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Constrained minimization is often done via interior penalty functions. Such functions can
be very difficult to minimize using existing algorithms. In this paper, a new algorithm is des-
cribed which is specially constructed to deal with such functions. It generates search directions
by linearizing the objective and constraints about the current (interior) point, substituting these
linearizations into the penalty function, and minimizing the result. Properties of the algorithm
are derived, an efficient method for solving the direction finding problem is suggested, and
computational results are presented. Preliminary results are also given on an extension to quasi-
barrier and exterior penalty functions.

1. Introduction

Penalty and barrier methods (e.g., exterior and interior penalty meth-
ods) for solving nonlinear programs are now widely used [1}. These
solve a nonlinear constrained optimization problem by solving a sc-
quence of unconstrained problems. Their popularity is duc to their sim-
plicity — they enable any unconstrained minimizer, with slight modifi-
cation, to solve a constrained problem, and to their reliability-loosely
speaking, the unconstrained minima found converge to a solution of the
constrained problem. However, the unconstrained problems can become
infinitely ill-conditioned as the penalty parameter tends to its limiting
value [2—3]. That is, the ratio of largest to smallest eigenvalue of the
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Hessian matrix of the penalty function, evaluated at the unconstrained
minimum, can become infinite. Hence, efficient unconstrained mini-
mizers are needed.

Powerful general purpose methods exist, e.g., a modified Newton
method and algorithms of the Davidon type [4]. However, these all-
have certain deficiencies. Newtons method requires second derivatives,
and coding these can be tedious, sometimes practically impossible, for
complex problems. Davidon and other conjugate direction methods re-
quire only first derivatives, but usually take more iterations than the
Newton procedures [S5] (although not necessarily more computing
time), and often require that an accurate one-dimensional search be per-
formed [6]. This latter requirement is particularly difficult to meet
when minimizing penalty or barrier functions [7]. Moreover, being
general purpose procedures, none of these take advantage of the special
structure of penalty and barrier functions. Focusing for the moment on
barrier functions, these are hard (o minimize because they contain terms
which approach infinity as the argument approaches zero. Newton and
conjugate direction methods use a quadratic to approximate such func-
tions, and quadratics do not approach infinity at any finite point. Be-
cause of this, the region over which a given quadratic adequately repre-
sents such functions can be rather small. There is intuitive appeal to
using instead an approximating function which also approaches infinity,
and does so roughly where the barrier function does. Such a function
could adequately approximate the barrier function over a large region,
so that its minimum would be close to the barrier minimum. Finding
this minimum and doing a one-dimensional search in its direction forms
one step of an iterative algorithm.

In this paper we propose such an approximating function and develop
an algorithm based.on it. By exploiting special structural features of pe-
nalty and barrier functions — some very strong monotonicity proper-
ties — we prove that the search directions constructed are always direc-
tions of descent, and that the algorithm converges in the limit. For prob-
lems with convex objective and concave constraints, accurate estimates
- of the Lagrange multipliers and a lower bound on the penalty function
minimumn are readily available. The problem of minimizing the appro-
ximating function can be formulated so as not to become infinitely ill-
conditioned and has a great deal of structure. Some encouraging com-
putational results are also given. Finally, extensions to quasi-barrier and
exterior penalty functions are outlined.
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2. The ?—algorithm for barrier functions
The nonlincar program whose solution is desired is

Problem JNLI{

Minimize fx)

) Subject to g(x)20, i=1,.,m

Tfle feasible region is

F={xlgix)20, i=1,..,m}. 2.0
We assume the following

Assumption 1. f and all g; have continuous * first partial derivatives at
all points in F. :

In this section, we consider solving NLP by a barrier algorithm. Since
these move toward a solution from points where all g; are positive, we
must assume

Assumption 2.
Fo = {x1g,(x)>0, i=1,..,m}#0. (2.2)

Central to the algorithm is a barrier function B, defined for positive real
numbers, having the following properties [8]

1. B(z) is continuous forz > 0

2.lim B(z)=+oo .,

2-0*
Using B, we define a P-function
Px, n=fx)+r2J B(gi(x)) | (2.3)

i=1

where r is a positive scalar, and a

* The continuity requirement is needed only in the convergence proof.
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P-problem

minimize  P(x, r)

subjectto x € F.

It is shown in [8, 9] that, if f and all g; are continuous, F° # @, and F is
compact, then the P-problem has an optimal solution, and any such so-
lution is in /0. A barrier algorithm for solving NLP proceeds by choos-
ing a positive, deercasing sequence of values {r} tending to zero and
solving the corresponding sequence of P-problems. Convergence of this
algorithm to an optimal solution of NLP can be proved under very mild
additional assumptions (see [8, 9]).

Almost all the computational effort in applying a barrier algorithm
is expended in solving the P-problems. We now propose a new algorithm
for this purpose. Let x* € F° be the current value of x, and define

ag =f(x*), by =Vf(x*) (2.4
a; = g;(x*), b;=vg;(x¥), i=1,...,m 2.5)

’ using this data, we define an approximating function for P at the point
x* as

: m
P(x;x*,r)=ay + by(x—x*) +r 25 B(g; + b' (x—x*)). (2.6)

i=1

That is, we form P by taking the P-function and replacing f and each g;
by their linearization about x*.

Note that - ‘

7 P(x*,x* ry=P(x*,r). 2.7

Further, assuming B (2) is differentiable for positive z

m
V,P(x;x*, 1) =bo +r L B'(a+bl(x~x*)b; (2.8)
=1
since m
VP(x*,r)=by +r 23 B'(a)b (2.9)

i=1



Minimizing barrier and penalty functions 69

we see that
v, P(x*,x*, 1) = VP(x*, r). (2.10)

Hence P and P have the same values and gradients at the point x*.
The domain of definition of P is the interior of the set

LF(x*)={xla; + bi(x—x*)2 0, i=1,..,m}. 2.1

P goes to + « on the boundary of LF. Of course, one of the distinguish-
ing features of P is that it goes to + « on the boundary of F, and it is in-
tuitively appealing to approximate P with a function having this same
feature, especially since LF is a good local approximation to F for x*
near the boundary of F. Of course, P is a good local approximation to P
for any x* € F° since, for points near x*, f and the g; are approximately .
equal to their linearizations. '

We use P to construct an iterative algorithm. Let

§=Xx ~x* (2.12)
and define
LS(x*)={sla; +bis 20, i=1,..,m}. (2.13)

Given a point x*, we determine a search direction s* by solving the fol-
lowing direction finding problem:

Problem DF(x*)

minimize m :
P(s;x*,r)=ay + bls+r 25 B(a; + bls) (2.14)
=1
subject to
4 +bis>0, i=1,..m | O @15)

and the normalization constraint

N8, >0 | (2.16)
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where N(s) is any norm for E". Since all norms are convex functions,
(2.16) defines a convex set. _

The normalization constraint is needed because P may not be a good
approximation to P for “large” 5. Note that Df(x*) is feasible, since
s = O satisfies (2.15) —(2.16). Hence DF(x*) has an optimal solution for
any point x* € F°  and all solutions satisfy (2.15) strictly.

Having found a direction s*, we choose a successor point to x* by
solving the one dimensional minimization problem

minimize Px*+as*, r)

subject to the conditions a 2 0 and x* + a s* € F. The process is iterated.
Hence the proposed algorithm is

P-algorithm for barrier functions

0. Start at a point x, € F°. Seti= 0.

1. Solve DF (x;), yielding a solution s;.

2. Choose a = a; by minimizing P(x; + as;, r) subject tox; +as; € F

anda= 0.

3. Set x4y =x; +ay, replace i by i + 1 and return to step 1.

A variety of termination criteria may be used, usually based on the be-
havior of the sequences {VP(x;)} or {P(x))}.

We note that Marquardt’s method for nonlinear least squares prob-
lems [23] uses the same ideas as outlined above. Substituting lineariza-
tions into a sum of squares yields a quadratic approximating function.
This is minimized within a spherical neighborhood of the current point,
and the step size a; is regulated by varying the radius of the sphere. As
shown by Bard [24], Marquardt’s method is one of the most efficient
for least squares problems.

In order to endow this algorithm with some desirable propertics, we
make additional assumptions concerning the barrier function B.

These are

Assumption 3. For all z > 0, B is differentiable, strictly convex, and
monotone decreasing.
We note that this implies that B'(z) = dB/dz is monotone increasing for
z > 0, a property which is used later.

The conditions of assumption 3 are satisfied by all commonly used
barrier functions [8], [9], e.g., by B(z) = 1/z and B(z) = —In(z). With
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small modification, they are also satisfied by all commonly used penalty
and quasi-barrier functions, as we discuss later.
Under assumption 3, we have

Theorem 1. F(s; x*, r)is convex in s over LS(x*) for any x* € 1"° and
any r > 0. Hence any local solution of DF(x*) is global.

The proof is immediate from the fact that the composition of a convex
function and a linear function is convex. Since N is a convex function,
the feasible region of DF(x*) is convex, and the second statement of the
theorem follows.

The following result shows that DF(x*) can produce zero directions
if and only if x* is a stationary point of P. For f convex and the g, con-
cave, this means that zero directions are produced if and only if x* mi-
nimizes

Theorem 2. 8% = O solves DF(x*) if and only il 9P(x*, r)= (.

Proof. Since Pis convex, 0 solves DF(x*) if and only if
. VP(0;x*,r)=0.
But, by (2.8) and (2.9)
VP(0;x*,r) = VP(x*,r) . (2.17)

An important property of DF(x*) is that it always produces direc-
tions of descent if x* is not a stationary point of P. This property seems
essential in algorithms which use derivatives, and is used in the conver-
gence proof.

Theorem 3. If
a) VP(x*, N+ 0.
b) The barrier function B satisfies assumption 3.
¢) s* solves DF(x*).
Then .
VP(x* r)s*< 0.

Before beginning the main proof, some properties of N(s) must be
established. Since some norms, e.g. L; and L, are not differentiable at
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the origin, we must invoke the theory of subgradients * and directional
derivatives of convex functions [10}. We use the notation aN(s) for the
set of subgradients of V at s, dom f for the effective domain of a func-
tion f, and DF(x; d) for the (one-sided) directional derivative of a func-
tion f at x in the direction d. Since the subgradient theory deals with
functions convex over all qf En | we alter the dsfinition of P(s;x*,r) so
that it equals + o for points not in LS°(x*). P is then convex over £"
with effective domain L.S°(x*).

Lemma 1. Let N be any norm for E”, s any vector, and y € aN(s). Then

yts=Nis). (2.18)

Proof. Since N is finite for all s € En, it is a proper convex function.
Hence, for all s € £, dN(s) # Q. By definition, y € aN(s) if and only if

N@z)2 N@s)+y'(z —s)  forallze E" . 1 (2.19)

Let
z=as, a>0.

Since N is a norm
N(as) = a N(s)
50 (2.19) becomes
 @= DN®2 (@ - Dy's, foralla> 0.
If a > 1, we can divide the above inequality by (« — 1) yielding
N(s) 2 yts . (2.20)
If « < 1, dividing by @ — 1 changes the sense .of the inequality, so

N(s) < pts. 2.21H

* y is a subgradient of a function f at a point x if f(z) > f(x) + y!(z—x) for all z € E.
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Relations (2.20) and (2.21) imply

N(s) = y!s
which proves lemma 1.

Lemma 2. Let f; and f, be proper convex functions with f; differenti-
able over dom f;, and define

r=f+5

where dom f = dom f; € dom f,. Let x € dom f. Then, i y € 3f(x),
there exists y, € 9f,(x) such that

y=vfix)+ty,.

Proof. We must show that y — Vf;(x) € 3f,(x). By theorem 10 of ref.
[10], this is true if and only if

Df;(x;d) 2 (y — Vf(x))'d, foralld € E" (2.22)
Since y € 3f(x)

DfGx;d) 2 yid foralld € E" . (2.23)
By definition of f

Df(x;d) = Dfy (x; d) + Df3(x; d)

| =Vf] (x)d + Dfy(x;d). (2.24)

Using (2.24) in (2.23)

Vf{(x)d+Df2(x;d)2y'd, foralld € E"
or

Df,(x;d)2 yid — Vfi(x)d, foralld € E" .

But this is (2.22), so the lemma is proved.
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Proof of theorem 3. By the properties of 88
ap+bls*>0, i=1,..,m

so the only constraint »thich can be binding in DF(x*) is the normaliza-
tion condition. Since P and the norm function N are convex and the
normalization constraint can be satisfied strictly, we may use the saddle
point theorem of Karlin [11]. By this result, there exists a multiplier
A* 2> 0 such that the Lagrangian function

L(s, N x*, r) = P(s; x*, r) + N(N(5) — 8) (2.25)

has a saddle point at (s*, A*). Necessary and sufficient conditions for
this are

1. s¥ minimizes L{s, A*; x*, r)

2.A¥(N(GS*)—-8)=0

3.N(@E*) < 6.
Since L(s, A*; x*, r) is proper convex, condition (1) above holds if and
only if * 0 € aL(s*, \*; x*, r). The function P is differentiable at s*, so
lemma 2 implies that there is a y € a/N(s*) such that

V?(s*;x*, N+A*y =0

or, using the expression in (2.8) for vP

m
by +r 20 B'(a; +bls*)b;+\*y=0. (2.26)
i=1
~ Using (2.9)
. m
VP (x*, r)s* = blys* +r 2 B'(a;) bls* . (2.27)
i=1

Taking the scalar product of (2.26) with s* yields
—~'m ‘
bhs* = —r 25 B'(a; + bis*) bis* — \*yts* .
i=1
- * See theorem 4, ref, [10].
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Substituting the above into (2.27) gives

m
VP (x*,r)s* =r 25 (B'(a;) — B'(a; + bis*))bls* — N*pts* .
i=1 (2.28)
By lemma 1

yrs* =N(S*) > 0.

Thus, since A* = 0, the last term on the right of (2.28) is nonpositive.
We now show that the sum in (2.28) must be negative. Consider the
term

[B'(a;) — B'(a; + bls*)] bls* .

If b,’-s* < 0, since B’ is monotone increasing, the bracketed term is po-
sitive, and the product is negative. The term is also negative if b{s* > Q.
Hence the sum in (2.28) is negative if at least one bfs* # 0, and the
theorem is proved for this case. Consider now the situation where

bls*=0, i=1,.,m. (2.29)
Then, by (2.27)

VP (x*, r)s* = bys* (2.30)
and - m
P(s*;x*,ry=ag +r > B(a;) + bys*
i=1

=P, x*,r) + bhs* .

If b{s* > 0, then P could be reduced by setting s* = 0, which contra-
dicts the optimality of s*, Hence bijs* < 0. If bys* = 0, then s* =0 is
also optimal for DF(x*). By theorem (2), this contradicts the assump-
tion that VP(x*,r) # 0.

Hence -

bgs*< 0.

By (2.30), this proves the theorem.
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3. Special properties for convex programs

Under appropriate convexity assumptions on f and the g;. this P-al-
gorithm has primal-dual properties which lead to valuable lower bounds
and to estimates of the Kuhn-Tucker multipliers. The following is as-
sumed to hold in this section only.

Assumption 4. For i =1, ..., m, each function g; is concave over F° and
fis convex over F°,

An immediate consequence of this assumption is that, in certain ins-
tances, the optimal objective value in DF is a lower bound on min P.
Define

F(x*, 8) = {xla; + bl(x—x*)2 0, i= 1, ..., m,
N(x—x*) <8} . (3.1)

Theorem 4. Let assumption 4 hold and assume that either
(a) The set of points x satisfying N(x — x*) < 8 contains a point
which minimizes P(x, r) over F, or
(b) N(s*) < 8, where s* solves DF(x*)
Then N -
min {P(x; x*,r)lx € F(x*, §)} < min {P(x,)lx € F}. (3.2)

Proof. By assumption 4, for any points x, x* in F°
£ > ag + b (x—x*) ' (3.3)
g0 <a +blx—x*), i=1,.,m. (3.4)
By (3.3) and (3.4), the ‘“‘outer. linearization” of F contains F, i.e.;

LF(x*)2 F (3.5)
SO
LFO(x*)QF‘) (36)

and P is defined over F°. Since B(z) is monotone decreasing for z > 0,
(3.4) implies

Bla; + bl(x—x*) < B(g,(x)), i=1,..,m 3.7
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for any x € F°, Hence, using (3.3) and (3.7)

;(x;x*,r)SP(x,r) forallx e F. (3.8)
Under hypothesis (a), let x° € ﬁ(x*, §) minimize P(x,r). By (3 8)

min {ﬁ(x;x*, Nix e [‘T(x*, &)} < P(x°:x*, < P(xo,r)
and the theorem is proved. Under hypothesis (b)

min {P(x; x*, r)lx € F(x*, 8)} = min {ﬁ(x;x*,r)lx € LF(x*)}.
By (3.8) |

min {F(x;x*,r)lxeF}Smin {P(x,r)lx € F}. 3.9
Since LF(x*)2 F

min {?(x;x*, Nix € LF(x*)} < min {i"(x;x*, NixeF}.
(3.10)

Relations (3.9)—(3.10) prove the theorem.

By theorem 4, min ﬁ, in conjunction with the current best feasible
point, may be used to terminate computations when the difference be-
tween the two values is less than some epsilon. As we will show shortly,
if P is strictly convex there is a subsequence of optimal directions s*
which converges to zero, and the corresponding subsequence of points
x* approaches a P-minimum. It is easily seen that min P then converges
to min P, so the two bounds approach each other.

In addition to this lower bound on min P, each P-minimization for
which the normalization constraint is not binding provides an estimate
of the Kuhn-Tucker multipliers for NLP, and a lower bound on min f.
Both arise from a feasible point for the Wolfe dual of NLP.

Theorem 5. Let s* solve DF(x*) and assume that N(s*) < 6. Define
u;(x*)=—rB'(a; +bis*), i=1,..,m

and
u(x*) = (), o 1, (x%)) .
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Then (x*, u(x*)) is feasible for the Wolfe dual of NLP and

S(x*) — u(x*)g(x*) < min {f(x)Ix € F}.
~ Proof. The Wolfe dual of NLP is [12]

maximize L (x, u)

subject to
“ViL{x,u)=0
and
uz=0
where

L{x,t)=f(x)— ug(x).
Since s* is an unconstrained solution

m

VP(s*;x*, ) =by +r 2 B'(a; +bls*)b;= 0

i=1

or
m

by = 20 u;(x*)b; .
i=1 :

Since B(z) is monotone decreasing forz > 0
B'(a; + bls*)< 0

SO
u(x*)>0, i=1,.,m.

1.S. Lasdon

C (311

(3.12)

(3.13)

3.14)

(3.15)

3.16)

By (3.15) and (3.16), (x*, u(x*)) satisfies (3.12) and (3.13), and so is
feasible for the Wolfe dual. Further, under the convexity assumptions 4,

L(x, )< min{f(x)ix € I'}

for any dual feasible point (x, u). Evaluating L at (x*, u(x*)) yields

3.11).
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Even when the convexity assumptions are dropped, u(x*) is a valid
estimate of the multipliers, provided only that the optimal solution of
DF is unconstrained, so that VP = 0 there. Asr — 0, u,(x*) will tend to
zero for g; which remain positive, so complementary slackness will hold.

4. Conditioning of DF and strict convexity of P

The second partial derivatives of P are

~ m
3P "
ax,-a,isz r k§ B''(a) + bi.s)by;by; -

Hence the Hessian of P may be written as a linear combination of dyadic
terms

m
V2P =r 27 B"(ay +bis)b, b, . (4.1)
k=1

Alternat'ively, defining
D = diag (B"'(a; + bls))
and the Jacobian of the constraints
bi
v,
we have the expression
V2P =rJ' DJ.
Let B(z) = 1/z. Then,f s* solves DF(x*)

rB"(a, + bls*) = 2r/(ay + bls*)? = 2,712y, (v*)32
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SO
m
V2P(s*ix* =20 2w (e by b
k=1

As r » 0, x* approaches an optimal solution to NLP and u,(x*) ap-
proaches the kth Lagrange multiplier. This multiplier tends to zero for
inactive constraints g;. Hence v 2P, evaluated at optima of DF, ap-
proaches

M=2r"12 35 W32 (b, bY) (4.2)
kel

where / is the set of indices of active constraints and u; is the kth
Lagrange multiplier. Similar conclusions are reached for any twice dif-
ferentiable function B satisfying assumption 3.

If I contains r < n indices, M is positive semidefinite of rank 7, hence
singular. If Newtons method is used to solve DF, inversion of v2P will
become increasingly difficult. A possible remedy for this (which has not
yet been tried computationally) is to choose N as the L, norm, and to
replace the normalization constraint by

N2 =5ts< 6. (4.3)

If this constraint is incorporated into the objective by a Lagrange mul-
tiplier A, the Hessian of the augmented objective, L, is

viL=Vv P+ 2\
Asr-0
V2L - 2r V2 + 2N = 2 2 (M + N2

If W12 approaches a finite positive value as » - 0 then V2L approaches
a positive definite matrix with finite condition number (ratio of largest
to smallest eigenvalue). This is in contrast to P, since Powell has shown
{2] that the condition number of V_ZP approaches infinity if there are
less than n binding constraints at the optimum. The above requirement
on M1/2 means that the region defined in (4.3) cannot be too large as
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r - 0. Since this region should shrink as a solution point is approached,

this does not appear to be a serious limitation.

Strict convexity of P is characterized in the following theorem.

Theorem 6. P is strictly convex if and only if m 2 n and the set {b, ...,

b,,} contains n independent vectors.

Proof. Lets, #s,,0<a< 1,and =1 — a. Then
Plas; +as,) = alag +bhs,) +alay + blys,)
m
+r 22 Bla(a; +bls;) +a(a; +b's))] .
i=1
By strict convexity of B
Bla(a; + bisy) +ala; + bisy)] < a B(a; + bis,)
+a B(a; + bls,)
if and only if
bls, # bis, .
Hence
Plas; +asy)<aP(s)+aP(s,)
if and only if
bis, # bls, forsomei, i=1,..,m
i.e. if and only if 5| and s, do not satisfy

t = Kt .
b,-sl "'b,-fz y 1= 1, ey M

(4.4)

Since 5, and s, are arbitrary, except for s; # s,, (4.4) holds if and only

if there is no s except s = 0 such that

bis=0, i=1,...,m.
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But this is true if and only if the set {b,, ..., b,,} contains n independent
vectors.

Strict convexity of Pis important if a Newton method is to be ap-
plied in solving DF, since then viPis positive definite, hence invertible.
By theorem 6, if P is not initially strictly convex, it can be made so by
adding upper or lower bound constraints on each x; to NLP, where the
bounds are chosén large enough so as not to restrict the optimal solution.

5. Convergence
We define a solution to the P-problem as any .point x where
VP(x,r)=0.

To prove convergence to such a stationary point, we use the following
theorem of Zangwill (9, p. 281].

Convergence theorem. Suppose that the ﬁ-algorithm of section 2 satis-
fies the following conditions

1. If the algorithm terminates, it terminates at a solution

2. If there exists a convergent subsequence

X, »>x* kek

where x* is not a solution, and if 5; solves DF(x; ), then there isa K, C
K such that

(a)sk—>s*, keKl,

B) VP (x* r)s*< 0

(c) A & > 0 exists such that, for any a satisfying0< a < §

.\'k + (X«\'k € l", ke I\'l .

Then the algorithm either terminates at a solution or the limit of any
‘convergent subsequence is a solution.

Definition. A point to set map M: x = D(x) is closed (i.e. upper semi-
continuous) at a point x* if
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X, >x*, k€K

S € D(xy)
and
S > 8%, kekK
imply
s*¥ e D(x*).
Let ~ . )
D(x) = {sls solves DF(x)} 5.1

and let M be the map M: x - D(x). The following theorem is central to
the convergence proof. .

Theorem 7. Under assumption 1, the map M defined above is closed at
any point x € F°.

Proof. Let x* € F° and choose a sequence of points {x;}, all in F°,
such that

X, »x¥, kek.

Let

s> s*, k€K,
where

s, €D(xy) o (5.2)
and assume

s¥ & D(x*). . (5.3)

By definition
gilxx) tvgl(xp)s, >0,i=1,....,m 5.4

N(s;)< 5. (5.5)

—

Since the left hand sides of (5.4) and (5.5) are continuous functions of
(x, 8), (x*, s*) satisfies (5.4) — (5.5), i.e. s* is feasible for DF(x*). By
(5.3), there is an s also feasible for DF(x*) with lower objective value;
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g(x*)+vgi(x*)§>0, i=1,..,m - (5.6)
NELS (5.7)
and N -
PG, x*, r) < P(s*;x*,r).
Define

e=P@*;x*, r)~P(s;x*,r)>0. ‘ (5.8)
By continuity of Pin (s, x)

lim Psg;x,, r)=P@E*;x*,r).
kek .

Hence for sufficiently large &k
IF(sk;xk,r)—F(s*;x*,r)l<6/2. ' (5.9)
Using the continuity of Vg,;, (5.6) implies that, for k sufficiently large
g () + Vgi(x,)8> 0 (5.10)

SO ﬁ(?; x, r) is defined and continuous in x for all x satisfying (5.10).
Thus, for sufficiently large k&

I1~’(§;xk,r)—?"(§;x*,r)l< €ld. . (5.11)

Inequalities (5.8), (5.9), and (5.11) may be represented geometrically as
follows

P(8;xy, r) in here P(sy;xg, r) in here

e |
t'_e/4——*-—<~——e/4———>*—6/4—-‘*+*€/2"'**—5/2—" -

Pk, Pesxe,

Clearly, for k sufficiently large

~

@B x, < Pl X, 1) (5.12)
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By (5.7) and (5.10), § is feasible for DF(x,) for large k, so (5.12) con-
tradicts the optimality of s, in DF(x;). Hence our assumption that
s* ¢ D(x*) must have been false, and the theorem is proved.

We now state and prove the main convergence theorem.

Theorem 8. Under assumptions (1)--(3), the P- ~algorithm of section 2
either terminates at a point x such that VP(x, r) = 0, or the limit of any
convergent subsequence is such a point.

Proof. The conditions of Zangwill’s convergence theorem will be veri-
fied. We assume for purposes of this proof that the termination criteri-
on used is VP = 0. Since a downhill direction is generated whenever
VP # 0, condition 1 holds. Since all 5, satisfy the normalization con-
straint, and hence are in a compact set, condition 2a holds. Consider
condition 2b. All points x, of the subsequence indexed by K| are in
170, The limit point x* must also be in /Y, because

PXpyy, )< P(xy,1), kEK, , (5.13)
and x., lying on the boundary of £ would imply

im P(xg,r)=+oo
kek,

contradicting (5.13). Then, by theorem (7),

- s*eD(x*).
Since, by assumption

VP(x*, r)#+ 0

theorem 3 states that condition 2b holds. Turning finally to 2c, since all
points x;, kK € K; and x* are in F°, there exist §; > 0 such that, for all
k€K,
X, +as, €F, forall 0<a<5, . (5.14)

It is convenient to choose §; as the Euclidean distance from x to the
nearest boundary point. If
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inf {8,} =0
kEKl

then there is a subsequence of {Bk} K defined by an index set K, © K,
such that

lim 8, =0.
kEKZ

This implies that the subsequence {x;} x, converges to a point on the
boundary of F. But {x;} x, converges to x* € Fo, so this is a contradic-
tion and

8*=inf {§;} > 0.
‘keK]

Hence (5.14) holds with &, replaced by &*, condition 2c is satisfied
and the theorem is proved.

Under additional hypotheses, more may be said about the limiting
behavior of the P-algorithm.

Theorem 9. Let {x;} ¢ be a convergent subsequence of points generated
by the P-algorlthm with limit x* and let s, solve DF(xk) If P(s x*, r)is
strictly CTnvex then :

lim s, =0.

kek
Proof. By theorem 8

VP(x*,r)=0.. . (5.15)
set {Vg %), Vg,,, (x*)} contains n mdcpcndcnt vectors, Then, by

4. l),VZI’(s x*, r}is positive definite for all s € LSO (x*). But V2 P(s;x*, r)
is the Jacobian of the system

VP(s;x*,r)=0. (5.16)

Since P is strictly convex and (5.15) holds, (5.16) has the unique solu-
tion s = 0. Since the Jacobian of (5.16) is nonsingular, the implicit func-
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tion theorem states that (5.16) has a solution s(x) for all x in some
neighborhood of x*, and s(x) is a continuous function of x. But con-
tinuity of s(x) implies

lim s(x;)=s(x*)=0.
kek

6. Properties with linear constraints

Many nonlinear programs contain some linear constraints. There is
substantial evidence [8, 13}, that these are best handled by including
. only the nonlinear constraints in the barrier term, and minimizing the
barrier function subject to_the linear constraints. Such an option is
* easily incorporated into the P-algorithm. Let

Fi={xlcix<e, i=1,.,r clx=e;, i=r+1,..,s} (6.1)
and
F,={xlg;x)20,i=1,..,m}. (6.2)

The set F; is determined by some of the linear constraints of the prob-
lem NLP, whose feasible region is F,, N F;. The modified P-problem is

m

minimize P(x,r) = f(x) +r 2 B(g;(x))
i=1 .
subject to

xeF,NnF.

Any solution to this problem wilLbe-in Fg , 80 P must be minimized sub-

ject to x € F;. Minimization of P must also incorporate this condition,

so DF(x*) is most easily written in terms of x, rather thans =x — x*.
The modified DF(x*) is

minimize P{x; x*, r)

subject to
X el 6)yn b,

where F'(x¥, 8) is defined in eq. (3.1).



88 L.S. Lasdon

If x° solves the above and s* = x° — x*, then s* is obviously a feasible
direction for P at x*. If the L, norm is used in DF, then /' 0 [ is de-
termined by lincar constraints. Thus any method which can solve lin-
carly constrained problems (e.g that of GoldGub | T4} or McCormick
FES]) may be used o solve D/

All results derived carlier hold Tor this modified version of DI it they
are rephrased appropriately. For example, theorem 2 now states that v*
solves DF(x*) if and only it x* is a Kuhn-Tucker point for the modified
P-problem. Theorem 3 also applies, with condition (a) modified to state
that x* is not a Kuhn-Tucker point for the P-problem, and the added
assumption that x* € /. The proofs are much the same. The only sig-
nificant change is to modity the optimality conditions for DI and the
P-problem to accomodate the linear constraints. Stmilar comments apply
to theorems 4 and 5. Turning to the convergence theorem, we define a
solution to be a Kuhn-Tucker point for the P-problem. Theorem 7 is
true with £° replaced by 9 N F}, and theorem 8 holds with the new
‘definition of solution point. Again the proofs require only minor modi-
fication, and will not be redone here.

7. Extension to quasi-barrier and exterior penalty functions
Quasi-barrier functions

Allran dand Johnscen [16] propose solving NLP by successive uncon-
strained miinimization of the function

m
Px,n)=f(x)+ 27 exp (- T}, g(x))
i=1
where
0< T;h < Ti,n+l , I= 1,.--,m

and

lim 7, = +eo,

n-»oo

They prove that, for sufficiently large n, P(x, n) has an unconstrained
minimum in F°. The hypotheses under which this is true are very similar
to those for barrier functions. Convergence of {min P(x, n)} to min f
and of the sequence of minimizing points to an optimal point is also
proved.
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The function
Q(Tz)=¢eT2, T>0

is not a barrier function for any finite T, but approaches one as 7> + o,
The P function corresponding to P(x, n), with base point x*, is

m
P(s;x*,n)=ay +bhs+ 27 exp [— Ty, (q; + b's)]
i=1
where
s=x—x*.

As with barrier functions, P may not have an unconstrained minimum
even if P does, so a normalization condition must be included in DF(x*).
In contrast to previous sections, P is defined for all s € E”, so the prob-
lem DF(x*) is

minimize ?(s; x* n)
subject to
N(s)<§.

Q(Tz) satisfies the conditions of assumption 3 for all real z. Hence, it
is easily verified that all theorems and results of previous sections apply.

Theorem 7 now states that the map M is closed at any point x € E".
The proofs, especially those in theorems 7 and 8 are simplified, since
P(x,n)is defined over all of E". Thus the P-algorithm is a valid approach
for minimizing quasi-barrier functions.

Exterior penalty functions
Here we focus attention on the penalty function -

P(z) = (min (0, 2))? . 7.1)
This is used to solve NLP by unconstrained minimization of

m
G, kY=f()+k 20 P(g;(x)) (7.2)
i=1
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where £ > 0 and k - + o. Properties of the method are given in [9].
The associated problem DF(x*) is

m
minimize ay + bs + k 25 P(a; + bls)=G(s;x*, k) (7.3)
i=1 .
subject to
N(is)< 6.

Graphs of P(z) and P'(z) are shown in fig. 1.

P(z)
—1
T z
|
|
]
- ____2
P(2)

Fig. 1. P(2) and P'(2),

Since P s convex, theorems 1 oand 2 still hold. The monotonicity con-
ditions of assumption 3, however, apply only for z < 0. Although P is
dilferentiable for all z, P and P are identically zero for z > 0. Despite
this, theorem 3 is still true, as we now show.

Theorem 10. Vor P(2) and G(x, k) in (7.1)—(7.2) assume
@QVCE* k+0
(b) s* solves DF(x*).

Then

VG (x*, k)s*< 0.
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Proof. Lemmas 1 and 2 of section 2 and the saddle point conditions
may be applied here as in the proof of theorem 3 to yield

VG(s*; x*, k) + \*y =0

where
y € aN(s*).

Writing out the expression for vG yields

m

by +k 2 Pla;+bls*) b, + X\*y = 0. (7.3a)
i=1
By (7.2)
m .
VGH(x*, k)s* = bis* +k 2 Pa;) bls*. 4
i=1

Taking the scalar product of (7.3a) with s* yields
N ,
bis* =~k 23 P(a; + bls*)bls* — N*yls*. (7.5)
i=1 ‘
Substituting (7.5) into (7.4)

m
VG (x*, k)s* =k 2J (P'(a;) ~ P'(a; + bjs*))bjs* — N*yis*.
i=1 (7.6)
As in theorem 3, we may conclude that

yis*2 0

so the last term on the right of (7.6) is non-positive. Consider now the
term- : —

t; = (P'(a;) — P'(a; + bls*)) bls* . (7.7)
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Using the monotonicity of P, it is easily seen that
a;<0=1;<0 if bis*#0 (7.8)

=0 if a,+bis* 2 0
a; > ()= (7.9)
(<06 g+ bls* < 0.

Hence each ¢; is non-positive. We will show that at least one ¢; is neg
ative. By (7.8)—(7.9) there are only two cases under which all ¢; are
zero:

() bls*=0, i=1,...,m

(2) for all i such that bfs* # 0,4, 2 0 and a; + b}s* 2 0.

By showing vG!(x*, k)s* < O for these cases, we prove the theorem.
Assume that case 1 holds. Then

m
G(s*; x*, k) =ay +k h» P(a;) + bfys*

i=1

= G(0; x*, k) + blys* (7.10)
while, by (7.4) | |
VGi(x*, k)s* = bs* . (7.11)
Under case 2

I={ilbjs*# 0} # 0
and

G(s*;x* k) = ag +bis*+k 2 Pa) + k 2 Pla;+ bis*)
iEl iel

=ay+k 2s P(@a)+bls*.
i€l

Sinceq; 2 0,i€ 1, P(a;)=0,i€ 1,50

m
G(s*;x*, k) =ay +k 25 Pla;) + blys*

i=1

= G(0; x*, k) + blys*
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as in case 1, eq. (7.10). Relation (7.11) also holds for case 2, so we focus
on(7.10)—(7.11).

If b s* > 0, then G can be reduced by setting s* = 0, which contradicts
the optimality of s*. If bfs* = 0, then s* = 0 is optimal for DF(x*). By
theorem 2, this contradicts hypothesis (a) of the theorem. Hence b'os* <
0 and, by (7.11), the t}lg:orem is proved.

Application of the G-algorithm to exterior penalty functions is per-
haps even more attractive computationally than applying it to barrier
functions. This is because G in (7.3) is piecewise quadratic, the pieces
being polyhedral regions where various subsets of the linearized con-
straints are negative. Hence, if N is the L_ norm, DF is easily trans-
formed into a quadratic program, which can be solved in a finite num-
ber of pivot steps. Other efficient schemes also exist. Theoretical and
computational work on this exterior penalty case is now in progress,
and will be the subject of a future paper.

8. Computational results

To evaluate the efficiency of this P algorithm, 7 test problems were
solved. These had from 2 variables and 2 constraints to 15 variables and
20 constraints, and are specified in appendix 1. All have linear or qua-
dratic constraints, and quadratic or cubic objective functions. In prob-
lems 1—4, DF was solved by separable programming with column gene-
ration. The details of this approach are as follows. New variables ¢; are -
mtroduced and DF is re-expressed as

minimize bls +r 27 B(t;) ' (8.1)
i=1
subject to
0<t;<ag+bls, i=1,..m (8.2)
and
-855;<8, i=1l,.,n. (8.3)

Where N has been chosen as the L, norm. Since B is decreasing, ¢; will
equal a; + b{s in any optimal solution of (8.1)—(8.3). Suppose now that,
for each i, a set of grid points {t,]} is chosen and B(;) is replaced by its
piecewise linearization over this grid:
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B(t) =T N;B(ty)
j

where
LT 2 Nty
' i

2 N;=1, A, 20.
i

DF in (8.1)—(8.3) is then transformed into an approximating linear
program in the variables )\,.]-:

minimize bjs +r 27 N;B(t;)) | , (8.4)
i’i
subject to
~bls+ L Nyt tr=a, i=1,..,m (8.5)
p |
2 A” = l, i= ], wey 1 (8())
i
—8§<5,58 ,i=1,.,m 8.7
N; 20, alli,j. ' (8.8)

An initial basic feasible solution is
M =Lty =r=05a,i=1,..,.m

whose associated basis matrix is triangular. The bounds (8.7) can be
dealt with by upper bounding methods.

Instead of choosing the grid points in advance, they can be generated
via subproblems. Assume a feasible basis for (8.4)—(8.8) is available,
and let u; and v; be the simplex multipliers of this basis, with u; asso-
ciated with (8.5) and v; with (8.6). The relative cost factor for )\,-]- is

—C-,] = rB(tu) - u,-t,-i - vi. . . ‘ (89)
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The standard simplex criterion is to search for that grid point yielding
minimal c . This leads to the subproblem

‘minimize rB(t;) — u;t; (8.10)
subject to
t,>0. (8.11)

For this to have an optlmal solution with ¢; > 0 it is necessary and suf-
ficient that

rB'(t;) = u; . (8.12)

Since B is monotone decreasing, (8.12) has a solution if and only if
u; < 0. The condition u; < 0 can always be guaranteed, since if u; > 0, a
slack variable can enter the basis. Assuming i; < 0, (8.12) has the solu-
tion

t;= (= rfupt? if B(t)= 1/t

t;=—rfu; if B(t)=—In(¢)

The grid point with the most negative relative cost factor is used to form
a column, which is brought into the basis. Solutions for u; = 0 are also
easily derived. Dantzig [17] proves that this algorithm converges in the
limit, '

In test problems 5—6, DF was solved by Goldfarb’s modification of
Davidon’s method to account for linear constraints {14]. This was
adapted to the special case of upper and lower bounds, yielding sig-
nificant simplifications. The linear search required by Goldfarb’s al-
gorithm was accomplished by a regula falsi procedure. The linear search
required after a direction of travel is found by DF was done by cubic
interpolation, similar to the procedure outlined in [18]. The termination
criteria for this linear search were to stop when

Tstgl

— -3
ist-igi < 10

cosf =

or when 3 cubic interpolations have been made. For purposes of com-
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parison, all test problems except that in table 2 were also solved using
the Davidon—Fletcher—Powell algorithm [18] to minimize P(x, r). The -
version used was restarted every n + 1 cycles, as suggested in [15] and
(191, by resetting the H matrix to the identity, and used the same one-
dimensional search as the P-algorlthm All computations were done on
the Univac 1108 computer in single precision arithmetic (8 decimal
digit word length), and all algorithms were coded in FORTRAN 5.

The number of cycles given in tables 1—12 for both P and Davidon
algorithms are those required for P to become less than or equal to the
numbers in the min P column. These numbers are equal to the final P
values obtained to 4 or S significant figures. Since all computations
carried only 8 decimal digits, and since the directions produced by DF
were probably correct only to 2 or 3 digits, it was felt that these figures
best represented the true performance of both algorithms. In general,
any iterations beyond those listed made little or no progress in reducing
P. ‘

Tables 4—6 illustrate 2 different strategies for choosing § in N(s) < §.
Tables 4—5 use a constant value for §. In table 6, if o; is the optimal
step size value at iteration /, then 8 was replaced by 8/1.5 if ¢; < 0.8, by
1.58 if a; > 1.2, and was unchanged otherwise. The rationale here is that
«; values near unity indicate that P approximates P well over the set de-
fmed by N(x—x;) < §, since the actual step size to the minimum of P
along s; is nearly that predicted by P. If the «; are less than one, the
region of linearization is too large, and conversely if a; > 1. This simple
strategy produced the best results in problems 3, 4 and S (all cycles in
problem 4 had N(s) < §), but led to poor results (84 cycles forr = 1) in
problem 6, where it decreased 8§ prematurely. There, a constant § work-
ed much better. It appears that some method for decreasing § as min P
is approached is desirable, and that it should be based on the behavior
of the sequence of a; values. Howaver, a more sophisticated rule is need-
ed.

In problem 5 for r = |, separable programming required approxima-
tely 200 pivots to solve cach of the first two direction finding problems,
and terminated trying to take the logarithm of a negative number in di-
rection finding problem 3. Hence the Davidon algorithm for bounded
" variables was adopted. This led to much more rapid convergence in DF
In problem 5, computations in DF were terminated when

L, <s;<u; = 1aPlas;|<e
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s;=1; = 3P[3s; 20
s;=u; = 3P[3s;<0

where €= 10-2. In problem 6, this led to long computation times in DF
(see the column |Gl < 10-2 in table 12). Hence an additional criterion,
which terminated computations when

for 5 consecutive values of i. Table 12 shows results for n = 10~2 and
n = 10-4. Both result in a much smaller number of DF iterations. n =
10-2 appears too loose a condition, since min P is higher than in the
other two cases.

Table 1
Problem 1, B(z)=1/z

r - Cycles, P Cycles, Davidon Avg. DF cycles min P Cvel
1 9 3 7 5.3466 <2x 103
10-1 4 2 1 2.1475 <2x10-3
102 3 2 5.6 1.3388 <2x 1073
10-3 3 2 5.6 1.1045 <2x 1073

) Table 2

Problem 1, B(z) = —In(2)
r Cycles, P Avg. DF cycles min P VP
1 6 5.2 3.1990 0.76 X 102
10~} 3 6.0 1.5961 0.15x 1073
10~2 2 5.0 1.1042 . 0.20x 10~2
10-3 2 5.0 1.1050 0.23 x 1072
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Table 3
Problem 2, B(z) = 1/z
r Cycles, P Cycles, Davidon Avg. DF cycles min P
1 3 6 39 10.362
10-1 2 4 25 4.1244
102 2 3 18 2.2544
10-3 1 3 13 1.6781
10~4 1 2 7 1.4975
Table 4
Problem 3,B(z)=1/z,6 = 0.5
r Cycles, F Avg, DF cycies min P i P
1 20 36 - 38.136 4.3
10-1 9 22 - 42333 0.92
1072 9 17 —43.476 1.4
103 8 14 —43.810 2.2
104 7 10 ~ 43,912 3.1
103 6 9 ~ 43.944 5.5
10-6 4 9 —43.955 8.5
Table §
Problem 3, B(z)=1/z,5 = 0.1
r Cycles, P Avg. DF cycles min P Pl
1 11 37 ~ 38,179 049
10-1 2 28 —42.344 0.26
1072 7 19 ~43.501 2.2
10-3 4 13 — 43.845 1.9
10~4 6 8 ~ 43,950 1.8
103 6 8 —~43.983 2.4
10-6 4 9 - 43.993 2.7
Table 6
Problem 3, B(z) = 1/z, 6 variable
r Wclcs,f" Cycles, Avg. DF min P Initial & Cycles 8 Final &
Dav. cycles binding
1 1 7 35 - 38.179 0.5 11 0.195x 10~4
101 2 3 30 = 42.344 0.1 2 0.1
10—2 2 2 18 - 43,501 0.1 2 0.1
10-3 3 3 13 ~ 43.845 0.1 3 0444 x 107!
10m4 3 2 10 - 43.951 0.1 3 0444 % 107!
10-3 3 4 8 ~ 43.984 0.1 3 0444 % 107}
10-6 3 - 7 ~ 43.994 0.1 3

0.444 x 10}
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Table 7
Problem 4, B(z) = 1/z
r Cyclesi’l Cycles, Davidon Avg. DF cycles min P Pl
1 2 15 108 30505 0.93
10~} 2 10 35 — 30603 0.53 x 1072
10—2 2 2 35 ~ 30633 0.46 x 101
10~3 1 10 21 — 30643 0.66
104 1 5 i1 — 30646 0.65
10—5 1 5 11 — 30647.3 1.2
10-6 1 4 11 ~ 30647.6 3.6
10-7 2 2 15 ~ 30647.7 10.8
Tabie 8
Problem 4, objective sign reversed
r CyclesF Cycles, Davidon Avg. DF cycles min P P
1 2 15 90 23162 0.28
10-1 1 6 3 23090 0.20
10-2 2 6 38 23068 0.03
10-3 1 6 18 23061 2.4
10—4 1 6 9 23058.9 3.0
105 1 4 9 23058.2 5.5
10~6 1 5. 9 23058.0 3.2
10 1 5 9 23057.9 22
Table 9
Problem §, B(z) = —In(z), 6 constant
r Cycles, F Cycles, Avg, DF min P I P &
v Davidon cycles
1 10 11 ‘ 12 12.424 0.45 0.5
10—2 9 16 16 0.20986 0.92x 102 0.1
104 4 11 10 0.39220 x 102 0.30 x 1074 0.1
1076 2 15 8 . 0.57642x 1074 0.26 x 1075 0.1
Table 10
Problem §, B(z) = —In(z), § variable
r Cycles,i" Cycles, Avg. DF min P I Pi Initial Cycles § Final 6
' Dav. Cycles binding
1 10 11 13.5 12.422 0.68x 10~ 0.5 4 0.29x10°2
1072 9 16 16 020985 _ 077x1073 01 9  031x1072
1074 2 11 16 0.39237x10~2 0.78x 10~3 0.1 0 0.1
10-6 2 15 55 0.57657x107% 0.25x 1074 0.1 0 0.1




100

Table 11

Problem 6, Davidon results

L.S. Lasdon

roo 1 0.25 0.0625 0.015625 0.0039 0.97656 X 103
Cycles
Davidon % 22 29 15 16 7
min P 49.515 40.804 35.452 33.373 32.667 32.383
Table 12
Problem 6, B(z) = ~In(2)
5 10 10 20
r
DF stop IG1<10~2  %aF <1072 BAF < 1074
1 Cycles, P 27 38 25
Avg, DE cycles 39 9 3
win P 49.515 49.906 49.519
0.25 Cycles P 14 4 2
Avg. DF cycles 48 6 21
min P 40.775 41.206 40.777
0.0625 Cycles, P 32 18 22
Avg, DF cycles 65 5 25
min P 35.462 36.448 35.459
0.015625 Cycles, P 17 9
Avg. DF cycles N 20
min P 34.663 33.378
0.0039 Cycles, P 15 9
Avg. DF cycles 5 20
4 min P 34.070 32673
0.97656 X 10~3 Cycles, P 6 6
Avg. DF cycles 5 5
min P 33.892 32.457

9. Summary and conclusions

The c?mputational results indicate that, for the problems solved, the

scarch d

irections produced by DF are as good as, and in some cascs sig-

nificantly better than, those of the Davidon procedure. This is especially
truc in problem 6, r = |, and problems 4 and 5. However, the computa-
tion time required was from the same as to 3 to 4 times greater than
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that required by the Davidon procedure. This is due to the relatively
long times required to solve DF. Clearly a more efficient procedure must
be developed if the P algorithm is to be competitive for minimizing
barrier functions. As discussed in section 4, if the L, norm is used, then
solving DF can be accomplished by unconstrained minimization of a
function, L, with positive definite Hessian. In this case, Newton’s meth-
od should be the best choice. The matrix V%L is the identity plus a sum
of outer products. As shown by Fiacco and McCormick [4], this s_truc-
ture can be exploited to considerably simplify the inversion process.
Use of Newton’s method should significantly reduce the time required
to solve DF while increasing the accuracy of the solution.

Another possibility yet to be studied is to solve DF only partially.
The limiting case of this strategy is to take only one step of Newton’s
method in each DF (with initial point s = 0). If the L, norm is used and
the constraint sts < § is incorporated with a Lagrange multiplier A, then
search directions s; are given by

5=~ (VEL(0;x;, 7, W))™1 VL(O; x;, 7, N)
where

L(s;x;,r,\) = F(s;x,-, r) + Asts .
Using the definition of L and (2.17)

V2L(0; x;, 1, \) = V2P(0; x;, ) + 20T

VL(O;x;, 7, \) = VP(0;x;, 1) = VP(x;, 1)
SO

s; = — (V2P(0;x;, 1) + 2AI)-L VP(x;, 1) 9.1)
By (9.1), s; i giveri by a fomlula like Newton's method, but with V2P +
~ 2M replacing V2P. Since V2P + 2\ is positive definite for all A > 0, 5; is
a direction of descent-for P at x;. The step size a; could either be deter-
mined by a one-dimensional search or could be controlled by varying A,
as in [23]. Some recent work by Fletcher [25], whose algorithm is

similar in its basic philosophy to ours, should be useful in determining
how A should be varied. ,
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The P approach has some advantages other than requiring fewer
cycles. It requires only first derivatives, and the search direction s; is
independent of all past history of the process. This is true of no other
efficient first order algorithm. Because of this, the P algorithm does not
require an accurate one dimensional search, as does the Davidon proce-
dure. This fact was not exploited in the work done thus far, but should
be of much significance in reducing computation time. Its lack of mem-
ory should also make the P algorithm relatively insensitive to numerlcal
error, at least of the cumulative variety. Hence it may function well
with finite difference derivatives, although this has not yet been inves-
tigated. -

Of course, the features cited above apply also when the P-algorithm
is applied to exterior penalty functions. The additional ability to solve
DF finitely here suggests that the approach has significant potential.
Research, both theoretical and computational, is currently in progress
on this extension.

Appendix 1 — Test problems (all constraints = 0)
Problem 1

min  f(x)=(x; —2)? +(x, — 1)2,
gl(x)‘—"“x%"'xz, g, (x)=—x; —x, +2,
Xg =(— 0.5, 0.5)=(xy 9 x30)-

Problem 2

min f(x)=x:{ — 6x% +1lx; +x, ,

g )=—x}-x}3-x3, gx)=x}+x3+x} -4,
&)= —x3+5, gx)=x;, gMK)=xy, g(x)=x;,

xo = (0.1, 0.1, 3).
Problem 3 Kowalik and Osborne, ref. {20], p. 981

min  fx)=x? +x3+2x3 +x3 ~ Sx; ~ Sxy ~ 20xy + T,
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gyx)= - x% - x% - x% -»—.x‘% =X Xy Xy txg+ 8,

g2x) = —x} — 2x3 —x3 — 2x2 +x, +x, + 10,
g3(x) = —2x? —x} — x} ~ 2%, txy +x4+5,
84(x)=5-x,, gMKxX)=5-x,,

X9 =(0,0,0,0).

Problem 4 Colville, ref. [21],

4, = 5357 a, =0.835  ay =37.293  q,

= - 40792
a5 =85.334 a5 =0.568E—2 a; =0.626E-3 ag =— 220E—3
ag =80.512 a;=0.00713 @, =0.00299 a;, =0.00218

;= 9.300 a, =000470 a;5=0.00125 a5 =0.00190
min f =ayx} +ayx xg +azx, +a, ,

ry =as tagx,xs tagx X, tagx;xs ,

Py =g *a1gXyXs +ay XXy +apx,

ry =apy tax;xs tapsx;x; taex3xy

Constraints (all 2 0):

gi(x)=ri(x), 8,(x)=92 —ri(x),
g3(x)=ry(x)-90, 84(x)=110 —ry(x),
gs(x)=r3(x) - 20, 86(x) =125 —ry(x),
g(x)=x; — 78, ‘ gg(x)= 102 - Xy,
8o(x)=x45 — 33, 810(x)=45—-x,,
g11(x)=x3 - 27, g12(x)=45 —x3,
813(x)=x4 —_27 , guux)=45 ~x, ,
gis(x)=xg5 — 27, gi16(x) =45 — x5 ,

xo = (78.62,33.44, 31.07, 44.18, 35.32) .
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Problem 5 Pearson, ref. [22], appendix B

max
g =1-x}-x},
gy =1-x3-x,
=1 = (v =x5)2 +(xp-x6)?
&s Xy —Xs Xp-Xg)"s
g =1- (x3—x5)2—(x4-x6)2,
811 TX3Xg

813 TX5Xg — XgX7

Initial point:

g =1-xj5,
g =1 —x}t —(x,~x9)?,

g =1 —(x;—x7)2 +(xy,—x4)?,
gg =1 —(x3—x7)* —(xs—xg)%,
810 T X1 Xq4 — X2X3

812 = —XsXg,

814 = Xg -

xy =(0.433, 0.25, 0.433, 0.75, —0.433, 0.75, —0.433, 0.25,

0.99999).

Problem 6 Pearson [22], appendix B (shell dual problem)

min

10 5 5 5
j=1 i=1 /=1 {=1
s 10 ,
gilx)=¢; +2 2 Cpixy + 3dx} - Ea,,y, 20, i=1,..,5
o j=1 =1
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Data for problem 6:

N
\
1 2 3 4 5
¢ 1 | ~15  -21 -3 18 -12
1 30 =20 10 32 -~10
2 | -20 39 -6 -3l 32
g 3 | -10 -6 10 -6 -10
4 32 31 -6 39 -20
s | -10 32 -10  -20 30
4 4 8 10 6 2y
1| -16 2 0 1 0 -40
2 0 -2 0 0.4 2 -2
3| -3 0 2 0 0 - 025
4 0 -2 0 -4 -1 -4
o S e X
i e 2 0o -4 0 0o -1
7 | -1 -1 -1 -1 -1 =40
8 | -1 -2 -3 -2 -1 -60
9 1 2 3 4 5 J
10 1 1 1 1 1 1

Initial point:

x; =1074, i=1,..,5,
y; =104, i=1,.,10, i#*7,
¥, =60.
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