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We consider a convex set B in R™ described as the intersection of halfspaces aiTx < b;

(i € ) and a set of linear objective functions f; = e Tx (7 €J). The index sets I and J are allowed
to be infinite in one of the algorithms. We give the definition of the efficient points of B (also
called functionally efficient or Pareto optimal points) and present the mathematical theory
which is needed in the algorithms. In the last section of the paper, we present algorithms that
solve the following problems:
I. To decide if a given point in B is efficient.
il. To find an efficient pointin B.
1I1. To decide if a given efficient point is the only one that exists, and if not, find other ones.
IV. The solutions of the above problems do not depend on the absolute magnitudes of the c;.

They only describe the relative importance of the different activities x;. Therefore we also

consider

max Glx
x efficient

for some vector G.

1. Introduction

We shall consider the vector maximization (VM) problem in R".
Thus, we have, as in linear programming (LP), a convex constraint set
B of activities x;, ..., x,, (forming a vector x). We also have a set of n-
vectors ¢; defining linear objective functions f; = c]-Tx. The optimality in
LP is replaced by efficiency:

* This paper was presented at the 7th Mathematical Programming Symposium 1970, The
Hague, The Netherlands.
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Definition la. A point x € B is efficient if and only if there exists no
other point y € B such that
T

Gy c]-Tx for all

c]-Ty > chx for at least onej .

In general, a VM problem has a solution set containing several points.

As to the use and interpretation of vector maximization, we refer to

references [3], [4] and [6].

We shall consider the following problems:

l. To decide if a given point in B is efficient.

1I. To find an efficient point in B.

II1. To decide if a given efficient point is the only one that exists, and if
it is not, find other ones.

IV. The solutions of the above problems do not depend on the absolute
magnitudes of the ¢;. They only describe the relative importance of
the different activities x1, ..., x,,. Therefore, we also consider

max Glx
x efficient

for some vector G.
In [2], Bod gives an algorithm that solves problem I for a polyhedral
set B. Our method I.1 does the same thing in a different way and meth-
od 1.2 solves probeim I even for a general (nonpolyhedral) set B. The
duality theory of VM (see below) immediately gives a method to solve
problem II. We describe it briefly as method II.1. The same method is
also in the papers by Benayoun and Tergny [1] and Bod [2]. We give
also a more elaborate method (II.2) which hopefully requires less com-
putation then method II.1, and upon which we can base a method to
solve problem III. Problem IV seems not to have been considered before.
Alternative ways of treating a VM problem, other than by solving any
of the four problems that we have listed, are described by Benayoun
and Tergny [1]. The mathematical theory, in particular the duality
theory, of VM is described already by Kuhn and Tucker in their funda-
mental paper on nonlinear programming [7]. Roughly speaking, Kuhn
and Tucker show that a given point in the constraint set is efficient if
and only if its dual vector p, which can be interpreted as a price vector,
is positive. Since LP algorithms are adapted to nonstrict inequalities,
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they cannot be used directly to find this strictly positive p. In the corol-
lary of theorem 3 we make a simple observation which produces the
missing link and makes it possible to establish the existence or nonex-
istence of a positive p by phase I of the simplex method. We have
collected the theory needed for our algorithms in the next section. Ex-
cept, possibly, for the corollary we have just mentioned, it is certainly
not new. The algorithms have not been tested on large problems.

2. Mathematical preliminaries

A useful concept for the description of duality is that of the polar
set:

Definition 2. The polar set of aset A € R" is
A*={u:ueR", uTa> 0 forall a€ A} .

A polar set is always a closed convex cone. If C is the set of all the ¢;
defining the objective functions, C* is the cone of “good directions’ in
the VM problem. The formulation of efficiency in terms of polar sets is

Definition 1b. A point x € B is efficient if and only if y € B and
y=x¢& C* impliesx—y € C*.

We write cone (4) for the convex cone with vertex at the origin that is
generated by a set A, and denote (topological) closure by superbar. The
well-known Farkas lemma then reads

Proposition 1. If A is nonempty,
A** = cone (4) ,

(where A** is the polar of the polar of A). If 4 is a finite set, the clo-
sure bar is superfluous.

In.the following theorem we deal with different sets of objective func-
tions. We denote a VM problem with constraint set B and objective
function set C by (B, C*). The translation of a set A by a vector z is
denoted 4,.



210 Johan Philip

Theorem 1. Let P and Q be two closed convex cones with vertices at
the origin in R". If x is efficient in (B, P), P, N B = {x} and Q C P, the
x is efficient in (B, Q).

Proof: Q C P implies Q, C P, which implies O, n B C P, N B ={x}.
This means that the only y satisfying the conditions in definition 1b is
y=x,80x—y € Q.

Remark. This theorem can be used to establish the efficiency of x in
(B, C*) by finding a subset D of C such that x is efficient in (B, D*).

Corollary. A point xY that is a unique solution of the LP problem

max c].Tx ,

xEB

where ¢!'x is any of the objective functions in the VM problem, is effi-

] 7
clent.

Remark. This corollary also follows directly from definition 1a.
We shall present the duality theory of VM in the following two theorems.

Theorem 2. Let C = {cj}}’_fl so that C* is a polyhedral cone and let

m

w= E )\jc]- with all )\]->0.
i=1 |

A point x0 that solves the LP problem

max WTX

xE€EB

is efficient.

Proof: Suppose that x® is not efficient. Then, by definition 1a, there
exists a y € B such that

c].T >cTx0  forallj

> c¢fx%  for at least one; .
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By multiplying inequality j by 7\]- > 0 and adding we get
m m
wly= 2 7\jc]~Ty > 2 hjcfxo =wlx0
j=1 i=1

which contradicts the maximality of x° and thus proves the theorem.

T

Remark. The hyperplane wTx = wTx? (= constant) separates B and

(C*) o

Proof: By the construction, we have wlx < wTx? for x € B and since
w € cone(C) =C**, we have wl (x—x%) 2 0 for x—x% € C*.

Theorem 3. Let B be a polyhedron and xY a point on its boundary. Let
alx<b, (1<i<p)

be the inequalities in the description of B that are tight at x°. (The ine-
qualities of the form —x, < 0, which are tight, are also included.) Let
A={a;}2, and C={c;}};. Then, x9 is efficient if and only if there exist
kK;20(1<i<p)and \;> 0 (1 <j< m)such that

p m
EK,‘ai: E 7\]'01' =w). (D
i=1 j=1

Proof: To simplify the notations assume that x? is the origin (note that
this implies b; = 0, i = 1, ..., p). If there exist k; 2 0 satisfying (1), we
have w € cone(4)=A**, sowlx € 0 for x € (—A4)* D B. Thus, the “if-
part of the theorem follows from theorem 2, and we can proceed to the
“only if”’-part. Since B is a polyhedron, there exists a § > 0 to every
¥y € (—A)* such that 8y € B. This means that B = (—A4)* in an open
neighbourhood of x0 (= origin), so by definition 1b, x° is efficient only
if iy <0 forall k (1 < k< m)and all y € (—A4)* N C*. This can be
written

—¢; €((A)* N CH)* = ((=4)u O)** = cone((—A4) U O) .
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Thus, there exist y;; = 0 and vy; 2 0 such that

m p
= 20 e — Lvga; (1S k<m).
j=1 i=1

Adding these m equations, we get

P m
E K;a; = E 7\]-c]- =w),
i=1 j=1
where
m m
Ki= 20 120 and N =1+ 2y >0,
k=1 k=1

Remark. 1f B is not a polyhedron, x0 can be efficient without —c¢; €

((=4) U O)**, since there may exist a v in (—~4)* N C* for which there
isno § > O such that 5y € B N C*. Let e.g.

B={(x;,xy): (x; + D +x3 < 1},
el =(1,00 and ¢i=(0, 1.

Then the origin is efficient and the hyperplane supporting B there is
unique with w = 1-¢; +0-c, (fig. 1).

Cf. Kuhn and Tucker [7], who introduce the concept of proper effi-
ciency to be able to state a corresponding theorem for nonpolyhedral
sets B. See also Geoffrion [5], who introduces another kind of effi-
ciency to deal with the same kind of problem. Our algorithms give effi-
cient points which are proper in both these senses.

N

Fig. 1.

—== C4
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Corollary. Let B and C be as in theorem 3 and let a; > 0(1<;<m)be
m given positive numbers. Then, x° is an efficient point if and only if
there exist k, 20 (12i<p) and ;2 o; (1 <7< m) such that (1)
holds.

Proof: The conditions in the theorem and the corollary are equivalent
since (1) is a homogeneous expression.

3. Algorithms

We describe points as column-vectors and let C denote the (n X m)-
matrix of the ¢; and 4 the (n X p)-matrix of the a;. We let e stand for a
one-column matrix of suitable length with all elements equal to 1.
Let b and ¢ be two vectors, M a matrix, and c, a constant. We exhibit
the simplex program

y=b+Mx, x=20, 20,
minimize z = ¢ +clx,

with the vector y of basic variables and the vector x of nonbasic vari-
ables in the tableau

1 X, X, ... X,
Y1 =
Y, =

b M
Yo =
z = ¢ et

A tableau of this kind with the y,’s replaced by zeros, denotes a pro-
gram where a basis has not yet been found.
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Problem I. To decide if a given point x© in B is efficient.

Method I.1. (This method can only be used when C* is polyhedral.)
We apply the corollary of theorem 3 with a; =1 (1<j<m). Put

N =N l=u (1<7<m),

so that we have to find ;2 0 (1 << m) and k; 2 0 (1 £ i< p) satis-
fying (1). We put k; = v; (to get rid of greek letters). Formula (1) beco-
mes

Av= Cu + Ce . (1"
To decide if there exist vectors u = 0 and v = 0 satisfying (1'), we use
phase 1 of the simplex method. Thus, we add vectors s =2 0 and r = 0
and solve
0=Ce+Cu—Av+s—t
(2)
minimize g = els + 2lt.

The point x¥ is efficient if and only if g,;, 20 .

Numerical example 1 (fig. 2)

1 2 0
A= C=
1 1 1
Ca c¥ [N
x0
B
~a,

Fig. 2.
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0= 1] 2 |2 ~1 1 -1 T
o=, 2 1 1 -1 1 -1

|
g= 11 1 1 ‘

A primal feasible solution is

Lowuy uy vy sy 5
H=1 212 -1 1
L=1211 1 -l 1
g= 4,3 1 2 2 2

We have reached g = 0 so x? is efficient.

Method 1.2. (This method can be used even when there are infinitely
many a; and ¢ .) The ideas in the methods 1.1 and 1.2 are the same.
Here, however we try to establish the efficiency of x° by using finite
subsets of C={c;} and A ={a;}. If we can find subsets Cy C C and
Ag C A such that C§ and A§ have no point y # 0 in common, the sets
C* C C§ and A* C A certainly have no such y in common and x0 is
efficient. (Cf. theorem 1 and the remark following it.) We construct the

sets 4, and C, step by step by adding one element, i.e. an a; or ¢jy in
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each step until we get (1) satisfied or find that x% is not efficient.
First, we describe the calculations involved in adding an element and
describe the choice of the element later. Thus, suppose we have subsets
A and C and the corresponding g,;, > 0. We describe the simplex itera-
tions that already have been done as a premultiplication of program (2)
by a(n+1)X (n+ 1)-matrix

The equation of program (2) then has the form
0=MCe+MCu — MAv +Ms — Mt (3)

and MCe > 0, since this is the way M is chosen in the simplex method.
If it is an a; € A that is to be added, we simply add Mav, , where v is
the new element in v, to the equation. From the choice of g;, to be cfes—
cribed later, it follows that v_ can be made basic and we get a new g ...
If it is a ¢ that is to be added, we first note that we can add ac;, @ > 0,
instead of Cp If U, stands for the new element in u, (3) becomes

0=MCe + aMC]. +MCu + onc].uq —MAv+Ms — Mzt
For this to be a primal feasible simplex tableau we must have
MCe +aMe; > 0. (4)

We have three cases:

Case A. The inequality (4) can be satisfied if o >0 is sufficiently small.
Choose in this case preferably such an « that (4) is an equality in a row
corresponding to an s, or f; still in the basis.

Case B. The inequality (4) is only violated in rows corresponding to s,
or t; in the basis. Exchange in this case these s, with the £, and vice
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versa and choose a as in case A. (The expression for g must be altered
in connection with such a change!)

Case C. If neither case A nor B is applicable, add ac; anyhow. First
make the variables in the rows of (4) that become negative, nonbasic
and the corresponding s, or f; basic (cf. the dual simplex method).
Then change signs in these rows as in case B. For the practical calcula-
tions, we suggest “‘the inverse matrix method” (also called the revised
simplex method). In this method only the matrix M is computed at
each pivot and the multiplications MC and MA are not performed. Let
T pe the last row (except the last element) corresponding to the objec-
tive function in the M-matrix solving the present LP problem. Then the
simplex criterion saysz! €= 0andz' A < 0 meaning thatz € C* N (—A4)*.
To find an q; or ¢; to add toA or Cif g, ;, > 0, compute
h= max[ max — zch , max ZTal»]
cjeC a4

(This computation can of course be a great numerical problem.) Again,
we have three cases:

(a) If 7 < 0, z is strictly inside both C* and (—A)* so xY is not efficient.
(bYIf 7 =0, z € C* N (—A)*, but not strictly. In general, x° is not effi-
cient in this case either, except in the particular situation when z* =0
for all ¢ (i.e. z € C* N (=O)Y*). In the latter 31tuat10n a special investi-
gation must be undertaken to decide whether x% + gz is, or is not, in B
for any 8 # 0.
(c) If 1 > 0, we add an g; or ¢; for which £ is attained to 4 or C.

Take a ¢; (and not an g;) in the first step so that the constants Ce are
not all zero.
Numerical example 2. To decide if x0 = origin is efficient in (B, C*),
where B at x° x"_is described by a'x<0,a" =(1, 1, 2) and C* is the cone
X3 2 \/(x1 +x3). This cone is the intersection of the infinite number of
halfspaces described by

sin ¢
¢, = ccl)s¢ , 0<y¢p<2m.

To start, take for instance ¢ = 0 so that CEO = (0, 1, 1). Since all elements
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inc, are nonnegative the ¢; (i = 1, 2, 3) constitutes a primal feasible so-
lution and the corresponding M-matrix is

1 L
— 1 |
My = 1|
|
o 4
11 11
2

In the first step, no pivots are needed for the simplex criterion to be
satisfied and g,;, is always positive. To choose the new element to be
added, we consider

T _ .
maxfzoc‘p—max((31nxp~cos<p~ 1

max zga=4.

Irrespective of the value of ¢, the latter maximum is greater, so we add
al = (1, 1, 2). After two pivots the simplex criterion is satisfied and we
have g.,;, = I > 0, thus more elements must be added. Now, we have
z? = (-1, 1, 0), so we consider max — z{c = max (sin ¢ — cos ¢). The
maximum is attained for ¢; = 37/4 and Cop = (2712 _2-12 1) We get
(4) satisfied by choosing a = (/2 + ™!, then add ac,. . After one pivot,
we have g .. =0.417 and zg =(-1, -0.166, O.58§). We find max
—zgcw attained for ¢, = 1.40 and cg =(0.99,0.16, 1). The next gip =
0 meaning that xY (= origin) is efficient.

Problem II. To find an efficient point in B.

Method II.1. Apply theorem 2, that is take any )\j >0(1<;7<m)and

solve max w’ x.

xeB

Method II.2. This method relies on theorem 3 (which includes theorem
2). The A; > O are not fixed in advance as in the former method but are
chosen by the algorithm. We use a simplex tableau which includes all
the equations defining B and all the objective functions.
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1 X, X, X,
Y1 = blT ]
Yo =l by {
A \
. \
\
Vg =] by }
.
h = 710\ :
| r |
I =1 Ymo |
m mOJ

(The y; 2 0 represent the basic variables and the x; 2 0 the nonbasic
variables in the present transformation of the program.) The above
tableau will be referred to as the “main tableau”.

In an ordinary LP problem with only one (transformed) objective func-
tion F' = vy, +vy,x +..+t7,.x,, the criterion for optimality (assuming
feasibility) says: x; =x, =...=x, = 0 is an optimal solution if and only
if v, £0,7, £0,...,7, £ 0. Our criterion is (cf. theorem 3): x| =x, =
..=x, =0 is an efficient point if and only if there exists a vector \T =
(Aq, ..o Ay,) with all )\j > 0 (describing the separating hyperplane w in
the remark following theorem 2) such that

N0 (or TTA<0). (5

To find such a positive A satisfying (5) is an LP problem of the same
kind as problem I. To solve it, we introduce slack variables ¢; = 0
(1 £ k<7) to take care of the inequalities in (5) and put 7\j — 1= U
(1 €< m) whereby we obtain

0=TTe+TTy+r¢. (5"

Since we already have ¢, we only have to introduce a vector s to get a
phase [ LP problem:

uz0, 20, 520,
0=TTe+TTu+r-5 (6)

minimize g = els .
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If gmin = 0, we have N, =u; + 1> 0, and the present main tableau cor-
responds to an efficient point. If g .. > 0, some s, are still in the basis,
namely those for which the criterion (5) is not satisfied. Then make an
Xy corresponding to an s; > 0 (e.g. the largest s;) basic in the main
tableau, and continue this process. Our suggestion to pivot on the x;
corresponding to the largest s, is derived from a simple calculation
showing that a pivot on x increases the function (Z ?\]-Cj)Tx by s "Axy
where Ax, is the increase of x; in the pivot. Since all the A, are positive
(but change from pivot to pivot), also the function (Zc]-){x will hope-
fully but not certainly, increase. Such an increase of a fixed linear func-
tion is the guarantee against cycling in LP and in method 11.1. Here, the
suggested pivot rule is intended to decrease the risk of cycling which
may occur in this method.

Numerical example 3. Find an efficient point in the problem:
B={(x],x,):0<x; <5, 0Sx, <7, x; +x, <10}
f1=2x —x, fr=—x; +2x,.

Introduce nonnegative slack variables x5, x4 and x5, so that the follow-
ing primal feasible tableau is obtained

1 xy X,
Xy = 10J -1 -1
X4 = ] 51 1
Xg = 7] -1 |
f1 = > j 2 —1 K}
f= ~1 2

Is x; = x, = 0 an efficient point? According to method I1.2, we shall
consider

o o
([
— —
|
—_
I
b —
—
—
!
—
i
—_—




Algorithms for the vector maximization problem 221

A primal feasible solution to this subproblem is

1wy Uy t ty
51 = 1 2 —1 1
s, =1 1 -1 2 1
g =| 2 1 1 1 1

The simplex criterion is satisfied and we have g_;, =2> 0,s0 x| =x, =
0 is not an efficient point. The variables s; and s, are equal and positive,
so either x| or x, can be made basic. Choose x ! The new main tableau
is

| . Xy
x3=15 1 -1
xp=) 5 | ~1
xs = {7 —1
fi =110 | =2 -1
fr =13 1 2

Luy uy 1y S 8

0= -17-21 1 —1 l
0= -1 2 1 —l]
g- Lo

A primal feasible solution of this subproblem is
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I uy U, ty 54
=1 1 2 -1 1
s;=1 11 —1 2 1
-
g =1 1] -1 2 1 1

After one simplex iteration, we get

1 u, ESY s S5
=13 13 2 1 -2
up=1 12 1 -1 (7
g = 1 1

Now g, = 0, so the main tableau corresponds to an efficient point,
namely x; =5,x, =0.

Remark 1. In the description of method II.2, we started with a primal
feasible solution of the main problem. If one has to find such a solution,
an ordinary application of phase I of the simplex method is the usual
method. This means that one starts with a problem of the form

b=A4x +y

minimize A=ely .

The goal is to make all the y, nonbasic. In each pivot, one usually
chooses that x, to be made basic which has the greatest coefficient in 4.
We suggest that one already in this phase of the problem also considers
the subproblem (5) and confines, if possible, ones choise of the X to
those which have s; > 0 in the subproblem.

Remark 2. Although method II.2 seems to require more computations
than II.1, we do not think that this actually is the case in general. The
reason for this is the hope that the number of pivots needed to find an
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efficient point (method I1.2) is smaller than the number needed to find
the efficient point which is predetermined by the choice of the A; in
method II.1.

Problem 1II. To decide if a given efficient point is the only one that
exists, and if not, find other ones.

As the formulation of the problem indicates, there may be several
points in the solution set of a VM problem. It is natural to think that
the action to be taken on the basis of the analysis of the problem re-
quires that a single point (combination of activities) be chosen from
the solution set. If there are only a few choices, they can be listed by a
computer. If there are many choices, they can be made in a ‘‘manager-
machine” on-line system (method III) or formulated as a type IV prob-
lem.

Method III. (Can only be used when the number of objective functions
and the number of inequalities describing B are finite.) We use the same
kind of tableau as in method I1.2. Suppose this tableau corresponds to
an efficient point. The subproblem (6) then has a solution with g.;, = 0,
i.e. sp = 0 for all k. The variables 1, have the values of the simplex coef-
ficients for the objective function f= X )\jchx. According to the theory
of the simplex method, x° is a unique solution of max fif and only if
xeB
all £, < 0. If some #;, = 0, the corresponding x; can be made basic in
the main problem and another efficient point y? is obtained for which
f(x%) = f(»0). Every convex combination of x® and y9 is also efficient.
Yet, we have only described a situation when another efficient point
can easily be found, but not solved problem III. To prove that x9 is the
only efficient point, we must show that we cannot get any £, = 0 for
any other choice of the ?\j > 0. Since the s; are not basic, and will not
be basic, at an efficient point, we just skip them in (6). For each k, we
then solve

0=TTe+TTy +¢

minimize #; .
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If (£ )pin > O for all &, xY is the only efficient point. If (!4 )min = O for
some k, the corresponding x; can be made basic in the main problem
and another efficient point is obtained. Note that one can determine
whether a positive #; can be decreased or not, just by checking the signs
of the entries in the row representing it.

Numerical example 4. (Continuation of example 3.)

In (7), 1, = 0, so the obtained efficient point is not the only one. An-
other is obtained if the variable corresponding to #,, that is x,, is made
basic in the main tableau.

Problem IV, maximize GTx ,

xekl
where G is a given vector and £ is the set of efficient points in a VM
problem (B, C*).

Method IV.I1. This method can only be used when G can be written:

m
G=2 Ne,  N>0 forallj, ¢eC. (8)

j=1

Then, by theorem 2, the restriction x € E can be replaced by x € B and
we have an ordinary LP problem. To find out if there exist such )\j > 0,
use method I.1 or 1.2 to see if there exist y; > 1 (0<;j< m) satisfying

m
=1

If no such u; exist, method IV.1 cannot be used. If the number of ¢ in
C is infinite and if we find an expression (8) with a finite number of ¢;
by method 1.2 (this being of course all we can find), then the “cone”
GTx > 0 contains the cone C*, but not strictly. If, in such a case, the
solution of the LP problem max GTx has a unique solution x9, by theo-
x<€B

rem 1, x? is efficient and solves problem IV. If the solution pointxo is
not unique, then although it gives the correct maximum value of prob-
lem 1V, it is not necessarily efficient.
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Method IV.2. This method relies on the methods II and III, so the num-
ber of g; and ¢; must be finite. The difficulty in problem 1V, when
method IV 1 cannot be used is that we have to maximize G'x over a
set that is not convex in general. The present method is a cutting-plane
method that masters this difficulty.

Add the G-row at the bottom of the simplex tableau with all the f; (cf.
the beginning of method 11.2). Transform this tableau by method 1.2
so that an efficient point is obtained. If in the process of finding an effi-
cient point there are alternative pivot choices, make that x; basic which
has the greatest coefficient in the G-row (rather than the one with the
greatest s, > 0). When an efficient point is reached, all subsequent itera-
tions shall be done so that they give efficient points. The aim of these
subsequent iterations is to increase G x. If we can get the simplex cri-
terion for GTx satisfied by doing steps to efficient points (method IID),
we obtain the solution. If we reach a point x, with GTx, = G, where
the simplex criterion for GTx is not satisfied, and where every step by
method M1 decreases G x, we add the restriction (cutting plane) GTx>
G, which only removes uninteresting (efficient) points. Thus, we add
the equation

X, == Gy +Glx, (x,20),

s
to the tableau. This makes the system degenerate and we can continue
by making x; nonbasic. If no new efficient points can be reached in this
way, G'x, = G, is the solution. If we find new efficient points that
make GTx > G, x, is basic again and does not come into the calcula-
tions any more so the x row can be taken away.

Some fictitious efficient points may enter together with the extra equa-
tion. These are easily recognized however, since they all lie in the cut-
ting plane. Because the set of efficient points on a polyhedron is simply
connected (see e.g. Gerstenhaber in [6]), the described method will lead
to the solution

Numerical example 5. (fig. 3)

X2
1\
G [«
|~
b
b3
- x, C
a

Fig. 3.
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Let B be the square defined by 0 < x; £ 1,05 x, < 1. Let

—1 2 -1

-2 1

By introducing slack variables x; and x, and putting GT'x =F, we geta
primal feasible main tableau

I xy x,
X3: ,1 \‘ —1
xX4= |1 -1
A S W
5H = ‘ 2 1
_,_1:__’_‘
F = l -1 2
S

This tableau corresponds to the point a(x; = x, = 0) in fig. 3 and our
first subproblem is to decide if this is an efficient point, and if not to
find one. We consider the subproblem (method I1.2)
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After one simplex iteration, we get

1 Uy tl §q Sy

Since g.,;, = 0, the point a is efficient. The variable ¢, is zero in the so-
lution so an increase of x; would give a new efficient point. Since
such an increase would decrease GTx, it is not interesting. We should
rather like to increase x,, so we use method III to investigate if 7, can
be decreased to zero. Thus, we puts; =5, = 0 in the subproblem and
consider:

minimize £, =3 +3u, + 2t .

Since both coefficients are positive, we are at a dead end! We add the
condition GTx 2 G, that is we add

xs (FGIX)=—x  +2x,, x520

to the main tableau and make x, basic and x5 nonbasic. We get

1

X4

fr =
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We are still in the point a in the diagram but we get a new subproblem,
which after one pivot has the form

I u, t 51 5
Uy = l1/4| 5/4 12 —1)2 ;
ty = \3/4{3/4 /2 —1/2 1 }
- | S
’ L_l,

This shows that a(x; = x, = 0) is an efficient point as we knew before.
We have still ; = 0 so we can increase x| and consider:

minimize t, =(3/4) +(3/4)u, +(1/2)t; .

Since ¢, is positive and cannot be decreased, x5 cannot be increased.
Now, however, the increase of x; which is possible does not decrease
GTx, so we make x; basic and reach point b in the diagram. From there
we can continue to the solution which is point c.
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