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This paper investigates the impact of problem formulation on Dantzig-Wolfe decomposition for the 
multicommodity network flow problem. These problems are formulated in three ways: oTigin-destination 
specific, destination specific, and product specific. The path-based origin-destination specific formulation 
is equivalent to the tree-based destination specific formulation by a simple transformation. Supersupply 
and superdemand nodes are appended to the tree-based product specific formulation to create an equiva- 
lent path-based product specific formulation. We show that solving the path-based problem formulations 
by decomposition results in substantially fewer master problem iterations and lower CPU times than by 
using decomposition on the equivalent tree-based formulations. Computational results on a series of 
multicommodity network flow problems are presented. 

1. Introduction 

Multicommodity network flow (MCNF) problems arise when several commodities 
share arcs in a network and compete for the capacity on these arcs. Capacitated 
MCNF problems arise in a variety of applications (Assad [2], Farvolden [8], Tomlin 
[17]), including the transporation of goods over a network, the flow of information 
through a communications network, and multi-item production planning. In trans- 
portation, the traffic assignment problems involves the routing of items through a 
capacitated network of transportation services, where each item must be moved from 
its origin to its destination. For this problem, a commodity can be a specific item, 
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the flow of items between a common origin and destination, the flow of items~with 
a common destination, or the flow of items with a common origin. By contrast, the 
multi-fleet allocation problem involves the assignment of different types of vehicles 
to handle a scheduled set of transportation services, where a transportation service 
may be handled by more than one type of equipment. For this problem, a commodity 
is generally treated as the flow of a particular type of equipment. 

When deciding on an appropriate formulation, the common practice has been to 
choose one that produces the smallest number of commodities, thereby minimizing 
the size of the corresponding linear program. If a Dantzig-Wolfe decomposition 
approach is being used to solve the problem, a reduction in the number of commodi- 
ties decreases the number of subproblems that need to be solved and also reduces 
the size of the linear programming master problem. In this paper, we investigate the 
hypothesis that using such compact formulations actually produces a much more 
complex problem, producing the slow convergence that is characteristic of Dantzig- 
Wolfe decomposition. For example, the traffic assignment problem can be formulated 
by defining a commodity as the flow between a single origin and destination, instead 
of flow from a single origin to multiple destinations. The result is a significantly 
larger master problem, but we present evidence to suggest that the extreme points 
produced by this formulation offer considerably greater flexibility, producing sub- 
stantial reductions in the number of master iterations required to reach convergence. 
This formulation also suggests that many more subproblems are solved at each 
iteration. However, it is possible to bypass this difficulty by solving the compact 
subproblem formulation and then decomposing the solution of the subproblem for 
addition to the master problem. Although it can be argued that a much larger master 
problem may result in increased CPU times, the total reduction in the number of 
master problem iterations compensates for this increase in size. Also, depending on 
the sophistication of the linear programming solver, larger and sparser master prob- 
lems do not necessarily entail longer solution times at each iteration. Recent advances 
in solving large-scale linear programs enable one to solve much larger master prob- 
lems, thereby making it possible to solve formulations with larger numbers of com- 
modities. For this reason, we present both master problem iteration counts and CPU 
times to optimality for each of the test problems. Our test problems are chosen from 
applications that use time-space dynamic networks. However, our results should be 
applicable to other types of problems as well. 

Relatively little attention has been devoted to the issue of problem formulation 
while considerably more attention is given to improvements in algorithms for a 
given solution method. For example, recent research into interior point methods has 
produced substantial advances for solving large MCNF problems directly. Choi and 
Goldfarb [5] exploit the special structure of the MCNF problem in a theoretical 
application of the primal dual interior point method. Carolan et al. [3] present a 
similar test of various interior point methods on AT&T's KORBX system. The latter 
offered the ability to directly solve very large-scale MCNF problems with interior 
point methods. More recently, Shultz and Meyer [16] and Pinar and Zenios [13] 
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show it is possible to solve very large MCNF problems using parallel computation 
techniques. 

Large MCNF problems that arise in practice are unlikely to be solved directly as 
linear programs. However, the special structure of these problems makes decomposi- 
tion an attractive solution method. Assad [2] uses decomposition to solve a set of 
MCNF problems where a commodity is associated with a single origin and single 
destination. Tomlin [17] uses a Dantzig-Wolfe [7] decomposition procedure in solv- 
ing the traffic assignment and distribution problems in a path-based formulation. 

Another common solution method for solving MCNF problems is the primal 
partitioning algorithm. This algorithm has traditionally been used with an arc-based 
formulation as seen in Ali et al. [1] and Kennington and Helgason [11]. More 
recently, Farvolden et al. [9] employs a path-based primal partitioning algorithm for 
the MCNF problem. This work is especially relevant to the research presented in 
this paper, as it addresses the issues involving a path-based formulation versus a 
tree-based formulation. Their results show that it is not only possible to solve large 
problems with the single origin/single destination formulation using primal partition=" 
ing, but that it can be beneficial. 

The focus of this research is the investigation into the advantages of the path- 
based single origin and single destination formulation for the MCNF problem when 
Dantzig-Wolfe decomposition is applied. Under decomposition, the effects of prob- 
lem formulation are fully exposed. It is hypothesized that even though the size of the 
single origin/single destination formulation explodes as the size of the problem 
grows, this formulation is easier to solve than a more compact representation of the 
problem within a decomposition framework. The intuition behind this hypothesis is 
twofold. First, there are fewer path-based extreme points than tree-based extreme 
points. Naturally this is dependent upon network structure; however, when this is 
the case, the decomposition of the path-based formulation will outperform the tree- 
based formulation. Second, the decomposition of tree structures into paths enables 
the decomposition method to consider a wider range of feasible solutions in the 
domain of the master problem. For instance, a path in a network that has a low 
cost and a large capacity is likely to have a positive flow. However, if this path were 
grouped into a tree structure, the flow over that path may be inhibited by constraints 
and the cost of the tree as a whole. Thus, not only are fewer extreme points generated 
as solutions of the subproblems, the subproblems are also easier to solve. This claim 
that the single origin/single destination formulation leads to faster convergence via 
decomposition is supported with computational results in Section 6. 

2. Problem Formulation 

Consider the following linear program: 
cU 

(MCNF): minimize ~ (c~)Vx ~ 
~c=l 



98 K.L. Jones et al. / Multicommoditv network jlows 

subject to B~ x ~ = d ~-, tc e.~ff , 
.Z( 

x~/..~u~j V ( i , j ) e A ,  (1)  
~ c ~ I  

x,j~.O V ( i , j ) e A ,  ~ceJU. 

The linear program in (1) is a generic formulation for a MCNF problem where 
J is the set of Commodities; 
B ~- is the node-arc incidence matrix over the network G =  (N, A) for commodity to; 
x ~ is a vector of arc flows for commodity ~c; 
c ~ is a vector of cost coefficients for commodity ~c; 
d ~" is a vector of  supply/demand requirements for commodity K; and, 
u~ is the upper bound on arc ( i , j )  over the commodities ~c. 
The linear program in (1) displays the typical block-angular structure of a MCN F  

problem in that the first set of constraints are the network flow conservation con- 
straints for each commodity and the second set of constraints are the mutual capacity, 

or bundle constraints over the commodities.  For ease of  discussion, only models 
without individual capacity constraints on each x,~ are considered. 

We discuss three formulations of the MCNF problem where in each a commodity is 
defined in a unique way. In the first formulation, we define a commodity as a product 
that travels between a specific origin and a specific destination. This problem is termed 
the origin-destinationprobIem (ODP) where ~: represents the triplet (k, s, t) such that k 
is the product (1 ~< k ~< K),  s e S is the specific origin, and t e T is the specific destination. 
Here there are K products, S c N is a set of origins, and T__q N is a set of destinations. 
The (ODP) is representative of  a crew scheduling problem, where the identity of a crew 
member k must be maintained while satisfying origin and destination constraints. In 
the second formulation, we define a commodity as a product that travels to a specific 
destination from multiple origins, or vice versa, from a specific origin to multiple destin- 
ations. This problem is termed the destination specific problem (DSP) where the com- 
modity ~c is the pair (k, t) that identifies the product k with the specific destination t. 
The (DSP) is typically seen in the traffic assignment problem, where vehicles k must be 
routed through a network from multiple origins to a common destination t. Finally, in 
the third formulation, we define a commodity as a product that must travel through a 
network from multiple origins to multiple destinations. This problem is termed the 
product specific problem (PSP), where the commodity ~: represents the singleton k as 
the product. The (PSP) is representative of the multi-fleet allocation problem where a 
specific equipment type k must handle a set of transportation services. The (PSP) is the 
formulation that is traditionally indicated when referring to a MCNF problem. 

Note that the constraint matrix for all three formulations is of the form 

(i ) B 2 

I . . .  B I  I 

(2) 
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f{(k, s, t): d'~=d~,#O} =JY(ODP) for (ODP), 

f =  ~{(k, t!: d~=dtkvs0} = uUf(DSP) for (DSP), (3) 

({k: d =dk¢0} =S(PSP)  for (PSP). 

The differences among the formulations are the number of primary blocks IX1 and 
the density of the right-hand side vector d *. The differences in I S I  are noted in (3) 
where the (ODP) has potentially many more primary blocks than (DSP) and (PSP) 
due to the combinatorial aspects of all the products, origins, and destinations in the 
problem. If we assume that the underlying network is identical for all commodities 
and identical for each of the three formulations, then the node-arc incidence matrix 
B ~= B for all ~ced. Hence, the number of constraints in each primary block is the 
same for each of the three formulations, but the number of primary blocks varies 
according to ]JY't. 

The right-hand side vector d ~ varies significantly among the formulations. This is 
seen by investigating the number of non-zeros in each d ~ for the three formulations2" 
For the (ODP) and a given triplet (k, s, t) corresponding to commodity ~c, there are 

- dst that correspond to the origin s and the destination only two nonzeros in each d ~ - k 
t. For the (DSP) and a given pair (k, t) corresponding to commodity ~:, each 

~: k d = dt contains multiple nonzeros for the supply constraints at the multiple origins 
and a single nonzero for the demand constraint at the specific destination t. Finally, 
for the (PSP) and a given product k corresponding to commodity ~;, d * = d ~ contains 
multiple nonzeros for the supply/demand constraints at the multiple origins and 
multiple destinations. Hence, the (ODP) has potentially many more primary blocks 
than (DSP) or (PSP) in the linear programming formulation, but d k is significantly 
sparser than in the other two formulations. This is an important concept in the 
formulation of the MCNF problem and plays a significant role in the decomposition 
procedure. 

3.  D e c o m p o s i t i o n  

This section outlines the general mathematical descriptions of the master problem 
and the subproblems for the tree formulations discussed in Section 2. The reader is 
assumed to be familiar with Dantzig-Wolfe decomposition and is referred to [7] for 
an in-depth description of the algorithm. 

3.1. Master problem formulation for (ODP), (DSP) and (PSP) 

Because of the similarities in the constraint matrices of (ODP), (DSP), and (PSP), 
the Dantzig-Wolfe decomposition procedure yields similar master problem formula- 
tions. Recall that the number of constraints in the master problem is equal to the 
number of bundle constraints plus the number of convexity constraints. Also recall 
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that the number of convexity constraints is determined by the number of subprol~lems 
in the Dantzig-Wolfe decomposition algorithm. The following is the generic master 
problem formulation for the block angular system shown in (2). As before, the 
general set S is used in the master problem formulation to represent the set of 
commodities for each formulation• Since a column generation technique is employed 
for the decomposition algorithm, there is a varying number of columns associated 
with each ~c e 3{" in the restricted master  problem constructed at each iteration of the 
decomposition algorithm. Let P~ be the total number of columns in the current 
restricted master problem associated with the element ~c. Hence, the general linear 
program for the restricted master problem is 

(RMP): minimize Y' Z ((c~)TVp)Z~ 
~ c ~ g  p ~ P ~  

subject to Z ~, (f~Vp)~p ~< u, (4) 
KE,)¢ "~ p ~ p ~  

H Z = e ,  

)~p~>0 f o r e a c h p e P  ~, r e X ,  

where v~ is the pth extreme point solution from the subproblem associated with the 
index ~c. Note that I~ is a diagonal matrix with elements 

^~ {10 i f a r c i sbund led '  (5) 
I~ = otherwise. 

It is possible that I~ has diagonal elements other than 0 or 1 that represent a weighting 
of the bundle constraints; however, for ease of discussion, we assume that the 
diagonal elements are as shown in (5). In many cases, I~=  I for all ~c ~.Y(. The vector 
u is the vector of mutual capacities for the bundled arcs and e is a vector of ones 
representing the convexity constraints. The matrix H is a block diagonal matrix of 
e-vectors such that 

(e2) T 

(eJ 'r)T 

(6) 

where e~EN P~, for all t r e Y .  That is, the number of ones in e ~ is equal to the number 
of columns P~ in (RMP) that are associated with the subproblem ~c. 

Depending on the definition of 24# in (3), the number of convexity constraints in 
(RMP) may be vastly different in each formulation. It is important to point out that 
even though the number of constraints in (RMP) for the (ODP) may be much larger 
than (DSP) or (PSP), the density of each column v~ is significantly sparser in (ODP) 
due to the nonzero structure of d k. This is the topic of Section 3.2 where the nature 
of v~ is outlined and discussed in full for each of the three formulations. 
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3.2. Subproblem formulation for (ODP),  (DSP)  and (PSP)  

At each iteration of the Dantzig-Wolfe decomposition algorithm, a subproblem is 
solved for each ~ceoU. For the MCNF problem, each subproblem describes a single 
commodity network flow problem and is formulated as 

SUB(~:, ~c): minimize (C~--I~rc)Tv ~ 

subject to By ~ = d r, 

v~>O for each ( i , j ) e A ,  

(7) 

where the elements of the vector n are the values of dual variables acting upon the 
bundle constraints in (4). The solution to the linear program in (7) varies among the 
three formulations and is uniquely determined by dC Recall that for the (ODP), d r 
is a vector with two nonzeros that correspond to the constraints on the flow between 
a specific origin and a specific destination. The solution is thus a vector of arc flows 
determining the shortest path from origin s to destination t for the product k. Fo~:" 
the (DSP), d r contains multiple positive elements for each of the supplies of k at 
multiple origins s, and a single negative element for the demand at the specific 
destination t. The solution to this subproblem is thus a vector of arc flows determining 
the shortest path tree from all sources to the destination. Finally for the (PSP), d r 
demonstrates that the product k must be routed from multiple origins to multiple 
destinations. The extreme point generated by this subproblem is the solution to a 
minimum cost network flow problem. Hence it is likely that the extreme point solution 

k Vst for the (ODP) subproblem will be much sparser than that of the (DSP) or the 
(PSP). Also, because this (ODP) extreme point solution represents the flow along a 
single path, the column added to the master problem has a nonzero unit value 
corresponding to the convexity constraint, and all other nonzero values equal to 
ds~. Conversely, the extreme point solutions for (DSP) and (PSP) yield varying 
nonzero values within each column. 

Because the set ~Y'(ODP) has potentially many more elements than Yd(DSP) or 
X(PSP), there are many more subproblems and hence, many more possible columns 
added to the restricted master problem at each iteration of the decomposition pro- 
cedure. It appears as though there is great potential for an explosion in the number 
of columns in the restricted master problem for the (ODP) formulation; however, 
we claim that for certain types of networks, there will be fewer total extreme points 
added to the (ODP) master problem than either the (DSP) or (PSP) master problems, 
because there will be fewer master problem iterations. To demonstrate this claim, 
let P t represent the number of extreme points associated with commodity ~c on 
iteration t. Define ~,  to be the maximum number of columns at decomposition 
iteration t associated with any element ~c e X ,  i.e., 

~t=max{P~}. (8) 
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Hence. for all formulations, there are potentially J Y/t x .~, columns in the restricted 
master problem at iteration t. Therefore, we claim that for large-scale networks, 
especially time-space dynamic networks, 

IJI(ODP)[ x ~ro(ODP)<<lf(DSP)[  x ~ard (DSP), (9) 

where To is the number of iterations to optimality for (ODP) and Td is the number 
of iterations to optimality for (DSP). This is apparent by investigating the total 

a .  b. 

( 

Fig. 1. Extreme point enumeration for paths versus trees. 

number of extreme points in each formulation. The small example in Figure la is 
due to [8] and shows a dynamic network with a planning horizon of two time periods. 
This network has 6 possible paths and 8 possible trees. Extending this example, 
Figure lb shows that the addition of one node increases the number of paths from 
6 to 9 paths while the number of trees grows from 8 to 27. It is clear that for a 
problem with a long planning horizon and many nodes per time period, the difference 
in the number of paths versus the number of trees will be extremely large. Hence, 
even though there may be many more extreme point proposals at each iteration for 
the (ODP) formulation versus the (DSP) formulation, there will be fewer columns 
in the final restricted master problem due to this combinatorial effect of paths and 
trees. This is especially relevant to this research as most of the data sets are drawn 
from transportation related problems modeled as large-scale time-space dynamic 
networks. We support these claims with extensive numerical results in Section 6. 

4. Comparisons of formulations 

The focus of this research is to evaluate the effects of problem formulation on the 
Dantzig-Wolfe decomposition procedure specifically for MCNF problems. We seek 
to establish and isolate the differences between the path-based formulation of (ODP) 
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and the tree-based formulations of (DSP) and (PSP). In order for a valid comparison 
among the formulations, they must be mathematically equivalent problems. The 
Dantzig-Wolfe decomposition procedure produces a solution that is a convex combi- 
nation of the extreme points obtained from the subproblems. Hence, if the subprob- 
lems are determined to be mathematically equivalent, then the entire formulations 
are equivalent. 

To better distinguish between the solutions of the subproblems, let x ~ be the 
collection of vectors of arc flows describing the tree solutions to the (PSP) minimum 
cost network flow subproblems, let ykt be the collection of vectors of arc flows 
describing the shortest path tree solutions to the (DSP) subproblems, and finally, 
let z kst be the vector of arc flows describing the solutions to the shortest path (ODP) 
subproblems. The relationships between (ODP) and (DSP) depend on the following 
lemma, stated in Rockafellar [15] and restated here in our notation. 

Lemma 1. I f  y "  is feasible for (DSP), then there exists values of z kst for each s~S, 
t E T, and 1 <~ k ~ K, such that 

yk,= Z ?~' [] (10) 
sES 

This lemma says that flows aggregated in a tree structure from all sources into a 
destination can be decomposed into a set of feasible path flows from individual 
sources into that destination. The following corollaries are obvious consequences of 
this lemma. 

Corollary I. /jr the costs on the arcs in the network are not dependent upon origin or 
destination constraints, and z ks~ is optimal for (ODP), then ykt given by (10) is optimal 

for (DSP). [-3 

Corollary 2. I f  the costs on the arcs in the network are not dependent upon origin or 
destination constraints, and yk~ is optimal for (DSP), then an optimal solution z k~t to 

(ODP) can be constructed from the optimal solution yk~ such that (10) holds. [] 

Given the cost requirement that c k is dependent solely upon the product k (i.e., 
costs are not origin-destination specific), these corollaries state that one can solve 
(ODP) if the problem is formulated as a (DSP) and that the reverse situation also 
holds. For Dantzig-Wolfe decomposition, these corollaries enable the extreme point 
solutions for the (ODP) to be constructed from the optimal shortest path tree solu- 
tion of the (DSP) subproblem. Hence, the number of subproblems solved at each 
iteration of the (ODP) is significantly reduced by solving only ]S(DSP)] subprob- 
lems, then decomposing the solutions into the optimal shortest paths for the equiva- 
lent (ODP) extreme points. 
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Note that corresponding theorems do not hold between the (DSP) and the (PSP) 
subproblems when this cost requirement is true. That is, an optimal solution x ~ to 
the (PSP) subproblem cannot be constructed by aggregating the optimal solutions 
to the (DSP) subproblems (and hence, the optimal solutions to the (ODP) subprob- 
ferns). We demonstrate this by example to compare the optimal solution of a set of 
(ODP) shortest path problems and the optimal solution to the (PSP) corresponding 

~ ( I 0 ) ~k.t ~ 

Fig. 2. A 4-node network. 

minimum cost network flow problem. The small example in Figure 2 uses the (ODP) 
demand matrix 

D ] 3 4 

1 1 0 

2 0 1 

and is solved at a cost of 20 by routing flow over arcs (1, 3) and (2, 4). Since the 
(PSP) enforces only aggregate flow conservation at each node, the (PSP) formulation 
results in a solution that uses the arcs (1, 4) and (2, 3) at a cost of 2. Since the 
optimal flows for (ODP) are optimal for (DSP), this example serves as a proof by 
contradiction that corollaries for (DSP) and (PSP) that are similar to Corollaries 1 
and 2 are invalid. 

Hence, the comparison between the path-based (ODP) and the tree-based (DSP) 
is straight-forward if the costs in the network are not constrained by origin and 
destination requirements. This is a common assumption in MCNF problems and is 
true of the numerical examples presented in this research. However, the (PSP) must 
be transformed into a mathematically equivalent path-based formulation in order 
for the comparison to be valid. This is the topic of the next section, where we create 
an extended path-based (PSP) formulation that is equivalent to the tree-based (PSP). 
Section 6 presents results that compare the (ODP) to the (DSP) in a decomposition 
environment as well as a set of results that compare the (PSP) to its equivalent path- 
based formulation. 
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The graph G = (N, A) can be augmented with additional nodes and arcs with the 
goal of creating a path-based MCNF problem that is mathematically equivalent to 
the (PSP). Hence, we create Ksupersupply nodes 2 = {£1 . . . . .  £x} and Ksuperdemand 
nodes 7"= { f ~ , . . . ,  tK) and require that the flow of commodity k travel between a 
specific origin :~k and aAspecific destination tk. Hence, a new graph G= (N, A) is 
created where ]~r = N u S w T and 

.4=A w {(£,s) :£~S,s~S} w {(t, ~): t~T, f~7"}, (11) 

such that S and T are the sets of original supply and demand nodes, respectively. 
This is demonstrated in Figure 3. This new problem is mathematically equivalent to 
the (PSP) if the total flow d k from £k to tk is such that 

d ~ - ~ d , ,  dk= ~z~ k_ k (12) 
s e S  t ~ T  

and the flow along the new arcs is constrained to satisfy original supply and demand 
constraints. Here, d~ is the supply of commodity k available at the original origin 
node s. Similarly, d~ is the demand for commodity k at destination node t. The linear 
program to solve this problem is labelled (EPSP) to denote the extended (PSP) and 

is formulated as 
K 

(EPSP): minimize ~ (ck)Tx k 
k = l  

K 

k< for each (i,j)~A, subject to S'. xij-.~ui; 
k = l  

- k ~ s ~ d ,  for each ~keS, seS, 1 <<.k <<.K, 
- k  k x,e~<<.d, for each teT, tk~T, 1 <~k <~K, 

Bx k - 2~ k. + :?.ke k = 0 for each 1 ~< k ~< K, 
(13) 

2~ = d k ,k~ for each 1 <~k<.K, ~k~S, 
s ~ S  

~ i k = - d  k foreach l ~ k ~ K ,  ik~T, 
t ~ T  

k ~  xo.,..O for each (i,j)~A, 1 <<.k <~K, 

2~s>>.O for each gk~S, ssS, 1 <<.k <<.K, 

2 ~ ~>0 for each tk~T, teT, l<~k<~K. t tk  

Here, 2~ is the flow on the arc from ~k~S to s sS  of commodity k. Similarly, ~k is SkS t tk  
- k  - k  the flow of commodity k on the arc from te T to tk~ T. The notation -x~  k +x4k is 

used to indicate that the flow into each node seS  from each node gk~S plus the flow 
from each node te T to each node tk~ T should be added to the network flow equa- 
tions to maintain conservation of flow. The capacity constraints on the arcs from 
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Fig. 3. Example of an (EPSP) network. 

and to all supersupply and superdemand nodes are included in this linear program 

as inequality constraints. However, it is obvious that they will all be satisfied as 
equalities at optimality. 

Note that the node-arc incidence matrix for the augmented^graph is reflected in 
the last three equalities of (EPSP). This matrix is denoted as B. Like (ODP), these 
equations have only two nonzeros on the right-hand side. However, the presence of 

~ and 2~ik differentiates this formulation from the the upper bound constraints on ~ ,k, 
(ODP). This difference is noted by considering the constraint matrix in a block form 

as  

t?1 

8 2 

-.. 

I I 

I 

I 

I 

° ,  

I 

(14) 

where the matrices ~k represent the node-arc incidence matrices for each commodity 

k on the graph (~. 

5.1. Decomposition Jbr (EPSP) 

When applying decomposition to (EPSP), the additional complicating constraints 
may be placed in either the master problem or in the subproblems. If they are 
included in the subproblems, the master problem formulation is identical to (4) and 
the subproblem for a specific commodity k imposes both upper and lower bounds 
on the additional arcs so that the flows along these arcs are fixed. When this is the 
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case, the solution to the (EPSP) subproblem is i~entical to that of the (PSP) subprob- 
lem and therefore nothing has been gained by transforming it to a path-based formu- 
lation. On the other hand, if the constraints on flow on arcs (~k, s) and (t, fk) are 
considered in the master problem, the solution to the subproblem is similar to that 
of (ODP) in that the solution is a single path between a specific supersupply node 
and a specific superdemand node. This latter formulation for the (EPSP) subproblem 
is the one we shall use. Because there are no individual capacity constraints in the 
subproblem, it is important to note that the solution is a single path which is infeasible 
for the original linear programming problem. Because there is an external flow d k 
into supersupply node ~ in the subproblems that are solved, the solution must 
necessarily send the total flow d k from supersupply node gk to a single source node 
s. This is an infeasible flow for the original problem (PSP) that is rectified in the 
master problem by forcing feasibility on the capacity constraints for the arcs adjacent 
to all supersupply and superdemand nodes. Although the constraints on the arcs 
adjacent to the supersupply and superdemand nodes are included as inequality con- 
straints in the restricted master problem for (EPSP), the decomposition procedure ~ 
forces them to 'be satisfied as equalities because of the conditions on total flow in the 
subproblem. Hence, once a feasible solution to this (RMP) is obtained, it is guaran- 
teed to satisfy the original supply/demand constraints in the (PSP) formulation. 

The difficult part of this alternate formulation is obtaining an initial feasible solu- 
tion. In order for a solution to be feasible, for each commodity k, as many paths 
must be generated in the subproblem as necessary to "touch" all original supply/ 
demand nodes. That is, since the subproblems generate single paths from a super- 
supply node to a superdemand node, there must be at least one path passing through 
each of the original supply/demand nodes in the master problem. For example, 
consider a two commodity network with 3 supply nodes, 3 demand nodes and 2 

Y ~ 2-  , . 7  "~-2, ,' 

Fig. 4. (EPSP) subproblem example. 

intermediate nodes. Figure 4 shows the subproblem solution for the first commodity 
indicated with bold arrows. This solution is included in the master problem as a 
column for the path 21 ~ tl. The column will include two nonzeros in the bundling 
constraints of (RMP) associated with arcs (£~, 1) and (6, tl). However, in order to 
satisfy all of the supply/demand constraints for the first commodity, the master 
problem must also have columns with nonzeros associated with arcs (£1,2), (£~, 3), 
(7, ~) and (8, ~). To satisfy these constraints, the subproblem for commodity 1 must 



108 K.L. Jones et al. / Multicommodity network flows 

be solved at least 3 times, generating the paths 

However, there are 18 possible paths that the subproblem may choose. This means 
that the subproblem may be solved anywhere from 3 to 18 times, and again, this is 
only for the first commodity. This "touching property" must be satisfied for all 

commodities before a feasible solution can be found for the restricted master prob- 
lem. Even in this small example it is easy to see that it may be very time consuming 
to find an initial feasible solution. The question is, does the fast convergence rate of 
this path-based formulation outweigh the detriments of finding an initial feasible 
solution? The numerical results presented in Section 6 show that the path-based 
formulation of (EPSP) does in fact improve the convergence rate to optimality 
despite the difficulties in obtaining an initial feasible solution. 

6. Numerical results 

In this section, the effects of decomposition on the different formulations as discussed 
in the previous sections are compared and contrasted. Results are presented that 
support the claims that the larger and sparser path-based formulations of (ODP) 
and (EPSP) have better convergence rates via Dantzig Wolfe decomposition than 
those of (DSP) and (PSP), respectively. This is demonstrated by comparing total 
master problem iteration counts and CPU times to optimality. 

The decomposition code used in this study was written in the C programming 
language. The master problems are solved by CPLEX [6] and subproblems are solved 
by Simpnet, a C-based network simplex code written by Lustig [12]. The CPU times 
reported in this research are for an IBM RISC/System 6000 machine. A two phase 
solution technique for the problem is implemented where the first phase minimizes 
the sum of all infeasibilities in the master problem, and the second phase iterates 
until optimality. Tables are presented for the major iteration counts for both phase 
1 and phase 2 (i.e., the number of times the master problem is solved), CPU time to 
optimality, and the maximum number of rows and columns in each master problem. 
As noted in Corollary 2, the optimal flow in a (DSP) formulation can be decomposed 
into a set of optimal path flows for the (ODP) formulation. Hence, in the (DSP)- 
(ODP) comparison, all subproblems are solved in the tree-based (DSP) formulation 
and the (DSP) trees are decomposed into (ODP) paths. The CPU times times reflect 
this in that the number of subproblems solved at each iteration is identical for the 
two formulations. 
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Table 1 

(ODP) and (DSP) comparisons for Farvolden data sets 
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Problem Nodes Links Bundled L•I Phase 1 iter. Phase 2 iter. 

(DSP) (ODe) (DSP) (0DP) (DSP) (ODP) 

10term 190 510 146 10 317 9 3 18 4 
10term.0 190 507 143 10 323 6 2 15 3 
10term.50 190 498 134 10 323 7 3 12 3 
10term.100 190 491 127 10 323 6 4 19 3 

15term 285 796 253 15 530 7 3 20 4 
15term.0 285 745 202 15 561 10 3 34 3 

Table 1 presents results on problems drawn from Farvolden [8] where each prob- 
lem can be treated as a (DSP) or an (ODP). These problems are drawn from the 
LTL transportation model where each product is associated with a unique destination. 
node called a terminal. Each of these data sets is a time-space network with an 18 
day planning horizon where each network contains two types of arcs: inventory arcs 
(no cost) and loaded movement arcs (capacitated, high cost). In Table 1, the value 
of ]~fl is presented for both (DSP) and (ODP) to indicate the difference in the 
number of (DSP) trees and (ODP) origin-destination pairs. Thus, in the Farvolden 
data sets, a (DSP) with 10 terminals is decomposed into an (ODP) with 317 origin- 
destination pairs. This difference is reflected in the number of rows in the master 
problems, as demonstrated in Table 2. Table 1 demonstrates that in every instance, 
solution of the (ODP) formulation requires fewer master problem iterations. This is 
especially noticeable as the size of the problem grows larger as in the 15 terminal 
problem. Table 3 displays the CPU times required to solve each of the problems in 
Table 1. Even though the size of the restricted master problem (as documented in 
Table 2) is significantly larger in the (ODP) formulation, the CPU times are smaller. 

Table 2 

Maximum number of rows and columns in the master problems for the 
Farvolden data sets 

Problem Master problem dimensions 

(DSP) (ODP) 

Rows Cols Rows Cols 

10term 156 182 463 687 
10term.0 153 135 466 502 
10term.50 144 204 457 620 
10term.100 137 223 450 771 

15term 217 474 763 1311 
15term.0 268 263 783 1056 
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Table 3 

CPU time comparisons of (DSP) and (ODP) for the Farvolden 
data sets 

Problem CPU seconds Ratio 

(DSP) (ODP) 

10term 13.87 7.97 1.74 
10term.0 8.94 6.64 1.35 
10term.50 12.04 6.55 1.84 
10term.100 12.59 7.25 1.74 

15term 22.74 15.93 1.43 
15term.0 33.39 16.08 2.08 

It is clear that the reduced number of master problem iterations contributes greatly 
to the reduced CPU times for the solution of each (ODP) formulation. 

The Chert [4] problems originate from the stochastic muIticommodity dynamic 
vehicle allocation problem. These are also (DSP) formulated time-space networks 
that can be decomposed into an equivalent set of origin-destination pairs. As in the 
Farvolden data sets, each subproblem is solved using the (DSP) formulation and 
then decomposed into a set of paths for the (ODP) formulation. Again, Table 4 
demonstrates that a significant change is seen in the number of master problem 
iterations required to solve each of the (DSP) and (ODP) formulations, especially 
as the size of the problem increases. Table 5 displays the CPU times required to solve 
each of the problems in Table 4. Note that the decomposition algorithm applied to 
the (ODP) formulations of Chen2 and Chen6 yield a reduction in CPU times of more 
than an order of magnitude. Table 6 lists the maximum size of the restricted master 
problems for the Chen data sets. The numerical results in Table 5 reflect that the 
number of columns in each master problem is limited to 10 times the number of rows 
for each formulation. Once this limit is reached, an effort is made to delete nonbasic 
columns from the current restricted master problem. 

The next test set is from Assad [2] where each problem is originally formulated as 
an (ODP). For comparison purposes, only those data sets where it is possible to 

Table 4 

(ODP) and (DSP) comparisons for Chen data sets 

Problem Nodes Links Bundled I~f] Phase 1 iter. Phase 2 iter. 

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP) 

Chen0 26 117 43 4 18 10 7 99 24 
Chen3 31 149 56 15 71 12 8 74 31 
Chenl 36 174 65 5 25 13 8 165 44 
Chen2 41 358 155 7 70 23 7 356 34 
Chen6 41 409 177 9 89 22 6 372 33 
Chen4 55 420 176 15 133 25 8 318 61 
Chen5 65 569 242 10 78 23 9 560 136 
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Table 5 3 

CPU ratios (DSP): (ODP) for the Chen data sets 

Problem CPU seconds Ratio 

(DSP) (0DP) 

Chen0 8.16 2.63 3.10 
Chen3 22.11 11.32 1.95 
Chenl 30.15 11.08 2.72 
Chen2 597.54 44.19 13.52 
Chen6 841.64 64.32 13.08 
Chen4 937.82 254.15 3.69 
Chen5 2698.13 1184.54 2.28 
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Table 6 

Maximum number of rows and columns in the master problems for 
the Chen data sets 

Problem Master problem dimensions 

(DSP) (ODP) 

Rows Cols Rows Cols 

Chen0 47 400 61 419 
Chen3 71 710" 127 1270" 
Chenl 70 700* 80 800* 
Chen2 162 1620" 225 2250* 
Chen6 186 1860" 266 2660* 
Chen4 191 1910' 309 2346 
Chert5 252 2520* 320 3200* 

* indicates the maximum number of allowable columns was reached. 

aggregate, rather than decompose, groups of origin-destination pairs into corre- 
sponding (DSP) trees are reported. In this case, the (DSP) model actually has flow 
from an origin rather than flow into a destination. The sizes of these problems are 
much smaller than either of the Farvolden or Chen data sets, yet the results demon- 
strate again that the (ODP) formulation is solved in fewer master problem iterations 
than the (DSP) formulation. In Table 7, the networks labeled assadl and assad3 are 
each solved wi[h two different sets of origin-destination pairs. In each of these cases, 

Table 7 

(ODP) and (DSP) comparisons for Assad data sets 

Problem Nodes Links Bundled 12¢ l Phase 1 iter. Phase 2 iter. 

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP) 

assadl.5k 47 98 98 3 10 6 3 12 1 
assadl.6k 47 98 98 3 15 4 5 7 1 
assad3.4k 85 204 204 6 18 7 5 13 5 
assad3.7k 85 204 204 6 18 8 7 15 7 
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the total number of master problem iterations increased with a smaller 1~¢1 wtrich is 
consistent with the results from the Farvolden and Chen data sets. This is another 
indication that the larger and sparser (ODP) formulation is easier to solve than the 
smaller and denser (DSP) formulation in a decomposition framework. The largest 
recorded CPU time in the set of solutions to the Assad data sets was 2.9 CPU seconds 
for the (DSP) formulation of assad3.7k. 

The following results compare the iterative convergence rates for the solution of 
(PSP) and (EPSP) formulations when the decomposition algorithm is applied to the 
formulation of (EPSP) as outlined in Section 5.1. This set of test problems are also 
due to Chen [4] where each product k is associated with multiple origins and multiple 
destinations. Therefore, each is originally formulated as a (PSP) and is appended by 
supersource and superdemand nodes and arcs to create the corresponding (EPSP). 
Note that the size of the constraint matrix in both the master problem and subprob- 
lems are larger in the (EPSP) formulation due to the addition of the specially capacit- 
ated arcs. Table 8 shows the differences in size of the networks for (PSP) and (EPSP), 

Table 8 

(PSI?) and (EPSP) comparisons for Chen data sets 

Problem lYJ Nodes Links Phase 1 iter, Phase 2 iter. 

(PSP) (EPSP) (PSP) (EPSP) (PSP) (EPSP) (PSP) (EPSP) 

pspl 3 15 21 41 59 7 12 26 23 
psp2 4 30 38 180 225 14 30 233 124 
psp3 8 25 41 112 190 11 17 80 55 
psp4 10 27 47 86 145 9 I5 57 41 
psp5 9 30 48 167 251 12 2I 137 77 
psp6 4 60 68 832 899 18 41 869 337 
psp7 6 84 96 1435 1551 21 65 1743 542 

as well as the iteration counts for the solutions of the decomposition algorithm 
applied to each formulation. As hypothesized earlier, more effort is required to obtain 
a feasible solution to the (EPSP) formulation for each of the test problems. However, 
the phase 2 performance of the algorithm for the (EPSP) formulation outperformed 
the algorithm applied to the (PSP) formulation in every instance. Also, the total 
iteration count of the algorithm applied to (EPSP) was less than the total iteration 
count of the algorithm applied to (PSP) in all instances except for the smallest 
problem, pspl. As the size of the problem increases, the performance of Dantzig- 
Wolfe decomposition on (EPSP) improves compared to that of (PSP). This gain in 
performance is especially noticeable in the larger data sets when comparing CPU 
times. Table 9 shows the CPU times required to solve each of the problems in Table 
8. Note that as the size of the problem increases, the difference in the CPU times of 
the solutions is significant. This is especially noticeable upon inspection of psp7 in 
Tables 8 and 9. Table 8 indicates that three times as many major iterations are 
required to solve psp7 when the decomposition procedure is applied to the (PSP) 
formulation, compared to when it is applied to the (EPSP) formulation. However, 
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Table 9 .r 

CPU time comparisons of (PSP) and (EPSP) for the Chen 
data sets 

Problem CPU seconds Ratio 

(PSP) (EPSP) 

pspl 1.06 1.17 0.90 
psp2 63.50 25.26 2.51 
psp3 12.26 15.77 0.77 
psp4 8.43 7.31 1.15 
psp5 55.91 41.87 1.33 
psp6 14959.04 902.74 16.57 
psp7 494548.92 16149.69 30.62 
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Table 9 indicates that the CPU time required to solve the (EPSP) formulation was 
30 times faster than the (PSP) formulation. Similarly, the algorithm applied to the 
(EPSP) formulation of psp6 was 16 times faster in CPU seconds, even though the 
number of maslLer problem iterations was only reduced by a factor of two. These 
observations strengthen our claim that the larger and sparser master problem is 
actually easier and faster to solve than the more traditional, compact representation. 

From this it can be seen that even though more effort is required to obtain a 
feasible solution to the (EPSP) formulation, the path-based structure of the columns 
in the master problem yields faster convergence overall. Note that the number of 
rows in the restricted master problem of the (EPSP) formulation requires only 21 ~(I 
additional rows as compared to the master problem of the (PSP) formulation. The 
results in Tables 8 and 10 shows that because of the decreased number of major 
iterations in the solution of the (EPSP) formulation, the final master problem has 
far fewer columns than that of the (PSP) formulation in half of the experiments, and 
is especially noticeable in the more difficult problems, psp6 and psp7. This is clearly 
evident in the next two examples. 

Table 10 

Maximum number of rows and columns in the master problems for 
the Chen data sets 

Problem Master problem dimensions 

(PSP) (EPSP) 

Rows Cols Rows Cols 

pspl I7 102 35 108 
psp2 77 770* 122 565 
psp3 51 510" 129 632 
psp4 40 400* 99 504 
psp5 78 780* 162 904 
psp6 373 3488 440 1475 
psp7 658 6580* 774 3557 

* indicates the maximum number of columns was reached. 
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Table l 1 

(ODP) and (DSP) comparisons for Powell data set 

Problem Nodes L inks  Bundled ]Jfl Phase 1 iter. Phase 2 iter. 

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP) 

veh.8 3071 6364 301 3 236 42 21 2109 15 

The next two data sets demonstrate even more concretely than any of the previous 

examples that applying Dantzig-Wolfe decomposition to the path-based formulation 

of (ODP) is far superior to applying it to the (DSP) formulation in both iteration 

counts and CPU time. The first data set is drawn from a truckload transportation 

model as described by Powell [14], with an extension to allow multiple vehicle types. 

The problem is a time-space network with a planning horizon of eight days and is 

originally formulated as a (DSP) with three vehicle types k and a single destination 

node t. This particular data set is interesting in that each mutually capacited arc has 

an upper bound of one which makes the problem much more difficult and highly 

degenerate. Table 11 indicates the difference in I XI and shows the major iteration 

counts required to solve veh. 8 in both the (ODP) and (DSP) formulations. Note that 

the algorithm applied to the (ODP) formulation outperformed the algorithm applied 

to the (DSP) formulation in major iteration counts by nearly 60 times. However, 

Table 12 shows that in CPU seconds, solving the (ODP) formulation was over 400 

times faster than solving the (DSP) formulation. Again note the difference in the 

sizes of the master problems. Table 13 shows that the (DSP) master problem reached 

its limit of 3040 columns, yet the solution of the (ODP) formulation reached the 

Table 12 

CPU time comparisons of (DSP) and (ODP) for the 
Powell data set 

Problem CPU seconds Ratio 

(DSP) (ODP) 

Veh.8 16164.69 38.47 420.I9 

Table 13 

Maximum number of rows and columns in the master problems for 
the Powell data set 

Problem Master problem dimensions 

(DSP) (ODP) 

Rows Cols Rows Cols 

veh.8 304 3040* 537 I472 

* indicates the maximum number of allowable columns was reached. 
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Table 14 "~ 

(ODP) and (DSP) comparisons for the ALK data sets 
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Problem Nodes Links Bundled [*'fl Phase 1 iter. Phase 2 iter. 

(DSP) (ODP) (DSP) (ODP) (DSP) (ODP) 

alk.half 1121 3194 1251 30 1013 32 7 >447 22 
alk.two 4067 7090 4212 30 1596 72 13 >>350 133 

optimal solution with only 1472 columns. This problem demonstrates a restricted 
master problem that has significantly fewer columns for the (ODP) formulation 
which is due entirely to the decreased number of major iterations while employing 
the column generation technique. Thus, even though many more columns may be 
added at each iteration of the algorithm using the (ODP) formulation, so many fewer 
iterations are required that the final restricted master problem has far fewer columns 
than the final restricted master problem in the equivalent (DSP) formulation. 

The next data set comes from ALK [10] and is a railroad transportation problem.-" 
Unlike the other data sets that simulate real world problems, the railroad data is in 
fact real data supplied by ALK Inc. and the railroad company Union Pacific. These 
networks are again time-space networks where the products are different types of 
railcars that must be routed to a single destination node. These two data sets are the 
largest presented in this paper, with the largest having more than 4000 rows in the 
master problem. Table 14 shows the major iteration counts for solving each of the 
formulations. The algorithm applied to the (DSP) formulation did not reach optimal- 
ity in both alk.halfand alk.two. Table 15 shows the CPU seconds for each solution 
procedure and the objective value obtained. In both cases, the solution of the (ODP) 
formulation reached the optimal objective value. The algorithm applied to the 
alk.halfformulated as a (DSP) was stopped after it was 3 orders of magnitude slower 
than the (ODP) formulation. Similarly, the algorithm applied to alk.two formulated 
as a (DSP) was stopped after nearly 450000 CPU seconds when it was clear that the 
optimal objective value could not be reached in a reasonably comparable length of 
time (for this reason, a ">>" is used in each of the tables to indicate that the solution 
of the (DSP) formulation was far from being optimal). Table 16 shows the difference 
in the sizes of the master problem at the time of completion. At the point of termina- 
tion, the master problem of alk.halfin the (ODP) formulation had fewer columns and 

Table 15 

CPU time comparisons of (DSP) and (ODP) for the ALK data sets 

Problem Obj. Value CPU seconds Ratio 

(]DSP) (ODP) (DSP) (ODP) 

alk.half -9.89 e+07 -9.97 e+07* >296553.60 292.23 >1014.79 
alk.two 1.55 e+ 10 -4.98 e+08* >>446233.80 36193.00 >>12.40 

* indicates the optimal objective value was obtained, 
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Table 16 

Maximum number of rows and columns in the master problems for 
the ALK data sets 

Problem Master problem dimensions 

(DSP) (ODP) 

Rows Cols Rows Cols 

alk.half 128l >9269 2264 5224 
alk.two 4242 ~6951 5808 16431 

a sparser constraint matrix than did the master problem of the (DSP) formulation. It 
is very likely that the master problem of the (DSP) formulation of alk.two would 
exhibit the same property if the algorithm had been allowed to iterate for a longer 
period of time. 

7. Conclusion 

This paper focuses on the effects of the formulation of a multicommodity network 
flow problem in the framework of Dantzig-Wolfe decomposition. Numerical experi- 
ments support the hypothesis that decomposition applied to the larger and sparser 
path-based formulations of (ODP) and (EPSP) yields faster convergence rates than 
decomposition applied to (DSP) and (PSP), respectively. These path-based formula- 
tions increase the number of rows in the master problem by introducing more convex- 
ity constraints in the case of (ODP) and more capacity constraints in the case of 
(EPSP). The reformulation of (DSP) into (ODP) causes only a small increase in the 
number of constraints in the master problem compared with the increase in the 
number of subproblem proposals generated at each iteration. For this reason, it may 
be argued that the huge increase in the number of subproblems may be a significant 
factor in the decision to use the (DSP) versus the (ODP) formulation. It must be 
emphasized that even though more subproblems are solved at each iteration when 
solving (ODP), there are a fewer number of total extreme points enumerated in this 
formulation. Also, it must be noted that the subproblems are easier to solve since 
they are simply shortest path problems. This hurdle of solving more subproblems at 
each iteration can be eliminated by solving the corresponding tree-based subproblem, 
then decomposing the solution into paths which are then added to the master 
problem. 

The strength of the path-based formulation is most noted in the (EPSP) alternate 
formulation. This is a slight increase in the number of rows in the master problem 
with the additional complicating capacity constraints, yet the number of subproblems 
remains the same. Even though this reformulation of (PSP) causes an increase in the 
time it takes to obtain a feasible solution, the overall performance of (EPSP) was 
better than that of (PSP). Again, this problem may be remedied by solving a (PSP) 
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subproblem and decomposing it to all possible (E~SP) paths for the alternate formu- 
lation. This would result in the addition of multiple (EPSP) paths for each subprob- 
lena at each iteration. 

Future research will examine these effects on other instances of multicommodity 
network flow problems in an attempt to improve the performance of decomposition 
procedures. The concept of changing the formulation to accomodate optimization 
algorithms may also be applicable to decomposition-like procedures such as those 
proposed in Shultz and Meyer [16] and Pinar and Zenios [13]. The "folklore" of 
linear programming has had a negative view towards decomposition procedures. 
Because of the developments in the linear programming community, this research 
indicates that decomposition procedures may be applicable if the right problem is 
solved using today's better optimization technology. 
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