
Mathematical Programming 62 (1993) 95-11 ?
North-Holland

95

Multicommodity network flows" The impact
of formulation on decomposition

K i m L. Jones and Irvin J. Lust ig
Department of Civil Engineering and Operations Research, Program in Statistics and Operations
Research, Princeton University, Princeton, N J, USA

Jud i th M. F a r v o l d e n
Department of Industrial Engineering, University of Toronto, Ont., Canada

W a r r e n B. Powel l

Department of Civil Engineering and Operations Research, Program in Statistics and Operations
Research, Princeton University, Princeton, N J, USA

Received 9 April 1992
Revised manuscript received 17 January 1993

This paper is dedicated to Phil Wolfe on the occasion of his 65th birthday.

This paper investigates the impact of problem formulation on Dantzig-Wolfe decomposition for the
multicommodity network flow problem. These problems are formulated in three ways: oTigin-destination
specific, destination specific, and product specific. The path-based origin-destination specific formulation
is equivalent to the tree-based destination specific formulation by a simple transformation. Supersupply
and superdemand nodes are appended to the tree-based product specific formulation to create an equiva-
lent path-based product specific formulation. We show that solving the path-based problem formulations
by decomposition results in substantially fewer master problem iterations and lower CPU times than by
using decomposition on the equivalent tree-based formulations. Computational results on a series of
multicommodity network flow problems are presented.

1. Introduction

Multicommodity network flow (MCNF) problems arise when several commodities
share arcs in a network and compete for the capacity on these arcs. Capacitated
MCNF problems arise in a variety of applications (Assad [2], Farvolden [8], Tomlin
[17]), including the transporation of goods over a network, the flow of information
through a communications network, and multi-item production planning. In trans-
portation, the traffic assignment problems involves the routing of items through a
capacitated network of transportation services, where each item must be moved from
its origin to its destination. For this problem, a commodity can be a specific item,

Correspondence to : Irvin J. Lustig, Department of Civil Engineering and Operations Research, School
of Engineering and Applied Sciences, Princeton University, Princeton, NJ 08544, USA.

96 K.L. ,hines et al. / Multicommodity network flows

the flow of items between a common origin and destination, the flow of items~with
a common destination, or the flow of items with a common origin. By contrast, the
multi-fleet allocation problem involves the assignment of different types of vehicles
to handle a scheduled set of transportation services, where a transportation service
may be handled by more than one type of equipment. For this problem, a commodity
is generally treated as the flow of a particular type of equipment.

When deciding on an appropriate formulation, the common practice has been to
choose one that produces the smallest number of commodities, thereby minimizing
the size of the corresponding linear program. If a Dantzig-Wolfe decomposition
approach is being used to solve the problem, a reduction in the number of commodi-
ties decreases the number of subproblems that need to be solved and also reduces
the size of the linear programming master problem. In this paper, we investigate the
hypothesis that using such compact formulations actually produces a much more
complex problem, producing the slow convergence that is characteristic of Dantzig-
Wolfe decomposition. For example, the traffic assignment problem can be formulated
by defining a commodity as the flow between a single origin and destination, instead
of flow from a single origin to multiple destinations. The result is a significantly
larger master problem, but we present evidence to suggest that the extreme points
produced by this formulation offer considerably greater flexibility, producing sub-
stantial reductions in the number of master iterations required to reach convergence.
This formulation also suggests that many more subproblems are solved at each
iteration. However, it is possible to bypass this difficulty by solving the compact
subproblem formulation and then decomposing the solution of the subproblem for
addition to the master problem. Although it can be argued that a much larger master
problem may result in increased CPU times, the total reduction in the number of
master problem iterations compensates for this increase in size. Also, depending on
the sophistication of the linear programming solver, larger and sparser master prob-
lems do not necessarily entail longer solution times at each iteration. Recent advances
in solving large-scale linear programs enable one to solve much larger master prob-
lems, thereby making it possible to solve formulations with larger numbers of com-
modities. For this reason, we present both master problem iteration counts and CPU
times to optimality for each of the test problems. Our test problems are chosen from
applications that use time-space dynamic networks. However, our results should be
applicable to other types of problems as well.

Relatively little attention has been devoted to the issue of problem formulation
while considerably more attention is given to improvements in algorithms for a
given solution method. For example, recent research into interior point methods has
produced substantial advances for solving large MCNF problems directly. Choi and
Goldfarb [5] exploit the special structure of the MCNF problem in a theoretical
application of the primal dual interior point method. Carolan et al. [3] present a
similar test of various interior point methods on AT&T's KORBX system. The latter
offered the ability to directly solve very large-scale MCNF problems with interior
point methods. More recently, Shultz and Meyer [16] and Pinar and Zenios [13]

K.L. Jones et al. / Multicommodity network flows 97

,r
show it is possible to solve very large MCNF problems using parallel computation
techniques.

Large MCNF problems that arise in practice are unlikely to be solved directly as
linear programs. However, the special structure of these problems makes decomposi-
tion an attractive solution method. Assad [2] uses decomposition to solve a set of
MCNF problems where a commodity is associated with a single origin and single
destination. Tomlin [17] uses a Dantzig-Wolfe [7] decomposition procedure in solv-
ing the traffic assignment and distribution problems in a path-based formulation.

Another common solution method for solving MCNF problems is the primal
partitioning algorithm. This algorithm has traditionally been used with an arc-based
formulation as seen in Ali et al. [1] and Kennington and Helgason [11]. More
recently, Farvolden et al. [9] employs a path-based primal partitioning algorithm for
the MCNF problem. This work is especially relevant to the research presented in
this paper, as it addresses the issues involving a path-based formulation versus a
tree-based formulation. Their results show that it is not only possible to solve large
problems with the single origin/single destination formulation using primal partition="
ing, but that it can be beneficial.

The focus of this research is the investigation into the advantages of the path-
based single origin and single destination formulation for the MCNF problem when
Dantzig-Wolfe decomposition is applied. Under decomposition, the effects of prob-
lem formulation are fully exposed. It is hypothesized that even though the size of the
single origin/single destination formulation explodes as the size of the problem
grows, this formulation is easier to solve than a more compact representation of the
problem within a decomposition framework. The intuition behind this hypothesis is
twofold. First, there are fewer path-based extreme points than tree-based extreme
points. Naturally this is dependent upon network structure; however, when this is
the case, the decomposition of the path-based formulation will outperform the tree-
based formulation. Second, the decomposition of tree structures into paths enables
the decomposition method to consider a wider range of feasible solutions in the
domain of the master problem. For instance, a path in a network that has a low
cost and a large capacity is likely to have a positive flow. However, if this path were
grouped into a tree structure, the flow over that path may be inhibited by constraints
and the cost of the tree as a whole. Thus, not only are fewer extreme points generated
as solutions of the subproblems, the subproblems are also easier to solve. This claim
that the single origin/single destination formulation leads to faster convergence via
decomposition is supported with computational results in Section 6.

2. Problem Formulation

Consider the following linear program:
cU

(MCNF): minimize ~ (c~)Vx ~
~c=l

98 K.L. Jones et al. / Multicommoditv network jlows

subject to B~ x ~ = d ~-, tc e.~ff ,
.Z(

x~/..~u~j V (i , j) e A , (1)
~ c ~ I

x,j~.O V (i , j) e A , ~ceJU.

The linear program in (1) is a generic formulation for a MCNF problem where
J is the set of Commodities;
B ~- is the node-arc incidence matrix over the network G = (N, A) for commodity to;
x ~ is a vector of arc flows for commodity ~c;
c ~ is a vector of cost coefficients for commodity ~c;
d ~" is a vector of supply/demand requirements for commodity K; and,
u~ is the upper bound on arc (i , j) over the commodities ~c.
The linear program in (1) displays the typical block-angular structure of a MCN F

problem in that the first set of constraints are the network flow conservation con-
straints for each commodity and the second set of constraints are the mutual capacity,

or bundle constraints over the commodities. For ease of discussion, only models
without individual capacity constraints on each x,~ are considered.

We discuss three formulations of the MCNF problem where in each a commodity is
defined in a unique way. In the first formulation, we define a commodity as a product
that travels between a specific origin and a specific destination. This problem is termed
the origin-destinationprobIem (ODP) where ~: represents the triplet (k, s, t) such that k
is the product (1 ~< k ~< K), s e S is the specific origin, and t e T is the specific destination.
Here there are K products, S c N is a set of origins, and T__q N is a set of destinations.
The (ODP) is representative of a crew scheduling problem, where the identity of a crew
member k must be maintained while satisfying origin and destination constraints. In
the second formulation, we define a commodity as a product that travels to a specific
destination from multiple origins, or vice versa, from a specific origin to multiple destin-
ations. This problem is termed the destination specific problem (DSP) where the com-
modity ~c is the pair (k, t) that identifies the product k with the specific destination t.
The (DSP) is typically seen in the traffic assignment problem, where vehicles k must be
routed through a network from multiple origins to a common destination t. Finally, in
the third formulation, we define a commodity as a product that must travel through a
network from multiple origins to multiple destinations. This problem is termed the
product specific problem (PSP), where the commodity ~: represents the singleton k as
the product. The (PSP) is representative of the multi-fleet allocation problem where a
specific equipment type k must handle a set of transportation services. The (PSP) is the
formulation that is traditionally indicated when referring to a MCNF problem.

Note that the constraint matrix for all three formulations is of the form

(i) B 2

I . . . B I I

(2)

where

K.L. Jones et al. / Multicommodity network flows

$

99

f{(k, s, t): d'~=d~,#O} =JY(ODP) for (ODP),

f = ~{(k, t!: d~=dtkvs0} = uUf(DSP) for (DSP), (3)

({k: d =dk¢0} =S(PSP) for (PSP).

The differences among the formulations are the number of primary blocks IX1 and
the density of the right-hand side vector d *. The differences in I S I are noted in (3)
where the (ODP) has potentially many more primary blocks than (DSP) and (PSP)
due to the combinatorial aspects of all the products, origins, and destinations in the
problem. If we assume that the underlying network is identical for all commodities
and identical for each of the three formulations, then the node-arc incidence matrix
B ~= B for all ~ced. Hence, the number of constraints in each primary block is the
same for each of the three formulations, but the number of primary blocks varies
according to]JY't.

The right-hand side vector d ~ varies significantly among the formulations. This is
seen by investigating the number of non-zeros in each d ~ for the three formulations2"
For the (ODP) and a given triplet (k, s, t) corresponding to commodity ~c, there are

- dst that correspond to the origin s and the destination only two nonzeros in each d ~ - k
t. For the (DSP) and a given pair (k, t) corresponding to commodity ~:, each

~: k d = dt contains multiple nonzeros for the supply constraints at the multiple origins
and a single nonzero for the demand constraint at the specific destination t. Finally,
for the (PSP) and a given product k corresponding to commodity ~;, d * = d ~ contains
multiple nonzeros for the supply/demand constraints at the multiple origins and
multiple destinations. Hence, the (ODP) has potentially many more primary blocks
than (DSP) or (PSP) in the linear programming formulation, but d k is significantly
sparser than in the other two formulations. This is an important concept in the
formulation of the MCNF problem and plays a significant role in the decomposition
procedure.

3. D e c o m p o s i t i o n

This section outlines the general mathematical descriptions of the master problem
and the subproblems for the tree formulations discussed in Section 2. The reader is
assumed to be familiar with Dantzig-Wolfe decomposition and is referred to [7] for
an in-depth description of the algorithm.

3.1. Master problem formulation for (ODP), (DSP) and (PSP)

Because of the similarities in the constraint matrices of (ODP), (DSP), and (PSP),
the Dantzig-Wolfe decomposition procedure yields similar master problem formula-
tions. Recall that the number of constraints in the master problem is equal to the
number of bundle constraints plus the number of convexity constraints. Also recall

100 K.L. Jones et aL / Mu#icommodio, uetwork flows

that the number of convexity constraints is determined by the number of subprol~lems
in the Dantzig-Wolfe decomposition algorithm. The following is the generic master
problem formulation for the block angular system shown in (2). As before, the
general set S is used in the master problem formulation to represent the set of
commodities for each formulation• Since a column generation technique is employed
for the decomposition algorithm, there is a varying number of columns associated
with each ~c e 3{" in the restricted master problem constructed at each iteration of the
decomposition algorithm. Let P~ be the total number of columns in the current
restricted master problem associated with the element ~c. Hence, the general linear
program for the restricted master problem is

(RMP): minimize Y' Z ((c~)TVp)Z~
~ c ~ g p ~ P ~

subject to Z ~, (f~Vp)~p ~< u, (4)
KE,)¢ "~ p ~ p ~

H Z = e ,

)~p~>0 f o r e a c h p e P ~, r e X ,

where v~ is the pth extreme point solution from the subproblem associated with the
index ~c. Note that I~ is a diagonal matrix with elements

^~ {10 i f a r c i sbund led ' (5)
I~ = otherwise.

It is possible that I~ has diagonal elements other than 0 or 1 that represent a weighting
of the bundle constraints; however, for ease of discussion, we assume that the
diagonal elements are as shown in (5). In many cases, I~= I for all ~c ~.Y(. The vector
u is the vector of mutual capacities for the bundled arcs and e is a vector of ones
representing the convexity constraints. The matrix H is a block diagonal matrix of
e-vectors such that

(e2) T

(eJ 'r)T

(6)

where e~EN P~, for all t r e Y . That is, the number of ones in e ~ is equal to the number
of columns P~ in (RMP) that are associated with the subproblem ~c.

Depending on the definition of 24# in (3), the number of convexity constraints in
(RMP) may be vastly different in each formulation. It is important to point out that
even though the number of constraints in (RMP) for the (ODP) may be much larger
than (DSP) or (PSP), the density of each column v~ is significantly sparser in (ODP)
due to the nonzero structure of d k. This is the topic of Section 3.2 where the nature
of v~ is outlined and discussed in full for each of the three formulations.

K.L. Jones et aL / Muhicommodity network flows 101

3.2. Subproblem formulation for (ODP), (DSP) and (PSP)

At each iteration of the Dantzig-Wolfe decomposition algorithm, a subproblem is
solved for each ~ceoU. For the MCNF problem, each subproblem describes a single
commodity network flow problem and is formulated as

SUB(~:, ~c): minimize (C~--I~rc)Tv ~

subject to By ~ = d r,

v~>O for each (i , j) e A ,

(7)

where the elements of the vector n are the values of dual variables acting upon the
bundle constraints in (4). The solution to the linear program in (7) varies among the
three formulations and is uniquely determined by dC Recall that for the (ODP), d r
is a vector with two nonzeros that correspond to the constraints on the flow between
a specific origin and a specific destination. The solution is thus a vector of arc flows
determining the shortest path from origin s to destination t for the product k. Fo~:"
the (DSP), d r contains multiple positive elements for each of the supplies of k at
multiple origins s, and a single negative element for the demand at the specific
destination t. The solution to this subproblem is thus a vector of arc flows determining
the shortest path tree from all sources to the destination. Finally for the (PSP), d r
demonstrates that the product k must be routed from multiple origins to multiple
destinations. The extreme point generated by this subproblem is the solution to a
minimum cost network flow problem. Hence it is likely that the extreme point solution

k Vst for the (ODP) subproblem will be much sparser than that of the (DSP) or the
(PSP). Also, because this (ODP) extreme point solution represents the flow along a
single path, the column added to the master problem has a nonzero unit value
corresponding to the convexity constraint, and all other nonzero values equal to
ds~. Conversely, the extreme point solutions for (DSP) and (PSP) yield varying
nonzero values within each column.

Because the set ~Y'(ODP) has potentially many more elements than Yd(DSP) or
X(PSP), there are many more subproblems and hence, many more possible columns
added to the restricted master problem at each iteration of the decomposition pro-
cedure. It appears as though there is great potential for an explosion in the number
of columns in the restricted master problem for the (ODP) formulation; however,
we claim that for certain types of networks, there will be fewer total extreme points
added to the (ODP) master problem than either the (DSP) or (PSP) master problems,
because there will be fewer master problem iterations. To demonstrate this claim,
let P t represent the number of extreme points associated with commodity ~c on
iteration t. Define ~, to be the maximum number of columns at decomposition
iteration t associated with any element ~c e X , i.e.,

~t=max{P~}. (8)

102 K.L. Jones et al. / Multicommodity network j tows

Hence. for all formulations, there are potentially J Y/t x .~, columns in the restricted
master problem at iteration t. Therefore, we claim that for large-scale networks,
especially time-space dynamic networks,

IJI(ODP)[x ~ro(ODP)<<lf(DSP)[x ~ard (DSP), (9)

where To is the number of iterations to optimality for (ODP) and Td is the number
of iterations to optimality for (DSP). This is apparent by investigating the total

a . b.

(

Fig. 1. Extreme point enumeration for paths versus trees.

number of extreme points in each formulation. The small example in Figure la is
due to [8] and shows a dynamic network with a planning horizon of two time periods.
This network has 6 possible paths and 8 possible trees. Extending this example,
Figure lb shows that the addition of one node increases the number of paths from
6 to 9 paths while the number of trees grows from 8 to 27. It is clear that for a
problem with a long planning horizon and many nodes per time period, the difference
in the number of paths versus the number of trees will be extremely large. Hence,
even though there may be many more extreme point proposals at each iteration for
the (ODP) formulation versus the (DSP) formulation, there will be fewer columns
in the final restricted master problem due to this combinatorial effect of paths and
trees. This is especially relevant to this research as most of the data sets are drawn
from transportation related problems modeled as large-scale time-space dynamic
networks. We support these claims with extensive numerical results in Section 6.

4. Comparisons of formulations

The focus of this research is to evaluate the effects of problem formulation on the
Dantzig-Wolfe decomposition procedure specifically for MCNF problems. We seek
to establish and isolate the differences between the path-based formulation of (ODP)

K.L. Jones et aL / Multicommodity network flows 103

It
and the tree-based formulations of (DSP) and (PSP). In order for a valid comparison
among the formulations, they must be mathematically equivalent problems. The
Dantzig-Wolfe decomposition procedure produces a solution that is a convex combi-
nation of the extreme points obtained from the subproblems. Hence, if the subprob-
lems are determined to be mathematically equivalent, then the entire formulations
are equivalent.

To better distinguish between the solutions of the subproblems, let x ~ be the
collection of vectors of arc flows describing the tree solutions to the (PSP) minimum
cost network flow subproblems, let ykt be the collection of vectors of arc flows
describing the shortest path tree solutions to the (DSP) subproblems, and finally,
let z kst be the vector of arc flows describing the solutions to the shortest path (ODP)
subproblems. The relationships between (ODP) and (DSP) depend on the following
lemma, stated in Rockafellar [15] and restated here in our notation.

Lemma 1. I f y " is feasible for (DSP), then there exists values of z kst for each s~S,
t E T, and 1 <~ k ~ K, such that

yk,= Z ?~' [] (10)
sES

This lemma says that flows aggregated in a tree structure from all sources into a
destination can be decomposed into a set of feasible path flows from individual
sources into that destination. The following corollaries are obvious consequences of
this lemma.

Corollary I. /jr the costs on the arcs in the network are not dependent upon origin or
destination constraints, and z ks~ is optimal for (ODP), then ykt given by (10) is optimal

for (DSP). [-3

Corollary 2. I f the costs on the arcs in the network are not dependent upon origin or
destination constraints, and yk~ is optimal for (DSP), then an optimal solution z k~t to

(ODP) can be constructed from the optimal solution yk~ such that (10) holds. []

Given the cost requirement that c k is dependent solely upon the product k (i.e.,
costs are not origin-destination specific), these corollaries state that one can solve
(ODP) if the problem is formulated as a (DSP) and that the reverse situation also
holds. For Dantzig-Wolfe decomposition, these corollaries enable the extreme point
solutions for the (ODP) to be constructed from the optimal shortest path tree solu-
tion of the (DSP) subproblem. Hence, the number of subproblems solved at each
iteration of the (ODP) is significantly reduced by solving only]S(DSP)] subprob-
lems, then decomposing the solutions into the optimal shortest paths for the equiva-
lent (ODP) extreme points.

104 K.L. Jones el al. / Multicommodit.v network flows

Note that corresponding theorems do not hold between the (DSP) and the (PSP)
subproblems when this cost requirement is true. That is, an optimal solution x ~ to
the (PSP) subproblem cannot be constructed by aggregating the optimal solutions
to the (DSP) subproblems (and hence, the optimal solutions to the (ODP) subprob-
ferns). We demonstrate this by example to compare the optimal solution of a set of
(ODP) shortest path problems and the optimal solution to the (PSP) corresponding

~ (I 0) ~k.t ~

Fig. 2. A 4-node network.

minimum cost network flow problem. The small example in Figure 2 uses the (ODP)
demand matrix

D] 3 4

1 1 0

2 0 1

and is solved at a cost of 20 by routing flow over arcs (1, 3) and (2, 4). Since the
(PSP) enforces only aggregate flow conservation at each node, the (PSP) formulation
results in a solution that uses the arcs (1, 4) and (2, 3) at a cost of 2. Since the
optimal flows for (ODP) are optimal for (DSP), this example serves as a proof by
contradiction that corollaries for (DSP) and (PSP) that are similar to Corollaries 1
and 2 are invalid.

Hence, the comparison between the path-based (ODP) and the tree-based (DSP)
is straight-forward if the costs in the network are not constrained by origin and
destination requirements. This is a common assumption in MCNF problems and is
true of the numerical examples presented in this research. However, the (PSP) must
be transformed into a mathematically equivalent path-based formulation in order
for the comparison to be valid. This is the topic of the next section, where we create
an extended path-based (PSP) formulation that is equivalent to the tree-based (PSP).
Section 6 presents results that compare the (ODP) to the (DSP) in a decomposition
environment as well as a set of results that compare the (PSP) to its equivalent path-
based formulation.

K.L. Jones et al. /Multicommodity network flows

5. The extended product specific problem

105

The graph G = (N, A) can be augmented with additional nodes and arcs with the
goal of creating a path-based MCNF problem that is mathematically equivalent to
the (PSP). Hence, we create Ksupersupply nodes 2 = {£1 £x} and Ksuperdemand
nodes 7"= { f ~ , . . . , tK) and require that the flow of commodity k travel between a
specific origin :~k and aAspecific destination tk. Hence, a new graph G= (N, A) is
created where]~r = N u S w T and

.4=A w {(£,s) :£~S,s~S} w {(t, ~): t~T, f~7"}, (11)

such that S and T are the sets of original supply and demand nodes, respectively.
This is demonstrated in Figure 3. This new problem is mathematically equivalent to
the (PSP) if the total flow d k from £k to tk is such that

d ~ - ~ d , , dk= ~z~ k_ k (12)
s e S t ~ T

and the flow along the new arcs is constrained to satisfy original supply and demand
constraints. Here, d~ is the supply of commodity k available at the original origin
node s. Similarly, d~ is the demand for commodity k at destination node t. The linear
program to solve this problem is labelled (EPSP) to denote the extended (PSP) and

is formulated as
K

(EPSP): minimize ~ (ck)Tx k
k = l

K

k< for each (i,j)~A, subject to S'. xij-.~ui;
k = l

- k ~ s ~ d , for each ~keS, seS, 1 <<.k <<.K,
- k k x,e~<<.d, for each teT, tk~T, 1 <~k <~K,

Bx k - 2~ k. + :?.ke k = 0 for each 1 ~< k ~< K,
(13)

2~ = d k ,k~ for each 1 <~k<.K, ~k~S,
s ~ S

~ i k = - d k foreach l ~ k ~ K , ik~T,
t ~ T

k ~ xo.,..O for each (i,j)~A, 1 <<.k <~K,

2~s>>.O for each gk~S, ssS, 1 <<.k <<.K,

2 ~ ~>0 for each tk~T, teT, l<~k<~K. t tk

Here, 2~ is the flow on the arc from ~k~S to s sS of commodity k. Similarly, ~k is SkS t tk
- k - k the flow of commodity k on the arc from te T to tk~ T. The notation -x~ k +x4k is

used to indicate that the flow into each node seS from each node gk~S plus the flow
from each node te T to each node tk~ T should be added to the network flow equa-
tions to maintain conservation of flow. The capacity constraints on the arcs from

106 K.L. Jones et aL Multicommoditv iletwork jtows

Fig. 3. Example of an (EPSP) network.

and to all supersupply and superdemand nodes are included in this linear program

as inequality constraints. However, it is obvious that they will all be satisfied as
equalities at optimality.

Note that the node-arc incidence matrix for the augmented^graph is reflected in
the last three equalities of (EPSP). This matrix is denoted as B. Like (ODP), these
equations have only two nonzeros on the right-hand side. However, the presence of

~ and 2~ik differentiates this formulation from the the upper bound constraints on ~ ,k,
(ODP). This difference is noted by considering the constraint matrix in a block form

as

t?1

8 2

-..

I I

I

I

I

° ,

I

(14)

where the matrices ~k represent the node-arc incidence matrices for each commodity

k on the graph (~.

5.1. Decomposition Jbr (EPSP)

When applying decomposition to (EPSP), the additional complicating constraints
may be placed in either the master problem or in the subproblems. If they are
included in the subproblems, the master problem formulation is identical to (4) and
the subproblem for a specific commodity k imposes both upper and lower bounds
on the additional arcs so that the flows along these arcs are fixed. When this is the

K.L. Jones et al. / Multicommodity network flows 107

case, the solution to the (EPSP) subproblem is i~entical to that of the (PSP) subprob-
lem and therefore nothing has been gained by transforming it to a path-based formu-
lation. On the other hand, if the constraints on flow on arcs (~k, s) and (t, fk) are
considered in the master problem, the solution to the subproblem is similar to that
of (ODP) in that the solution is a single path between a specific supersupply node
and a specific superdemand node. This latter formulation for the (EPSP) subproblem
is the one we shall use. Because there are no individual capacity constraints in the
subproblem, it is important to note that the solution is a single path which is infeasible
for the original linear programming problem. Because there is an external flow d k
into supersupply node ~ in the subproblems that are solved, the solution must
necessarily send the total flow d k from supersupply node gk to a single source node
s. This is an infeasible flow for the original problem (PSP) that is rectified in the
master problem by forcing feasibility on the capacity constraints for the arcs adjacent
to all supersupply and superdemand nodes. Although the constraints on the arcs
adjacent to the supersupply and superdemand nodes are included as inequality con-
straints in the restricted master problem for (EPSP), the decomposition procedure ~
forces them to 'be satisfied as equalities because of the conditions on total flow in the
subproblem. Hence, once a feasible solution to this (RMP) is obtained, it is guaran-
teed to satisfy the original supply/demand constraints in the (PSP) formulation.

The difficult part of this alternate formulation is obtaining an initial feasible solu-
tion. In order for a solution to be feasible, for each commodity k, as many paths
must be generated in the subproblem as necessary to "touch" all original supply/
demand nodes. That is, since the subproblems generate single paths from a super-
supply node to a superdemand node, there must be at least one path passing through
each of the original supply/demand nodes in the master problem. For example,
consider a two commodity network with 3 supply nodes, 3 demand nodes and 2

Y ~ 2- , . 7 "~-2, ,'

Fig. 4. (EPSP) subproblem example.

intermediate nodes. Figure 4 shows the subproblem solution for the first commodity
indicated with bold arrows. This solution is included in the master problem as a
column for the path 21 ~ tl. The column will include two nonzeros in the bundling
constraints of (RMP) associated with arcs (£~, 1) and (6, tl). However, in order to
satisfy all of the supply/demand constraints for the first commodity, the master
problem must also have columns with nonzeros associated with arcs (£1,2), (£~, 3),
(7, ~) and (8, ~). To satisfy these constraints, the subproblem for commodity 1 must

108 K.L. Jones et al. / Multicommodity network flows

be solved at least 3 times, generating the paths

However, there are 18 possible paths that the subproblem may choose. This means
that the subproblem may be solved anywhere from 3 to 18 times, and again, this is
only for the first commodity. This "touching property" must be satisfied for all

commodities before a feasible solution can be found for the restricted master prob-
lem. Even in this small example it is easy to see that it may be very time consuming
to find an initial feasible solution. The question is, does the fast convergence rate of
this path-based formulation outweigh the detriments of finding an initial feasible
solution? The numerical results presented in Section 6 show that the path-based
formulation of (EPSP) does in fact improve the convergence rate to optimality
despite the difficulties in obtaining an initial feasible solution.

6. Numerical results

In this section, the effects of decomposition on the different formulations as discussed
in the previous sections are compared and contrasted. Results are presented that
support the claims that the larger and sparser path-based formulations of (ODP)
and (EPSP) have better convergence rates via Dantzig Wolfe decomposition than
those of (DSP) and (PSP), respectively. This is demonstrated by comparing total
master problem iteration counts and CPU times to optimality.

The decomposition code used in this study was written in the C programming
language. The master problems are solved by CPLEX [6] and subproblems are solved
by Simpnet, a C-based network simplex code written by Lustig [12]. The CPU times
reported in this research are for an IBM RISC/System 6000 machine. A two phase
solution technique for the problem is implemented where the first phase minimizes
the sum of all infeasibilities in the master problem, and the second phase iterates
until optimality. Tables are presented for the major iteration counts for both phase
1 and phase 2 (i.e., the number of times the master problem is solved), CPU time to
optimality, and the maximum number of rows and columns in each master problem.
As noted in Corollary 2, the optimal flow in a (DSP) formulation can be decomposed
into a set of optimal path flows for the (ODP) formulation. Hence, in the (DSP)-
(ODP) comparison, all subproblems are solved in the tree-based (DSP) formulation
and the (DSP) trees are decomposed into (ODP) paths. The CPU times times reflect
this in that the number of subproblems solved at each iteration is identical for the
two formulations.

K.L. Jones et al. / Multicommodity network flows

Table 1

(ODP) and (DSP) comparisons for Farvolden data sets

109

Problem Nodes Links Bundled L•I Phase 1 iter. Phase 2 iter.

(DSP) (ODe) (DSP) (0DP) (DSP) (ODP)

10term 190 510 146 10 317 9 3 18 4
10term.0 190 507 143 10 323 6 2 15 3
10term.50 190 498 134 10 323 7 3 12 3
10term.100 190 491 127 10 323 6 4 19 3

15term 285 796 253 15 530 7 3 20 4
15term.0 285 745 202 15 561 10 3 34 3

Table 1 presents results on problems drawn from Farvolden [8] where each prob-
lem can be treated as a (DSP) or an (ODP). These problems are drawn from the
LTL transportation model where each product is associated with a unique destination.
node called a terminal. Each of these data sets is a time-space network with an 18
day planning horizon where each network contains two types of arcs: inventory arcs
(no cost) and loaded movement arcs (capacitated, high cost). In Table 1, the value
of]~fl is presented for both (DSP) and (ODP) to indicate the difference in the
number of (DSP) trees and (ODP) origin-destination pairs. Thus, in the Farvolden
data sets, a (DSP) with 10 terminals is decomposed into an (ODP) with 317 origin-
destination pairs. This difference is reflected in the number of rows in the master
problems, as demonstrated in Table 2. Table 1 demonstrates that in every instance,
solution of the (ODP) formulation requires fewer master problem iterations. This is
especially noticeable as the size of the problem grows larger as in the 15 terminal
problem. Table 3 displays the CPU times required to solve each of the problems in
Table 1. Even though the size of the restricted master problem (as documented in
Table 2) is significantly larger in the (ODP) formulation, the CPU times are smaller.

Table 2

Maximum number of rows and columns in the master problems for the
Farvolden data sets

Problem Master problem dimensions

(DSP) (ODP)

Rows Cols Rows Cols

10term 156 182 463 687
10term.0 153 135 466 502
10term.50 144 204 457 620
10term.100 137 223 450 771

15term 217 474 763 1311
15term.0 268 263 783 1056

110 K.L. Jones el al. /Mult icommodi O" network jtows

Table 3

CPU time comparisons of (DSP) and (ODP) for the Farvolden
data sets

Problem CPU seconds Ratio

(DSP) (ODP)

10term 13.87 7.97 1.74
10term.0 8.94 6.64 1.35
10term.50 12.04 6.55 1.84
10term.100 12.59 7.25 1.74

15term 22.74 15.93 1.43
15term.0 33.39 16.08 2.08

It is clear that the reduced number of master problem iterations contributes greatly
to the reduced CPU times for the solution of each (ODP) formulation.

The Chert [4] problems originate from the stochastic muIticommodity dynamic
vehicle allocation problem. These are also (DSP) formulated time-space networks
that can be decomposed into an equivalent set of origin-destination pairs. As in the
Farvolden data sets, each subproblem is solved using the (DSP) formulation and
then decomposed into a set of paths for the (ODP) formulation. Again, Table 4
demonstrates that a significant change is seen in the number of master problem
iterations required to solve each of the (DSP) and (ODP) formulations, especially
as the size of the problem increases. Table 5 displays the CPU times required to solve
each of the problems in Table 4. Note that the decomposition algorithm applied to
the (ODP) formulations of Chen2 and Chen6 yield a reduction in CPU times of more
than an order of magnitude. Table 6 lists the maximum size of the restricted master
problems for the Chen data sets. The numerical results in Table 5 reflect that the
number of columns in each master problem is limited to 10 times the number of rows
for each formulation. Once this limit is reached, an effort is made to delete nonbasic
columns from the current restricted master problem.

The next test set is from Assad [2] where each problem is originally formulated as
an (ODP). For comparison purposes, only those data sets where it is possible to

Table 4

(ODP) and (DSP) comparisons for Chen data sets

Problem Nodes Links Bundled I~f] Phase 1 iter. Phase 2 iter.

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP)

Chen0 26 117 43 4 18 10 7 99 24
Chen3 31 149 56 15 71 12 8 74 31
Chenl 36 174 65 5 25 13 8 165 44
Chen2 41 358 155 7 70 23 7 356 34
Chen6 41 409 177 9 89 22 6 372 33
Chen4 55 420 176 15 133 25 8 318 61
Chen5 65 569 242 10 78 23 9 560 136

K.L. Jones et al. / Multicommodity network flows

Table 5 3

CPU ratios (DSP): (ODP) for the Chen data sets

Problem CPU seconds Ratio

(DSP) (0DP)

Chen0 8.16 2.63 3.10
Chen3 22.11 11.32 1.95
Chenl 30.15 11.08 2.72
Chen2 597.54 44.19 13.52
Chen6 841.64 64.32 13.08
Chen4 937.82 254.15 3.69
Chen5 2698.13 1184.54 2.28

111

Table 6

Maximum number of rows and columns in the master problems for
the Chen data sets

Problem Master problem dimensions

(DSP) (ODP)

Rows Cols Rows Cols

Chen0 47 400 61 419
Chen3 71 710" 127 1270"
Chenl 70 700* 80 800*
Chen2 162 1620" 225 2250*
Chen6 186 1860" 266 2660*
Chen4 191 1910' 309 2346
Chert5 252 2520* 320 3200*

* indicates the maximum number of allowable columns was reached.

aggregate, rather than decompose, groups of origin-destination pairs into corre-
sponding (DSP) trees are reported. In this case, the (DSP) model actually has flow
from an origin rather than flow into a destination. The sizes of these problems are
much smaller than either of the Farvolden or Chen data sets, yet the results demon-
strate again that the (ODP) formulation is solved in fewer master problem iterations
than the (DSP) formulation. In Table 7, the networks labeled assadl and assad3 are
each solved wi[h two different sets of origin-destination pairs. In each of these cases,

Table 7

(ODP) and (DSP) comparisons for Assad data sets

Problem Nodes Links Bundled 12¢ l Phase 1 iter. Phase 2 iter.

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP)

assadl.5k 47 98 98 3 10 6 3 12 1
assadl.6k 47 98 98 3 15 4 5 7 1
assad3.4k 85 204 204 6 18 7 5 13 5
assad3.7k 85 204 204 6 18 8 7 15 7

112 1£. L. ,Jones et al, ,,/Multicommodity network flows

the total number of master problem iterations increased with a smaller 1~¢1 wtrich is
consistent with the results from the Farvolden and Chen data sets. This is another
indication that the larger and sparser (ODP) formulation is easier to solve than the
smaller and denser (DSP) formulation in a decomposition framework. The largest
recorded CPU time in the set of solutions to the Assad data sets was 2.9 CPU seconds
for the (DSP) formulation of assad3.7k.

The following results compare the iterative convergence rates for the solution of
(PSP) and (EPSP) formulations when the decomposition algorithm is applied to the
formulation of (EPSP) as outlined in Section 5.1. This set of test problems are also
due to Chen [4] where each product k is associated with multiple origins and multiple
destinations. Therefore, each is originally formulated as a (PSP) and is appended by
supersource and superdemand nodes and arcs to create the corresponding (EPSP).
Note that the size of the constraint matrix in both the master problem and subprob-
lems are larger in the (EPSP) formulation due to the addition of the specially capacit-
ated arcs. Table 8 shows the differences in size of the networks for (PSP) and (EPSP),

Table 8

(PSI?) and (EPSP) comparisons for Chen data sets

Problem lYJ Nodes Links Phase 1 iter, Phase 2 iter.

(PSP) (EPSP) (PSP) (EPSP) (PSP) (EPSP) (PSP) (EPSP)

pspl 3 15 21 41 59 7 12 26 23
psp2 4 30 38 180 225 14 30 233 124
psp3 8 25 41 112 190 11 17 80 55
psp4 10 27 47 86 145 9 I5 57 41
psp5 9 30 48 167 251 12 2I 137 77
psp6 4 60 68 832 899 18 41 869 337
psp7 6 84 96 1435 1551 21 65 1743 542

as well as the iteration counts for the solutions of the decomposition algorithm
applied to each formulation. As hypothesized earlier, more effort is required to obtain
a feasible solution to the (EPSP) formulation for each of the test problems. However,
the phase 2 performance of the algorithm for the (EPSP) formulation outperformed
the algorithm applied to the (PSP) formulation in every instance. Also, the total
iteration count of the algorithm applied to (EPSP) was less than the total iteration
count of the algorithm applied to (PSP) in all instances except for the smallest
problem, pspl. As the size of the problem increases, the performance of Dantzig-
Wolfe decomposition on (EPSP) improves compared to that of (PSP). This gain in
performance is especially noticeable in the larger data sets when comparing CPU
times. Table 9 shows the CPU times required to solve each of the problems in Table
8. Note that as the size of the problem increases, the difference in the CPU times of
the solutions is significant. This is especially noticeable upon inspection of psp7 in
Tables 8 and 9. Table 8 indicates that three times as many major iterations are
required to solve psp7 when the decomposition procedure is applied to the (PSP)
formulation, compared to when it is applied to the (EPSP) formulation. However,

K.L. Jones et aL / Multicommodity network flows

Table 9 .r

CPU time comparisons of (PSP) and (EPSP) for the Chen
data sets

Problem CPU seconds Ratio

(PSP) (EPSP)

pspl 1.06 1.17 0.90
psp2 63.50 25.26 2.51
psp3 12.26 15.77 0.77
psp4 8.43 7.31 1.15
psp5 55.91 41.87 1.33
psp6 14959.04 902.74 16.57
psp7 494548.92 16149.69 30.62

113

Table 9 indicates that the CPU time required to solve the (EPSP) formulation was
30 times faster than the (PSP) formulation. Similarly, the algorithm applied to the
(EPSP) formulation of psp6 was 16 times faster in CPU seconds, even though the
number of maslLer problem iterations was only reduced by a factor of two. These
observations strengthen our claim that the larger and sparser master problem is
actually easier and faster to solve than the more traditional, compact representation.

From this it can be seen that even though more effort is required to obtain a
feasible solution to the (EPSP) formulation, the path-based structure of the columns
in the master problem yields faster convergence overall. Note that the number of
rows in the restricted master problem of the (EPSP) formulation requires only 21 ~(I
additional rows as compared to the master problem of the (PSP) formulation. The
results in Tables 8 and 10 shows that because of the decreased number of major
iterations in the solution of the (EPSP) formulation, the final master problem has
far fewer columns than that of the (PSP) formulation in half of the experiments, and
is especially noticeable in the more difficult problems, psp6 and psp7. This is clearly
evident in the next two examples.

Table 10

Maximum number of rows and columns in the master problems for
the Chen data sets

Problem Master problem dimensions

(PSP) (EPSP)

Rows Cols Rows Cols

pspl I7 102 35 108
psp2 77 770* 122 565
psp3 51 510" 129 632
psp4 40 400* 99 504
psp5 78 780* 162 904
psp6 373 3488 440 1475
psp7 658 6580* 774 3557

* indicates the maximum number of columns was reached.

114 K.L. Jones et al. / Multicommodity network jtows

Table l 1

(ODP) and (DSP) comparisons for Powell data set

Problem Nodes L inks Bundled]Jfl Phase 1 iter. Phase 2 iter.

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP)

veh.8 3071 6364 301 3 236 42 21 2109 15

The next two data sets demonstrate even more concretely than any of the previous

examples that applying Dantzig-Wolfe decomposition to the path-based formulation

of (ODP) is far superior to applying it to the (DSP) formulation in both iteration

counts and CPU time. The first data set is drawn from a truckload transportation

model as described by Powell [14], with an extension to allow multiple vehicle types.

The problem is a time-space network with a planning horizon of eight days and is

originally formulated as a (DSP) with three vehicle types k and a single destination

node t. This particular data set is interesting in that each mutually capacited arc has

an upper bound of one which makes the problem much more difficult and highly

degenerate. Table 11 indicates the difference in I XI and shows the major iteration

counts required to solve veh. 8 in both the (ODP) and (DSP) formulations. Note that

the algorithm applied to the (ODP) formulation outperformed the algorithm applied

to the (DSP) formulation in major iteration counts by nearly 60 times. However,

Table 12 shows that in CPU seconds, solving the (ODP) formulation was over 400

times faster than solving the (DSP) formulation. Again note the difference in the

sizes of the master problems. Table 13 shows that the (DSP) master problem reached

its limit of 3040 columns, yet the solution of the (ODP) formulation reached the

Table 12

CPU time comparisons of (DSP) and (ODP) for the
Powell data set

Problem CPU seconds Ratio

(DSP) (ODP)

Veh.8 16164.69 38.47 420.I9

Table 13

Maximum number of rows and columns in the master problems for
the Powell data set

Problem Master problem dimensions

(DSP) (ODP)

Rows Cols Rows Cols

veh.8 304 3040* 537 I472

* indicates the maximum number of allowable columns was reached.

K.L, Jones et aL / Multicommodity network flows

Table 14 "~

(ODP) and (DSP) comparisons for the ALK data sets

115

Problem Nodes Links Bundled [*'fl Phase 1 iter. Phase 2 iter.

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP)

alk.half 1121 3194 1251 30 1013 32 7 >447 22
alk.two 4067 7090 4212 30 1596 72 13 >>350 133

optimal solution with only 1472 columns. This problem demonstrates a restricted
master problem that has significantly fewer columns for the (ODP) formulation
which is due entirely to the decreased number of major iterations while employing
the column generation technique. Thus, even though many more columns may be
added at each iteration of the algorithm using the (ODP) formulation, so many fewer
iterations are required that the final restricted master problem has far fewer columns
than the final restricted master problem in the equivalent (DSP) formulation.

The next data set comes from ALK [10] and is a railroad transportation problem.-"
Unlike the other data sets that simulate real world problems, the railroad data is in
fact real data supplied by ALK Inc. and the railroad company Union Pacific. These
networks are again time-space networks where the products are different types of
railcars that must be routed to a single destination node. These two data sets are the
largest presented in this paper, with the largest having more than 4000 rows in the
master problem. Table 14 shows the major iteration counts for solving each of the
formulations. The algorithm applied to the (DSP) formulation did not reach optimal-
ity in both alk.halfand alk.two. Table 15 shows the CPU seconds for each solution
procedure and the objective value obtained. In both cases, the solution of the (ODP)
formulation reached the optimal objective value. The algorithm applied to the
alk.halfformulated as a (DSP) was stopped after it was 3 orders of magnitude slower
than the (ODP) formulation. Similarly, the algorithm applied to alk.two formulated
as a (DSP) was stopped after nearly 450000 CPU seconds when it was clear that the
optimal objective value could not be reached in a reasonably comparable length of
time (for this reason, a ">>" is used in each of the tables to indicate that the solution
of the (DSP) formulation was far from being optimal). Table 16 shows the difference
in the sizes of the master problem at the time of completion. At the point of termina-
tion, the master problem of alk.halfin the (ODP) formulation had fewer columns and

Table 15

CPU time comparisons of (DSP) and (ODP) for the ALK data sets

Problem Obj. Value CPU seconds Ratio

(]DSP) (ODP) (DSP) (ODP)

alk.half -9.89 e+07 -9.97 e+07* >296553.60 292.23 >1014.79
alk.two 1.55 e+ 10 -4.98 e+08* >>446233.80 36193.00 >>12.40

* indicates the optimal objective value was obtained,

116 K.L. Jones et al. / Multicommodi O, network flows

Table 16

Maximum number of rows and columns in the master problems for
the ALK data sets

Problem Master problem dimensions

(DSP) (ODP)

Rows Cols Rows Cols

alk.half 128l >9269 2264 5224
alk.two 4242 ~6951 5808 16431

a sparser constraint matrix than did the master problem of the (DSP) formulation. It
is very likely that the master problem of the (DSP) formulation of alk.two would
exhibit the same property if the algorithm had been allowed to iterate for a longer
period of time.

7. Conclusion

This paper focuses on the effects of the formulation of a multicommodity network
flow problem in the framework of Dantzig-Wolfe decomposition. Numerical experi-
ments support the hypothesis that decomposition applied to the larger and sparser
path-based formulations of (ODP) and (EPSP) yields faster convergence rates than
decomposition applied to (DSP) and (PSP), respectively. These path-based formula-
tions increase the number of rows in the master problem by introducing more convex-
ity constraints in the case of (ODP) and more capacity constraints in the case of
(EPSP). The reformulation of (DSP) into (ODP) causes only a small increase in the
number of constraints in the master problem compared with the increase in the
number of subproblem proposals generated at each iteration. For this reason, it may
be argued that the huge increase in the number of subproblems may be a significant
factor in the decision to use the (DSP) versus the (ODP) formulation. It must be
emphasized that even though more subproblems are solved at each iteration when
solving (ODP), there are a fewer number of total extreme points enumerated in this
formulation. Also, it must be noted that the subproblems are easier to solve since
they are simply shortest path problems. This hurdle of solving more subproblems at
each iteration can be eliminated by solving the corresponding tree-based subproblem,
then decomposing the solution into paths which are then added to the master
problem.

The strength of the path-based formulation is most noted in the (EPSP) alternate
formulation. This is a slight increase in the number of rows in the master problem
with the additional complicating capacity constraints, yet the number of subproblems
remains the same. Even though this reformulation of (PSP) causes an increase in the
time it takes to obtain a feasible solution, the overall performance of (EPSP) was
better than that of (PSP). Again, this problem may be remedied by solving a (PSP)

K.L. Jones et al, / Multicommodity network flows 117

subproblem and decomposing it to all possible (E~SP) paths for the alternate formu-
lation. This would result in the addition of multiple (EPSP) paths for each subprob-
lena at each iteration.

Future research will examine these effects on other instances of multicommodity
network flow problems in an attempt to improve the performance of decomposition
procedures. The concept of changing the formulation to accomodate optimization
algorithms may also be applicable to decomposition-like procedures such as those
proposed in Shultz and Meyer [16] and Pinar and Zenios [13]. The "folklore" of
linear programming has had a negative view towards decomposition procedures.
Because of the developments in the linear programming community, this research
indicates that decomposition procedures may be applicable if the right problem is
solved using today's better optimization technology.

References

[1] A. Ali, R. Helgason, J. Kennington and H. Lall, "Computational comparison among three multicom-
modity network flow algorithms," Operations Research 28 (1980) 995-1000.

[2] A.A. Assad, "Multicommodity network flows-a survey," Networks 8 (1978) 37-91.
[3] W.J. Carolan, J.E. Hill, J.L. Kennington, S. Niemi and S.J. Wichmann, "An empirical evaluation

of the KORBX algorithms for military airlift applications," Operations Research 38(2) (1990) 240-
248.

[4] C.E. Chen, "A two-level decomposition algorithm for the stochastic multicommodity dynamic
vehicle allocation model," PhD thesis, Department of Civil Engineering and Operations Research,
Program in Statistics and Operations Research, Princeton University (Princeton, NJ, 1990).

[5] I.C. Choi and D. Goldfarb, "Solving multicommodity network flow problems by an interior point
method," SIAM Proceedings in Applied Mathematics 46 (1990) 58-69.

[6] CPLEX Optimization, Inc., Using the CPLEX Linear Optimizer, 1.2 edition (Incline Village, NV).
[7] G.B. Dantzig and P. Wolfe, "The decomposition algorithm for linear programs," Econometrica 29

(1961) 767-778.
[8] J.M. Farvolden, "A primal partitioning solution for multicommodity network flow problems,"

PhD thesis, Department of Civil Engineering and Operations Research, Program in Statistics and
Operations Research, Princeton University (Princeton, NJ, 1989).

[9] J.M. Farvolden, W.B. Powell and I.J. Lustig, "A primal partitioning solution for the arc-chain
formulation of a multicommodity network flow problem," to appear in : Operations Research.

[10] ALK Inc., private communication (1991).
[11] J.L. Kennington and R.V. Helgason, Algorithms for Network Programming (Wiley, New York,

1980).
[12] I.J. Lustig, "The influence of computer language on computational comparisons: An example from

network optimization," ORSA Journal on Computing2(2) (1990) 152-161.
[13] M.C. Pinar and[S.A. Zenios, "Parallel decomposition of multicommodity network flows using a

linear-quadratic penalty algorithm," ORSA Journal on Computing 4 (3) (1992) 235-249.
[14] W.B. Powell, "A review of sensitivity results for linear networks and a new approximation to reduce

the effects of degeneracy," Transportation Science 23(4) (1989) 231-243.
[15] R.T. Rockafellar, Network Flows and Monotropic Optimization (Wiley, New York, 1984).
[16] G.L. Schultz and R.R. Meyer, "An interior point method for block angular optimization," SIAM

Journal on Optimization 1(4) (1991).
[17] J.A. Tomlin, "A mathematical programming model for the combined distribution-assignment of

traffic," Transportation Science 5 (1971) 122-140.

