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In this paper, we discuss the solution of a class of modified quadratic assignment problems, 
with particular reference to an application involving decentralization of a large organization. 
The main emphasis is on the use of a standard branch and bound mathematical programming 
system (UMPIRE) and the problem manipulations required to carry this out efficiently. 

1. Introduction 

In this paper, we discuss our experience with the solution of a loca- 
tion problem which can be formulated as a slightly modified quadratic 
assignment problem [4]. The specific example we consider concerns the 
relocation of departments of the British Civil Service at present situated 
in London to other areas in Britain, with the monetary objective of 
reducing the cost of office accomodation and the social objective of 
providing employment in development areas. This problem has been 
considered in some detail in Elton et al. [2], who devised a specially 
tailored branch and bound algorithm for solving the problem. In con- 
trast, we have chosen to adopt an integer programming approach to 
demonstrate the feasibility of using a production branch and bound in- 
teger programming code (such as Scicon's UMPIRE system) to tackle 
problems of this type and the wide class of other combinatorial prob- 
lems which can be formulated in terms of quadratic assignment. 

Since the areas of application of the model are quite general, we shall 
refer simply to facilities being sited at various locations, with a fixed 
cost (or benefit) associated with each assignment and a "communica- 
tions cost" between two facilities determined by the amount of com- 
munication and the distance between them, or more generally the cost 
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per uni t  communica t ion  between their respective sites. The only fea- 
ture special to this application are side constraints specifying that  the 
number  of  persons employed at these facilities at any site must  fall 
between an upper  bound and a lower bound  if any facility is located at 
this site. Some such restriction is clearly necessary if the social objective 
is to be attained, otherwise all the facilities would simply be located at 
the cheapest site. 

2. Integer programming formulat ion 

We now specify the integer programming model  of the facilities loca- 
t ion problem in much  the same form we use for Scicon's MGG matrix 
generator package. 

Indices.  
l < . i < k < ,  m 
l <~],l<~n 

(facility indices), 
( location indices). 

Constants:  
m = 
n = 

% = 

c i j  = 

v ,  = 

c i = 

number  of facilities; 
number  of locations (for our problems n < m); 
amount  of communica t ion  between facilities i and k; 
cost per unit  of communica t ion  between sites j and l; 
cost (or benefit) of  locating facility i at site ]; 
number  of persons employed by facility i; 
upper  bound  on emp loymen t  at site ]; 
lower bound  on employmen t  at site j if any facility is 
located there; 
number  of  facilities communicat ing with facility i (i.e., the 
number  of non-zero Cik , k = 1, ..., m). 

Variables: 

6i i 

Xijgl 

s i 

11 if facility i is located at ], 
I 0 otherwise; 

1 i f i < k ,  Cik4=0 and 5i]6kt= 1, 
{0 otherwise; 

1 if any facility is located at ], 
0 otherwise; 

non-negative slack on employmen t  upper  bound  at ]. 
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Note that  xijkt is defined only for i < k and Cik ~ 0 since we wish to 
consider only connected pairs of  facilities and each of  these pairs only 
once. The problem is then: 

Objective. 
Minimize ~..Giy 6ij + 2 2  G'kDflxijkl" 

t d i<k j, 1 

Constraints: 

G xij l + 23 23 X l, - -  8i,, = 0, 
k > i  l k < i  l 

(2.1) 

i =  1,...,rn, (2.2) 
j =  1,...,n, 

~ E  i 6ij - U/~j + s/ = 0, j = 1,...,n, (2.3) 
i 

( L ! -  U/)~1 +s/ ~< 0, / =  1,...,n, (2.4) 

~ xi/kl = 1, l <- i < k <- m , (2.5) 
j , l  

Z_J 6i! = l, i : 1,...,rn. (2.6) 
/ 

The constraints (2.2) in conjunct ion with (2.5) can be easily shown to 
imply that  the xqk I must  take on the required values given integer 6q. 
The constraints (2.3) and (2.4) specify the upper  and lower bounds on 
employmen t  at each site (if any). Finally, (2.6) specifies that  the 6ij vari- 
ables are grouped in mult iple choice sets or "special ordered sets of type 
I"  (see [ 1 ] ) which can be of  great help in reducing the amoun t  of work 
done in a branch and bound  algorithm [ 1 ; 5].  

This formulat ion has rnn + 2n + ½ r e ( m - l ) + m  constraints and a total 
number  of  variables depending on the density of the communica t ion  
matrix C. The last ½m (m+l )  constraints are however  of  the generalized 
upper  bound  (GLIB) type  and hence can be treated implicit ly by 
UMPIRE. 

3. Initial computational experience 

Our initial test data supplied by the Civil Service Depar tment  in- 
volved citing 25 facilities at 3 possible locations with quite loose em- 
p loyment  constraints (2.3) and (2.4). We began our  experiments  using a 
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straightforward last-in-first-out branch and bound approach with pen- 
alty calculations to choose the branching variables [5].  The results were 
very poor. Because of the large number  of  zero penalties (a chronic 
occurrence with combinatorial problems), the tree search was almost 
arbitrary, resulting in an enormous number of  branches which pro- 
duced several rather poor integer solutions, but failed to terminate in 
50 min on the Univac 1108. 

This performance was improved using the UMPIRE facility to supply 
a- priority ordering of  the variables. This is easy to do since it is clear 
that the location of those facilities with large amounts of communica- 
tion tends to determine the location of the other facilities. We were thus 
able to modify the matrix generator to produce a priority list of  the 
special ordered sets (2.6) in order of  decreasing value of  Z, kCik. Use of 
the priority list enabled us to obtain the opt imum solution and complete 
the search in 30 rain. This is still far from satisfactory for such a small 
problem, despite the enormous number of  possible integer solutions. 

The comparative success of  the priority ordering does, however, pro- 
vide the clue to a reformulation of the problem in conjunction with the 
priorities. 

4. Reformulation 

The costs in this problem can be classified as direct or first-order 
costs Gij and indirect or second-order costs CikDjt. If all the costs were 
first-order, then apart from the side constraints (2.3) and (2.4) we 
would have a simple assignment problem. It would then be very easy to 
obtain the best integer solution. With large second order costs, we find 
it far more difficult to obtain such a solution. However, if as we proceed 
with the tree search some facilities have already been assigned, say the 
subset A, then the second-order costs CitDj I can in principle be treated 
as first-order costs for i q~ A, k ~ A (where k is assigned to l) and may be 
added to Gij. 

An alternative to our first formulation which does this implicitly can 
be obtained by replacing the mn constraints (2.2) by 

x~jkt - 6 6 = O, ( 4 .  I )  
l 

for all j, and i,k such that i < k and Cik ~ 0.The difficulty here of  course 
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is the very large number  of  constraints involved. It is here that the 
priority ordering comes into play, for by virtue of  this ordering, we 
know in advance the order in which facilities will be located. 

We write a constraint of  type (4. l)  only for those i,k such that k is of  
higher priority than i, for C/k v~ 0, i < k. Now let us define S i as the set 
of  all k with lower priority than i for which Cik =~ 0 and let M i be the 
cardinality of  S i. Then we write 

~ xiikt + ~ ~ Xkli/--Mi6i] = 0 (4.2) 
k>i l k<i l 

for each i,j such that i communicates with some facility of  lower prior- 
ity. We now replace (2.2) by the two sets of  constraints (4.1) and (4.2). 
Note that this results in just over half the number  of  non-trivial con- 
straints which would be obtained using constraints of  type (4. 1), but 
considerably more than the original formulation. 

The modification of the matrix generator turned out to be a relatively 
simple mat ter  and the problem was re-run using the "best project ion" 
(BP) criterion type tree search due to J.P.H. Hirst (see [3] ), but restric- 
ting the search to the two most recently created branches whenever 
possible. The problem was solved and the search completed in only 
5 rain total running time - one tenth of  the time expended in our first 
non-optimal effort. 

A second more realistic problem, again with 25 facilities but  with 
6 locations, was then solved. Since doubling the number of  locations 
doubles the number of  rows and integer variables and very considerably 
increases the number  of  xijxl variables, we might expect the solution 
time to increase dramatically. In fact, we were able to obtain guaranteed 
optima in just under 20 rain for a range of  values of Gii and Dkl. Only 
when the second-order costs were made very large in comparison to the 
first-order costs did the problem fail to terminate in 20 rain and even then 
it was clear that no significantly better solution could be found. Com- 
plete statistics for this run and one of  the terminating runs are given 
among the examples in [3 ]. 

5. Conclusion 

It has been recognized for some time that purely combinatorial prob- 
lems are often very difficult to solve by general integer programming 



344 E.M.L. Beale, J.A. Tomlin 

methods and that it is important to linearly constrain the integer vari- 
ables as tightly as possible. The need to avoid an excessive number o f  con- 
straints is however also crucial and a compromise may be difficult. In 
this instance, we were able to achieve such a compromise by taking 
advantage in the formulation of  the branch and bound strategy to be 
used in actually solving the problem, a principle we expect will prove 

• to be valuable in general. 
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