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We consider a convex set B in R n described as the intersection of  halfspaces aiTx < b i 
T (i ~ I) and a set of  linear objective funct ions  fj = cj x (/ J). The index sets I and J ar e allowed 

to be infinite in one of  the algorithms. We give the definit ion of  the efficient points  of  B (also 
called functionally efficient or Pareto opt imal  points) and present  the mathemat ica l  theory 
which is needed in the algorithms. In the last section of  the paper, we present  algori thms that  
solve the following problems: 
I. To decide if a given point  in B is efficient. 
II. To find an efficient point  in B. 
III. To decide if a given efficient point  is the only one that  exists, and if not,  find other  ones. 
IV. The solutions of the above problems do not  depend on the absolute magni tudes  o f  the  cj. 

They only describe the  relative importance of  the different activities x i. Therefore  we also 
consider 

max  GTx 
x efficient 

for some vector G. 

1. Introduction 

We shall consider the vector maximization (VM) problem in R n. 

Thus, we have, as in linear programming (LP), a convex constraint set 
B of  activities X l ,  ...,  x n (forming a vector x). We also have a set o f  n- 
vectors cj defining linear objective functions f / =  c T x .  The optimality in 
LP is replaced by efficiency: 

* This paper was presented at the 7th Mathematical  Programming Sympos ium 1970, The 
Hague, The Netherlands. 
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Definition la. A point x e B is efficient if and only if there exists no 
other point y c B such that 

c)T y >~ cf  x for all j 

cTy > c)Tx for at least one j .  

In general, a VM problem has a solution set containing several points. 
As to the use and interpretation of vector maximization, we refer to 
references [31, [41 and [6]. 
We shall consider the following problems: 
1. To decide if a given point in B is efficient. 
1I. To find an efficient point in B. 
III. To decide if a given efficient point is the only one that exists, and if 

it is not, find other ones. 
IV. The solutions of the above problems do not depend on the absolute 

magnitudes of the cj. They only describe the relative importance of 
the different activities Xl, ..., xn. Therefore, we also consider 

max GX x 
x ef f ic ient  

for some vector G. 
In [2], Bod gives an algorithm that solves problem 1 for a polyhedral 
set B. Our method I. 1 does the same thing in a different way and meth- 
od 1.2 solves probelm l even for a general (nonpolyhedral) set B. The 
duality theory of VM (see below) immediately gives a method to solve 
problem II. We describe it briefly as method If. 1. The same method is 
also in the papers by Benayoun and Tergny [1] and Bod [2]. We give 
also a more elaborate method (II.2) which hopefully requires less com- 
putation then method II. 1, and upon which we can base a method to 
solve problem III. Problem IV seems not to have been considered before. 
Alternative ways of treating a VM problem, other than by solving any 
of  the four problems that we have listed, are described by Benayoun 
and Tergny [1]. The mathematical theory, in particular the duality 
theory, of VM is described already by Kuhn and Tucker in their funda- 
mental paper on nonlinear programming [7]. Roughly speaking, Kuhn 
and Tucker show that a given point in the constraint set is efficient if 
and only if its dual vector p, which can be interpreted as a price vector, 
is positive. Since EP algorithms are adapted to nonstrict inequalities, 
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they cannot be used directly to find this strictly positive p. In the corol- 
lary of theorem 3 we make a simple observation which produces the 
missing link and makes it possible to establish the existence or nonex- 
istence of a positive p by phase I of the simplex method. We have 
collected the theory needed for our algorithms in the next section. Ex- 
cept, possibly, for the corollary we have just mentioned, it is certainly 
not new. The algorithms have not been tested on large problems. 

2. Mathematical preliminaries 

A useful concept for the description of duality is that of the polar 
set: 

Defini t ion 2. The polar set of a set A ~ R n is 

A * = { u ' u ~ R n , u T a > = O  for all a ~ A } .  

A polar set is always a closed convex cone. If C is the set of all the cj 
defining the objective functions, C* is the cone of "good directions" in 
the VM problem. The formulation of efficiency in terms of  polar sets is 

Defini t ion lb.  A point x E B is efficient if and only if y ~ B and 
y -  x ~ C* implies x -  y ~ C*. 
We write cone (A) for the convex cone with vertex at the origin that is 
generated by a set A, and denote (topological) closure by superbar. The 
well-known Farkas lemma then reads 

Proposi t ion 1. I fA is nonempty,  

A** = cone (A) , 

(where A** is the polar of the polar of A). I r A  is a finite set, the clo- 
sure bar is superfluous. 
I n  the following theorem we deal with different sets of objective func- 
tions. We denote a VM problem with constraint set B and objective 
function set C by (B, C*). The translation of a set A by a vector z is 
denoted A z . 
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Theorem 1. Let P and Q be two closed convex cones with vertices at 
the origin in R n . If  x is efficient in (B, P), Px c3 B = {x} and Q c P, the 
x is efficient in (B, Q). 

Proof." Q c P implies Qx c Px which implies Qx n fl c Px c~ B = {x}. 
This means that the only y satisfying the conditions in definition lb is 
y = x ,  s o x - y E Q .  

Remark. This theorem can be used to establish the efficiency of x in 
(B, C*) by finding a subset D of  C such that x is efficient in (B, D*). 

Corollary. A point x ° that is a unique solution of the LP problem 

max c~ x , 
x~fl 

where cTx is any of  the objective functions in the VM problem, is effi- 
cient. 

Remark. This corollary also follows directly from definition 1 a. 
We shall present the duality theory of  VM in the following two theorems. 

Theorem 2. Let C = {cj}~l so that C* is a polyhedral cone and let 

m 

w =  ~ ) ~ j c !  with all X / > 0 .  
/ = 1  

A point x ° that solves the LP problem 

m a x  wT x 
x ~ B  

is efficient. 

Proof: Suppose that x ° is not efficient. Then, by definition l a, there 
exists a y E B such that 

cry fix° for all : 
cT y > cT x ° for at least one i .  ! ! 
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By mul t ip ly ing  inequal i ty j by X/>  0 and adding we get 

m m 

w Ty = x j c f y  > x j q x  ° = w+x° 
j=l /=i 

which contradicts  the maximal i ty  o f  x ° and thus  proves the theorem.  

Remark. The hyperplane  wTx = wTx ° (= constant)  separates B and 

(C*)xo. 

Proof." By the construct ion,  we have wTx ~ wTx 0 for x • B and since 
w • c o n e ( C ) = C * * ,  we have wT(x--x  °) >= 0 f o r x - - x  ° ~ C*. 

Theorem 3. Let  B be a po lyhedron  and x ° a point  on its boundary .  Le t  

a f x  <~ b i ( 1 <= i<= p) 

be the inequalit ies in the description o f  B that  are t ight at x ° . (The ine- 
qualities o f  the form - x  k <_- 0, which are tight, are also included.)  Let  
A = {ai}P m and C = {cj}r/Z1 . Then, x ° is eff icient  if and only if there exist 
~:i > 0 (1 <__ i<-_ p) and Xj > 0 (1 < j < m) such that  

p m 

Kiai= ~_l X]c] ( = w ) .  
i=1 /=1 

(1) 

Proof. To simplify the nota t ions  assume tha t  x ° is the origin (note  tha t  
this implies b i = O, i = 1, . . . ,  p ) .  If  there exist ~i >= 0 sat isfying (1), we 
have w •  cone(A) =A **, so wTx <= 0 f o r x  • (--A)* D B. Thus,  the " i f " -  
part  of  the theorem follows f rom theorem 2, and we can proceed to the 
" o n l y  if"-part .  Since B is a po lyhedron ,  there exists a 6 > 0 to every 
y • ( - A ) *  such tha t  6y • B. This means that  B = ( - A ) *  in an open 
ne ighbourhood  o f x  ° (= origin), so by def ini t ion lb,  x ° is eff ic ient  only 
if  c{y  <= 0 for all k (1 ~ k <= m) and all y • ( - A ) *  c~ C*. This can be 
wri t ten  

- c  k e ( ( - A ) *  c~ C*)* = ( ( - A )  U C)** = c o n e ( ( - A )  u C) . 
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Thus,  there  exist  gkj >= 0 and uki >_ 0 such that  

- -  C k  

m p 

= ~ l a k i  q -  ~ u k i a  i ( l~k~m).  
j = l  i=1 

Adding these m equat ions,  we get 

where 

p m 

 iai = 2 xjcj (=w), 
i= l  j = l  

m m 

Ki = ~ Pki>- O and Xj= 1 + ~ lak/ > O . 
k = l  k = l  

Remark .  I f  B is no t  a po lyhedron ,  x ° can be eff ic ient  w i th o u t  - c  k 
( ( - A )  u C)**,  since there  may  exist  a y  in ( - A ) *  rq C* for which there 
is no 8 > 0 such that  8y ¢ B > C*. Let  e.g. 

B = { ( x l , x 2 )  ( x  1 + l )  2 + x  2 ~ 1} , 

c T = (1, 0) and c T = (0, 1) .  

Then  the origin is eff ic ient  and the hyperp lane  suppor t ing  B there is 
unique with w = 1 "c I + 0"c  2 (fig. 1). 
Cf. Kuhn  and Tucke r  [7 ] ,  who in t roduce  the concep t  of  proper  effi- 
c iency to be able to state a cor responding  theorem for  nonpo lyhed ra l  
sets B. See also Geof f r ion  [5 ] ,  who in t roduces  ano the r  kind o f  effi- 
c iency to deal with the same kind of  p roblem.  Our a lgor i thms give effi- 
cient  points  which are p roper  in bo th  these senses. 

C 2 

~ C 1 

Fig. 1. 
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Corollary. Let B and C be as in theorem 3 and let ~j > 0 (1 ~ j ~ m) be 
m given positive numbers. Then, x ° is an efficient point if and only if 
there exist ~:i>=0 ( l<_ i<=p)  and X/>_~j ( l < / < r n )  such that (1) 
holds. 

Proof .  The conditions in the theorem and the corollary are equivalent 
since (1) is a homogeneous expression. 

3. Algorithms 

We describe points as column-vectors and let C denote the (n x re)- 
matrix of the cj and A the (n × p)-matrix of the a i. We let e stand for a 
one-column matrix of suitable length with all elements equal to 1. 
Let b and c be two vectors, M a matrix, and c o a constant. We exhibit 
the simplex program 

y = b + M x ,  x>=O,  y > = O ,  

minimize z = c o + c T  x , 

with the vector y of basic variables and the vector x of nonbasic vari- 
ables in the tableau 

1 X 1 X 2 . . . X r 

y l  = 

Y 2  = 

Y n  

Z = C O 

M 

C T 

A tableau of  this kind with the Yi'S replaced by zeros, denotes a pro- 
gram where a basis has not yet been found. 
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P r o b l e m  L To decide if a given point  x ° in B is efficient. 

M e t h o d  1.1. (This method can only be used when C* is polyhedral.) 
We apply the corollary of  theorem 3 with ~ /=  1 (1 ~/<_- m). Put 

~: ~: = ~,: - l = u:  ( l <~ j <_ m) , 

so that we have to find u~ >_ 0 (1 <= / <= m )  and t~ i ~>~ 0 (1 <= i <= p) satis- 
fying (1). We put g i = 0 i ( t o  get rid of  greek letters). Formula (1) beco- 
mes 

A v =  Cu + Ce . (1 ' )  

To decide if there exist vectors u ~ 0 and v >- 0 satisfying (1'), we use 
phase I of  the simplex method. Thus, we add vectors s >__ 0 and t ~ 0 
and solve 

0 = Ce + Cu -- A v  + s  - t 

(2) 
minimize g = eY s + ~e y t . 

The point x ° is efficient if and only i f g m i  n - ~ 0  . 

N u m e r i c a l  e x a m p l e  1 (fig. 2) 

A = 
C = ( 2  0 

1 1 

2 C ~ c1 

Fig, 2. 
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1 U 1 U 2 01 S 1 S 2 t 1 t 2 

0 = 2 I 2 - 1  1 - 1  

0 = t 2  1 1 - 1  1 - 1  

g=  1 1 1 1 

A primal feasible solut ion is 

t I = 

t2= 

g = 

1 U 1 U 2 01 S 1 S 2 

2 2 -1 1 

2 1 1 -1 1 

4 3 1 - 2  2 2 

Make O 1 basic! 

1 Ul U2 s1 $2 I I  

v 1 = 2 2 1 -1 

t 2 = 0 -1 1 -1 1 

g =  0 -1 1 2 2 

We have reached  g = 0 so x 0 is eff icient .  

M e t h o d  L2 .  (This m e t h o d  can be used even when  there  are inf ini te ly  
m a n y  a i and cj .)  The  ideas in the m e t h o d s  1.1 and 1.2 are the same. 
Here,  however ,  we t ry  to establish the e f f ic iency  o f  x ° by using finite 
subsets o f  C = {cj} and A ={ai}.  I f  we can find subsets C o c C and 
A o c A such that  C~ and A~ have no po in t  y 4= 0 in c o m m o n ,  the sets 
C* c C~ and A*  c A~ cer ta inly  have no  such y in c o m m o n  and X ° is 
efficient .  (Cf. t heo rem 1 and the remark  fol lowing it.) We cons t ruc t  the 
sets A 0 and C o step by step by  adding one  e lement ,  i.e. a n  a i o r  c/ ,  in 
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each step unti l  we get (1) satisfied or find tha t  x ° is no t  efficient .  
First, we describe the calculat ions involved in adding an e l emen t  and 
describe the choice  o f  the e l emen t  later. Thus,  suppose we have subsets 
A and C and the cor responding  groin > 0. We describe the s implex itera- 
t ions that  already have been done  as a premul t ip l ica t ion  o f  p rogram (2) 
by a (n + 1) × (n + 1)-matrix 

M = 

I 
M 0 

The equa t ion  o f  p rogram (2) then  has the form 

0 = M C e + M C u  M A _ _ v + M s - M t  (3) 

and M C'e >~ O, since this is the way M is chosen in the s implex me thod .  
I f  it is an a i E A tha t  is to be added,  we simply add  Malt) q , where  v is 
the new e lement  in v, to the equat ion.  F r o m  the choice o f a i ,  to be ages - 
cribed later, it fol lows that  v can be made  basic and we get a n e w  gmin" 

I f  it is a c! tha t  is to be addeqd, we first no te  tha t  we can add ~c], ~ > O, 

instead o f  cj. If  Uq stands for the new e lement  in u, (3) becomes  

0 = M C e  + ~ M c / +  M O I  + c~M@.llq - - / I I A  v + Ms - Mt.  

For  this to be a primal feasible simplex tableau we must  have 

M Ce + c~Mc/>_ 0 .  (4) 

We have three cases: 

Case A.  The  inequal i ty  (4) can be satisfied if ~ > ' 0  is suff ic ient ly  small. 
Choose in this case preferably  such an ~ that  (4) is an equal i ty  in a row 
cor responding  to an s k or t k still in the basis. 

Case B. The inequal i ty  (4) is only  violated in rows cor responding  to s k 

or  t k in the basis. Exchange  in this case these s k with the t k and vice 
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versa and choose ~ as in case A. (The expression for g must  be altered 
in connect ion  with such a change!) 

Case C. If  nei ther  case A nor B is applicable, add uc/ anyhow.  First 
make the variables in the rows of  (4) that  become negative, nonbasic 
and the corresponding s k or tlc basic (cf. the dual simplex method) .  
Then change signs in these rows as in case B. For  the practical calcula- 
tions, we suggest " the  inverse matr ix m e t h o d "  (also called the revised 
simplex method) .  In this me thod  only the matr ix  M is c o mp u t e d  at 
each pivot and the mult ipl icat ions MC and MA are no t  performed.  Let  
z T be the last row (except  the last e lement)  corresponding to the objec- 
tive func t ion  in the M-matrix solving the present LP problem. Then  the 
simplex criterion saysz T C>= 0 and zTA <~ 0 meaning t h a t z  c C* c~ ( - A ) * .  
To find a n  a i o r  cj t o  add to 4 or_C if grain > 0, compute  

h = m a x  I m a x - - z T c i ,  m a x  zTai] 
c/C C ai~A 

(This compu ta t i on  can of  course be a great numerical  problem.)  Again, 
we have three cases: 

(a) If  h < 0, z is strictly inside bo th  C* and ( - A ) *  so x ° is no t  efficient. 
(b) If  h = 0, z ~ C* c~ ( - A ) * ,  bu t  no t  strictly. In general, x ° is no t  effi- 
cient in this case either, except  in the part icular  s i tuat ion when  z T c / =  0 
for all c~ (i.e. z ~ C* c~ ( -C)* ) .  In the lat ter  s i tuation,  a special investi- 
gation must  be under taken  to decide whether  x ° +/3z is, or is not ,  in B 
for any/3 ~ 0. 
(c) If  h > 0, we add an a i or cj for which h is a t ta ined to A or C. 

Take a c/ (and not  an  ai) in the first step so that  the constants  Ce are 
not  all zero. 

Numerical example 2. To decide if x ° = origin is eff icient  in (B, C*), 
where B a t x  ° is described by aTx <= 0, a T = (1, 1, 2) and C* is the cone 
X 3 ~ X/(X21 + X22). This cone is the intersect ion of  the infinite n u mb e r  o f  
halfspaces described by 

C: -= 

sin 
COS ~ , 

1 
0 < = ~ <  2r r .  

To start, take for instance ¢ = 0 so tha t  c T = (0, 1, 1). Since all e lements  
~0 
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in c_ are nonnegat ive  the t i (i = l, 2, 3) cons t i tu tes  a primal feasible so- 
. ~ 0  

l u h o n  and the cor responding  M-matr ix  is 

f 
l I 

1 I 
I 

1 F 
- -  F---- 

1 1 1 i1 

In the first step, no pivots are needed  for  the simplex cr i ter ion to be 
satisfied and g m i n  is always positive. To  choose the new e lement  to be 
added,  we consider  

max  zT% = max (--sin ~ - -  cos ~ - -  1) 

max Zo T a = 4 .  

Irrespective o f  the value of  ~0, the la t ter  m a x i m u m  is greater,  so we add 
a T -- (1, 1, 2). Af te r  two pivots the simplex cr i ter ion is satisfied and we 

have groin = 1 > 0, thus more  e lements  mus t  be added.  Now,  we have 
z T = ( - 1 ,  1, 0), so we consider  max  - zTc® = max (sin ~ - -  c o s ~ )  The  

1 1 r 2 " 
m a x i m u m  is a t ta ined for  ~o 1 = 3rr/4 and c_ = (2 -1/ , - 2  --1/2, 1). We get 

• " " - 0 + - 1  ~ 1  (4) sahsfied by  choosing a -  (x /~  1) , then add ac~,. After  one pivot,  
we have groin = 0 . 4 1 7  and z2T = ( - - 1 , - - 0 . 1 6 6 , 0 . 5 8 ) ) .  We find max 

T T z2c_ at ta ined for  ~2 = 1.40 a n d c _  = ( 0 . 9 9 , 0 . 1 6 ,  1). The  n ex t  gmi n = 
, ,  ~ 2  

0 meaning that  x U (= origin) is eff icient .  

Problem II. To find an eff ic ient  po in t  in B. 

Method ILl. Apply  theo rem 2, tha t  is take any X />  0 (1 < _ / <  m) and 
solve max wTx. 

x ~ B  

Method II.2. This m e t h o d  relies on theo rem 3 (which includes theorem 
2). The  X/ > 0 are no t  f ixed in advance as in the fo rmer  m e t h o d  bu t  are 
chosen by the algori thm. We use a simplex tableau which includes all 
the equa t ions  defining B and all the object ive funct ions .  
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Y l  = 

Y2 = 

yq = 

1 X 1 X 2 . . . X r 

bl  

b2 
A 

bq 

')/10 

f, 

(The  Yi >= 0 represent  the basic variables and the x i ~ 0 the nonbas ic  
variables in the present  t r ans fo rmat ion  o f  the program.)  T h e  above 
tableau will be re fer red  to as the "main  tableau" .  
In an ord inary  LP prob lem with only  one  ( t r ans fo rmed)  object ive  func- 
t ion F = "to + " t t x l  + ... + %Xr,  the cr i ter ion for  op t imal i ty  (assuming 
feasibili ty) says: x I = x 2 = ... = x r = 0 is an opt imal  solut ion if  and only  
if "/l ~ 0, T2 ~ 0, ..., "Yr ~ 0. Our  cr i ter ion is (cf. t heo rem 3): x 1 = x 2 = 
... = x r = 0 is an eff ic ient  point  if and only  if  there exists a vec to r  X T = 

(Xl ,  "", ~'m ) with all Xj > 0 (describing the separat ing h y p e rp l an e  w in 
the remark  fol lowing theorem 2) such that  

X Tp<__0 (or  P TX<_-0) .  (5) 

To  find such a posit ive x satisfying (5) is an LP p rob lem of  the same 
kind as p rob lem I. To  solve it, we in t roduce  slack variables tlc >_ 0 
(1 <_- k <__ r) to take care o f  the inequali t ies in (5) and pu t  X / -  1 = uj 
(1 <= / <_- m) whereby  we obta in  

0 = FTe  + PTu  + t .  (5 ' )  

Since we already have t, we only  have to  in t roduce  a vec to r  s to  get a 
phase ! LP prob lem:  

u ~ 0 ,  t > = 0 ,  s > = 0 ,  

0 = PTe  + PTu  + t -  s (6) 

minimize g = eWs.  
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I f  groin = O, we have Xj = uj + 1 > O, and the present main tableau cor- 
responds to an efficient point. If groin > O, some s k are still in the basis, 
namely those for which the criterion (5) is not satisfied. Then make an 
x k corresponding to an s k > 0 (e.g. the largest s k )  basic in the main 
tableau, and continue this process. Our suggestion to pivot on the x k 
corresponding to the largest s k is derived from a simple calculation 
showing that a pivot on x k increases the function (% Xici)Tx by s k "Ax k , 

where A x  k is the increase o f x  k in the pivot. Since all the X; are positive 
(but change from pivot to pivot), also the function ( E c j ) ~ x  will hope- 
fully but not certainly, increase. Such an increase of a fixed linear func- 
tion is the guarantee against cycling in LP and in method If. 1. Here, the 
suggested pivot rule is intended to decrease the risk of cycling which 
may occur in this method. 

N u m e r i c a l  e x a m p l e  3. Find an efficient point in the problem: 

B={(Xl,X2)'O<=Xl <~5, 0 ~ x 2 ~ 7 ,  x l  + x 2  ~ 10}  

= 2 X  l - - X  2 6 = - x  1 + 2 X  2 . 

Introduce nonnegative slack variables x 3 ,  x 4 and xs,  so that the follow- 
ing primal feasible tableau is obtained 

1 X 1 X 2 

X 3 = 

X 4 = 

X 5 = 

f l  = 

4 =  

10 

5 

7 

-1  -1  

- I  

- 1  

2 -1  

-1  2 

I s  x 1 = x 2 = 0 an efficient point? According to method II.2, we shall 
consider 

O 
0 = 

g = 

1 U 1 U 2 t 1 t 2 S 1 S 2 

T 
i 1 2 -1  1 -1  
i 

I 1 - 1  2 1 - 1  
L_ 

1 1 



A l g o r i t h m s  f o r  the vec to r  m a x i m i z a t i o n  p r o b l e m  

A pr imal  feasible so lu t i on  to  this  s u b p r o b l e m  is 

1 u I u 2 t 1 t 2 

S 1 = 

S 2 = 

g = 

1 2 - 1  1 

--1 2 1 

1 1 1 1 

2 2 1  

T h e  s implex  c r i t e r ion  is sat isf ied and  we  have g m i n  = 2 > 0, so X 1 = X 2 = 

0 is n o t  an e f f i c i en t  po in t .  T he  var iables  s 1 and  s 2 are equal  and  posi t ive ,  

so e i the r  x 1 o r x  2 can  be m a d e  basic,  C h o o s e  x 1 ! T h e  n e w  m a i n  t ab leau  

is 

1 X 4 X 2 

x 3 =  

x 1 

X 5 = 

f l  = 

6 = 

7 

10 

-5  

1 - 1  

--1 

1 

- 2  - 1  

1 2 

Is x 4 = X 2 = 0 e f f i c ien t?  O u r  s u b p r o b l e m  is 

1 b/1 112 t l  t2 S1 $2 I-/ 0 = - 1  - 2  1 1 - 1  

0 = 1 - 1  2 1 - 1  

g =  1 1 

A pr imal  feasible s o l u t i o n  o f  this  s u b p r o b l e m  is 
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t 1 = 

S 2 = 

g = 

1 U 1 U 2 t 2 S 1 

1 2 -1  1 

-1  2 1 

1 2 1 1 

After one simplex iteration, we get 

t 1 = 

/11 = 

g = 

1 //2 ~2 S1 $2 

3 3 2 1 - 2  
I 
f 

-- i  2 1 -1  

1 1 

(7) 

N O W  g m i n  = 0, SO the main tableau corresponds to an efficient point, 
namely x 1 = 5, x 2 = O. 

R e m a r k  1. In the description of method II.2, we started with a primal 
feasible solution of the main problem. If one has to find such a solution, 
an ordinary application of phase I of the simplex method is the usual 
method. This means that one starts with a problem of the form 

b = A x + y  

minimize h = e T y  . 

The goal is to make all the Yi nonbasic. In each pivot, one usually 
chooses that x~ to be made basic which has the greatest coefficient in h. 
We suggest that one already in this phase of  the problem also considers 
the subproblem (5) and confines, if possible, ones choise of  the x/c to 
those which have s~ > 0 in the subproblem. 

R e m a r k  2. Although method II.2 seems to require more computations 
than II. 1, we do not think that this actually is the case in general. The 
reason for this is the hope that the number of pivots needed to find an 
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efficient point (method II.2) is smaller than the number needed to find 
the  efficient point which is predetermined by the choice of the X/ in 
method II. 1. 

P r o b l e m  I lL To decide if a given efficient point is the only one that 
exists, and if not, find other ones. 
As the formulation of the problem indicates, there may be several 
points in the solution set of a VM problem. It is natural to think that 
the action to be taken on the basis of the analysis of the problem re- 
quires that a single point (combination of activities) be chosen from 
the solution set. If  there are only a few choices, they can be listed by a 
computer. If there are many choices, they can be made in a "manager- 
machine" on-line system (method III) or formulated as a type IV prob- 
lem. 

M e t h o d  IlL (Can only be used when the number of objective functions 
and the number of  inequalities describing B are finite.) We use the same 
kind of tableau as in method II.2. Suppose this tableau corresponds to 
an efficient point. The subproblem (6) then has a solution with groin = 0, 

i.e. s k = 0 for all k. The variables t k have the values of the simplex coef- 
ficients for the objective function f =  E XjcTx .  According to the theory 
of the simplex method, x ° is a unique solution of max f if and only if 

x ~ B  

all t k < 0. If some t k = 0, the corresponding x k can be made basic in 
the main problem and another efficient point y0 is obtained for which 
f ( x  o)  = f ( yO) .  Every convex combination of x ° and y0 is also efficient. 
Yet, we have only described a situation when another efficient point 
can easily be found, but not  solved problem III. To prove that x ° is the 
only efficient point, we must show that we cannot get any t k = 0 for 
any other choice of the X/>  0. Since the s k are not basic, and will not 
be basic, at an efficient point, we just skip them in (6). For each k, we 
then solve 

u > = 0 ,  t>=O,  

0 = FTe + FTu + t 

minimize t k . 
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If (t k)min > 0 for all k, x ° is the only efficient point. If (t k)min = 0 for 
some k, the corresponding x k can be made basic in the main problem 
and another efficient point is obtained. Note that one can determine 
whether a positive t k can be decreased or not, just by checking the signs 
of the entries in the row representing it. 

Numerical example 4. (Continuation of example 3.) 
In (7), t 2 = 0, so the obtained efficient point is not the only one. An- 
other is obtained if the variable corresponding to t2, that is x 2, is made 
basic in the main tableau. 

Problem IV. maximize GTx , 
x C E  

where G is a given vector and E is the set of  efficient points in a VM 
problem (B, C*). 

Method IV.I.  This method can only be used when G can be written: 

m 

G :  ~ X/Q, X / > 0  f o r a l l j ,  @ ~ C .  
/=1 

(8) 

Then, by theorem 2, the restriction x ~ E can be replaced by x e B and 
we have an ordinary LP problem. To find out if there exist such Xj > 0, 
use method I. 1 or 1.2 to see if there exist Atj >= 1 (0 ~ j <__ m) satisfying 

/77 

-AtoG+ Atjq= O. 
i=l 

If no such At/ exist, method IV. 1 cannot be used. If the number of  c / in  
C is infinite and if we find an expression (8) with a finite number of c/ 
by method 1.2 (this being of course all we can find), then the "cone"  
GTx >= 0 contains the cone C*, but not strictly. If, in such a case, the 
solution of the LP problem max GWx has a unique solution x ° , by theo- 

x ~ B  

rem 1, x ° is efficient and solves problem IV. If  the solution point x ° is 
not unique, then although it gives the correct maximum value of  prob- 
lem IV, it is not necessarily efficient. 
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M e t h o d  IV. 2. This method relies on the methods II and llI, so the num- 
ber of a i and c/ must be finite. The difficulty in problem IV, when 
method IV. 1 cannot be used is that we have to maximize G V x  over a 
set that is not convex in general. The present method is a cutting-plane 
method that masters this difficulty. 
Add the G-row at the bot tom of the simplex tableau with all the.~. (cf. 
the beginning of  method I1.2). Transform this tableau by method 11.2 
so that an efficient point is obtained. If  in the process of finding an effi- 
cient point there are alternative pivot choices, make that x k basic which 
has the greatest coefficient in the G-row (rather than the one with the 
greatest s k > 0). When an efficient point is reached, all subsequent itera- 
tions shall be done so that they give efficient points. The aim of these 
subsequent iterations is to increase GTx. If we can get the simplex cri- 
terion for G T x  satisfied by doing steps to efficient points (method lII), 
we obtain the solution. If we reach a point x 0 with GTxo  = G o where 
the simplex criterion for G T x  is not satisfied, and where every step by 
method III decreases GTx, w e  add the restriction (cutting plane) GTx >~ 
G o which only removes uninteresting (efficient) points. Thus, we add 
the equation 

X s = - -  G O + G T x  , (X s>= 0 ) ,  

to the tableau. This makes the system degenerate and we can continue 
by making x s nonbasic. If no new efficient points can be reached in this 
w a y ,  GTxo = G O is the solution. If we find new efficient points that 
make G T x  > Go, x s is basic again and does not come into the calcula- 
tions any more so the Xs-rOw can be taken away. 
Some fictitious efficient points may enter together with the extra equa- 
tion. These are easily recognized however, since they all lie in the cut- 
ting plane. Because the set of efficient points on a polyhedron is simply 
connected (see e.g. Gerstenhaber in [6] ), the described method will lead 
to the solution 

Numer ica l  e xamp l e  5, (fig. 3) 
× 

G C 

×1 

Fig. 3. 
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Let B be the square defined by 0 <_- x~ <= 1, 0 <_- N 2 ~ 1. Let 

C=  
- 1  2 

- 2  1 
and G = 

- 1  

2 

By introducing slack variables x 3 and x 4 and put t ing GXx  = F,  we get a 
primal feasible main tableau 

] x 1 X 2 

x 3 =  ~ 1 (  - 1  

x 4 = ~ --1 

fa = , - 1  - 2  

J ' 2=  L ~  2 1 

F = l i - 1  2 

This tableau corresponds to the point  a(x  l = x 2 = 0 )  in fig. 3 and our 
first subproblem is to decide if this is an efficient point,  and if not  to 
find one. We consider the subproblem (method  II.2) 

O ~ 

O= 

g = 

l U 1 

- - 1 ~  - 1 

- 1  I - 2  

H2 l l  /'2 S1 $2 

2 

1 

- 1  

1 - 1  

1 1 

i 

A primal feasible solution of the subproblem is 

S 1 = 

t 2 = 

g = 

1 U 1 U 2 t 1 S 2 

- 1  1 1 

2 - 1  1 

- 1  2 1 1 
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A f t e r  o n e  s i m p l e x  i t e r a t i o n ,  w e  g e t  

b / l =  

/'2 = 

g = 

1 U 2 t 1 x 1 S 2 

2 1 - 1  

3 3 2 - 2  1 

1 1 

Since  gmin = 0, t h e  p o i n t  a is e f f i c i e n t .  T h e  v a r i a b l e  t 1 is z e r o  in  t he  so- 

l u t i o n  so an  i n c r e a s e  o f  x I w o u l d  give a n e w  e f f i c i e n t  p o i n t .  S i n c e  

s u c h  an  i n c r e a s e  w o u l d  d e c r e a s e  G T x ,  i t  is n o t  i n t e r e s t i n g .  W e  s h o u l d  

r a t h e r  l i ke  t o  i n c r e a s e  x 2 ,  so w e  use  m e t h o d  I I I  t o  i n v e s t i g a t e  i f  t 2 can  

be  d e c r e a s e d  to  ze ro .  T h u s ,  w e  p u t  s 1 = s 2 = 0 in t h e  s u b p r o b l e m  a n d  

c o n s i d e r :  

m i n i m i z e  t 2 = 3 + 3 u  2 + 2 t  1 . 

S i n c e  b o t h  c o e f f i c i e n t s  a re  p o s i t i v e ,  w e  are  a t  a d e a d  end !  W e  a d d  t h e  

c o n d i t i o n  GT x >= G o , t h a t  is w e  a d d  

x 5 ( = G T x ) = - - x  1 + 2 x  2 , x 5 >= 0 

t o  t h e  m a i n  t a b l e a u  a n d  m a k e  x 2 b a s i c  a n d  x 5 n o n b a s i c .  We  ge t  

1 x 1 x 5 

X 3 = 

X 4 = 

X 2 = 

f 2  = 

F = 

1 - 1  

1 -1 /4  -1 /2  

1/2 1/2 

- 2  - 1  

5/2 1/2 

1 

X 
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We are still in the poin t  a in the diagram bu t  we get a new subproblem,  

which after  one pivot has the form 

l 112 tl S1 $2 

t2 = 3/4 3/4 1/2 - 1 / 2  1 

g = 1 1 

This shows that  a(x I = x 2 = 0) is an efficient  point  as we knew before. 

We have still t 1 = 0 so we can increase x 1 and consider:  

minimize t 2 = (3/4)  + (3 /4 )u  2 + ( 1 / 2 ) t  1 . 

Since t 2 is positive and canno t  be decreased, x 5 canno t  be increased. 

Now, however ,  the increase o f  x 1 which is possible does no t  decrease 

GXx, so we make  x l basic and reach poin t  b in the diagram. F r o m  there 

we can cont inue  to the solut ion which is po in t  c. 
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