f(x). 
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The main consequences of epiconvergence are contained in the theorem below, which 

requires the following definition. 

Definition 2.2. A sequence {xk } [=k* of local minimizers for the Pk is uniformly strict, if 

there exists a p > 0 such that fk(xk) <f~(x) for all x ~ Xk, x ~ xk, such that IIx- xkll ~< p for 

all k>~ k*. 

Theorem 2.3. Suppose that PN ~ Epi p. 

(a) I f  { £N } ~v= 1 is a sequence of global minimizers of the P N, and 2 is any accumulation 

point of {£N} ~V= 1, then 2 is a global minimizer of P. 
(b) If  { YN } N= 1 is a sequence of uniformly strict local minimizers of the PN, and2 is any 

accumulation point of {£N} N= 1, then 2 is a local minimizer of P. 

Proof. (a) A proof of this result can be found in [3, 8, 26], and is therefore omitted. 

(b) Suppose that for some infinite subset K c N ,  we have that 2N--~K2. Let p > 0  be a 

common radius of attraction for the sequence {-fN}N~K. I f2  is not a local minimizer for P, 

then there must exist an x* ~X, such that llx* -21l ~< lp andf(x*) =f(2)  - 36, with 6> 0. 

By Definition 2.1(a), there exists a sequence {XN* }N= 1, with x* ~XN, such that XN* ~X*  

and lim SUpN~r~fN(X* )<~ lim sup fN(X* )<~f(x*), and by Definition 2.1(b), we must 

have that lim infN~XfN(2N) >1 lira inffN(2N) >~f(2). Hence there exists an No such that for 

all N>~ No, N ~  K, Ilx* - 2NIl < P, fN( x* ) ~ f (2)  -- 26 andfN(2N) >~f(2) -- 6, which contra- 
dicts the local optimality of the xN. Hence the theorem is true. [] 

The above theorem is not conservative, as the following example, supplied by a referee, 

proves: For any N ~  N, le t fN(x)  = x 2 / N + x  3, with x ~  N. Then f~v(0) = 0  and f~,(0) = 

2 /N> O. Hence 0 is a strict, but not uniformly strict local minimizer offN( " ) for all N. 

NOWfN(x) ~ X 3, and 0 is not a local minimizer of x3. 

In the absence of convexity, nonlinear programming algorithms can only be shown to 

compute stationary points that are, hopefully, local minimizers of the PN, but not necessarily 

global minimizers of the PN. The worst outcome of such a process is illustrated in Figure 

2.1, where a sequence of local minimizers converges to a global maximizer. In view of 

xlo xs0 Xl0 o ~ X 

Fig. 2.1. Convergence of local minimizers XN to a global maximizer 2. 
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Theorem 2.3, we note that epiconvergence ensures, at least, that uniformly strict local 

minimizers of the PN cannot converge to anything but local minimizers of P. 

It is sometimes useful to replace either the problem P or the problems PN, N = 1, 2 . . . . .  
or both, by problems, pO and pO, respectively, of the form 

pO: rain fO(x), (2.1g) 
x E X  0 

pO: min o fN(X), • (2.1h) 
x ~ X  ° 

where fo  : 3 ~ R is (at least) lower semicontinuous, and X ° c 2 ,  f °  u • ~ . ~ N  - - ~  ~ is (at 
least) lower semicontinuous, and X ° c ~N- 

The problems pO and pO need not be epigraphically equivalent to the original problems, 
but they must be equivalent in the sense that they have the same local (and therefore also 
global) minimizers. For example, as we will soon see, in the case of problems in R n, of the 
form min{f(x) lg(x) = 0}, with the approximating problems defined by means of differ- 

entiable penalty functions (so that PN is given by rain f (x)  +Nllg(x)112), we have to use 
the equivalent form pO, defined by X ° = ~.~, and f ° :  ~.~ ~ ~ defined as follows:f ° (x) =f (x)  
for all x ~ X, and f ° (x )  = + ~ otherwise. In this case, the problems PN converge epigraph- 
ically tO pO and not to P. 

In the case of a globally calm optimal control problem P, of the form min {f(x) I g (x) = 0 }, 
it may be necessary to replace it by the unconstrained problem pO given by 

minf(x)  + cllg(x) II ~, where the exact penalty c > 0 is finite, but sufficiently high to ensure 
that the global and local minimizers of p0 coincide with those of P, and use approximating 
problems P°u, of the form mi n f u ( x )  + c]IgN(X)I1~, which converge epigraphically to po. 

In view of the above discussion, we obtain the following result. 

Corollary 2.4. Suppose that one of  the following four statements is true (i) PN --~ Epi p; (ii) 
PN--~ EpIp °, and P and pO have the same local minimizers; (iii) pO ~Epi p; (iv) po  _~epi 

pO, and P and pO have the same local minimizers. 

(a) I f  (i) or (ii) holds, and {2N}N= 1 is a sequence of global minimizers of the PN and 

is any accumulation point of {XN } N-- 1, then 2 is a global minimizer of P. 

(b) I f  (iii) or (iv) holds and {XN}N=I is a sequence of global minimizers of  the pO, 

and 2 is any accumulation point of  {2 N } ~= 1, then 2 is a global minimizer of P. 

(c) I f  (i) or (ii) holds, and {2N} N= 1 is a sequence of uniformly strict local minimizers 

of  the PN and 2 is any accumulation point of {XN } ~= 1, then 2 is a local minimizer of P. 

( d ) I f  ( iii ) or (iv) holds, and { gN } N-- I is a sequence of uniformly strict local minimizers 
of the P°N, and 2 is any accumulation point of  {2 N} N= ~ then 2 is a local minimizer of P. [] 

We will characterize stationarity of points with respect to the problems P, PN, in terms of 
the zeros of optimality functions, 0 : 2  ~ N for P and ON: ~N--* N for PN, N ~  N, where 
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2 c ~  and ~NC~dN,  i.e., the optimality functions may not be defined on the entire space 

(see e.g. [ 18, 19] ). Quite commonly ( see, e.g., Section 4),  we have that ~ r  N = =@f ('~ ~'~N" 

Definition 2.5. We will say that a function 0 : 2 ~ E is an optimality function for P if (i) 

X c Z ,  (ii) 0( .  ) is upper semicontinuous, (iii) O(x) <~0 for all x ~ 2 ,  and (iv) fo r : f~X,  

0(2) = 0, if and only if ~ is a stationary point for P. Similarly, we will say that a function 

ON : 2 N  ~ E is an optimality function for PN if (i) XNC2N, (ii) ON(" ) is upper semicon- 

tinuous, (iii) ON(X ) ~0  for all X ~ 2 N ,  and (iv) for XN~XN, ON(XN) =0, if and only i f2  N 
is a stationary point for PN. 

While all the optimality functions that we will see in this paper are continuous, there are 

minimax and feasible directions algorithms that are based on upper semicontinuous opti- 
mality functions (see, e.g. [ 18, 19] ). Hence our assumption of upper semicontinuity in the 

definition of  optimality functions is inspired by practical considerations, rather than a search 

for generality. 
The epigraphical characterization of a problem is too coarse for our needs. For example, 

consider the two problems min{ f (x ) Ig (x )  =0}  and min{f(x) lllg(x)ll2=O}, where 
f :  En__, ~ and g: E " ~  ~m are continuously differentiable, and gx(x) has maximum row 

rank for all x ~ En. These two problems are epigraphically indistinguishable, yet, from the 

point of  view of optimality conditions, the second problem is degenerate, while the first one 

is not. To overcome this deficiency, our concept of  consistency of approximations is 
expressed in terms of properties of  pairs, each consisting of a problem and a corresponding 

optimality function. 

Definition 2.6. Consider the problems P, PN, defined in (2. la,b),  and the problems p0, po, 
defined in (2.1g,h), which are assumed to be such that P and pO, and PN and pO have the 

same local minimizers. Let 0( • ), ON( • ), N ~  ~,  be optimality functions for P, PN, respec- 

tively. We will say that the pairs (PN, ON), in the sequence {(PN, 0N)}N=I are weakly 
consistent approximations to the pair (P, 0), if (i) PN ~ Epi p, or (ii) PN ~ zvi pO, or (iii) 
pO N ~ Epi p, or ( iv) P°N ~ Epi po, and for any sequence {XN} N E K, K c N, with X N ~ X N for all 

N ~ K, such that xx ~ X, lira sup ON( XN) <~ O( X). 

The next definition includes a requirement that a constraint qualification is satisfied. 

Definition 2.7. Let 0( .  ), ON( " ), N ~  ~,  be optimality functions for P, PN, respectively. We 

will say that the pairs ( PN, ON), in the sequence { (PN, ON) }N = ~ are consistentapproximations 
to (P, 0), if they are weakly consistent approximations, and, in addition O(x) < 0  for all 

x ~ X  and ON(X) < 0  for all xq~XN, N ~  ~. 

The best known examples of  consistent approximations are not those used in semi-infinite 
programming and optimal control, but those found in nonlinear programming, in the form 
of various penalty function methods. It is useful to digress for a moment from our original 
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charge and examine what can be said about penalty methods, so as to establish a yardstick 

for comparisons. Thus, consider the simple case where 

P: min{f(x) ]g(x) =0}, (2.2a) 

where f :  N"--* N and g : ~"--* NI, with l<n are both continuously differentiable. Clearly, 
for the above problem, X = {x ~ N" Ig(x) = 0 }. The simplest approximations using penalty 
functions have the form 

P: min fN(X), N~N,  (2.2b) 
x ~ n  

wherefu : ~ U  ~ N are defined by 

fly(x) & f(x) + ½cNllg(x) II ~, (2.2c) 

with {c u } N= ~ a strictly increasing sequence of positive penalties that diverges to infinity. 
To obtain consistency results, we must restate P in the equivalent form 

po: rain i f (x ) ,  (2.2d) 
x E R  n 

where fo  : [~ ~ ~ is defined 
fO(x) = + w, otherwise. 

by f ° (x )=f (x )  for all x ~ N  n such that g ( x ) = 0 ,  and 

Theorem 2.8. The problems in the sequence {PN}Tv=~, defined in (2.2b), converge epi- 
graphically to po, defined in (2.2d). 

ProoL First, since for any 2~ ~ ,  fN(2) <~f°(2), it follows that lira sup fN(2) <~f°(2). 
Hence setting XN=2 for all N ~  ~d, we see that part (a) of Definition 2.l is satisfied. Next, 

suppose that the sequence {xN } ~v= t converges to the point 2. If g(2) ~ 0, then we must 
have that c~= lira inffN(XN) =f°(2). If g(2) = 0, then we must have lim inff°(XN)>i 
limf(xN) =f(2) .  Hence we see that part (b) of Definition 2.1 is satisfied. [] 

Next we will introduce optimality functions for the problems P and PN. Let 0 : N" ~ IR 
be defined by 

O ( x )  ~= - min{ II ~ ° V f ( x )  - g~<x)r  ~'ll ~l < ~o) 2 + II ~ll ~ = 1 } 

- IIgx(x)Tg(x) U 2 (2.3a) 

where ~ Nz, and, for any N ~  N, let ON : N" ~ N be defined by 
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ON(X) ~= -- 1 CNg(X) 2 
V/(x) + gx(x)T'!/1 + C2Ullg(x) II 2 

_ l V f (x )  +gx(x )Tg(x )  2, 

1 1 ]  
= - l + C 2 N l l g ( x ) l  2 ~NN rlVfN(x) l]2 (2.3b) 

Clearly, O(x) = 0 at any point that satisfies the constraint g(x) = 0 and the F. John condition 

of optimality; while ON(X) = 0 if and only if Vfu(X) = 0. Since the continuity and sign 

properties of  these functions are obvious, it follows that they are optimality functions. 

T h e o r e m  2.9. The pairs in the sequence { (PN, ON) }X= 1, defined by (2.2b) and (2.3b),  
are weakly consistent approximations to (P, 0), defined by (2.2a),  (2.3a). Furthermore, 
if gx(x ) has maximum row rank for all x ~  Nn, then they are consistent approximations 
toP. 

Proof.  First, by Theorem 2.8, the problems PN converge epigraphically to pO. Next, let 

{XN}N-~ be any sequence that has a limit point, say 2. Then, because for all XN we must 

have that 

_ V/1 1 Vf(XN) +gx(xu)Z 
CNg(XN) 

+ C2N Ilg(XN){I z ~/1 + C 2 Ilg(xN){I 2 

_ min{~OVf(xN) +gx(XN)T~II 2[ (~O) 2+ II~lJ 2=  1}, (2.4a) 

and because 

ICN Vf( XN) + gx( XN) T g( xN) 2__+ ilgx( ~) W g( 2) II 2, (2.4b) 

as N ~ % it follows that lira sup ON(XN) <~ 0(2), which shows that we have weak consistency. 
Now suppose that gx(x) has maximum rank for all x ~ Nn. Then O(x) = 0 implies that 

g(x) = 0, i.e., that x~X .  Since XN= Nn, it now follows that we have consistency. [] 

We will now proceed to show that we can construct consistent approximations to semi- 
infinite optimization and optimal control problems. 
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3. Consistent approximations for semi-infinite optimization 

To avoid excessively burdensome notation, we will restrict ourselves to the following two 
simple examples of semi-infinite optimization problems. The first is an unconstrained 
minimax problem: 

MMP: min qs°(x), (3.1a) 
x ~  n 

while the second one is an inequality constrained minimax problem: 

rain ~b°(x), (3.1b) 
x ~ X  

ICP: 

where 

x ~  {x ~ ~" t ~ 01 (x) < 0}. (3. lc) 

In (3.1a,b,c), for j  = 0, 1, the functions ~b j : Rn--* N, are assumed to be of the form 

OJ(x) &max 4d(x, y), (3.1d) 
y E Y  

with ~bJ: N" X N ~ N twice continuously differentiable, and the set yA [0, 1 ]. 
Now, f o r N =  1, 2, 3 . . . . .  let YN & [0, 1/N, 2/N, .... N/N}, and let 

~ ( x ) & m a x  ~ ( x , y ) ,  j = 0 ,  1. (3.2a) 
y E  YN 

For N = 1, 2, 3 . . . . .  we now define the approximating problems MMPN and ICPN by 

MMPN: min O°(x), (3.2b) 
x ~ n  

min ~°(x) ,  (3.2c) 
X ~ X N  

ICPN: 

where 

XN ~= {XC~'I q~u(X) <0}. (3.2d) 

Lemma 3.1. For any bounded set S c N  n, there exists a constant L <m such that for all 
N =  1, 2, 3 . . . . .  andx~S ,  

--L/N<~UN(X)--OJ(X) ~<0, j = 0 ,  1. (3.3) 

Proof. L e t j ~  {0, 1}. First, since YNCY, we always have that ~0~v(X)~< ~U(x). Next, let 
yX~ Ybe  such that ~bJ(x) = qSJ(x, yX). Then there exists a Y~N ~ YN such that ]yX--Y~ul <~ 
1/N. Hence 

OJN(X) >~ ChJ(X, Y~N) >~ ~M(X, yX) --L/N, (3.4) 

w h e r e L < ~ i s a L i p s c h i t z c o n s t a n t f o r & ( - , - )  o n S × Y , j = O ,  1. [] 

Theorem 3.2. The problems MMP N and ICP N converge epigraphically to the problems 
MMP and ICP, respectively. 
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Proof.  We only need to consider the problems ICPN and ICP, because if we set  (~)1 (x, y) = 0, 

then these problems degenerate to MMPN and MMP, respectively. 
Our first observation is that because of (3.3),  ~ ° (x )  4 0°(x) .  Hence, since XCXN for 

all N, given any x~X, we can define the sequence {XN}~V=I by XN=X for all N, and we 

immediately obtain that XN~XN for all N and lira sup tp°(XN) <~ t~°(X), which shows that 

part (a)  of  Definition 2.1 is satisfied. 

Next, suppose that {XN } ~v= ~ is a sequence such that XN~XN and XN-*X as N ~  c~ It now 

follows from the fact that O~(XN) ~<0and (3.3) that O1(XN) <~L/NforallN. Because ~b~( • ) 
is continuous, we conclude that tpl(x) ~<0, i.e., that x~X. Furthermore, again by (3.3), 

lim inf ~°(xN) ~>lim inf tp°(XN) = O°(X), which shows that part (b)  of  Definition 2.1 is 

satisfied. Hence our proof is complete. [] 

Before we can deal with the question of consistency, we need to introduce optimality 

functions for the problems MMP, MMPN, ICP, and ICPN. Optimality conditions for ICP 
(ICPN) can be obtained from those for MMP (MMPN), by making use of  the parametrized 
functions Fx, : Nn ~ N, and FN, x, : ~n ~ ~ ,  N =  1, 2 . . . . .  with the parameter x '  ~ Nn, defined 

by 

Fx,(x) --a max{ qJ°(x) - ~ ° (x ' )  - ytPJ(x ') +, ~01 (x) - tPl(x ' ) + }, (3.5a) 

Fu,x,(x) & max{ ~° (x )  -- O0N(X') -- ytpl(x ') +, tp~(X) -- ~0~(X') + }, (3.5b) 

where y > 0 ,  and Ol(x)  + ~ m a x { O l ( x ) ,  0}, and 0~(x)  + A {max O~(x),0}. It is not diffi- 

cult to see that 2 is a local minimizer for ICP (ICPN) then it is also a local unconstrained 

minimizer for Fe(. ) (FN,e(')). Hence, as in [19], for y~>0, let the set valued maps 
G°(x ) ,  G°,7(x),  G l ( x ) ,  G l ( x ) ,  with values in En + 1, be defined as follows: I 

G ° ~ ( x ) &  co { (  o°(x)-4)°(x 'y)+y~l(x)+ ) }  (3.5d) 
y~rN V~ qS°(x, Y) ' 

~l(x)~=cof[C(x)+-4~'(x,Y))} 
y~r  I.~ V~q51(x, y) ' 

( ~ l ( x ) &  co f(tPlN(X)+--ekl(X' y) ) }  (3.5e) 
y~YN L~ Vx(~ l(x'  Y) ' 

We will denote the elements of  these sets by ~=  (~°,s¢), with ~:E N". For the problems MMP 

and MMPN, we set 3 '= 0 and we define the optimality functions 0MMp, 0MMp~, by 

OMMp(X) ~=- min ~°+½ll~ll 2, OMMPu(X) A=- rain ~:°+½1[~:ll 2. (3.6a) 
~ ~o°(x) ~ c~°.o(x) 

~The parameter y is not needed for the optimality conditions, but will be needed in the algorithms that we will 
describe in Section 5. 
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For the problems ICP and ICPN, we set T >  0 and we define the optimality functions 0ice, 

0~cp~, by 

01cp(X ) A __ min ~o + ½ II ~ll 2, 
¢~oo(C°(x). c~(x) } (3.6b) 

0ICpN(X) £ -- min ~0 ÷ 1 I[ ~l[ 2 
~Eco{G°.r(x), G~(x) } 

T h e o r e m  3.3. (a)  I f2  is a local minimizer for  MMP ( XN is a local minimizer for  MMPN), 

then 0 ~ 0~°(2)  (0 ~ OON(XN) ) (where 00°(  • ), OtP°u( • ) denote the Clarke generalized 
gradients [6] ). 

(b)  if X; is a local minimizer for  ICP ( 2N is a local minimizer for  ICPN), then (with T >  0) 

0 ~ OFe(2) (0 ~ OFN,£~v(.~N) ). 
(C) For any x ~ R " ,  

O~O~/tO(x) ~ o ~ d O ( x )  ¢=~ OMMp(X)=O, 

Ot~o~JO(x) ~ O(=G°o(X) ¢:~ OMMPN(X)=O. 

(d) Let y>O.  Then,for any x E ~ ' ,  

OEOFx(X ) ¢=> 0~co{d°()~) ,  GI(..,~)] ¢::> 0icp(X)=0, 

OEOFN,x(X ) ¢=~ 0Eco{d°,y()~),  dl(3~)} ¢:~ OICPN(X)=O. 

( e ) For T>~0, the set valued maps r i d ( . ) ,  r i d ( . )  O l ( . ) , a l l ( . ) ,  X = l ,  2, 3 . . . . .  

and the corresponding optimality functions 0 iMP( ' ) ,  0MMPN('), 0~Cp('), 0ICPN('), 
N =  1, 2, 3 . . . . .  are all continuous (the set valued maps in the Fell topology). 

(f)  For every bounded set S c R ' ,  there exists a K < ~  such that for all x ~ S  and all 
N = l ,  2, 3 . . . . .  

] OMMPN(X) -- OMMp(X) ] < K / N ,  (3.7a) 

[ 0icpu(x) - 0ice(X) I <~K/N. (3.7b) 

Proof.  The proofs of  ( a ) - ( e )  can be found in Examples 5.2 and 5.5 in [ 19]. Hence we 

only need to deal with (f) .  Thus, suppose that for x ~ S ,  ~ N ~ d ° o ( X )  is such that 
0MMpN ( x )  = - (~°  _ ½ II ~N II 2 ) .  Then the vector ( ~o + ~0O(x) _ OO(x), ~N) ~ G°(x)" It 
therefore follows from (3.3) that 

--OMMp(X)<<,~O +tpO(x)--~I'ON(x)÷½II~NI]2<~ --OMMPN(X)+K/N. (3.8a) 

Next suppose that ~,  ~ G°(x)  is such that 0MMp(X) = -- (~O + ½ II G II 2). Then, by Carath- 
eodory 's  Theorem, there exist barycentric coordinates /x j >~ 0, j = 1 . . . . .  n + 1, such that 
gj'__+l ' ~ J =  1, ~o = q,O(x ) v--+, - -  z...~j= 1 [ & J ~ ) O ( x ,  yj), and ~:. = E;__+I l ~ V x q ~ ° ( x ,  yj), with yj ~ Y. 

Clearly, there exist YNj ~ YN, J = 1 . . . . .  n + 1, such that [ Y j -  YNj [ <~ 1/N, Let ~N* ~ 
dO0(x)  b e d e f i n e d b y ~ O . _  0 n+x - , . . j=l  IxJV~qb°(x, yN~) . - ~bN(X ) -- F~j= 1 /zJqS°(x, YNj), and ~N* -- V'n + 1 
Then we must have that 
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1~:o. _s~o. _ 00N(X) + 00(X) i <L/N, (3.8b) 

II~N* -- G II <L/N, (3.8C) 

where we assume that L < ~ is a common local Lipschitz constant for ~b( .,.  ) and VqS( -,- ) 
on S X Y. Now, (3.8b),  together with (3.3),  implies that I Se0N* -- ~o I ~< 2L/N. Since the set 

valued maps G°(x) ,  0 °o (X)  are bounded on bounded sets, we now conclude that (3.7a) 

holds for some K <  ~. A similar proof applies to (3.7b).  [] 

It follows from Theorem 3.3 that the functions 0MMP( " ) 0MMPN ( " ) are optimality func- 
tions for the problems MMP and MMPN(X), respectively; similarly, it is obvious from 

Theorem 3.3 that the functions 0rcp( • ), 0icpN ( • ) are optimality functions for the problems 
ICP and ICPN(X), respectively. We are now ready to state our final result, which is obvious 
in view of Theorem 3.2 and Theorem 3.3 (see parts (d),  ( e ) ) .  Referring to Proposition 5.5 

in [ 19], we see that if 01 (x) > 0, then 0~cp(X) = 0 if and only if 0 ~ 001 (x) and similarly, 

if 0~(x)  > 0, then O~CPN(X) = 0 if and only if 0 ~ 00IN(x). The requirement that 0 ~ 001 (x) 
for all x ~ X is known as the generalized Mangasarian-Fromowitz constraint qualification 

(see [ 17] ) and we invoke it to ensure consistency (i.e., to ensure that whenever 01 (x) > 0, 

0icp(X) < 0, etc.). 

T h e o r e m  3.4. (a)  Consider the problems MMP, MMPN. Then the pairs in the sequence 

{ (MMPN, 0MMPN) }~V I are consistent approximations to (MMP, 0MMP). 
(b) Consider the problems ICP, ICP N, with the assumptions stated. Then the pairs in the 

sequence { (ICPN, 01epN) } N= 1 are weakly consistent approximations to (ICP, 0icp). Fur- 
thermore, if for all x such that O l(x) > O, 0 ~ 0 O l(x), and, in addition, for all N ~ N, and 

X N such that [~tlN(XN) > O, 0 ~ 001(XN),  then the pairs in the sequence { (ICPN, 0ICPN) } ~V= i 
are consistent approximations to (ICP, 0~cp). [] 

4. Consistent approximations for optimal control 

We can illustrate most of  the issues related to optimal control problems by considering two 
fixed time optimal control problems. The first is an unconstrained optimal control problem, 
while the second one is an optimal control problem with control and inequality end point 

constraints. 
Optimal control problems always involve the controls and trajectories of  a dynamical 

system. We will assume that this dynamical system is described by the differential equation 

d 
d t X ( t ) = h ( x ( t ) , u ( t ) ) ,  t ~ [ 0 , 1 ] ,  x ( 0 ) = ~ ,  (4.1) 

where x(t) ~ ' ,  u(t) ~ ' ,  and hence h : ~ " X  ~m--* ~ n. Since we will keep the initial 

condition constant and only vary the control, we will denote the solution of (4.1) by x" (t) .  
The following assumption is standard: 
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Assumption 4.1. Let Pmax ~ (0, ~)  be a given, very large number. The function h( .,- ) in 
(4.1) is continuously differentiable, and there exists a constant K e ( 1, ~)  such that 

(i) for all x', x" e E", and v', v" ~ B(0, Pmax) the following three relations hold: 

Ilh(x', v') -h (x" ,  v")II ~ g [ H x ' -  x"ll + I Iv ' -  v"lI], (4.2a) 

IIh~(x', v') -hx(x",  v")II ~<g[ IIx'-x"ll + IIv'- d'll], (4.2b) 

II h~ (x', v' ) - h, (x", #') II ~< K[ Ilx' - x" II + II v' - v" II ]; (4.2c) 

(ii) for all x ~  N", v ~B(0 ,  Pmax), 

IIh(x, v)II ~<g[ H + 1]. (4.2d) 

Referring to [ 1, 16 pp. 136-143], we see that under Assumption 4.1, the solution x"(  • ) 
is Lipschitz continuously Frechet differentiable in u on the interior of the bounded subset, 
of  L~[0, 1], 

U ~ { u ~ t m [ 0 ,  1] I[lull~ ~P .... }, (4.3a) 

Now L m [0, 1 ] (the space of essentially bounded functions from [0, 1 ] into Nm) is not a 
Hilbert space, while Nn, on which the approximating problems will be defined, is a Hilbert 
space, a fact that causes considerable technical difficulties, because of the form of the 
optimality functions that we use in Nn. This difficulty can be removed by introducing the 
pre-Hilbert space: 

t~=[0 ,  1] ~ ( t ~ f 0 ,  1], ( ' , ' ) 2 ,  11"112), (4.3b) 

i.e., the elements of  the space L22 [0, 1 ] are functions u ~ L m [0, 1 ], but it is endowed with 
the scalar product and norm used on L~' [0, 1]. The space Lm2 [0, 1] is not complete; 
however, it is dense in L~' [0, 1]. 

It is reasonably straightforward to deduce from [ 1, 16 ] that the solution of our differential 
equation (4.1),  x" ( .  ), is also Lipschitz continuously Frechet differentiable in u on the 
following subset of L22 [0, 1 ] : 

U°ZX {u~t~2[O, 1] l llUll~ < rpm~,,}, (4.3C) 

where ~ ~ (0, 1 ) is near unity. Clearly, U ° c U. For each t ~ [ 0, 1 ], the Frechet differential 
Dx"(t; • ) is defined on Lm.2 [0, 1], and takes values in ~n. 

For j =  0, 1 . . . . .  q, let g J: ~ n ~  ~ be a locally Lipschitz continuously differentiable 
function, and let 

i f (u )  &gJ(x" (1 ) ) ,  j = 0 ,  1 . . . . .  q, (4.4a) 

~b(u) =a max i f (u ) ,  (4.4b) 
j ~ q  

where q & { 1, 2 . . . . .  q}. We will consider the following two problems: 

UP: rain f ° ( u ) ,  (4.4c) 
u ~ U  o 

CP: rain {f°(u) [~9(u) ~<0}, (4.4d) 
u~- Uc 



398 E. Polak / Consistent approximations for control problems 

where 

Uc zx {uELm,2[0, 1] [u(t) ~ U V t ~  [0, 11 }, (4.4e) 

with U c N "  a compact, convex set contained in the interior of the ball B(0, 

Pmax) ~ {V ~ ~ml  Ilvll ~ apmax}. 
Problem (4,4c) can be restated in the canonical form (2.1a), as follows. Let 

~o & {u~Uc ltP(u) ~<0}, (4.4f) 

then we can rewrite (4.4c) in the equivalent form 

CP: min f ° (u ) .  (4.4g) 
u E ~g'c 

Computationally, the control constraint u ~ Uo causes nontrivial complications because 
it is not differentiable in the pre-Hilbert space L~2 [0, 1 ], and hence prevents expressing 
optimality functions in the rather convenient dual form (3.6b). 

Since both the functions g J( - ) and the solutions xU( • ) are locally Lipschitz continuously 
differentiable, the following theorem is deduced from the chain rule and the linearization 
of the differential equation (4.1) (for a proof see [4] ): 

Theorem 4.2. Suppose that Assumption 4.1 is satisfied. Then the functions f i( . ), j =  
O, 1, 2 . . . . .  q, defined in (4.4a), have continuous Frechet differentials Df j : U ° × L~,2 ~ [~n 

that have the form DfJ(u, 6u) = ( Vf J(u), •U>2, where the gradients, Vf J(u) ~ L~m,2 [0, 1] 
are locally Lipschitz continuous on U ° and are given by 

VfJ(u)(t)  =h , (x" ( t ) ,  u(t))Tpj'"(t), t~  [0, 1], (4.5a) 

with pJ'"( t) ~ Nn the solution of the adjoint equation 

t S ( O = - h x ( x " ( t ) ,  u(t))Vp(t) ,  t~[O, 1], 

p ( 1 ) = V g J ( x " ( 1 ) ) ,  [] (4.5b) 

Because there is no satisfactory Maximum Principle for discrete optimal control, the 
Pontryagin Maximum Principle [ 24] is not a useful optimality condition in the context of 
establishing the consistency of discrete approximations. Hence we propose to use the 
following, rather basic, first order optimality conditions and corresponding optimality func- 
tions to define stationary points. 

Theorem 4.3. Suppose that Assumption 4.1 satisfied. 
(a) Suppose that Ft is optimal for UP. 1"hen 

df°(t~, 6u) >~O V6u~L~2[O, 1], 

where df°( .,. ) denotes the directional derivative. 
(b) Let Oup : U ° ~ ~ be defined by 

OUp (U) = -- [[ Vf°(u)112. 

(4.6a) 

(4.6b) 
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Then Oup( • ) is continuous in the Lm2 [0, 1 ] topology, and for  any ~ ~ U °, (4.6a) holds" if  

and only i f  Oup( ft) = O, i.e., Oup( " ) is an optimality function for  UP. 
(c) Let y>O.  F o r a n y u E L T 2 [ O ,  1], let 

0(u) + &max{0, 0(u) }, (4.6c) 

and for  any u, u' ~Lm2 [0, 1], let 

F , , (u )  & max{f°(u) - f ° ( u ' )  - yO(u ' )  +, 0(u) - 0(u ')  + }. (4.6d) 

I f  ~t is a local minimizer for  CP, then 

d F a ( & u - ~ )  >~0 V u ~ U c .  (4.6e) 

(d) Let T > O, and let 0cp : U c -~ 1~ be defined by 2 

0cp(U) & min ~ltlaull ~ +max {(Vf°(u), 6@2 - TO(u) +, 
u+c3u~Uc [ .  j ~ q  

f J (u )  - O(u) + + (Vfi(u),  6@2 }}. (4.6f) 

Then (i) 0cp(" ) is negative valued, (ii) continuous in the Lm2 [0, 1] topology, and, 

(iii) any ( tEUc satisfies (4.6e) i f  and only if  0cp(t~)=0, i.e., 0cp(" ) is an optimality 

function for  CP. 

Proof. Since df°(u, 6u) = (Vf°(u),  ~u>2, and since Vf°( • ) is continuous, parts (a) and 
(b) are obvious. 

(c) Since any local minimizer of CP is a local minimizer for the problem min, ~ ve Fa (u), 
(4.6e) follows directly. 

(d) First, since 6u = 0 is admissible in (4.6f), it is obvious that 0cp(U) -<< 0 for all u ~ Uc. 
Next we will show that 0cp(" ) is continuous. Let F: Uc × Lm2 [0, 1 ] --+ ~ be defined by 

F,(au) & ½116u[[ ~ +max { (Vf°(u), 6@2 - TO(u) +, 
j ~ q  

f J (u )  - @(u) + + (VfJ(u), 6u)2 }. (4.7a) 

Then we can rewrite (4.6f) as 

0cp(U) = rain /~,(6u). (4.7b) 
u+,3u~Uc 

Note that F , , ( u - u ' )  is Lipschitz continuous in (u ' ,u)  ~ Uc× Uc, in the Lm,2 [0, 1] topol- 
ogy. We will denote the Lipschitz constant by L. Now suppose that {u~}7=l is a sequence 
in U~ that converges to u, in the Lm2[0,  1] topology. Let u ' ~ U o  be such that 
0cp (u) = F, ( u' - u), and let u~ ~ Uo be such that 0cp ( u i = P~, ( u~ - ui), for all i ~ ~. Then 
we must have that 

0cp(Ui) ~ F u i ( U  t --bli) Vi~N, (4.7c) 

2The fact that 0ce (u) is well defined follows directly from Corrolary IlL 20 in Haim Brezis, Analyse Fonctionelle: 
Theorie etApplications (Masson, Paris, 1983). 
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and hence lira sup 0cp(ui) ~ lim F,, (u' - ui) = 0cv(U), i.e., 0cv(" ) is u.s.c. Next, we must 
have that for all i ~ N, 

0c~(U) ~P.(u~-u) 

= [ / ~ , ( u ~ - u )  - F ~ ( u l - u i ) ]  +F,~(u~-ui) (4.7d) 

<. tllu - u~ II 2 + P, , , (  u~ - u~) ,  

Hence we conclude that 0cv(u) ~< lira inf Ocp(ui), which shows that 0cp(" ) is 1.s.c., and 
hence continuous. 

Next, we will show that 0cp(~) = 0 if and only if (4.6e) holds. Since for any u, 6u, 

F,( 6u) >~ ½ II 6ull 2 + dF~(u, 6u), (4.7e) 

it follows that if 0cp(ti) < 0, then (4.6e) cannot hold, and hence, by contraposition, if 

satisfies (4.6e) then we must have that 0cp(fi) =0 .  Now suppose that (4.6) does not hold. 

Then there must exist a u ~ Uc such that dFa(fi, u - t~) < 0. It is not difficult to deduce that 
there must exist a )t ~ [ 0, 1 ], such that Fa (A (u - a) - a) < 0. Hence, again by contraposi- 

tion, we see that 0cv(a) = 0  implies that (4.6e) holds, which concludes our proof that 

0cv(" ) is an optimality function. [] 

The simplest set of consistent approximations to the problems UP and CP are obtained 

by integrating the differential equation (4.1) using Euler 's  forward method. This approach 
turns out be computationally efficient when the differential equation (4.1) is not stiff. We 

begin by constructing finite dimensional subspaces of Lm2 [0, 1 ] on which the precision of 

Euler 's method is easily established. For any integer N~> 1 let F(N) & 2 N. Then, for any 

integer N>~ 1 and k = 0 ,  1, 2 . . . . .  F(N), we define tu,~ & k/ F( N), and for k = 0 ,  1, 2 . . . . .  

F( N) - 1, we define "27"N, k : ~ ---) ~ by 

i for all t ~  [tN, k,tN, k+l), ifk<~F(N) - 2 ,  
~N.k(t)£ forallt~[tu,~tuk+l ] if k = F ( N )  - 1, (4.8a) 

otherwise. 

Next, for any integer N>~ 1, we define the subspace L~ [0, 1 ] CL~,2 [0, 1 ], by 

U( t) F(N)- I } 
L~r[0, 1] zx uEL~m2[0, 1] ~= E UkT"rN, k(t) ' (4.8b) 

k=0 

where {u i } i=0ff'(N) 1 is a sequence in ~ " .  Note that the union of the subspaces L~ [0, 1 ] is 
dense in L~ n [0, 1 ]. Since the functions 7ru,~( • ) are linearly independent, we see that L~ [0, 

1 ] is in one-to-one correspondence with the finite dimensional space 

£N & [~r~N) ×~, (4.8C) 

SO that any u~L~v[O, 1], with u ( . )  = ~r=~N)--lUkTrN,~("), corresponds to a~LN, with 

a= (Uo,U~ . . . . .  Ur~N)- 1)- Thus, for N =  1, 2, 3 . . . . .  we can define the linear, invertible map 
W~v: L~[0 ,  1] ~ L n b y  
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{I'(N) - 1 t 
WN~ E blkqTN,k(" ) j & (U0,U 1 . . . . .  UF(N)_I).  ( 4 . 8 d )  

k=O 

Now, for any u~L~v[O,  1], 

1 [[Uk I[ 2] 1/2" (4 .8e )  
Ilul12 = r - - ( ~  ~=o 

Hence, to retain a proper scaling balance between the continuous and discrete time problems, 

we define the scalar product ( . , . )oN and norm H" lieN, on £N, by 

zx 1 (if, if,), (4.8f) 
(u.a')ON = r ( N )  

Ilall/~ = F ( N )  Ilukll 2 (4 .8g)  

where the scalar product, ( .,. ), in (4.8f), is the usual Euclidean scalar product, and the 

norm I1 II, in (4.8g), is the usual Euclidean norm. Consequently, if u, u' ~ L~v [0, 1 ] and 

12= W,u,  a' = W~vu', then we always have that (tL a')cN = (u, u')2 and Ilul12 = Ilallc~,. 

In addition, we will use the notation 

o A. UO m UN ~- (~L~,[0, 1], Uc,NA-~UcOLN[O, 1]. (4.8h) 

Clearly, whenever N" > N', we must have that U~v c U~v,,, and Uc.N, C Uc.N,,. 

m __ ~-r(N~ - ~ U ~ ~ • ),  we replace the contin- Next, given any u ~ L N [0, 1 ], where u(.  ) - ,-,k=o k,,N.k~ 
uous dynamics (4.1) by the discrete dynamics resulting from the use of the Euler integration 
formula: 

where 

Y(tN,k+ l) =Z(tg, k) + A ( N ) h ( Y ( t N ,  k), u~), 

k=0,  1 . . . . .  F ( N ) - I ,  :?(0)=~, (4.9a) 

A ( N )  & 1 / F ( N ) ,  (4.9b) 

so that tu.k = k A ( N ) .  Clearly, (4.9a) has a unique solution for any a ~ £N. We will denote 
the solution of (4.9), corresponding to any ~ = W N  u, with u~L~v[O,  1], by 
{Y~v(tu.D/k=o* r~u~. We associate with the sequence {X-~v(tu, k) } r(=N), of vectors in ~n the time 
function 

/'(N) -- 1 
"lT~r(t) = E X~V(tN'k) qrU'k(t)" (4.9C) 

k=0 

Making use of Theorem 3.1.6 in [6] one can show that exists a constant Kx < oo such that 

IlY~v(t)-x"(t)l] <~KxA(N)  V t ~  [0, 1]. (4.9d) 
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Also, it is straightforward to show that the solution Y~v(tu.k) is continuously differentiable 

in u. 
., L "rn  1 ] ~ R , j = 0 , 1 ,  . ,q,  and Next, for N = 1, 2, 3, .. we define the functions f{v : X I. . . . .  

qSN : L~[0 ,  1] ~ R b y  

f J ( u )  &gJ(x~v(1)), ~N(U) -=-max fiN(U). (4.10a) 
j~q  

Then we define the approximating problems as follows: 

0 U UPN: min f o ( ) ,  (4.10b) 

CPN: rain {f°(u)  [~0N(U) ~<0}. (4.10C) 
~ Uc ,N  

If we now define 

~c ,N A.~ {U ~ Uc, N [ ~tN(U ) ~ 0}, (4.10d) 

then we can transcribe (4.10c) into the canonical form (2. l b), as follows: 

CPN: rain o f u ( U ) .  (4.10e) 
u ~ ~Z'c, N 

As in the continuous case, it follows from the chain rule that the gradients Vf~(u ) (  • ) 

L~v [0, 1 ], j =  0, 1 . . . . .  q, exist and are locally Lipschitz continuous, uniformly in N ~  ~.  

They can be expressed as follows: 

F(N) -- l 
VffN(u)(t)= ~ h~(x~j(tN,k),uk)Tp~J(tN,k+,)Trn, k(t), t ~ [ 0 , 1 ] ,  (4.10f) 

k~O 

where, for k = 0, 1 . . . . .  N, /~J( tn ,  k) is determined by the adjoint equation 

fi( tN.k) -- f f  ( tN,k + l ) = A ( N) hx( X~x( tN,k), Uk) T f i (  tN,k + 1), 

k = 0 ,  1 . . . . .  F(N) - 1, (4.10g) 

6(  1 ) = VgJ(Z~v( 1 ) ). (4.10h) 

Let 

F ( N )  - -  1 

P N  ( tN,~) 7"rN,k( t ) .  (4.10i) 
k=0 

Making use of Theorem 3.1.6 in [6] ,  one can show that there exists a Kp < ~ such that 

Ilfi~J(t) - p"'J( t) U <~ KpA( N). (4.10j) 

It should be clear that the following theorem is just a special case of Theorem 4.3. 

Theorem 4.4. Suppose that Assumption 4.1 is satisfied. 
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(a) If fiN is a local minimizer for UPN, then 

dfO(l~N, ~U) ~ 0  VSu~L~v[O, 1], (4.11a) 

where df ° ( . , . )  denotes the directional derivative o f f °  ( . ) .  
(b) For N= 1, 2 . . . . .  let OupN : U~v --* ~ be defined by 

OUPN(U) ~= --  tl Vf°(u) II 2 (4.1 lb) 

Then Oup N (" )  is continuous in the L ~,2 [ O, 1 ] topology, and, for any t~ ~ U ° (4.11 a) holds 
if and only if 0upu (t2) = 0, i.e., 0upN (")  is an optimality function for UP N. 

(c) Let T> 0. For any u ~ Lm,2 [0, l ], let 

ON(U) + ~max{0, ON(U) }, (4.11C) 

and for any u,u' ~L~v [0, 1], let 

FN.,,(U) ~=max{fO(u)--fO(u')--TON(U')+, ON(U)--ON(U')+ }. (4.11d) 

I f  hi N is a local minimizer for CPN, then 

dFu.a(t~, u - ~ )  >~0 VuEUc,N, (4.1 le) 

where dFN.a ( "," ) denotes the directional derivative of Fu,a( • ). 
(d) Let y> O, and, for any N ~ N, let OCPN : U¢.N--* ~ be defined by 

0ce~(U) ~ min {lll•ul[ 2 +max {(Vf°(u),  6U)2--Y0N(U)+, 
U+~U~Uc,N j~q 

fJu(U)--ON(U)+ + (Vf%(u), 6U)2}}. (4.11f) 

Then (i) OcpN (") is negative valued, (ii) continuous in the L~v [ O, 1 ] topology, and, (iii) 

any l~ N ~ Uc, N satisfies (4.11 e) if and only if OVeN ( ~tN) = O, i.e., OVeN (") is an optimality 
function for CPN. [] 

Next we obtain the following approximation results. 

Lemma 4.5. Suppose that Assumption 4.1 is satisfied. Then there exists a constant Kf < 
such that for all u ~ U°N, and N ~  ~ (with N>~ 1 ), 

[f~v(u)-fJ(u)l  <~KsZI(N), j = 0 ,  l . . . . .  q, 

[0N(U) -- 0(U) I <~KuA(N), 

l iVid(u)-VfJ(u)I[z~KfA(N),  j-=O, 1 . . . . .  q. 

(4.12a) 

(4.12b) 

(4.12c) 

Proof. The existence of a Ks< ~ such that (4.12a) holds, follows directly from the Lipschitz 
continuity of the g J(. ), in (4.4a), and (4.9d). Hence, 

ON(U) ~max fJ(u) + KsA(N) = O(u) + KrA(N). (4.12d) 
j~q 
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Reversing the roles of ON(U) and tp(u) in (4.13), we obtain (4.12b). Next, the existence 
of a Kf< ~ (possibly larger than needed for (4.12a)), such that (4.12c) holds, follows 

from (4.10j) and the formulae for VfJN(U) and VfJ(u). [] 

In proving consistency, we will need two assumptions. The first is that 3 and Pm~ have 

been chosen to be sufficiently large to ensure that the functionf°(u) has no minimizers on 

the boundary of the set U °. The second consists of a constraint qualification which, among 
other things, rules out conversion of equality constraints into inequality constraints, and is 

closely related to the Mangasarian-Fromowitz constraint qualification [ 17 ] : 

Assumption 4.6. (a) Let ?/denote the closure of U °. We will assume that all the global 

minimizers of the problem 

UP: min f ° (u ) ,  (4.13) 
u~Y-g" 

are in U °, i.e., that the problems UP and UP are equivalent. 

(b)For every u ~ U¢ such that ~0(u) ~< 0, there exists a sequence {UN}N= 1, such that for 

all N, UN ~ U~.N, IP(Uu) < 0, and UN ~ U as N--* ~. 

Theorem 4.7. Suppose that Assumptions 4.1 and 4.6 are satisfied. Then for  N = 1, 2, 3 . . . . .  
the problems U P  N and C P  N converge epigraphically to the problems UP and CP, respec- 

tively, in the L~ 2 [0, 1] topology. 

Proof. We begin with the problems U P  N. Since the union of the subspaces L~v [0, 1] is 
dense in Lo~.2[0, 1], it is clear that for any u ~  U ° there exists a sequence {UN}N=I, with 

UN~U~, such that u N ~ u  as N--* oo. It now follows from (4.12a) that lim fO(uN)-~ 
f ° (u) ,  which shows that part (a) of Definition 2.1 is satisfied. Clearly, if {UN}N= 1, with 

UN~U~v, is such that UN--*U as N--* oo, then u ~ / J  ° and, again by (4.12a), lira 
f o  (UN) =f0  (U), which shows that part (b) of Definition 2.1 is satisfied. 

Next consider the problems CPN. Let u ~ ~/c be arbitrary. Then, by Assumption 4.6, there 

exists a sequence {UN} N= 1 such that UN--* U as N ~ ~, and tk(Uu) < 0 for all N. Clearly, for 

each N there exists a jN ~ ~ and a U~N ~ Uc,N, such that (a) k~l(ju) <<. -- ½tP(UN), (b) 

[[UjN--1AN[ ] ~ 1/N, (c) tp(ujN) ~< ½gJ(UN), and (d) jN<JN+I for all N. It now follows from 
(4.12b) that @N+~(U~N)<~O for any k, N ~ ,  N>~I. Now consider the sequence 

{ u k } k =;,, defined as follows: if k =JN for some N, then u* -- UjN; for k =iN, JN + t, JN + 2, 
.... Ju+l--1.  Then we see that ~k(u*) ~<0 for all k, u* ~ u ,  and by (4.12a), that lira 

0 fN(UN) =f0(u), which shows that part (a) of Definition 2.1 is satisfied. Clearly, if 

{ UN } U = 1, with UN ~ ~'~,U, is such that UN ~ U as N ~ o% then u ~ 8/~ and, again by (4.12a), 
l im f ° (UN)  = f ° ( u ) ,  which shows that part (b) of Definition 2.1 is satisfied. Hence our 
proof is complete. [] 

Theorem 4.8. (a) Suppose that {UN}~V= 1 is such that for  all N ~  ~,  HN~ U °, and UN--') U, 

as N ~ 0% then OUPN (UN) ~ 0Up (t~), as N ~ o~. 

(b)  Suppose that { UN } U -- 1 is such that for  all N ~ ~,  UN ~ Uc.N, and UN ~ ft, as N--* ~, 

then OCpN ( UN) --* 0Ce(t~), as N--* w. 
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Proof.  (a) This part follows directly from (4.12c). 

(b) For any N ~  N and u, u' ~ U~,N, let 

~ t F~,.(~ ) ~ ½11u'-ull~ 
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+ m a x  { ( V f ° ( u ) ,  u ' - u ) 2  - y~bu(U) +, 
j~q 

f ~ ( U ) - - ~ N ( U ) +  + ( V f ~ ( u ) ,  U'--U)z},  (4.14a) 

where y is as in (4.6d,f) and (4.1 ld,f).  Without loss of  generality, we will assume that 

y >/1. Now suppose that the sequence { UN } N= * is such that for all N ~ ~,  UN ~ U~.N, and 

u N ~ u ,  as N~oo .  For all N, let u ~ U o , N  be such that OCv~(UN)- ~ --FN,,u(UN). Then 
Ocp(UN) "~F,N(UN), where ~ ' F, (u  - u )  is defined in (4.7a). Now, (i) because of  (4.12b) 
[~ON(UN) + -- ~(UN) + [ <~KA(N) for all N, and (ii) because Uc is bounded in L~ [0, 1], 
there exists a b < ~, such that [[ U~v -UN [12 ~< b for all N. Hence making use of  (4.12a,b,c) 
and the fact that ~N(UN) + >10, we find that 

0Cp(UN) "~. FUN (biN) 

= 1 ilu~ v _ UN 11 ~ + max { ( V f ° ( u ) ,  U'N -- UN)2 -- Tt#(UN) +, 
j~q 

UJ(UN) -- ~ ( ~ N )  + + (V/J(UN), U;, --"U)2 1, 

= ½ [[u~v - u~¢ f[ 2 z + max { ( V f ° ( u ) ,  U'N-- UN)2 
jEq 

+(~UO(u) - -~ f~ (u ) ,  U~--UN) 2 - - ~ ( U N ) + ,  

UN(UN) +[fJ(UN) --U~(UN) ] 

--~(UN)+ +(VU~(UN),  U~--UN) 2 

+ ( ~ f J ( u N )  -- Vf~(UN) ' Uh--~N)2} 
<FN, uN(UN) + K ( 1  + 7 + b ) g ( N )  

Hence, since Ocv(" ) is continuous, we conclude that 

(4.14b) 

0cv(ff) = lim inf 0Cp(b/N) ~ lira inf OCPN(UN), (4.14c) 

Now, let fi' ~ Uc be such that 0cv(ti) = Fa(u~ . . . .  ), and let UN ~ Uc,N be such that d~v --* fi', as 

N ~  2. Then for every N, OCPN(UN) .~.FN, uN(I~N). Proceeding as for (4.14b), we conclude 
that 

OCPN(bIN)FuN(UN) -~ K( 1 + T+ b) A(N) .  

Consequently, since Fu,(u) is continuous in (u ' ,  u). 

(4.14d) 
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lim sup OCpN(UN) ~<lim sup[P,N(t~v) +K(  1 + y + b ) A ( N ) ]  = 0cp(tT). (4.14e) 

Combining (4.14c) and (4.14d) we conclude that ON(Uu) --~ 0(~), which completes our 
proof. [] 

At this point, the following result is obvious: 

Corollary 4.9. (a) The pairs in the sequence { (UPN, 0UPN)} N--I are consistent approxi- 
mations to (UP, 0up). 

(b) The pairs in the sequence { (CPN, 0cpN) }N = I are consistent approximations to (CP, 
0up). [] 

5. Master algorithm models for use with consistent approximations 

Now that we have seen that we can construct consistent approximations for both semi- 
infinite optimization and optimal control problems, we need to address the question of how 
such approximations are to be used in the construction of an approximate solution of the 

original problem. We recall that the experience with penalty functions in nonlinear pro- 
gramming indicates that it is a bad idea to simply select a large penalty and solve the 
resulting unconstrained problem. The reason for this is that large penalties produce serious 
ill-conditioning. Hence the commonly used strategy is to solve approximately a sequence 
of progressively more severely penalized problems, which produces starting points for the 
successive problems from which Newton's method converges quadratically, and hence 
overcomes the ill-conditioning. While increasing discretization of semi-infinite optimization 
and optimal control problems does not lead to ill-condifioning, it does increase the com- 
putational complexity of the resulting problems. Referring to the literature (see, e.g. [ 9, 13, 
14, 22] ) we find reports that in the case of semi-infinite optimization and optimal control 
problems, there is also a considerable benefit to be obtained from increasing the discreti- 
zation in a preplanned manner. We will now describe two strategies, in the form of algorithm 
models, for increasing discretization in solving semi-infinite optimization and optimal 
control problems via consistent approximations. 

The constraint set X in problem P can have a variety of characterizations. We will deal 
with only two: the first is when X= 2,, where 2 ,  is a "simple" convex set, as in minimax 
problems on Nn and control problems with or without control constraints, but no trajectory 
constraints, while the second is more complex, and has the form X= {x ~ ~ l  0(x) ~< 0}, 
where 2" is a "simple" convex set and 0 ( - )  is a continuous function. To make this 
distinction explicit, we define the two cases as follows: 

Pu: min f (x) .  (5.1a) 
x E ~  

Pc: min {f(x) ] tp(x) ~ 0}. (5.1b) 
x ~ Y  



E. Polak / Consistent approximations for control problems 407 

Similarly, for N = 1, 2, 3 . . . . .  the approximating problems PN acquire the following form 

Pu,N: rain fN(X) .  (5.2a) 
X ~ N  

Pc,N: min {fN(X) I~0N(X) ~<0}. (5.2b) 
x ~ ,g~ N 

In view of the results in the preceding two sections, we make the following assumption. 

Assumpt ion  5.1. (i) The functions f, ~0 : ~ ~ E as well as the functionsfN, Sn : ~ N  ---) E,  

N =  1, 2, 3 . . . . .  are continuous. 

(ii) The set • is either a convex, closed subset of  ~,~, or S = ~ ,  and, for N =  

1, 2, 3 . . . . .  ~g~N = ~ A ~ N. 
(iii) There exist continuous optimality functions 0u : S ~ E for Pu, 0c : ~ ~ E for Pc, 

as well as continuous optimality functions Ou,N : S N  ~ ~ for P,,N and 0~,n : S N  ~ E for 

P~,N, N =  1, 2, 3 . . . .  
( iv) There exist a strictly positive valued, strictly monotone decreasing function 

A : ~ ~ E, such that A(N) --* 0 as N--* ~, and constants K ~  (0, ~ ) ,  No ~ M, such that for 

all N~> No, and all x ~ ~'~N (or  at least for all x in a sufficiently large, bounded open subset 

of  XN) ,  

]f u(X) - f ( x )  ] <~KA(N), (5.3a) 

I ~N(X) -- ~0(X) [ <~KA(N). (5.3b) 

(v)  If  {XN}N=~ is such that XN~Si~N for all N, and XN--*$ as N ~ ,  then 

O~,N(XN) ~ 0,($) ,  and Oc,N(XN) "-* 0c(-f), as N ~ .  
(vi)  For every x ~  -~ such that ~(x)  ~< 0, there exists a sequence {XN } N= 1 such that for 

all N, XN ~ S N, ¢N( XN) <~ 0 and XN ~ X as N--* ~. 

Assumption 5.1 ensures that the pairs (Pu,N, O u , N ) ,  N =  1, 2, 3 . . . . .  are weakly consistent 

approximations to (P,,  0u), and similarly, that the pairs (Pc,N, Oc.u), N =  1, 2, 3 . . . . .  are 
weakly consistent approximations to (Pc, 0c). Hence the following theorem is a direct 

consequence of Corollary 2.4 and Assumption 5. l. 

T h e o r e m  5.2. Suppose that Assumption 5.1 is satisfied. 

(i)  I f  {XN}~V= l is a sequence o f  global minimizers o f  Pu,N (Pc.N) such that xN--*,f as 

N ~ ~ then ~ is a global minimizer o f  Pu (Pc)- 

(ii) I f  {XN}N=I is a sequence o f  strict local minimizers Of Pu,N (Pc,N), with radius o f  

attraction PN >1 0, such that XN ~ YC as N ~ co, and there exists an infinite subset K c ~d, such 

that pN>~ p > O, for  all N ~ K, then ~ is a local minimizer o f  Pu (Pc). 

(iii) I f  {XN}~V=I is a sequence o f  local minimizers o f  Pu,N (Pc,N), such that X N ~ £  as 
N--~w, then 0u(.f) = 0  (0c(~) = 0 ) .  []  
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We will now describe our first strategy for increasing discretization in solving "concep- 

tual problems" such as Pu and Pc via consistent approximations satisfying the conditions 

of Assumption 5.1. This strategy has the advantage that it can be used with a very broad 

class of nonlinear programming algorithms. Its disadvantage is that convergence results can 

be stated only about rather sparse, "filtered" subsequences of all the points constructed. 

We will present our strategies for solving the problems P~ and Po in the form of algorithm 

models in which we will define the "outer"  iterations. The "inner" iterations are defined 

by user supplied iteration maps Au,N, Ac, N : c~ N ----) 2 ~N, that define one iteration of a nonlinear 

programming algorithm that can be used for solving the problems Pu,N and Pc,N- We begin 
with the unconstrained problem Pu. 

Master Algorithm Model 5.3. 
Data: N O ~ ~ ,  x o ~ d~No. 

Step O. Set i = 0, N =  No. 
Step 1. Compute a x~+ l ~Au,N(x~). 

Step 2. If Ou,N(X~+ 1) >1 -- 1/N, setx* =x~+ 1, and replace N by N +  1. 
Step 3. Replace i by i + 1 and go to Step 1. 

The following result is a direct consequence of Assumption 5.1: 

Theorem 5.4. Suppose that (a) Assumption 5.1 is satisfied, and ( b ) that every accumulation 

point 2 of  a sequence {xi } ~=o, constructed according to the rule x~+ ~ ~Au,N(Xi), satisfies 

Ou.N( 2) = O. Consider the sequences {xj} and {x* } constructed by Algorithm Model 5.3. 

(i) I f  the sequence {x* } is finite, then the sequence {xi} has no accumulation points. 

(ii) I f  the sequence {x* } is infinite, then every accumulation point ~ of  {x* }, satisfies 

0u(~) =0. [] 

For the constrained problem Pc we modify the above as follows: 

Master Algorithm Model 5.5. 
Data: No ~ ~ ,  XO ~:~ ~ N  O. 

Step O. Set i = 0, N = No. 

Step 1. Compute a Xi+L~Ao.N(Xi). 
Step 2. If Oo.N( Xi + 1 ) >1 -- 1 /N, and tp( xi + ~ ) <~ 1 /N, set x * = xi + 1, and replace N by N + 1. 
Step 3. Replace i by i + 1 and go to Step 1. 

Again because of Assumption 5.1, the following result is obvious: 
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Theorem 5.6. Suppose that ( a) Assumption 5.1 is satisfied, and (b ) that for every N> No, 
every accumulation point 2 of a sequence {xi } ~=o, constructed according to the rule 

Xi+ I ~Ac,N(Xi), satisfies O~,N(2) = O, and ~b(2) <~ O. Consider the sequences {xi} and {x* } 
constructed by Master Algorithm Model 5.6. 

(i) If the sequence {x*} is finite, then the sequence {xi} has no accumulation points. 
(ii) If the sequence {x* ] is infinite, then every accumulation point 2 of {x* }, satisfies 

O~(2)=Oand tp(2) <~ O. [] 

We now turn to our alternative approach, which we believe to be computationally more 
efficient, and which can be used with almost all unconstrained nonlinear programming 
algorithms. However, for constrained problems, only the unified method of feasible direc- 
tions, in [21 ] has so far been shown to be compatible with our alternative approach. Again 
we begin with the unconstrained problem Pu. For this problem we require that the nonlinear 
algorithms used for solving the problems Pu,N satisfy the following monotone uniform 
descent condition: 

Assumption 5.7. For every x ~ S ,  such that Ou(x) < 0, there exist px > 0, Nx ~ N, and 6x < 0 

such that 

f N(X") -- f  N(X') < ax, (5.4) 

for all x' ~ B(x, p~) n SN, for all x"~ Au.N(X'), and for all N > N~. 

Referring to Theorem 1.3.10 in [ 18 ], we find that Assumption 5.7 is a generalization of 
the assumption in the following theorem. 

Theorem 5.8. Suppose that Assumption 5.1 is satisfied. Let N be given and suppose that 
{X i } c~= 0 is a sequence in 2~N constructed using the recursion Xi+I EAu,N(Xi )  , i ~ IN, in 
solving Pu.N. If for every x ~ 2~N, such that Ou.u(X) < O, there exist p, > O, Ox < 0 such that 

f N(xy') -- f N( X' ) ~ ~x, (5.5) 

for all x' ~B(x ,  Px) N2~N, for all x"~Au,N(X') ,  then every accumulation point 2N, of 

{Xi}~=O, satisfies Ouav(2u) =0. [] 

The assumptions of Theorem 5.8 are satisfied by most unconstrained optimization algo- 
rithms, including the Armijo gradient method [2, 18], the Polak-Ribibre method of con- 
jugate directions [ 18], Newton's method [ 12, 18], the BFGS method with back-stepping 
step-size rule [ 5 ], and the Pshenichnyi-Pironneau-Polak minimax algorithm [ 19, 20, 25 ]; 
however, there is no proof that the Fletcher-Reeves method of conjugate directions satisfies 
these assumptions. Thus, to show that Assumption 5.7 is satisfied, one only needs to show 
that one can find a Px and a 6x that are the same for all N>Nx. This is relatively easy to 
show both for semi-infinite optimization problems and for optimal control problems. 

Now consider the following master algorithm for solving Pu, which uses the strictly 
monotonically decreasing function A : N --* R introduced in Assumption 5.1. 
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Master Algorithm Model 5.9. 
Parameter: fl ~ (0, 1). 

Data: N_ l  ~ , X o ~ N _ , .  
Step O. Set i = 0. 

Step 1. Compute Ni and xi + 1 such that Ni > Ni-  1, & + 1 ~ A~.N,( Xi ) and 

f N~(Xi+ 1) - - f  Ni(Xi) < -- A(Ni) ~. 

Step 2. Replace i by i + 1 and go to Step 1. 

(5.6) 

L e m m a  5.10. Suppose that Assumption 5.1 is satisfied, and that Master Algorithm Model 

5.9 has constructed an infinite sequence {xi } ~=o that has an accumulation point 2. Then 

the accompanying sequence {Ni } ~=o is such that Ni-~ ~ as i ~ ~. 

Proof.  For the sake of  contradiction, suppose that the monotone increasing sequence 

{N~ } 7=o is bounded. Then there exists an io ~ N, such that Ni = Nio & N * < m for all i > io. 

Then, by the test (5.6), for all i>io, 

f N.(Xi+ l) - - f  N.(Xi) < -- A ( N * )  ~, (5 .7)  

which  implies that f N . ( X i ) ~  --~, as i ----) °°. However, since fN* (")  is cont inuous  and 

since by assumption, xi ~ 12 as i ~ % for some infinite subset I c ~ ,  fN * (Xi) "--> IUN * (3~) as 

i --* % which is a contradiction. Hence we must have that Ni ~ w as i ~ ~. []  

Theorem 5.11. Suppose that Assumptions 5.1 and 5.7 are satisfied. I f  { xi } ~=o is a sequence 

constructed by the Master Algorithm Model 5.9, then every accumulation point 2 of  

{ xi } ~=o satisfies Ou( 2 ) = O. 

Proof.  Suppose that xi --* t2 as i --> ~, for some infinite subset I c  ~.  For the sake of  contra- 

diction, suppose that 0u(2) <0 .  Then, by Assumption 5.7, there exist 6~ <0 ,  Ne ~ ~,  and 

p~ > 0 such that 

f N(X") - - f  N(X') ~ ~ ,  (5 .8a)  

for all x' ~ B(2, px) N ~'~U, for all x" ~Au,N(X' ), and for all N >  N~. 
Since xi ~ 12 as i ~ w, it follows from Lemma 5.10 that Ni ~ w, as i -~ oo and hence that 

A ( N i ) ~ O  as i ~ .  Let io~{~ be such that for all i<~io, with K as in (5.3a,b), (i) 
2KA (Ni) ~< - ½ 6z, (ii) 2KA (hr.) 1 - ~ ~< 1, (iii) xi ~ B (2, Px ), if i ~ I. Next, let i I be such that 

Ni, >max{N~,N~o }. Then, for all i>~il, i E l ,  because of  (5.3a), (5.8a), and the fact that 

A(Ni+I)  <~a(Ni) < /l(Nil ), 

f(x,+,) -f(xi) < - 8~ + 2 K A ( N 0  < - ½~.  (5 .85 )  

Now, for all i > il, because A (Ni + 1 ) <~ A (Ni) < A (Nil) ,  we obtain, making use of (5.3a) 
and (5.6), that 
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f ( x i + , ) - f ( x i ) < ~ 2 K A ( N ~ ) - A ( N i ) / ~ =  - A ( N i ) P { 1 - 2 K A ( N ~ ) I - / 3 } < ~ O ,  (5.8c) 

and hence we see that the sequence {f(x~) } 7=~, monotone decreasing. Since, by continuity 
o f f ( -  ) this sequence has an accumulation point, f( . f) ,  it follows that the entire sequence 

{f(xi) }~=i~ converges to f (2 ) .  Since this is contradicted by (5.8b),  our proof is com- 

plete. [] 

Next, we will construct a natural extension of the Master Algorithm 5.9. First, we define 
the parametrized function F~, : A ~ ~ ~, with x '  ~ Z ,  by 

f~ , ( x )  & max{f(x) - f i x ' )  - ytp(x')  +, 4'(x) - ~p(x') + }, (5.9a) 

where y >  0 is a preselected parameter. Similarly, for every N~> No, we define the parame- 

trized function FN~, : J~N ---> ~, with x '  ~ ~ u ,  by 

FN~,(X ) & max{fN(x ) - - f  x(X')  -- "y~N(X') +, ~N(X) - -  I / $ N ( X  t ) + }. (5.9b) 

We need the following extension of Assumption 5.7. 

Assumpt ion  5.12. Consider the problems Pc,N and suppose that for any N>~No, 

Ao,N: Z N  ~ 2 ~ is an algorithm map for P~,N' We assume that for every x ~ Z  such that 
O¢(x) <0 ,  there exist p~>0,  Nx~ ~/, and 6~<0 such that 

FN,~,(X") -<<6~, (5.10) 

for all x ' ~  B(x,  p~) A f N ,  for all x" ~Ac,N(X'), and for all N>~N~. 

Now consider the following master algorithm which uses a strictly monotone decreasing 

function A : ~ ~ ~, satisfying the conditions of  Assumption 5.1. 

Master Algorithm Model 5.13. 
Parameter: ~ (0, 1). 

Data: N_~ ~ ,  X O ~ N _  1 . 

Step O. Set i = 0. 

Step 1. Compute Ni and x~ + i such that Ni >~ N~_ 1, x~ + ~ ~ Ac,ui (xi)  and 

Fu,,x,(xi+ j) < - A(Ni )  ~. 

Step 2. Replace i by i + 1 and go to Step 1. 

(5.11) 

L e m m a  5.14. Suppose that Assumptions 5.1 and 5.12 are satisfied, and that Master Algo- 

rithm Model 5.13 has constructed an infinite sequence {xi } ~ o  that has an accumulation 
point 2. Then the accompanying sequence {Ni } ~ o  is such that N,. ---> ~ as i---> ~z. 
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Proof.  For the sake of contradiction, suppose that the monotone increasing sequence 

{Ni } 7Lo is bounded. Then there exists an io ~ N, such that N~ = N, o £ N * < w for all i >~ io. 
Then, by the test (5.11 ), 

F N . ~  (X~+I) <~ - A ( N * )  ~ (5.12) 

for all i~> i o. Since ~ON.(Xi+ ~) -- ~b~v.(X~) + <~FN*x, (X~+ ~), for all i>~ io, it follows from 

(5.9b) and (5.11 ) that there must exist an i l >t io, such that ~b N.  (xi) <<, 0 for all i >~ i l. Hence 

for all i>~il, ON*(Xi)+ =0 ,  and therefore, in view of (5.9b), f N * ( X i + l ) - - f N * ( X i )  

FN*,x~ (Xi + ~ ). Taking into account (5.12) we now conclude that f N  * (Xi) ~ -- ~ as i ~ o~. 

However, since by continuity,fN. (xi) ~ l~fN * (£) ,  as i -~ o% where K ~ N is such that x~ ~ K 

2 as i ~ ~, we have a contradiction. Hence we must have that Ni ~ w as i ~ w. []  

Theorem 5.15. Suppose that Assumptions 5.1 and 5.12 are satisfied, and that Master  

Algori thm Model  5.13 has constructed an infinite sequence {x~ } ~=o that has an accumu- 

lation point  2. Then 0~(2) = O. 

Proof.  First we note that for N>~ No, because of (5.3a,b), 

Fx,(xi+ l) ~ FNi,xi(Xi+ l) -- ( 2 +  y)  K A ( N i ) .  (5.13a) 

Hence, because of the imposed condition (5.11 ), 

Fx~( xi + i ) <~ - A ( Ni) ,o + (2 + y)KA(Ni) 

= - A(N~)/~( 1 - (2 + 7)KA(Ng) (' -/~) (5.13b) 

Since 1 - / 3 > 0 ,  it follows from (5.13b) and the fact that by Lemma 5.14, A(Ni) --*0 as 

i --* ~, that there exists an io such that for all >~ io, 

Fx~(xi+ l) <~ 0. (5.13c) 

Consequently, if ~O(x~) > 0 for all i >/io, then { ~b(x~) } ~= ~o is a monotone decreasing sequence 

with an accumulation point ~b(2). It therefore follows that ~b(xi) ~ t)(2) as i ~ ~. Alter- 

natively, if there exists an i~ >/-io such that ~O(x~, ) ~< 0, then, because of (5.13c), 4~(xi) <~ 0 

for all i >~ il and {f(x~) } 7=i, is a monotone decreasing sequence with an accumulation point 

f ( 2 ) ,  and hence that f (x i )  --*f(2) as i ~ ~. 
Now, for the sake of  contradiction, suppose that 0(2)  < 0, and that K c  ~ is such that 

xg ~ x 2 as i ~ o0. Then, because of Assumption 5.8, there exists an i 2, and a ~ < 0, such 

that for all i ~ K, i >~ i2, 

FN,~(x~+ 1) ~< 6~ < 0, (5.13d) 

and hence, because of (5.13a) and (5.13c), 

Fx,(xg+~) <~ ( 2 + y ) K A ( N ~ )  + 6e <0 .  (5.13e) 

Since by Lemma 5.14, A(N~) ~ 0  as i--*~, it follows from (5.13e) that there exists an 

i3 >~ i2, such that for all i ~ K, i >/i3, F~,(xf+ l) ~ ½ 6~. But this contradicts the fact that either 

O(xg) ~ ~b(2) as i ~ 0% orf(xi) ~ f ( 2 )  as i ~ oc. Hence we must have that 0(2)  = O. [] 
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6. Conclusion 

We have addressed three issues related to the use of discretizations in the solution of  semi- 

infinite optimization and optimal control problems. We have shown that discretizations of  

semi-infinite optimization and optimal control problems are consistent approximations to 

the original problems in the same sense as penalty functions are consistent approximations 

to constrained nonlinear programming problems, viz., they converge epigraphically to the 

original problems, and hence that their global minimizers can converge only to a global 

minimizer of  the original problem and their uniformly strict local minimizers converge to 

a local minimizer of  the original problem. Next we have shown that if  we express stationarity 

in terms of zeros of  continuous optimality functions, then the stationary points of discreti- 

zations of  semi-infinite optimization and optimal control problems converge to stationary 

points of  the original problem. Finally, we have proposed several master algorithm models 

that can be used in constructing algorithms, based on consistent approximations, for solving 

semi-infinite optimization and optimal control problems. 
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