
Mathematical Programming 62 (1993) 133-151 133
North-Holland

Min-cut clustering

Ellis L. J o h n s o n , Anu j M e h r o t r a and G e o r g e L. N e m h a u s e r

School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlama, GA, USA

Received 12 March 1992
Revised manuscript received 17 August 1992

This paper is dedicated to Phil Wolfe on the occasion of his 65th birthday.

We describe a decomposition framework and a column generation scheme for solving a min-cut clustering
problem. The subproblem to generate additional columns is itself an NP-hard mixed integer programming
problem. We discuss strong valid inequalities for the subproblem and describe some efficient solution
strategies. Comput~Ltional results on compiler construction problems are reported.

Key words: Clustering, decomposition, column generation, subproblem optimization, valid inequality~"
compiler design.

1. Introduction and formulation

Given an undirected graph G(V, E) with nonnegative weights wo, ve V, edge costs
ce, eeE, and an integer K, the clustering problem is to find a partition F =
{ W1, W2, . . . , Wx} of V that solves

K

Max(Min) ~ F. ce,
i = 1 e ~ E (W i)

Wmin<~ ~ Wu<~W k = l , 2 , . . . , K ,
u ~ lVk

where E(W~)= {(i,j)eE: i, je Wi}. We will refer to the Wi, i= 1 , . . . , K, as clusters
corresponding 'to the partition F of V. In other words, the clustering problem is to
partition the nodes of the graph into K clusters such that the sum of the node weights
of each cluster is bounded from below by Wmin and bounded from above by Wm~x
while maximizing (minimizing) the sum of the costs on the edges inside clusters.

Our study differs primarily in three ways from most of the papers in the clustering
literature. We do-not assume that the underlying graph is complete; we include a
constraint on the size or weight of the clusters and we solve these clustering problems
using a decomposition and column generation scheme.

Correspondence to: George L. Nemhauser, School of Industrial and Systems Engineering, Georgia
Institute of Technology, Atlanta, GA 30332 0205, USA.

This research was supported by NSF grants DMS-8719128 and DDM-9115768, and by an IBM grant
to the Computational Optimization Center, Georgia Institute of Technology.

134 E.L. Johnson et aL/ Min-cut cluster#Tg

Given a graph G(V, E) and a partition F = { W1, W2 W~} of V, the s~t of
edges {(i,j) : i ~ Wp , j ~ Wq , p C q } is called a multicut. Maximizing (minimizing) the
sum of the costs on edges within the clusters is equivalent to minimizing (maximizing)
the sum of costs on the edges that go between clusters, that is the edges in a multicut.
When all the edge costs are nonnegative, we will refer to these problems as min-cut
clustering (MCC) and max-cut clustering problems respectively. When the edge costs
are not restricted to be nonnegative, we will call them mixed-cut clustering problems.
MCC is also referred to as the graph partitioning problem.

All the clustering problems described above are known to be NP-hard. For a
survey of the complexity of related problems, see [7] and [8]. The clustering problems
defined above generalize the definition of clustering problems encountered in the
literature and encompass several well-known combinatorial problems such as the
rain-cut problem, the max-cut problem, the clique partitioning problem, the equipar-
tition problem, and the unconstrained quadratic 0-1 programming problem. Most
of these special cases of the generalized clustering problem are themselves known to
be NP-hard.

Ignoring the weight restrictions on the clusters and fixing K = 2 yields the well
known min(max)-cut problems. Note that while min-cut is solvable in polynomial
time, max-cut is NP-hard. If K = 2, and there is a restriction that both the clusters
must have the same (or within 1 if [VI is odd) number of nodes, the problem is the
NP-hard equipartition problem studied by Conforti et al. [5] and [6].

A set of edges A in a graph G(V, E) is called a clique partitioning of G if there is
a partition F = { W] , W2 Wk} of V such that A=E(Wi) w E (W 2) w - . . w
E(Wk) and such that the subgraph G[Wi] induced by IV,. is complete for i= 1,
2 , . . . , k. Given a graph G(V, E) with costs ce~R for e~E, the clique partitioning
problem (CPP) is to find a clique partitioning A c_ E of minimum cost. Gr6tschel and
Wakabayashi [11] have studied the CPP on complete graphs. The CPP on a complete
graph is an example of a mixed-cut clustering problem with no restrictions on the
number or size/weight of clusters.

Chopra and Rao have studied MCC without the weight restrictions, see [2-4].
Chopra [2] shows that if the graph is series-parallel, the associated polyhedron can
be completely described.

In our solution approach of column generation and subproblem optimization, the
subproblem of generating one feasible cluster is a generalization of the Boolean
quadratic program studied by Padberg [16]. The Boolean quadratic program is an
integer programming formulation of the problem of maximizing (minimizing) an
unconstrained quadratic 0-1 function.

We now restrict our discussion to MCC. One application of MCC is in compiler
construction. A compiler consists of several modules, where each module is a set of
procedures or subroutines with its associated storage/memory requirement. The
modules are combined to form clusters which are restricted in their total storage. A
typical storage bound on each cluster is either 450K or 512K. The communication
costs between modules within the same cluster are negligible and can therefore be

E . L Johnson et al. / Min-cut clustering 135

ignored. The communication costs between modules of different clusters are substan-
tial because the', clusters may be required to be swapped in memory. The objective
of compiler construction is to assign the modules to clusters so that the storage
bound restriction is satisfied and the total communication cost between modules in
different clusters is minimized. In the framework of MCC, the modules are represen-
ted by nodes with the storage requirement of each module represented by the weight
on the corresponding node. The communication cost between modules is represented
by the cost on tlhe edge between the corresponding nodes. Here the number of clusters
to be formed is not fixed.

Next, we present a straightforward integer programming formulation of MCC.
k Let x~= 1 if i~cluster k, and 0 otherwise. Let Ze = 1 if edge e belongs to cluster k,

and 0 otherwise. Assume for simplicity of exposition, that the number of clusters to
be formed is K and that the lower bound on the weight of every cluster is 0 while
the upper bound on the weight of every cluster is the same and is b. Then the problem
may be formulated as follows.

K "~

Max Z Z k CeZe, (l)
k= 1 e~E

Zke<~X~, Zke<<.X), e=(i , j)eE, (2)

~>>.x~+x)-l, e=(i , j)eE, (3)
K

~', x~[=l, i = I , . . . , I V I , (4)
k = l

g x~>l , k = l , . . . , X , (5)
i ~ g

wix~<<,b, k = l K, (6)
i~V

all variables binary. (7)

Inequalities (2) and (3) ensure that an edge is inside a cluster if and only if both of
its end nodes are in that cluster. Inequality (4) ensures each node to be in some
cluster, (5) ensures that no cluster is empty, that is there are K clusters and not fewer,
and (6) provides the weight restriction on each cluster and is referred to as the
knapsack constraint. Note that the edge variables need not be restricted to be integers
because they will automatically be so in any optimal solution where the node variables
are integers. Furthermore, since the edge costs are nonnegative, (3) can be dropped
because an optimal solution will automatically satisfy it. If the number of clusters is
not fixed, K i s set equal to I V] and (5) is omitted, we refer to (1), (2), and (4) -
(7) as the binary min-cut clustering formulation. Its linear programming relaxation
in which (7) is; replaced by nonnegativity on all variables is denoted by LPMCC.

In the next section, we present a stronger formulation of MCC that uses a decom-
position based solution strategy which creates a master problem and a subproblem
to generate columns for the master problem. In Section 3, we discuss the issues

136 E, L. Johnson et al. ~ Min-cut clustering

related to subproblem optimization. In Section 4, we discuss implementation issues
and report computational results.

2. Decomposition and column generation

Setting all the variables to 1/K provides the optimal solution to LPMCC with the
best possible objective value of ~e~E ce. Thus, LPMCC provides a useless bound on
the integer programming optimal value. An attempt to solve MCC directly (using
the formulation above) via a branch-and-bound scheme may be fruitless for any
practical problem size. This is largely due to the weakness of the LP relaxation and
the inherent symmetry in the formulation. Using symmetry, any partition of the
nodes into clusters can be represented by many equivalent solutions by exchanging
the cluster numbers of any two clusters. Fixing a node variable x~ = 0 still leaves
x2 , x~ nonzero. That is, fixing of variables in a branch-and-bound solution
procedure is not efficient because several alternate optimal solutions may still be
feasible.

We next describe a different formulation for MCC that uses a decomposition based
solution strategy and column generation. This Dantzig-Wolfe type of decomposition
strategy is discussed here specifically in the context of min-cut clustering problems,
but can be applied to more general MIP problems as suggested in [12-14].

2.1. Stronger formulation

A cluster is feasible if the weights on the nodes in the cluster satisfy the knapsack
constraint (6). Let yr, l= 1, 2 L be the incidence vectors of all possible feasible
clusters, where yi = 1 if node i is in cluster l, and 0 otherwise. MCC can be formulated
a s

L

Max ~ cl~ i, (8)
l = l

L

y i £ = l , i = l t vl, (9) y, / l

l = i

L

Z 2=K, (10)
l=1

~'~{0,1}, l = l L, (11)

where c z is the cost of the lth cluster, (9) ensures that each node belongs to exactly
one cluster, (10) ensures that K clusters are present in the partition, and the presence
or absence of a cluster in the solution is modeled by restricting the variables &t to be
binary. The problem defined by (8)-(11), which is a set partitioning problem with a
cardinality constraint, is called the master problem and is denoted by MP. Its linear
programming relaxation is denoted by LPMP.

E.L. Johnson et aL / Min-cut clustering 137

Since the columns in LPMP are restricted tro be 0-1 solutions to the knapsack
constraint (6), LPMP provides at least as strong a bound on the optimal objective
value of MCC as the bound provided by LPMCC. That LPMP might be strong can
be shown explicitly for a special case for which there is no particular reason to
suspect that LPMP would be strong. Suppose that G is complete and has Kq nodes
with K and q positive integers at least 2. Let Ce = 1, eeE, and suppose that feasibility
requires that every cluster has q nodes. Then any partition of the nodes into K
feasible clusters is an optimal integer solution with objective value ½Kq(q-1). We
verify by duality that LPMP also has an optimal solution of this value. Note, how-
ever, that LPMCC has an optimal solution x~ =Zek = 1/K, ie V, e~E, k = 1 , . . . , K,
with objective value ~ E C~ = ½Kq(Kq- 1), which is approximately K times the opti-
mal integer objective function value.

Let rc~, i= 1 I VI be the dual variables for (9), and let/1 be the dual variable
for (10). Then the dual of LPMP is

Min }~ lr~+/.tK, (12)
i s V

ZYl:rri+,u>~c', I = I , . . . , L . (13)

Since ct=½q(q - 1), for all e~E, the solution roe=0 for ieV, and/.t =½q(q-1) is an
optimal solution to the dual with the same objective value as the integer solution to
MP.

2.2. Solving LPMP by column generation

Since LPMP can have a huge number of columns, to list all the columns is impractical
if not impossible. Instead, we start with a few columns and solve the restricted LPMP,
adding "good" columns as required, until LPMP is optimized over all possible
columns. The small number of initial columns in the restricted LPMP may actually
provide a good incumbent solution.

For a feasible cluster with node set U~ V, let

'l, i6U, I1, (i,j)~E(U),
X i = Z 1 =

,0, otherwise, ~0, otherwise.

When the current restricted LPMP has rci, i = 1, 2 , . . . ,] VI, and/1 as the dual vari-
ables to (9) and (10) respectively, the subproblem that must be optimized to generate
the most attractive column (based on its reduced cost) is

- # K + M a x (~ CeZe-- ~ ;'rixi), (14)
eE E i~ F"

Ze<<.xi, Ze<~Xj, e=(i, j)~E, (15)

wixi <<, b, (16)
i ~ V

z~>~O, eeE, and xi~{0,1}, i6V. (17)

138 E.L. Johnson et al, /Min -cu t chistermg

We refer to this subproblem as the knapsack quadratic program (KQP). IfJcon-
straint (16) is ignored then KQP models the Boolean quadratic program. If the
objective value of the optimal solution is positive, then a column corresponding to
the optimal vector x may be added to the restricted LPMP to enter the basis. Other-
wise, there are no more columns to add, and the current solution to LPMP is optimal.
If this optimal solution to LPMP is integral, an optimal solution to MP is at hand;
otherwise we use branch-and-bound to obtain an integer solution. Note that since
KQP is NP-hard, it follows from the equivalence of separation and optimization that
the linear program LPMP is NP-hard.

3. Subproblem optimization

We use a cutting plane/branch-and-bound method for solving the subproblem
defined by (14)-(17). This is an LP based procedure, where we generate violated
inequalities as needed to cut off the current fractional solution. When our procedure
is unable to identify any violated inequalities, we use branch-and-bound to determine
an optimal solution. Some of the valid inequalities and their strength are discussed
next.

3.1. Subproblem polytope-- Valid inequalities

We denote the convex hull of the set of solutions to (15)-(17) by the polytope
PKQp(G). Here, we discuss some valid inequalities for PKQp(G). Note that although
valid inequalities for the polytope associated with the Boolean quadratic program
[16] are valid for Pr~oP(G), these inequalities are not strong enough for solving KQP
because of the knapsack constraint.

For C~ V, we say that C is an independent set if F.i~cWi<~b; otherwise C is a
dependent set. A dependent set is minimal if all of its subsets are independent. Note
that if C is a minimal dependent set, then ~j~cX:<~l C [- 1 is a valid inequality for
PKQp(G).

We assume, for simplicity, that for each e = (i, j) sE, wi + wj ~< b. This assumption
implies that PKQp(G) is full dimensional because the following [V[+ IE] + 1 affinely
independent integer solutions are in PKQv(G).

(a) xi=O, i~V, zo.=O , (i,j)~E.
(b) xu= l , xi=0, i~V\{u}, z/j=0, (ij)~E.
(C) Yu=Xu=l,)ci=O, i~V\{u,v}, z===l, ze=0, e~E\{(u,v)}.

A valid inequality rex ~< 7r0 defines a facet of a full dimensional polyhedron P if
and only if its coefficients are determined uniquely up to scalar multiplication by
points in P (Nemhauser and Wolsey [15]). We use this fact in the proofs of the
following results.

For S c V, we let E(S) = {(u, v) [u, v~S}, and for F~_E, we let V(F) denote the
set of nodes in G(V, E) consisting of end nodes of the edges in F.

E.L. Johnson et al. / M i n - c u t clustering 139

Theorem 1. Let C be a dependent set and sutfpose that the graph G'(C, E(C)) is
connected. Let T be a set of edges in G that form a spanning tree on the nodes in C.
Let 6(0 = {j: (i , j) tT} for each itC. Then the following tree inequality is valid for
PKQp(G).

2 Z e ~ 2 ([f(i)[--1)X i, (18)
e e T ieC

A tree inequality (18) defines a facet for PI,:Qp(G') where G '= (C, E(C)) if and only
tf C \{i} is an independent set for every leaf i of the tree induced by T.

Proof. We first establish the validity of (18). Consider an arbitrary feasible solution
in P K Q p (G) .

{1, i tS, {1, erE(S),
X i ~ Z e ~-

0, otherwise, 0, otherwise.

The edges in E(S) c~ T induce a forest F. Let T ' c F be the set of edges in one-
component of the forest and let V(T')=S'. Hence T' induces a tree on the node
set S'.

For i tS ' , let 5'(i)= {j: (i, j)~ T'}. Since I S'L <LCL because C is a dependent set,
there exists an edge (i , j) t T \T ' , jeS ' , so that 13(j)i > lS'(j)[. Since Ze = 1, e t r ' , it
follows that

z~=IT'] =]S'] - I= 2(]S'I -1) -]S '] + I
eeT'

= ~ l S ' (i) l - I S ' l + l = ~ (]a'(i)[-1)+l
ieS' ieS'

~< ~ (15(i)[-1)= ~ (LS(i)l-1)xe,
ieS' ieS'

where the last equality follows because xi = 1 for i tS ' . Adding these inequalities for
all the components of F shows that the tree inequality is satisfied by any point in
PKQp(G).

Suppose that C \{i} is an independent set for every leaf i of the tree induced by
T. Let zcz+ o-x~< Jro be a facet defining inequality for PKQp(G') which contains all
equality solutions to (18). We will use some integer points in PKQp(G') that satisfy
(18) at equality to determine the coefficients lr and o- uniquely up to scalar multiplica-
tion. Since (z, x) = (0, 0) is such a feasible solution, fro = 0.

Next we prove that 1re=0 for any edge e= (i,j) such that e¢ T. For any nontree
edge e= (i,j), there exists a unique path from i to j consisting of edges in the set
P ~_ T. The length of a path is the number of edges on the path. Form a list L =
{ e l , . . , em} of nontree edges in nonincreasing order of their path lengths. We prove
that roe, = 0, t = 1 , . . . , m, by induction on t.

Given i t V(T), let Fi be the forest obtained by deleting the edges (i , j) , je 5(i). We
denote the I 5(i)[components o fF /by T/ , je flU), where T/is the tree that corresponds

140 E.L. Johnson et al. / Min-cut clustering

to the component that contains nodej . Let Ti(j) = T/w {(i,j)}, K/= T\T~(j~, and

Ti(j) - ~

.. i".2"
/ , , . . / /

I T/3 , a component of -Pi ~1 ~ . - " " "
. , ' - - KJ, T \ T~(j)

Fig. 1.

let V/= V(K/) u {i} (see Figure 1). Note that V/= V(K/) if i is not a leaf of the tree
induced by T.

Let e~ = (il,j~) and let P be the set of nodes on the unique path from il to jl
consisting of edges in T. Let p = fi(h) ~ P, and let q= fi(jl) c~ P. Note that there is
no nontree edge (except edge el) between the nodes in Vf and the nodes in Vii q
because the path length of such an edge would be strictly greater than the path length
of el, which is impossible, since el is the first element in L.

The following solutions satisfy (18) at equality:

1, iEV~(, {1, e~E(Vi~),
(a) x i = z e =

0, otherwise, 0, otherwise,

{1, {;:
(b) xi= ze =

0, otherwise, otherwise,

1, ieV,.fu ~ , {1, e~E(Vi~w Vj~),
(c) xi= 0, otherwise, Ze= 0, otherwise.

We establish this only for (a). Let I Vfl = m. The number of edges in K~ is m - 1,
and from the observation made at the beginning of the proof, r n - 2 = ~ j , ~
([8'(k)t - I) where d'(k) ~= {j: (k,j)EK~}. Note that 18(k)[= Ic~'(k)l for k~ ~,P \{il}
and 18(ii)1 = I fi '(il)1 + 1. Hence m - 1 = ~k~ ~([8(k)] - 1), and this establishes that the
solution consisting of nodes and edges in K~ satisfies (18) at equality.

E.L. Johnson et al. / Min-cut clustering 141

From the solutions (a)-(c), we get the following equalities.

ZC ZKf~ + cr x v~ = O,

zr z ~, + cr x ~, = O,

7cz Kf, + ~zX~ + crx vf, + a x ~ + 7c~, = O.

Subtracting the left hand sides of the first two equations from the left hand side of
the third gives 7c~ = 0.

For the induction, assume that ~e,=0, t= 1 l - 1. Let el = (it,j~) and let P be
the set of tree edges on the unique path from i~ to jr. Let p = 8(i~) ca P, and let q =

~(Jl) c~P. Let the set of nontree edges that have one end node in V~ and the other
end node in V~ be denoted by NT.

Using the above arguments, we see that the following solutions satisfy (18) at
equality:

1, i eVF , [1, eeE(ViP),
(d) xi = z~= 0, otherwise, ~0, otherwise,

{ 1' i~Vjq' Ze={ 1' e~E(Vjq)'
(e) xi= 0, otherwise, 0, otherwise,

{1, eEE(VF~ w ~q), 1, i~ gif w V f , ze=
(f) xi =

0, otherwise, 0, otherwise,

From the solutions (d)-(f), we get the following equalities.

rczE(Vf) + (rxVf~=O,

rcze(~ ~ + o-x~= O,

zrzE(Vf, ~ + rcze(~) + crxVP + crx~t+ get+ Zre=0.
e E N T \{el}

Note that ~e~---0 for eENT \{el} by the induction hypothesis. Subtracting the left
hand side of the first two equations from the left hand side of the third gives
Jre~ = 0. Thus, roe = 0 for any nontree edge e.

If i is a leaf of the tree induced by T, then the solution xi = 1, xj = 0, j ~ i, ze = 0 for
all e, satisfies (18) at equality. Hence crt = 0 for every i such that i is a leaf of the tree
induced by T. Next we establish the coefficients o-i for i eC, such that lfi(i)l) 2 .
Consider the following solutions:

1, k e V { , {1, eeE(V{) , j = l , . . . , [f i (i) [.
xk= (), otherwise, Ze= O, otherwise,

142 E.L. Johnson et al. /Min -cu t clustering

\ ¢1-~ is an The feasibility of these solutions follows from the assumption that c \~,~
independent set whenever k is a leaf of the tree induced by 7'. Using the previous
arguments, it is easy to verify that these solutions satisfy (18) at equality. From these
solutions, we get the following equalities.

rczX~+{rxW'\{i}+crs=O, j = l , . . , I~(i)l.

These equalities yield

~Z Ti(jl) .~ o-xV (T,(Jl)) \{ i} = 7(Z Ti(j2) ~- (~X V (Ti(j2)) \{ i}

=7,, j l , j ~ { 1 Ifi(i)t},

where 7, is a constant for node i. Substituting this into the equality corresponding
to any one of the [8(i)l solutions establishes that

~,+ (I g (i) l - 1)7,=0.

We now establish that re,y= 7, for { (i , j) : j ~ (i) } . Since T,(j)=K] u {(i,j)},

7,= g'z~+ O-x~+ g',j.

This establishes that rc U = 7, because

KZKJ+ O-x~= g'o = 0.

Repeating the same argument for every tree edge incident to node i, we get re0.= 7,

for every j~ 3(0.
If e=(i , j)~T, then the above arguments imply that 7i=Ze = ?'j= 7" This estab-

lishes all the coefficients uniquely up to scalar multiplication and proves that (18)
defines a facet for PKQp(G').

NOW suppose that there exists a node u~ C such that u is a leaf of the tree induced
by 7', and C ' = C \ { u } is a dependent set. Let (u, v)sT, and r ' = r \ { (u , v)}. Let
c~'(i)={j:(i , j)~T'} for each i~C'. Then the following inequality is valid for

PKQp(G).

Ze<~ E ([f i ' (i) l -1)x, . (19)
e~ T ' iE C '

Since I 5 '(i)l = I fi (i)l, for i t C \ {u, v}, I fi '(v)l =] c~ (v)[- 1, and[fi(u)[= 0, inequality (18)
is a sum of z,~<~x~ and the inequality (19). Hence (18) is not facet defining for

PKQp(G'). []

When the tree in inequality (18) is a star, we get the following result.

Corollary 2. Let C be a minimal dependent set. Then the following star inequalities
are valid for PKQp(G) and are facet defining for PKQp(G') where G '= (C, E(C)).

y~ z,j<~(ICl-2)x,, i~C. [] (20)
j~C\{i}

Theorem 1 can be generalized to consider forests rather than just spanning trees
over the nodes of C.

E.L. Johnson et aL / Min-cut clustering 143

Theorem 3. Let C be a minimal dependent set at~d let F be a set of edges in G that
form a forest on the nodes in C. Let F have p components, and let 8(i) = {j: (i , j)6F}
for each i e C. Then the following forest inequality is valid for PKQp(G).

Z Ze~(P - 1) + Z ([8(01- 1)x~. (21)
e~F i~C

The inequality is facet defining for PKQp(G') where G' = (C, E(C)) i f and only i f
there are no edges in E(C) between nodes o f C in different components o f F and
C \ {i} is an independent set for every i such that t d(i) [~< 1.

Proof. Let T be a set of edges that include all the edges in F and some artificial edges
not in G(V, E) that form a spanning tree on the nodes in C. Then adding the tree
inequality (18), and the inequalities z,y/> xi + x j - 1 for all the edges in T \F gives the
forest inequality (21). Hence, the validity of the forest inequality follows from the
validity of the tree inequality.

Now suppose that there are no edges in E (C) between nodes of C in different
components o f F and C \ {i} is an independent set for every i such that I d(i) L ~< 1. "
Let ~z+ ax<~ fro be a facet defining inequality for PKQp(G) which contains all the
equality solutions to (21). Let T1,..., Tp be the trees that correspond to the p com-
ponents of F. Let Vr~ be the set of nodes in component i. Hence, unless Ti= 0,

VT,= V(Ti).
Using arguments similar to the arguments used in the proof of Theorem 1, it is

easy to see that the solutions

{1, j~ C \ Vr,, {1, e~E(C \ VT~),
xs= 0, otherwise, ze= 0, otherwise,

i= 1,...,p, satisfy (21) at equality. Let

~i---= ~ZE (vri) + ¢rX Vri.

This implies that

p

7j-Yi=ZCo, i=1 ,p.

These equalities give

7i= ~i=--7, i, j s{1 ,p}, 7=Zro/(p-1) .

We now establish the coefficients of the edge and node variables that correspond
to T~. We consider only those solutions that have all the edges in Ta ~" • " u Tp. If
we subtract the sum ~P=2 7; from the forest inequality corresponding to such solu-
tions, our analysis reduces to considering solutions that satisfy

z ~ F~ ([8(i) l -1)x ,
es 7"1 ie VTI

at equality. Note that at most I T~[- 1 nodes can be present in any feasible solution
that already contains the edges in T2 ~ • " • w Tp. Hence, an inequality of the same
form as the tree inequality (18) holds for the nodes in Vr,, and the edges in TI. The

144 E.L. Johnson et al. / Min-cut clustering

coefficients can be uniquely determined (up to scalar multiplication) by arguments
analogous to those used to establish the coefficients in (18). []

3.2. L~fting

We now discuss the lifting procedure for the star and tree inequalities. Since the star
inequalities (20) and tree inequalities (18) were shown to be facet defining for
PKQp(G'), where G'= (C, E(C)), the variables xisC, and z~, e~E(C), can not be
lifted. We discuss lifting the other variables next.

First consider lifting star inequalities (20). It is easy to verify that in any sequential
lifting procedure where maximum lifting is done, the lifting coefficient is 0 for the
following variables

(i) zp~, p, q~ C;
(ii) xp, p s V \ C; and

(iii) Zpj, jeC, j # i , p(~C.
Now consider lifting variables zg, je V\C. Let S c _ V\C, and suppose that the

following inequality is obtained after maximum lifting of variables z U, j sS .

aJo.+ ~ z o ~ ([C l - 2) x i , ieC, SZ V\C. (22)
]~S j~C

Consider lifting y = Zip, PC { C w S}, and let

~ = max {j~s ajz~+~j~c ziJ--(IC[--2)Xi'(Z'x)6PKQP(G)~{ZiP=I}} "

Note that zip = 1 ~ xi=xp = 1 ~ zij = 1 if and only i fx j= 1 for anyjsC, j # i . Hence
the lifting coefficient for an edge variable Zip is Y ~<-4, where

~=max 3~ CtjXj+ ~ xj-(ICI-2), ~ wjxj~b-wi-wp.
j~S j~C\{i} j~Su C\{i}

This is a 0-1 knapsack problem and can be solved by dynamic programming, see
[15]. Note that this problem can be solved by a simple sorting of the weights when
all the objective coefficients are 1, as is the case when the first edge variable is lifted.

Now consider lifting the tree inequalities (18). It is easy to verify that in any
sequential lifting procedure where maximum lifting is done, the lifting coefficient is
0 for the following variables.

(i) Zpq, p, q¢C;
(ii) xj, j¢ C; and

(iii) zpj, j a leaf of the tree induced by T, pC C.
The lifting problem for an edge variable zq, i~ C, j~ V\C, where i is not a leaf of

the tree induced by 7", is a KQP. However, when no edge variable has been lifted

E.L. Johnson et al. / Min-cut clustering 145

with a positive coefficient, it reduces to a knapsack problem which can be solved by

sorting (see [13]).

3.3. Separation

The separation problems for the inequalities discussed in the previous section involve
finding a minimal dependent set that minimizes a linear function. Since this prob-
lem is NP-hard, see [15], it follows that the separation problem for our inequalities
is NP-hard. The, refore, we suggest heuristic procedures to find the violated
inequalities.

Let (z*, x*) be a fractional solution of the LP relaxation of KQP. Then the separa-
tion problem for finding a violated star inequality corresponding to a node i~ V
involves finding a set C ~ V, i~ C (assuming one exists) with

wj>b and ~ z*>(lCI-2)x*.
j~C j~C\{i}

Let N(i) = {k: (i, k)eE}. Introducing a binary vector y to represent the unknown set
C, we attempt to choose y such that

E wjyj>b-wi,
j~N(i)

and ~yv(o (x~*- z~)yj is minimized. This is a knapsack problem and can be solved

approximately using a greedy heuristic, see [15]. The corresponding inequality can
then be lifted.

To find a violated forest inequality, we first use a greedy approach to find a violated
tree inequality. The greedy algorithm starts with an edge corresponding to the biggest
fractional value..At each subsequent iteration, out of all the edges with one end node
in the tree and the other end node not in the tree, the edge corresponding to the
minimum value of x~- zis, with z• fractional, where i is in the tree and j is not in the
tree, is added to the tree. The process stops as soon as the nodes in the tree correspond
to a dependent set or when there is no fractional z,~ such that node i is in the tree
and node j is not in the tree. In the latter case, the tree obtained so far represents
one component of the forest and other components are found similarly until a forest
is obtained such that the nodes in the forest correspond to a dependent set or there
are no more fractional edges to consider.

3.4. Decomposition

Here, we discuss a decomposition based method to solve the subproblem defined by
(14)-(17). A set Sp of nodes is feasible if ~i~5 wi~b. For each feasible set Sp,
p = 1 P, define the incidence vector yP where yP = 1 if node i belongs to Sp, and

146 E.L. Johnson et al. , Mhz-cut clusterh~g

yf = 0 otherwise. The resulting LP relaxation of the (sub)master problem is 0f the
form

Max ~ CeZe--~ (rc,yf)7 p, (23)
e~E i,p

z~-~yfTP<~O, z~-~y~TP~O, (i , j)sE, (24)
p p

P
Z 1, (25)

p = l

7 p~>0, p = l , . . . , P . (26)

The (sub)master problem is started with a few columns. When v0, vii, and 0 are
the dual variables to (24)-(25), the (sub)subproblem to generate a column that can
enter the basis of the (sub)master problem is of the form

0+ M a x ie v ((i j) ~ E (l't iJ ~- 1)ji) -- ~) xi '

%

- E E (27)

w~x~ <<. b, (28)
iE V

xes{0, 1}, i~V. (29)

The relative strength of the (sub)master program depends on how much of the
difficulty is in satisfying the knapsack constraint and how much is in the nature of
the costs. For example, where the knapsack constraint is just a cardinality constraint,
that constraint is easy to satisfy and decomposition/column generation may not
be needed. The advantage of this approach is that the columns generated by the
(sub)subproblem may be kept in a bank to be priced out when needed.

4. Computational results

Our attempts to solve real compiler construction problems using the formulation in
Section 1 with branch-and-bound were unsuccessful. However, we were able to solve
these problems using the decomposition and column generation based methodology.
The results we obtained yielded significant improvements over the heuristics used
previously. In all the results presented here, the initial restricted LPMP has columns
corresponding to an identity solution (each node is in a cluster by itself), and more
columns are generated by solving the subproblem to optimality until LPMP is op-
timized. When the optimal solution to LPMP is fractional, a simple branch-and-
bound methodology is used to determine an integer solution without generating more
columns. This can of course yield a suboptimal solution. In the 12 problems we
solved, only 2 master problems had fractional optimal solutions and in both of them,
the integer solution obtained by branch-and-bound was very close to the LP solution
in objective value.

Table 1

Graph description

E.L. Johnson et al. / Min-cut clustering

3

Graph number Connected nodes Number of edges

1 45 98
2 30 56
3 47 101
4 47 99
5 30 47
6 61 187

147

The optimal solution to the subproblem can sometimes correspond to nodes that

do not induce a connected graph. In that case, each component of the induced

subgraph is added as a separate column provided that it prices out positively.

All programs are in F O R T R A N using IBM's Optimization Subroutine Library

and the timings reported are on the RS 6000 (Model 540). In all the runs, we first.-

identify the isolated nodes which are placed in clusters by themselves. This identifica-

tion of isolated nodes is a simple preprocessing step to reduce the size of the problem.
Table 1 describes the sizes of the graphs after this reduction. Tables 2 and 3 summar-

ize the results. In the first set b = 521K and in the second set b = 450K.

Table 2

Summary of results (b = 512)

Graph number cpu sec Number of LP value IP value
columns

1 935.92 72 3238 3238
2 102.41 36 1748 1748
3 843.53 97 3969 3969
4 2549.52 92 1993 1993
5 95.40 48 1174 1174
6 3962.64 153 23564 23564

Table 3

Summary of results (b =450)

Graph number cpu sec Number of LP value IP value
columns

1 570.42 64 2928 2928
2 53.59 30 1642 t642
3 898.42 92 3574 3569
4 1732.40 67 1837 1837
5 60.46 27 1099 1099
6 3277.17 128 22245 22142

148 E. L, Johnson et al. / Mbz-cut clustering

Next, we discuss our results on subproblem optimization for column generation.
We implemented a cutting plane/branch-and-bound procedure for solving the sub-
problems. Adding violated lifted star inequalities in a cutting plane procedure before
using branch-and-bound was effective for solving the subproblems.

We demonstrate the strength of the star inequalities on 12 subproblems that
appeared in the column generation procedure. The problems selected reflect the level
of difficulty of the subproblems at various stages of the column generation procedure.
These subproblems are for the problem corresponding to graph 2. In Table 4 the
problem code lists the right hand side value of the knapsack constraint and the

Table 4

Subproblem results

Problem LP value Lifted star MIP value % gap
code inequality reduction

450-2 867,28 731.99 728.0 97.1
450-11 361.02 123.58 102.0 91.7
450-I6 315,51 100.95 55,0 82.3
450-28 312.45 97.48 10.0 71.0
512-2 1108.28 956.53 887.0 68.6
512-11 555.56 510.69 503.0 85.4
512-21 321.22 122.88 101.0 90.0
512-31 305.62 112.73 25.4 68.8
512-5 934.60 688.87 640.0 83.4
512-15 354.80 193.65 163.0 84.0
512-25 309.58 112.89 35.6 71.8
512-35 306.48 110.32 6.6 65.4

column number for which this subproblem is solved. Table 4 also lists the objective
values of the LP relaxation, the value after adding some lifted star inequalities, and
the MIP objective value. The last column lists the percentage reduction of the gap
between the LP objective value and the MIP objective value by addition of lifted star
inequalities.

The separation method in our implementation for a star inequality corresponding
to node i is a greedy algorithm that adds edges (i,j), j, ~N (i), with a high fractional
value until a dependent set is obtained. This dependent set is then reduced to a
minimal dependent set and the corresponding star inequality is lifted by using dy-
namic programming. As shown in Section 3.3, the separation problem for the star
inequalities is a knapsack problem. We experimented using dynamic programming
to solve this knapsack problem to determine the initial dependent set. The results
obtained are similar to the case when the greedy algorithm is used.

We also implemented a heuristic separation algorithm and an exact lifting pro-
cedure for tree inequalities (18). The improvement in the results obtained on adding
violated lifted tree inequalities after addition of star inequalities was negligible.

Finally, we implemented the decomposition algorithm described in Section 3.4 for
solving the subproblems; the results were not competitive with those obtained by a
cutting plane/branch-and-bound method.

E.L. Johnson et al. / Min-cut clustering

4.1. Issues in column generation J

149

There are different stages of column generation in the decomposition scheme and,
for the sake of efficiency, column generation procedures can be tailored to these
different stages.

The initial restricted LPMP can be started with a few columns providing a starting
basis. However, if the corresponding dual solution is very degenerate, several itera-
tions of column ;generation may be required before any columns that appear in the
optimal solution are added. An alternative is to include more starting columns so
that the dual solution to the LP reflects a later stage of restricted LPMP solution.
This can improve the quality of the additional columns generated, at the expense of
increasing the size of the restricted LPMP that is solved.

Later in the procedure, the columns generated should price out appropriately to
enter the basis to the current restricted LPMP. Note that it is not necessary to
generate the most attractive column (based on its reduced cost). Any column that is
eligible to enter the current basis may be generated to add to the master program. . -
In fact, several columns may be generated at once before updating the restricted
LPMP solution. One method of generating several columns quickly is to do subset
column generation, that is, partition the nodes into a few subsets, treat the underlying
graphs as defining individual clustering problems, and optimize over these separately.
Any scheme may be used to do this, however, the decomposition scheme may be the
best since this would also provide columns for the overall clustering problem. If the
subsets are small enough, it may be practical to generate all possible columns over
them. Then only attractive ones may be included in the restricted LPMP and others
kept for future use. Efforts to generate these columns individually later may be far
more costly than maintaining a bank of these columns for pricing out. If the subsets
chosen are nonovertapping, then they will also provide an incumbent integer solution
rather quickly.

The compiler problems did not require implementation of efficient column genera-
tion schemes for different stages of the solution procedure. We feel, however, that
these issues will be critical in the solution procedure for the more difficult max-cut
and mixed-cut clustering problems.

4.2. Distinguished nodes

In certain clustering problems, one or more nodes are specified to be in a given
cluster. Even when such a requirement is not explicitly stated, it is possible to have
several nodes, no two of which can occur together in any cluster because of the
knapsack constraint that limits the sum of the node weights in any cluster. It may
then be advantageous to determine these sets of distinguished nodes because then the
column generation can be done over smaller graphs. We describe a method to identify
such distinguished nodes when the number of clusters to be formed is not fixed.

150 E.L. Johnson et al. / Min-cut clusterh~g

Let the weight o f a path p f rom node i to n o d e j in G be the sum of the weigfits on

all the nodes in the path. We will denote this path weight by fI/~(i,/). Let Wmin(i, j) =

m inp{Wp(i , j) } . F r o m the initial graph G(V, E) , construct a graph G'(V, E ') as

follows. Let (i, j) e E ' if and only if Wm~, (i, j) > b. NO te that an (i, j) ~ G' implies that

there exists an opt imal solution in which i and j are not in the same cluster. Hence,

there exists an op t imal solut ion such that a clique in G' represents a set o f nodes no

two o f which are in the same cluster.

We implemented this idea o f distinguished nodes in column generation by solving

a subproblem for each distinguished node. Even though each subproblem was easier

to solve, the time for solving several subproblems instead of one for each iteration

of column generation was substantial. The results obtained using this implementat ion

did not improve the previous ones.

Acknowledgements

We thank Dr. T.K. Phillips o f the IBM Research Center for providing the data for

the compiler design problems. We also thank the anonymous referees for their careful

reading and helpful suggestions. A. Mehro t ra gratefully acknowledges the suppor t

f rom an IBM graduate fellowship for 1990-92, and the support received at IBM T.J.

Watson Research Center during the summers o f 1989-91.

References

[1] F. Barahona and R. Majhoub, "On the cut polytope," Mathematical Programming 36 (1986)
157-173.

[2] S. Chopra, "The graph partitioning polytope on series-parallel and 4-wheel free graphs," J.L. Kellogg
Graduate School of Management, Northwestern University (Evanston, IL, 1991).

[3] S. Chopra and M.R. Rao, "The partition problem," J.L Kellogg Graduate School of Management,
Northwestern University (Evanston, IL, 1990).

[4] S. Chopra and M.R. Rao, "Facets of the k-partition polytope," J.L. Kellogg Graduate School of
Management, Northwestern University (Evanston, IL, 1991).

[5] M. Conforti, M.R. Rao and A. Sassano, "The equipartition polytope. I: Formulations, dimension
and basic facets," Mathematical Programming 49 (1990) 49-70.

[6] M. Conforti, M.R. Rao and A. Sassano, "The equipartition polytope. [I: Valid inequalities, and
facets," Mathematical Programming 49 (1990) 71-90.

[7] E. Dahlaus, D.S. Johnson, C.H. Papadimitriou, P. Seymour and M. Yanakakis, "The complexity
of multiway cuts," extended abstract (1983).

[8] M.R. Garey and D.S. Johnson, Computers and lntractability: A Guide to the Theory of NP-Complete-
ness (Freeman, New York, 1979).

[9] O. Goldschmidt and D.S. Hochbaum, "An O(] V[2) algorithm for the k-cut problem," Proceedings
29th Annual Symposium on Foundations of Computer Science (1985) pp. 444 451.

[10] M. Gr6tschel and Y. Wakabayashi, "A cutting plane algorithm for a clustering problem," Mathe-
matical Programming (Series B) 45 (1989) 59-96.

[11] M. Gr6tschel and Y. Wakabayashi, "Facets of the clique partitioning polytope," MathematicaI
Programming 47 (1990) 367-387.

E.L. Johnson et aL / Min-cut clustering 151

[12] E.L. Johnson, '"Modeling and strong linear programs for mixed integer programming," NATO ASI
Series, F51, Algorithms and Model Formulations in Mathematical Programming (Springer, Berlin,
1989).

[13] A. Mehrotra, "Constrained graph partitioning: decomposition, polyhedral structure and algo-
rithms," PhD Dissertation, School of Industrial and Systems Engineering, Georgia Institute of
Technology (Atlanta, GA, 1992).

[14] G.L. Nemhauser and S. Park, "A polyhedral approach to edge coloring," Operations Research
Letters 10 (1991) 315-322.

[15] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, New York,
1988).

[16] M. Padberg, "The Boolean quadratic polytope: Some characteristics, facets and relatives," Mathe-
matical Programming (Series B) 45 (1989) 139-172.

