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The General Fermat Problem asks for the minimum of the weighted sum of distances from m 
points in n-space. Dozens of papers have been written on variants of this problem and most of 
them have merely reproduced known results. This note calls attention to the work of 
Weiszfeld in 1937, who may have been the first to propose an iterative algorithm. Although the 
same algorithm has been rediscovered at least three times, there seems to be no completely 
correct treatment of its properties in the literature. Such a treatment, including a proof of eon- 
vergence, is the sole object of this note. Other aspects of the problem are given scant attention. 

1. Introduction 

The following optimization problem has fascinated mathematicians 
for over 300 years since it was first proposed by  Fermat early in the 
17 th century: Given three points in the plane, find a fourth point such 
that the sum of  the distances to the three given points is a minimum. 
The problem was generalized by Simpson in his D o c t r i n e  a n d  A p p l i -  

ca t i on  o f  F l u x i o n s  (London, 1750) to asking for the minimum weigh- 
ted sum of  distances from three given points. In this note, we shall con- 
sider the same problem for m points in the Euclidean space E n. 
Formally, let there be given m points A i -- ( a i l ,  . . . ,  ain) ,  called v e r t i c e s ,  

and m positive numbers w i, called w e i g h t s .  Furthermore,  for P =  

(x I . . . .  , x n ), let 

d i (P)  = x / ~ j ( x  i - ai/) 2 , 

the Euclidean distance from P to  A i ,  for i = 1, ..., m. 

* This paper was written while the author was Science Faculty Fellow of the National Science 
Foundation at the London School of Economics. 
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1.1. General Fermat Problem: Find a point  that minimizes f (P)= 

~iwi di(P). 

Although dozens of  papers have been written on variants of  this prob- 
lem and most of  them have merely reproduced known results, it seems 
that something new can be said about  it. It is the purpose of  this note 
to call attention to a little known work [5 ], which appears to have been 
the first to propose an iterative algorithm. Although the same algorithm 
has been rediscovered several times (see, for example, [1] ,  [3] or [41); 
there seems to be no completely correct treatment of  its properties in 
the literature. Such a treatment,  including a p roof  of  convergence, is the 
sole object of  this note; consequently, we shall give scant attention to 
other aspects of  the problem. A more complete history of  the problem 
and a statement and treatment of  its dual are given in [2].  

2. The algorithm 

If the vertices A i are not  collinear, then f is positive and strictly con- 
vex in E n. Hence the minimum of f is achieved at a unique point M. 
We shall only consider non-collinear problems; those problems excluded 
by  this restriction are clearly trivial. 

Motives both  mathematical and physical (deriving from a string and 
weight model  of  the problem introduced by G. Pick as early as 1909) 
suggest the introduction of  the negative of  the gradient of  f (i.e., the 
resultant of the forces in the strings). To this end, let 

= (A i - P) if P ¢ A i for all i .  

Obviously, R is not  defined at any vertex A i. However, by  physical 
analogy, set 

w i 
R k = ~ d i ( A k ) ( A  i - A  k) f o r k =  1 , . . . , m ,  

i¢ k 

and extend the definition of  R by  setting 

R(A k) = max(IRk I -- Wk, O)(Rk/IR k I) for k = 1, ..., m .  
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(Here, as elsewhere in this note, IA I denotes the length of the vector A.) 
In the expression for R ( A k )  , the length of  R k is compared with wk. 
If  w k >= IRkl , then R ( A k ) =  0; otherwise, a "resul tant"  of  magnitude 
IR k I - w k is defined in the direction of R k . 

2.1. The p o i n t  P = M i f  and on ly  i f R ( P )  = O. 

P r o o f  If  P is not a vertex, then the convexity and differentiability of 
f implies that the first-order conditions R ( P )  = 0 are both necessary and 
sufficient for a minimum. 

If  P = A k ,  then consider a change from A k to A k + tZ  for IZI = 1. 
Then direct calculation yields 

d 
d~ f ( A k  + tZ)  = w k - R k  " z f o r t = 0 ,  

and hence the direction of greatest decrease of  f from A k is Z = R  k / IR k I. 

(Here A • B denotes the inner product of A and B, and A 2 will be used 
as an abbreviation for A • A .) Clearly, A k is a local minimum if and only 
if 

w k - R ~ / I R k I > =  O, 

which is the same as R ( A  k)  -- 0. Again, the convexity of  f impl ies  that 
R ( A  k)  = 0 is both necessary and sufficient for A k to be a global mini- 
mum. 

2.2. The p o i n t  M is in the convex  hul l  o f  the vertices A i. 

P r o o f  If  M is a vertex, then it is trivially in the convex hull. Other- 
wise, the condition R ( M )  = 0 yields the consequence 

M = . ~ A d~(M)  " 

Thus M is a weighted sum of  the vertices with positive weights that sum 
to one. 

The equation used in the proof of 2.2 suggests quite naturally a 
method of  successive approximation. For  P 4: A i ,  i = 1, ..., m ,  define 
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T: e -+ v(e)  = ~ i A di(e ) 

For the sake of  continuity, set T(Ai) = A i for i = 1, ..., m. We then have 
as an immediate corollary to 2.2: 

2.3. I f  P = M, then T(P) = P. I f  P is not a vertex and T(P) = P, then 
P = M .  

In effect, the algorithm proposed is merely a simple at tempt  to solve 
the first-order conditions R(P) -- 0 iteratively. It seems to have been 
discovered in 1937 by Weiszfeld [5],  who asserted that, for a n y P  0 that 
is not  a vertex, the sequence Pr = Tr(PO) converges to M. In the next 
section, we shall investigate the properties of  T and prove a corrected 
statement of this theorem. 

3. Statement  and proof  of  convergence 

First, note that the algorithm proposed is a "long-step" gradient 
method.  Indeed, recalling that - R ( P )  is the gradient of  f whenever it 
exists, direct calculation yields 

T(P) = P + h (P) R (P) , 

where 

h(P) = [~I di(P)/~[~ (w k ]-I di(P)) 
i k i-Ok 

for all points P. Thus the algorithm follows the direction of the resultant 
with precalculated length of step h(P) IR(P) I. Apart from the vertices, 
which are all left fixed by T, one difficulty with such methods is that 
they may "overshoot".  The following result (first proved in [5])  shows 
that this is not  the case. 

3.1. I f  T(P) 4= P, then f (T(P))  < f(P). 

Proof. Since T(P) -¢ P, P is not  a vertex and 
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d ~ )  wi i / ?  wide(P)" T(P) = ~ A 
l 

This says that T(P) is the center of gravity of weights wi/di(P) placed 
at the vertices A i. Hence, by elementary calculus, T(P) is the unique 
minimum of the strictly convex function 

g(Q) = ~i wi 

Since P 4: T(P), 

~i  Wi ? Wi g(T(P)) = . d ~ )  d2(V(P)) < g(P) = . ~ d~(P) = f ( P ) .  

On the other hand, 

W i 
g(T(P)) = ~i d ~  [di(P) + (di(T(P)) - di(P))] 2 

W i 
= f(P) + 2(f(T(P)) - f (P ) )  + ~  ~ [di(T(P)) - di(P)] 2 . 

ui~.l ) 

Combining these results, 

w i 
2f(T(P)) + ~ ~ [di(T(P)) -di(P)] 2 < 2f(P) 

i "  

and the assertion f(T(P)) < f(P) is proved. 

A second possible difficulty with the algorithm is that the sequence 
of approximations might remain in the neighborhood of a non-optimal 
vertex. The following result shows that this cannot happen. Informally, 
it says that there is a neighborhood of  each non-optimal vertex such 
that, if the approximation sequence enters it, then it is eventually 
"kicked out"  by T. 
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3.2. Suppose A k 4= M. Then there exists 5 > 0 such that 0 <  dk (P) <= 5 
implies dk(TS(p)) > 5 and dk(TS-l(P)) <= 6 for some positive integer s. 

Proof. 

T(P) - A k = P + h (P) R (P) - A k 

w i (h(P) w k ) 
=h(P)  2 d ~ )  ( A i - P ) +  \ dk-k(p~--I ( A k - P ) .  

i s  k 

Since A k 4= M, we have 

i~k wi Ak ) di(Ak ) (Ai - > w k . 

Hence there exist 5' > 0 and e > 0 such that  

ick wi - P) d ~ ) ( A i  > ( l + 2 e )  Wk f o r d k ( P ) < 6 ' .  

By the definit ion of  h, we have 

lim h(P) w kid k(P) = 1 . 
P ~ A  k 

Hence there exists 6" > 0 such that  

h(P) w k I e 
~ £ ( - ~  1 < 2(1 +e )  for 0 < d k (P) <= 6" .  

Set ~i = min(6 ' ,  6"). For  0 < dk(P) <___ 6, we have 

c 
dk(T(P)) > h(P) (1 + 2e) w k 2(1 + e)dk(P)  

( ) > 1 2 ( l + e )  (1 +2e )  d k(P) 2 ( l + e )  dk (P) 

=(1 +e )  d k(P).  
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Since dk(P)> O, (1 + e) t dk(P ) > 5 for some positive integer t and hence 
dk(TS(p)) > 5 for some positive integer s with dx(TS-l(P)) <--_ 8. 

The following result (first proved in [5]) ,  which could be used to 
derive 3.2, describes the behavior of  T near all vertices, optimal or not. 

3.3. limp~Ak {dk(T(P))/dk(P)) = tRkl/W k for k = 1, ..., m. 

Proof. For P not  a vertex, 

r(e) = d, sA 
• d ~ ( P )  

= d ~  ( A i - A k ) + A k  . d - ~  di(P)" 

Hence 

T(P) - A k = ~ d ~ ) ( A i  - A k di(P), 
iv': k 

dk!P)((T(P) = wi dk (P) - A  k) ~ ~ ( A i - A k ) / W  k (1+ 
i-¢ k W k 

Taking the limits of  the lengths of  both  sides, 

d k (T(P)) IRxl 
lim 
P~A k dk(P) w k 

3.4. Convergence Theorem." Given any Po, define Pr = Tr(PO ) for 
r = 1, 2, .... I f  no Pr is a vertex, then limr__,=P r =M. 

Proof. With the possible exception of  P0, the sequence Pr lies in the 
convex hull of  the vertices, a compact set. Hence, by the B o l z a n o -  
Weierstrasz Theorem, there exists at least one point P and a subsequence 
Prl such that limt~=Pr l = P. To prove the theorem, we must verify that 
P = M in all cases. 

If Pr+l = T(Pr) = Pr for some r, then the sequence repeats from that 
point and P = Pr" Since Pr is not  a vertex, P = M by  2.3. 
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Otherwise, by 3. l, 

f (Po)  > f(P1 ) > ".. > f (Pr)  > "" > f ( M )  . 

Hence 

lira (f(Prl) - f ( T ( P r l ) )  = O . 
r.-~ ~ 

Since the continuity of  T implies 

lim T(Prt) = T(P) , 
l--~ 

we have 

f (P)  - f ( T ( P ) )  = O . 

Therefore, by 3.1, P = T(P). If  P is not a vertex, then P = M by 2.3. 
In any event, P lies in the finite set of  isolated poin ts (A1,  ..., A m , M } ,  
where M may be a vertex. 

The only case that remains is P = A  k for some k. I fA k ~ M, we first 
isolate A k from the other vertices (and M if it is not a vertex) by a 6- 
neighborhood that satisfies 3.2. Then it is clear that we can choose our 
subsequence Prl -+ A k  such that dk(T(Prl)) > 6 for all l. This means that  
the ratio d k (T(Prt))/dk (Prl) is unbounded. However, this contradicts 3.3, 
Hence A~ = M and the theorem is proved. 

The error in Weiszfeld s statement [5, p. 356] consists in ignoring 
the possibility that even if  P0 is chosen distinct from all vertices, some 
Pr = Tr(PO) may be a vertex. This may invalidate his arguments [5, 
pp. 362-363]  where several quotients are then undefined. The follo- 
wing example shows that  this is a real possibility and is a counterex- 
ample to Weiszfeld's theorem. 

3.5. Counterexample:  Consider the six vertices in the plane: A 1 = 
( -2 ,0 ) ,  A 2 = ( -1 ,0) ,  A 3 = (1,0), A 4 = (2,0), A 5 = (0,1), A 6 = (0 , -1) ,  
all with weights w i = 1. The vertices are graphed in Fig. 1. Since the 
resultant vanishes at the origin, M = (0,0). Consider the behavior of T 
on the segment from the origin to A 4 . From the definition of  R , i t  fol- 
lows that T((x  1,0)) -- (x] ,0) for 0 <_- x 1 <_- 2 and an elementary estimate 



106 14. IV. K u h n  

x 2 

A 1 A 2 
- - 0  0 

A5 

A 6 

A 4 
O X ~ 

Fig. 1. 

shows that x] <= x] on this interval. The behavior of  T nearA 3 andA 4 
is provided by 3.3; the behavior near M can be established by an elemen- 
tary calculation. The resulting graph is shown in Fig. 2. The important  
fact about this figure is that there is an x 0 (approximately 1.62) such 
that, for P0 = (x0,0) we have T(P o) = A ~, which is not  optimal. Thus, if 
one has the bad luck to start the algorithm from P0, then P1 = A3 and 
the sequence repeats from that point. Thus the example shows that the 
sequence Pr need not converge to M. 

xi  ¸ 

2 

. . . . .  

/ I 
1 Xo ~<1 

Fig. 2. 
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Of course, this is a very unl ikely  event. The following result  expresses 

this precisely. 

3.6. For all but a denumerable number o f  Po, Pr = Tr(PO) converges 
to M. 

Proof. The Convergence Theorem 3.4 establishes that ,  if  no Pr is a 
vertex,  then  Pr converges to M. I f  we insert  T f rom a vertex Ai, we must  
solve algebraic equations.  Thus we obta in  a finite number  o f  P0 such 
tha t  T(P o) = A i. Hence, for  a fixed positive r, 

(P0: Tr(Po) =Ai for some i = 1 . . . .  , m)  

is finite. Final ly,  

{P0: Tr(PO) =Ai for some i and r} 

is denumerable .  
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