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Constrained minimization is often done via interior penalty functions. Such functions can 
be very difficult to minimize using existing algorithms. In this paper, a new algorithm is des- 
cribed which is specially constructed to deal with such functions. It generates search directions 
by linearizing the objective and constraints about the current (interior) point, substituting these 
linearizations into the penalty function, and minimizing the result. Properties of the algorithm 
are derived, an efficient method for solving the direction finding problem is suggested, and 
computational results are presented. Preliminary results are also given on an extension tO quasi- 
barrier and exterior penalty functions. 

1. I n t r o d u c t i o n  

Penalty and barrier methods (e.g., exterior and interior penalty meth- 
ods) for solving nonlinear programs are now widely used I l l .  These 
solve a nonlinear constrained optimization problem by solving a se- 
quence of unconstrained problems. Their popularity is duc to thcir sim- 
plicity - they enable any unconstrained minimizer, with slight modifi- 
cation, to solve a constrained problem, and to their reliability-loosely 
speaking, the unconstrained minima found converge to a solution of the 
constrained problem. However, the unconstrained problems can become 
infinitely ill-conditioned as the penalty parameter tends to its limiting 
value [ 2 - 3 ] .  That is, the ratio of largest to smallest eigenvalue of the 
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l |essian matrix of  tile penalty function, evaluated at the unconstrained 
minimum, can become infinite. Hence, efficient unconstrained mini- 
mizers are needed. 

Powerful general purpose methods exist, e.g., a modified Newton 
method and algorithms of  the Davidon type [41. However, these a l l  
have certain deficiencies. Newtons method requires second derivatives, 
and coding these can be tedious, sometimes practically impossible, for 
complex problems. Davidon and other conjugate direction methods  re- 
quire only first derivatives, but  usually take more iterations than the 
Newton procedures [5] (although not  necessarily more computing 
time), and often require that an accurate one-dimensional search be per- 
formed [6] .  This latter requirement is particularly difficult to meet  
when minimizing penalty or barrier functions [7] .  Moreover, being 
general purpose procedures, none of  these take advantage of  the special 
structure of  penalty and barrier functions. Focusing for tile moment  on 
barrier functions, these are hard to minimize because they contain terms 
which approach infinily as the argument approaches zero. Newlou and 
conjugate direction methods use a quadratic to approximate such func- 
tions, and quadratics do not  approach infinity at any finite point. Be- 
cause of  this, the region over which a given quadratic adequately repre- 
sents such functions can be rather small. There is intuitive appeal to 
using instead an approximating function which also approaches infinity, 
and does so roughly where the barrier function does. Such a function 
could adequately approximate the barrier function over a large region, 
so that its mimmum would be close to the barrier mininmm. Finding 
this minimum and doing a one-dimensional search in its direction forms 
one step of  an iterative algorithm. 

In this paper we propose such an approximating function and develop 
an algorithm based, on it. By exploiting special structural features of  pe- 
nalty and barrier functions - some very strong monoton ic i ty  proper- 
ties - we prove that the search directions constructed are a lways  direc- 
tions of  descent, and that the algorithm converges in the limit. For prob- 
lems with convex objective and concave constraints, accurate estimates 
of  the Lagrange multipliers and a lower bound on the penalty function 
minimupa are readily available. The problem of  minimizing the appro- 
x imat ingfunc t ion  can be formulated so as not  to become infinitely ill- 
conditioned and has a great deal o f  structure. Some encouraging com- 
putational results are also given. Finally, extensions to quasi-barrier and 
exterior penalty functions are outlined. 
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2. Tl!e P 'alg°ri thm for barrier functions 
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The nonlinear progranl whose solution is dcsired is 

l 'roblem NLI:  

Minimize f(x) 

Subject to gi(x) >- 0, i = 1 .. . .  , m 

The feasible region is 

F = {xlgi(x)  >- 0, i = 1, ..., m} . (2.1) 

We assume the following 

Assumpt ion  1. f and all gi have continuous * first partial derivatives at 
all points in F. 

In this section, we consider solving NLP by a barrier algoritllm. Since 
these move toward a solution from points where all gi are positive, we 
must assume 

Assumpt ion  2. 

F ° : { x l g i ( x ) > O ,  i=  1, ..., m}4: 0.  (2.2) 

Central to the algorithm is a barrier function B, defined for positive real 
numbers, having the following properties [ 8] 

1. B(z) is continuous for z > 0 
2. lira B(z) = + 

z-~O ÷ 

Using B, we define a P-function 
m 

P(x, r) = f ( x )  + r ~ B(gi(x))  (2.3) 
i=1 

where r is a positivescalar, and a 

* The cont inui ty  requi rement  is needed only in the  convergence proof. 
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P-problem 

minimize P(x, r) 

subject to x ~ F .  

It is shown in [8, 9] that, i f f  and allgi are continuous,  F ° 4: 0, and F is 
compact,  then the P-problem has an optimal solution, and any such so- 
lution is in F °. A barrier algoritlun for solving NLP proceeds by choos- 
ing a positive, decreasing sequence of  values {rk} tendillg to zero alld 
solving the corrcslxmtling scqtwnce of  P-prolqenls. ('onvergence of this 
algorithm to an optimal solution of  NLP can bc proved under very mild 
additional assumptions (see [8, 9] ). 

Almost all the computat ional  effort  in applying a barrier algorithm 
is expended in solving the P-problems. We now propose a new algorithm 
for this purpose. Let x* ~ F ° be the current value of  x, and define 

a o = f ( x * ) ,  b o = V f ( x * )  (2.4) 

a i = g i (x*) ,  b i = Vg i (x*) ,  i = 1 . . . . .  m (2.5) 

using this data, we define an approximating function for P at the point  
x* as 

m 

P(x;  x* ,  r) = a o + b to (x -x  *) + r ~ B(a i + b ~ ( x - x * ) ) .  (2.6) 
i--I 

That is, we form i by taking the P-function and replacing f and each gi 
by their linearization about  x* 
Note that 

if(x*; x*, r) = e ( x * ,  r ) .  (2.7) 

Further, assuming B (z) is differentiable for positive z 

since 

m 

v x ? ( x ;  x*,  r) = b0 + r 
l-- 1 

B'(a i + . b [ ( x - x * ) ) b  i 

??I 

(2.8) 

(2.9) VP(x* , r )  = b o +r  ~ B' (al )b  l 
i--1 
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we see that 

V x P(x* ;x* ,  r) = VP(x*, r ) .  (2.10) 

Hence P and P have the same values and ,gradients at the point x* 
The domain of  definition o f f i  is the interior of  the set 

LF(x*) = { x l a i + b ~ ( x - x * ) > -  0, i = 1, ..., m} . (2.11) 

/~ goes to + ~ on the boundary of  LF. Of course, one of the distinguish- 
ing features of  P is that it goes to + ~ on the boundary o f F ,  and it is in- 
tuitively appealing to approximate P with a function having this same 
feature, especially since LF is a good local approximation to F for x* 
near the boundary of  F. Of course, P is a good local approximation to P 
for any x* E F o since, for points near x*, f and the gi are approximat.ely 
equal to their linearizations. 

We use P to construct an iterative algorithm. Let 

s = x -  x *  (2.12) 

and define 

L S ( x * ) =  {s lai  + b~s >- O, i = 1 . . . .  , m }  . (2.13) 

Given a point x*, we determine a search direction s* by solving the fol- 
lowing direction finding problem: 

P r o b l e m  DF(x*) 
minimize rn 

/~(s;x*, r) = a 0 + bto s + r ~ B ( a  i + b~s) 
t=1 

(2.14) 

subject to 

a i + b f s > O ,  i = l  . . . . .  m 

and the normalization constraint 

(2.15) 

N ( s )  <_ 8, ~ > 0 (2.16) 
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where N ( s )  is any norm for E n. Since all norms are convex functions, 
(2.16) defines a convex set. 

The normalization constraint is needed because ); may not be a good 
approximation to P for "large" s. Note that DF(x*) is feasible, since 
s = 0 satisfies (2.15) - (2.16). Hence DF(x*) has an optimal solution for 
any point x* E F ° , and all solutions satisfy (2.1 5) strictly. 

Having found a direction s*, we choose a successor point to x* by 
solving the one dimensional minimization problem 

minimize P ( x *  + ~ s*, r) 

subject to the conditions c~ >_ 0 and x* + a s* E F. The process is iterated. 
Hence the proposed algorithm is 

P-a lgor i thm f o r  barrier f u n c t i o n s  

O. S,tart at. a point x o E F ° . Set i = O. 
1. Solve D F ( x i ) ,  yielding a solution s i. 

2. Choose ~ = ~i by minimizing P(x i + as i, r) subject to x i + ~s i E F 
and ~ >- 0 .  

3. Set Xi+ 1 = X i + oti, replace i by i + 1 and return to step 1. 
A variety of termination criteria may be used, usually based on the be- 
havior of  the sequences {VP(xi) } o r  {P(xi) }. 

We note that Marquardt's method for nonlinear least squares prob- 
lems [231 uses the same ideas as outlined above. Substituting lineariza- 
tions into a sum of  squares yields a quadratic approximating funct ion 
This is minimized within a spherical neighborhood of  the current point 
and the step size cz i is regulated by varying the radius of  the sphere. A~ 
shown by Bard [24],  Marquardt's method is one of  the most efficien 
for least squares problems. 

In order to endow this algorithm with some desirable properties, w~ 
make additional assumptions concerning the barrier function B. 
These are 

A s s u m p t i o n  3. For all z > 0, B is differentiable, strictly convex, am 
monotone decreasing. 
We note that this implies that  B ' ( z )  = d B [ d z  is monotone  increasing fo 
z > 0, a property which is used later. 

The conditions of  assumption 3 are satisfied by all commonly  use, 
barrier functions [8],  [9],  e.g., by B ( z )  = 1/z and B ( z )  = -In(z) .  Wit 
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small modification, they are also satisfied by all commonly  used penalty 
and quasi-barrier functions, as we discuss later. 
Under assumption 3, we have 

Theorem 1. ]~(s; x*, r) is convex in s over gS'(x*) for any x* ~ F °, and 
any r > 0. ttence any local solution of  Die(x *) is global. 
The proof  is immediate from the fact that the composit ion of a convex 
function and a linear function is convex. Since N is a convex function, 
the feasible region of  DF(x*) is convex, and the second statement  of  the 
theorem follows. 

The following result shows that DF(x*)  can produce zero directions 
if and only if x* is a stationary point  of  P. F o r f  convex and the gi c o n -  

cave, this means that zero directions are produced if and only if x* mi- 
nimizes 1' 

77teorem 2. s* = 0 solves I )F(x*)  if and only if Vl'(x*, r~ = O. 

Proof. Since P is convex, 0 solves DF(x*)  if and only if 

vF(0; x*, r) = 0. 

But, by (2.8) and (2.9) 

VP(0 ;x* ,  r) = VP(x*,  r ) .  (2.17) 

An important  property of  DF(x*)  is that it always produces direc- 
tions of  descent if x* is not  a stationary point  of  P. This property seems 
essential in algorithms which use derivatives, and is used in the conver- 
gence proof. 

Theorem 3. If 
a) VP(x*,  r) 4: 0 .  
b) The barrier function B satisfies assumption 3. 
c) s* solves DF(x*). 

Then 
Vpt(x *, r)s* < 0 .  

Before beginning the main proof, some properties of  N ( s ) m u s t  be 
established. Since some norms, e.g. L l and L**, are not  differentiable at 
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the origin, we must invoke the theory of  subgradients * and directional 
derivatives of  convex functions [ 10]. We use the notation aN(s)  for the 
set of  subgradients of  N at s, dom f for the effective domain of  a func- 
tion f,  and DF(x;  d) for the (one-sided) directional derivative of  a func- 
tion f at x in the direction d. Since the subgradient theory deals with 
functions convex over all of  E n , we alter the definition of  P(s; x*, r) so 
that it equals + oo for points not  in LS°(x*).  P is then convex over E" 
with effective domain LS ~ (x*). 

L e m m a  1. Let N be any norm for E n , s any vector, and y ~ ~N(s).  Then 

y t s  = N(s)I .  (2.18) 

P r o o f  Since N is finite for all s ~ E n, it is a proper convex function. 
Hence, for all s ~ E n, aN(s)  4= O. By definition, y ~ aN(s) if and only if 

Let 

N ( z )  ~ N ( s )  + y t ( g  _ $)  f o r  a l l  z ~ E n . 

Z = Ot S , o z > 0 .  

Since N is a norm 

N(a  s) = ~ N(s)  

so (2. !9) becomes 

( a - 1 ) N ( s ) > ( a -  1 ) y t s ,  for a l l ~ > 0 .  

If  a > 1, w e  can divide the above inequality b y  ( o r -  1) yielding 

N(s)  >- y r s .  

If  ~ < 1, d iv id ing  by  ~ - 1 

N(s)  <- y~ts . 

(2.19) 

(2.20) 

changes the sense o f  the inequality, so 

(2.21) 

* y is a subgradient of a function f at a point x if f(z) >-f(x) + y t ( z - x )  for all z ~ E  n, 
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Relations (2.20) and (2.2 l) imply 

N(s)  = y t s  

which proves lemma 1. 
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Since y ~ Of (x )  

D f ( x ;  d)  >_ y t d  , 

By definition o f f  

D f ( x ;  d)  = D f  1 (x; d)  + Df 2 (x; d) 

= V]'f (x )d  + Df 2 ( x ; a ) .  

Using (2.24) in (2.23) 

~Tff ( x ) d  + Df2(x; d) >- y t d  , 
o r  

Df2(x; d) >- y t d  - V f { ( x ) d ,  

But this is (2.22), so the lemma is proved. 

for all d E E n . (2.23) 

for all d ~ E n 

for all d ~ E n . 

(2.24) 

L e m m a  2. Let fl and f2 be proper convex functions with fl  differenti- 
able over dom f l ,  and define 

f=:l +I"2 

where dom f =  dom fl  c__ dom f2. Let x ~ dom f. Then, if y ~ O](x), 

there exists Y2 ~ af2 (x) such that 

y = V / l ( x ) + y 2  • 

Proof.  We must show that y - Vf l (X)e  Of 2(x). By theorem 10 of ref. 
[ 10], this is true if and only if 

D f 2 ( x ; d ) > - ( y - V f l ( x ) ) t d ,  f o r a l l d ~ E  n (2.22) 
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Proo fo . f  thleorem 3. By tile properties of  B 

a i + b ~ s * >  O. i = I . . . . .  m 

so the only constraint which can be binding in DF(x*) is the normaliza- 
tion condition. Since P" and the norm function N are convex and the 
normalization constraint can be satisfied strictly, we may use thc saddle 
point theorem of  Karlin [ 11 ]. By this result, there exists a multiplier 
k* .>.- 0 such that tile Lagrangmn function 

Lfs. k ;x* ,  r) = P(s ;x* ,  r) + k(N(s) - 5) 9 '~5 ) 

has a saddle point at (s*, k*). Necessary and sufficient conditions for 
this are 

1. s* minimizes L(s ,  k*;x* ,  r) 
2. ),*(N(s*) - 5)--- 0 
3. N ( s * )  <- 6 . 

Since L(s, k*; x* ,  r) is proper convex, condit ion ( I )  above holds if and 
only if * 0 ~ aL(s* ,  k*;x* ,  r). The function P is differentiable at s*, so 
lemma 2 implies that there is a y ~ aN(s*)  such that  

VP(s*;x*,  r) + ~,*y = 0 

or, using the expression in (2.8) for VP 

m 

bo + r  
i=1 

B'(a  i + b~s*)bi  + X*y = O. (2.26) 

Using (2.9) 
m 

v e t ( x  *, r)s* = bto s* + r 
i=1 

B ' ( a i )  b ~ s *  . (2.27) 

Taking the scalar product of  (2.26) with s* yields 

bto s* = - r ~ B'(a i + bts  *) bls* - k * y t s  * . 
i-'-I 

• See theorem 4, ref. [ 10]. 
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Substituting the above into (2.27) gives 

m 

t , t , ~ k , y t s ,  v p t ( x  *, r ) s*  = r ~ (B ' (a i )  - B ' (a  i + b is  ) ) b i s  
i=1 (2.28) 

By lemma 1 

y t s *  = N ( S * )  >~ 0 • 

Thus, since X* >_ 0, the last term on the right of  (2.28) is nonpositive. 
We now show that the sum in (2,28) must be negative. Consider the 
term 

[B'(ai)  - B ' (a  i + b~s*)] b~s* . 

If b[s* < 0, since B' is monotone  increasing, the bracketed term is po- 
sitive, and the product  is negative. The term is also negative if b[s* > O. 
Hence the sum in (2.28) is negative if at least one b~s* 4: O, and the 
theorem is proved for this case. Consider now the situation where 

b[s* = O, i = 1, ..., m . (2.29) 

Then, by (2.27) 

v p t  (x  *, r) s* = bto s* (2.30) 
and m 

P(s* ;x* ,  r)  = a 0 + r ~ B ( a i )  + bto s* 

i=1  

= ~(0 ,  x*,  r) + b~s* .  

If h~ls* > O, then P could be reduced by setting s* = 0, which contra- 
dicts tile optimality of  s*. llence b~)s* <- O. If b~)s* = 0, then s* = 0 is 
also optimal for DF(x*). By theorem (2), this contradicts the assump- 
tion that VP(x*, r) 4: 0, 
H e n c e  - f  

bto s* < O.  

By (2.30), this proves the theorem. 
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3. Special properties for convex programs 

Under appropriate convexity assumptions oll f and the gi. this/3"-al- 
goritlun has primal-dual properties which lead to valuable lower bounds 
and to estimates of  the Kuhn-Tucker multipliers. The following is as- 
sumed to hold in this section only. 

A s s u m p t i o n  4. For i = 1, ..., m, each function gi is concave over F ° and 
f is convex over F ° . 
An immediate consequence of  this assumption is that, in certain ins- 
tances, the optimal objective value in DF is a lower bound on min P. 
Define 

,~(x*, 5) = {xl a i + b [ ( x - x * )  >- O, i = 1, ..., m , 

N ( x - x * )  <- 6} . (3.1) 

Theorem 4. Let assumption 4 hold and assume that either 
(a) The set of  points x satisfying N ( x  - x * )  <- 6 contains a point 

which minimizes P(x,  r) over F, or 
(b) N (s* )  < 6, where s* solves DF(x*) 

Then 
rain {P(x;x* ,  r)l x ~ F (x*,  6)} <-- rain {P(x,  r)tx ~ F }  . (3.2) 

Proof. By assumption 4, for any points x, x* in F ° 

f ( x )  >- a 0 + b t o ( x - x  *) 

g i ( x )  < a i + b , . . . ,  . - ~ ( x - x * ) ,  i = I m 

(3.3) 

(3.4) 

By (3.3) and (3.4),, the " o u t e r  linearization" of  F contains F, i.e., 

LF(x*)  D_ F (3.5) 
SO 

L/~X, (x . )  _z_ F o (3.6) 

and /v  is defined over F °. Since B(z )  is monotone  decreasing for z > 0, 
(3.4) implies 

B(a i + b [ ( x - x * ) )  <_ B ( g t ( x ) ) ,  i "- 1, ..,, m (3.7) 
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for any x ~. F ° . Hence, using (3.3) and (3.7) 

P ( x ; x * , r ) < _ P ( x , r )  for al lx ~ F .  (3.8) 

Under hypothesis (a), let x ° ~/~(x*,  6) minimize P(x,  r). By (3 8) 

min {P'(x; x*, r) lx  ~ F(x  ~, 6)} <- i ( x  ° ;x*,  r) <- P(x  ° , r) 

and the theorem is proved. Under hypothesis (b) 

min {if(x; x* ,  r ) lx  ~ F ( x * ,  6)} = min {P(x;x*,  r)lx ~ LF(x*)}. 

By (3.8) 

min {ff(x;x*,  r) lx  ~ F}  <-- min {P(x,  r ) lx  ~ F } .  (3.9) 

Since LF(x*)  ~- F 

min {P(x;x*, r)lx E LF(x*)} <- min {ff(x;x*,  r) lx  ~ F } .  
(3.10) 

Relations (3 .9) - (3 .10)  prove the theorem. 

By theorem 4, min P, in conjunction with the current  best feasible 
point, may be used to terminate computat ions when the difference be- 
tween the two values is less than some epsilon. As we will show shortly, 
if P is strictly convex there is a subsequence of  optimal directions s* 
which converges to zero, and the corresponding subse%uence of  points 
x* approaches a P-minimum. It is easily seen that min P then converges 
to min P, so the two bounds approach each other. 

In addition to this lower bound  on min P, each P-minimization for 
which the normalization constraint is not  binding provides an estimate 
of  the Kuhn-Tucker multipliers for NLP, and a lower bound on min f. 
Both arise from a feasible point for the Wolfe dual of  NLP. 

Theorem 5. Let s *  solve DF(x*) and assume that N(s*)  < & Define 

and 
u l ( x .  ) = _ r B , ( a  t + t . bis ), i = 1 . . . .  , m 

u(x*) = (ul (x*), .,., u, .  (x*) ) ,  
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Then (x*, u(x*) )  is feasible for the Wolfe dual of NLP and 

f f x * )  - u ( x * ) g ( x * )  <- min { f ( x ) l x  ~ F }  . 

P roo f  The Wolfe dual of NLP is [12] 

maximize L (x, u) 

subject to 

. V x L ( X ,  u) = 0 
and 

u>_0 

where 
L ( x ,  u) = / (x )  - u g ( x ) .  

Since s* is an unconstrained solution 

o r  

V f f ( s * ; x * ,  r) = b 0 + r 

PIt 

b o = ~ u i ( x* )b i .  
i = l  

P?I 

B'(a i + b ~ s * ) b  i = 0 
l = l  

L.S. I, asdon 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

Since B(z )  is monotone decreasing for z > 0 

B'(a i + b~s*) < 0 
SO 

u i ( x * ) > O ,  i = 1 . . . . .  m .  (3.16) 

By (3.15) and (3.16), (x*, u(x* ) )  satisfies (3.12) and (3.13), and so is 
feasible for the Wolfe dual. Further, under the convexity assumptions 4, 

L ( x ,  u) < rain { f ( x ) l x  c F}  

for any dual feasible point (x, u). Evaluating L at (x* ,  u ( x * ) )  yields 
(3.11). 
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Even when the convexity assumptions are dropped, u ( x * )  is a valid 
estimate of  the multipliers, provided only that the optimal solution of  
DF is unconstrained, so that VP=  0 there. As r ~ O, tti(X*)will tend to 
zero for gi which remain positive, so complementary slackness will hold. 

4. Conditioning of  DF  and strict convexity of  

The second partial derivatives of  P are 

2 p m 

- r ~ B"(a  k + btk s) bkibk] . 
~ X i ~ X j  k =1 

Hence the Hessian of  P may be written as a linear combinat ion of  dyadic 
terms 

r n  

V 2 ~ = r  ~ B" (a  k +btk s) b kb tk .  (4.1) 
k=l  

Alternatively, defining 

D = diag (B"(a  i + b~s)) 

and the Jacobian of  the constraints 

j =  " 

LbmJ 
we have the expression 

V 2 P  = r J ' D J .  

Let B ( z )  = 1/z. Then,-ifs* solves DF(x*)  

rB" (a  k + h i s * )  = 2r/ (a  k + b[s* )  3 = 2r-!12 Uk(X*)3/2 
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SO 

V 2/;(.s'*;x*, r) = 2r 1/2 

m 

UktX*) 3/2 I, k I/k. 
k=l  

As r ~ 0, x* approaches an optimal solution to NLI' and uk(x*)  ap- 
proaches the k th Lagrange multiplier. This multiplier tends to zero f o r  
inactive constraints gi" Hence V2P, evaluated at opt ima o f  DF, ap- 
proaches 

M = 2 r  -1/2 ~ ua/2(bkbtk) (4.2) 
k ~ I  

where I is the set of  indices of  active constraints and Ug is the k th 

Lagrange multiplier. Similar conclusions are reached for any twice dif- 
ferentiable function B satisfying assumption 3. 

If I contains r < n indices, M is positive semidefinite of  rank r, hence 
singular. If Newtons  method is used to solve DF, inversion of  v 2 P w i l l  
become increasingly difficult. A possible remedy for this (which has not  
yet  been tried computat ional ly)  is to choose N as the L 2 norm, and to 
replace the normalization constraint by 

N 2 = s t s  (_ ~ . (4.3) 

If this constraint is incorporated into the objective by a Lagrange mul- 
tiplier ;k, the Hessian of  the augmented objective, L, is 

V2L = V2~  + 2;~I. 

A s r ~  0 

V 2 L ~ 2r - l /2M + 2XI  = 2r -112 (M + Xr 1/2 I ) .  

I f  ~k/"1/2 approaches a finite positive value as r ~ 0 then V2L approaches 
a positive definite matrix with finite condition number  (ratio of  largest 
to smallest eigenvalue). This is in contrast  to P, since Powell has shown 
[2] that the condition number  of  V2p approaches infinity if there are 
less than n binding constraints at the opt imum. The above requirement  
on ~r 1/2 means that the region defined in (4.3) cannot  be too  large as 
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r ~ 0. Since this region should shrink as a solut ion point  is approached,  
this does no t  appear to be a serious l imitat ion.  

Strict  convexi ty  o f  /7 is character ized in the fol lowing theorem. 

T h e o r e m  6. P is strictly convex if and only i f m  >- n and tile set {b I . . . . .  
b m } conta ins  n independent  vectors. 

Proof .  L e t s  1 4 :s  2 , 0 < t ~ <  1, a n d ~  = 1 - a .  Then 

i f (ors  1 + ~ S  2)  = ot(a  0 + btosl ) + -d(a 0 + btos2) 

m 

+ r ~ B [ a ( a  i + b[s 1 ) + -d(a i + b~s2)] . 
i=1 

By strict convexi ty  o f  B 

if  and only  i f  

Hence 

B [ a ( a  i + b~s 1) +-d(a i + b~s2)] < 0t B ( a  i + b[s 1) 

b~s 1 4: b~s 2 • 

if  and only  if  

b sl b s2 

P ( a s  I + ds  2) < a P f s  I ) + ~-Pfs 2) (4.4) 

for s o m e i ,  i = 1 . . . . .  m 

i.e. i f  and only  if  s 1 and $2 do no t  satisfy 

b~s 1 = b~s 2 , i = 1 . . . .  , m . 

Since s I and s 2 are arbitrary,  except  for  s I 4: s 2, (4.4) holds  i f  and  only  
i f  there is no  s except  s = 0 such tha t  

b ~ s = O ,  i = l , . . . , m .  

+ a B (a t + b~s 2 ) 
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But this is true if and only if the set {b 1 ..... bin} contains n independent  
vectors. 

Strict convexity of  P is important  if a Newton method is to be ap- 
plied in solving DF_ since then 72 ,  ~ is positive definite, hence invertible. 
By theorem 6, if P is not initially strictly convex, it can be made so by 
adding upper or lower bound constraints on each x i to NLP, where the 
bounds are chosen large enough so as not  to restrict the optimal solution. 

5. Convergence 

We define a solution to the P-problem as any point  x where 

V P ( x ,  r) = O . 

To prove convergence to such a stationary point, we use the following 
theorem of  Zangwill [9, p. 281 ]. 

C o n v e r g e n c e  t h e o r e m .  Suppose that the P-algorithm of  section 2 satis- 
fies the following conditions 

I. If  the algorithm terminates, it terminates at a solution 
2. If  there exists a convergen t subsequence 

x k -* x*, k ~ K 

where x* is not  a solution, and i f s  k solves DF(xk),  then there is a K l c 
K such that 

(a) s k -~ s*,  k E K 1 
(b) VPt(x *, r )s*  < 0 

(c) A 6 > 0 exists such that, for any a satisfying 0 <- a <- 8 

,v k + a s  k E l " ,  k ~ K  I . 

Then tile algorithm either terminates at a solution or the limit o f  any 
convergent  subsequence is a solution. 

Def in i t ion .  A point to set map M: x --, D ( x )  is closed (i.e. upper  semi- 
continuous) at a point x* if 
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and 

x k ~ x *  , k ~ K  

s k • D ( x  k )  

s k - * s *  , k ~ K  

imply 
s* E D ( x * )  . 

Let 
D ( x )  = {s i s  solves DF(x)} (5.1) 

and let M be the map M: x -~ D ( x ) .  The following theorem is central to 
the convergence proof. 

T h e o r e m  7. Under assumption 1, the map M defined above is closed at 
any point x E F ° . 

Proof .  Let x* ~ F ° and choose a sequence o f  points {Xk} K , all i n F  °, 
such that 

Let 

where 

X k "-~X*,  

S k ~ S *  , 

s k ~ D ( x  k )  

k ~ K .  

k ~ K .  

(5.2) 

and  assume 

s* q~ D ( x * )  . (5.3) 

By definition 

gi,(Xk) + Y g ~ ( x k ) s  k > O,  i = 1 . . . .  , m (5.4) 

N ( s  k )  < ~ . (5.5) 

Since the left hand sides of  (5.4) and (5.5) are continuous functions of  
(x, s), (x*, s*) satisfies (5.4) - (5.5), i.e. s* is feasible for DF(x*).  By 
(5,3), there is an s also feasible for DF(x*) with lower objective value; 
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and 

Define 

g i ( x * ) + V g ~ ( x * ) g > O ,  i = 1 . . . .  , m  

N(a) <_ 8 

i (a;  x*, r) < i (s*;  x*, r) .  

e = P(g*;x* ,  r ) -  P ( s ; x * , r ) >  0.  

By continuity of P in (s, x) 

lim i ( s k ; x  k, r) = if(#*; x*, r) .  
k~_K 

Hence for 
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(5.6) 

(5.7) 

(.5.8) 

sufficiently large k 

I P(Sk;Xk,  r) -- P ( s* ;x* ,  r)l < e/2.  (5.9) 

continuity of Vgi, (5 .6)  implies that, for k sufficiently large Using the 

gi(xk ) + Vg[(xk )~ > 0 (5.10) 

so if(g; x, r) is defined and continuous in x for all x satisfying (5.10). 
Thus, for sufficiently large k 

I ff(g; x k, r) - i (g;  x*, r)l < e/4.  (5.11) 

Inequalities (5.8), (5.9), and (5.11) may be represented geometrically as 
follows 

if(g; x k , r) in here i ( s  k ; x k , r) in here 
A ^ , 

~ e ; 4 ~ - - e / 4 - ~ e / 4 ~ - e [ 2 - - ~ - - e / 2  1' 

i G*, r) r) 

Clearly, for k sufficiently large 

~(g; Xk, r) < P(sk ; xk, r) .  (5.12) 



Minhnizing barrier and penalty functions 85 

By (5.7) and (5.10), ,~' is feasible for DF(Xk)  for large k, so (5.12) con- 
tradicts the optimality of  s t in DF(xk). Hence our assumption that 
s* ~ D(x*) must have been false, and the theorem is proved. 

We now state and prove the main convergence theorem. 

Theorem 8. Under assumptions (1)~-(3), the P-algorithm of  section 2 
either terminates at a point x such that VP(x, r) = 0, or the limit of  any 
convergent subsequence is such a point. 

Proof The conditions of  ZangwiU's convergence theorem will be veri- 
fied. We assume for purposes of  this proof  that the termination criteri- 
on used is VP = 0. Since a downhill direction is generated whenever 
VP 4: 0, condition I holds. Since all s k satisfy the normalization con- 
straint, and hence are in a compact  set, condition 2a holds. Consider 
condition 2h. All points xg of  tile subsequence indexed by K t are in 
I a'. The limit point x* must also be in la,,  because 

P(Xk+l , r) < P(Xk,  r ) ,  k E K l (5.13) 

and x., lying on the boundary o f  F would imply 

lim P(Xk, r) = + oo 
kEK 1 

contradicting (5.13). Then, by theorem (7), 

s* E D(x*) . 

Since, by assumption 

VP (x*, r) 4 : 0  

theorem 3 states that condition 2b holds. Turning finally to 2c, since all 
points xg, k ~ K 1 and x* are in F o., there exist/ i  k > 0 such that, for all 
k E K  1 

f ~  

X k + o r s  k E F ,  for all 0 < _ a < - 5 a  . (5.14) 

It is convenient to choose/ i~  as the Euclidean distance from x k to the 
nearest boundary  point. If  
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inf {5 k} = 0 
k E K  1 

then there is a subsequence of  {6 k} KI 
such that 

defined by an index set K z C K t 

lira 5 k = 0 .  
k ~ K  2 

This implies that the subsequence {Xk}K2 converges to a point on the 
boundary of  F. But {Xk} K2 converges to x* E F ° , so this is a contradic- 
tion and 

5 * = i n f  {Sk} > 0 .  
' k E K  1 

Hence (5.14) holds with 6 k replaced by 6", condition 2c is satisfied 
and the theorem is proved. 

Under additional hypotheses, more may be said about the limiting 
behavior of  the P-algorithm. 

Theorem 9. Let {Xk} K be a convergent subsequence of points generated 
by the P-algorithm with limit x* and let s k solve DF(x k ). If P(s; x*, r) is 
strictly cinvex,  then 

lim s k -- 0 .  
k E K  

Proof. By theorem 8 

VP(x*, r) = 0 .  (5.15) 

By theorem 6, P(s; x*, r) is strictly convex if and only if m ~. n and tile 
set { V g l ~ * )  . . . . .  Vg,, (x*)} contains n independent  vectors. Then, by 
(4. I), V2p(s;x *, r) is positive definite for all s E LS'° (x*). But V21;(s;x *, r) 
is the Jacobian of the system 

Vff(s; x ~'. r) = 0 .  (5.16) 

Since ff is strictly convex and (5,15) holds, (5.16) has the unique solu- 
tion s --- 0. Since the Jacobian of  (5.16) is nonsingular, the implicit func- 



Minimizing barrier and penalty ]itnctions 87 

tion theorem states that (5.16) has a solution s ( x )  for all x in some 
neighborhood of  x*, and s ( x )  is a cont inuous function of  x. But con- 
tinuity o r s (x )  implies 

lira s (x  k )  = s ( x * )  = 0 .  
k~K 

6. Properties with linear constraints 

Many nonlinear programs contain some linear constraints. There is 
substantial evidence [8, 13], that these are best handled by including 
only the nonlinear constraints in the barrier term, and minimizing the 
barrier function subject to the linear constraints. Such an opt ion is 
easily incorporated into the if-algorithm. Let 

and 
F I =  { x l c ~ x < _ e  i, i = 1 . . . . .  r, c ~ x = e i ,  i = r +  l , . . . , s}  (6.1) 

F n = { x l g i ( x ) > -  0, i = 1, ..., m} .  (6.2) 

The set F t is determined by some of  the linear constraints of  the prob- 
lem NLP, whose feasible region is F n n F r The modified P-problem is 

m 

minimize P ( x ,  r) = f ( x )  + r ~ B ( g i ( x ) )  
i=1 

subject to 

x ~ F n n F t . 

Any solution to this problem will b e  in F~n, so P must be minimized sub- 
jec t  to x E F t. Minimization of  i must also incorporate this condition, 
so DF(x*)  is most easily written in terms of  x, rather than s = x - x*. 
The modified DF(x*) is 

minimize P ( x ;  x * ,  r) 

subject to 

x n !,) 

where ~"(x *, 6) is defined in eq. (3. i ). 
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If x ° solves the above and s* = x ° - x*, then s* is obviously a feasible 
direction for P at x*. If the L~ norm is used in DF, then F n / . )  is de- 
termined by linear constraints. Thus any method which can solve lin- 
early constrained I~rolqt'ms (e.g. that of  (;oltll'arl~ I I.ll or Mc('ormick 
I I 5 1  ) l l lay be used lo solve I)/". 

All resulls derived earlier hold ik)t ihis luodified version of  I)1" if Ihey 
are rephrased appropriately. For example, theorem 2 now states that x* 
solves DF(x*) if and only if x* is a Kuhn-Tucker point lk)r the modificd 
P-problem. Theorem 3 also applies, with condition (a) modified to state 
lhat x* is not a Kuhn-Tucker poitlt  for the P-problem, and lhc added 
assumption that x* ~ t'). The proofs arc tnuch tile S~lllIC. The only sig- 
nil'icanl change is to modify tile optimality conditions for I)/" and the 
P-problem to accomodate the linear constraints. Similar comments  apply 
to theorems 4 and 5. Turning to the convergence theorem, we define a 
solution to be a Kuhn-Tucker point for the P-problem. Theorem 7 is 
true with F ° replaced by F~n n Ft, and theorem 8 holds with the new 

defini t ion of  solution point. Again the proofs require only minor  modi- 
fication, and will not be redone here. 

7. Extension to quasi-barrier and exterior penalty functions 
Quasi-barrier functions 

Allran ~tnd .lohnsen [ 161 propose solving NLP by successive uncon- 
strained n~inimization of  tile function 

where 

and 

m 

P(x,n)=f(x)+ 
i=1 

exp ( -  Tin gi(x)) 

0 <  Tin < T/,.+ 1 , i = 1 . . . .  , m  

lira 7i,, = +oo 
I I -* o~ 

They prove that, for sufficiently large n, P(x, n) has an unconstrained 
minimum in F ° . The hypotheses  under which this is true are very similar 
to those for barrier functions. Cgnvergence o f  {rain P(x, n)} to rain f 
and o f  the sequence of  minimizing points to an optimal point  is also 
proved. 
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The function 

Q(Tz )  = e -Tz ,  T >  0 

is not a barrier function for any finite T, but approaches one as T-~ + oo. 
The P function corresponding to P(x ,  n), with base point x*, is 

where 

m 

i ( s ; x * ,  ,7) = a  0 + bto s + 
i=1 

exp [ -  Tin (a i + b~s)l 

S = X  - - X *  . 

As with barrier functions, i may not have an unconstrained minimum 
even i fPdoes ,  so a normalization condition must be included in DF(x*). 
In contrast to previous sections, P is defined for all s ~ E n , so the prob- 
lem DF(x*)  is 

subject to 

minimize if(s; x*,  n) 

N(s)  ~ 5 . 

Q(Tz)  satisfies the conditions of  assumption 3 for all real z. Hence, it 
is easily verified that all theorems and results of  previous sections apply. 

Theorem 7 now states that the map M is closed at any point x ~ E n. 
The proofs, especially those in theorems 7 and 8 are simplified, since 
P(x,  n) is defined over all of  E n . Thus the ,~-algorithm is a valid approach 
for minimizing quasi-barrier functions. 

Exter ior  penal ty  func t ions  
Here we focus at tention on the penalty function 

• P(z )  = (min_(0, g ) ) 2  . 

This is used to solve NLP by unconstrained minimization o f  
tn 

G(x ,  k) = f ( x )  + k ~ P ( g t ( x ) )  
I" l  

(7.1) 

(7.2) 
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where k > 0 and k -~ + oo. Properties of the method are given in [91. 
The associated problem DF(x*) is 

m 

minimize a o + bto s + k ~ P(a i + b[s) = G(s; x*, k) 
i=1 

(7.3) 

subject to 

N(s) <_ ~ . 

Graphs of  P(z) and P'(z) are shown in fig. 1. 

e(z )  

-? 

- - - 2  

F ( z )  

Fig, I, I'(z) ;rod P'(z), 

Since P is ¢olwcx, Ilit;orcms I and '2 slill hold. The monolonici ly con- 
ditions of assUnll)lion 3, however, apply only for z < O. Although P is 
differentiable for all z, P and P' are identically zero for z > 0. Despite 
this,  t h c o r c m  3 is still t rue,  as we  n o w  show.  

Theorem IO. l,'or I)(z) and G(x, k) in (7 .1) - (7 .2)  assume 
(a) VG(x*,  k) 4~ 0 
(b) s* solves DF(x*). 

Then 

V G t ( x  *, k ) s*  < O. 
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Proof .  Letmuas 1 and 2 of section 2 and the saddle point conditions 
may be applied here as in the proof  of theorem 3 to yield 

V G ( s * ; x * ,  k)  + X*y = 0 

where 
y E a N ( s * ) .  

Writing out the expression for vG yields 

By (7.2) 

b 0 + k ~ P'(a i + b l s* )  b i + X*y = 0 .  (7.3a) 
i--1 

rn 

V G t ( x * , k ) s * = b t o s *  + k ~ P ' (a i )b [ s*  . 
i=1 

Taking the scalar product of  (7.3a) with s* yields 

m 

b~s* = ~ k  
i=1 

P'(a i + b ~ s * ) b t s  * - X * y t s  * . 

Substituting (7.5) into (7.4) 

V G t ( x  *, k ) s*  = k 

(7.4) 

(7.5) 

I t l  

i ; l  

(P'(a i) - P'(a t + b~s*))b[s*  - •*yts*  . 
(7.6) 

As in theorem 3, we may conclude that  

y t s *  >-- 0 

so the last term on t~le right of  (7.6) is non-positive. Consider now the 
term. - - 

ti (p , (ai)  e , (a  i + t , t , = - . b i s  ) ) b i s  . (7.7) 
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Using the monotonic i ty  of  P', it is easily seen that 

a i < 0 ~ t i < 0 if b~s* 4 : 0  (7.8) 

[ t i = O  if a i+b~s*>--O 
> ai 0 

l i < O  if a l+b~s*  < O. 
(7,9) 

Hence each t i is non-positive. We will show that at least one t i is neg 
ative. By (7 .8) - (7 .9)  there are only two cases under which all t i are 
zero: 

(1) b~s* = O, i = 1, ..., m 
(2) for all i such that b~s* ~ O, a t >- 0 and a i + b~s* ~ O. 

By showing V G t ( x  *, k)s* < 0 for these cases, we prove tile theorem. 
Assume that case 1 holds. Then 

m 

G(s*;x*, k) =a  0 + k ~ P(a i) + bto s* 
i=1 

= f f ( O ; x * ,  k) + b'os* (7.10) 

while, by (7.4) 

V G t ( x  *, k ) s *  = bto s* . (7.11) 

Under case 2 

I = { i l b ~ s * ~ O } 4 : 0  
and 

G ( s * ; x * , k ) = a  O+btO s * + k  ~ e ( a i ) + k  ~ P(a i + b f s * )  
iq~l i~l 

= a O + k ~ P(a i) + btO s* . 

Since a i >- O, i E I, P(ai) = O, i E I, so 
m 

G(s*;x*,  k) = a  0 + k ~ P(ai) + bto s* 
i=l 

= ~ ( O ; x * ,  k) + b'os* 
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as in case 1, eq. (7.10). Relation (7. l 1 ) also holds for case 2, so we focus 
on (7 .10)- (7 .11) .  
If bto s* > 0, then G can be reduced by setting s* = 0, which contradicts 
the optimality of  s*. If  bto s* = 0, then s* = 0 is optimal for DF(x*).  By 
theorem 2, this contradicts hypothesis (a) of  the theorem. Hence bto s* < 
0 and, by (7.11 ), the theorem is proved. 

Application of  the G-algorithm to exterior penalty functions is per- 
haps even more attractive computa t iona l ly  than applying it to barrier 
functions. This is because G in (7.3) is piecewise quadratic, the pieces 
being polyhedral regions where various subsets of  the linearized con- 
straints are negative. Hence, if N is the Lo, norm, DF  is easily trans- 
formed into a quadratic program, which can be solved in a finite num- 
ber of  pivot steps. Other efficient schemes also exist. Theoretical  and 
computat ional  work on this exterior penalty case is now in progress, 
and will be tile subject of  a future paper. 

8. Computat ional  results 

To evaluate the efficiency of  this P algorithm, 7 test problems were 
solved. These had from 2 variables and 2 constraints to 15 variables and 
20 constraints, and are specified in appendix 1. All have linear or qua- 
dratic constraints, and quadratic or cubic objective functions. In prob- 
lems 1 -4 ,  DF  was solved by separable programming with column gene- 
ration. The details o f  this approach are as follows. New variables t i are 
introduced, and D F  is re-expressed as 

m 

minimize bto s + r ~a B(t i)  
i = 1  

subject to 

(8.1) 

0 <-- t i <-- a i + b~s, i = 1 . . . . .  m (8.2) 
and 

- 5 ~ - s i < - 5 ,  i = 1  .. . .  , n .  (8.3) 

Where N has been chosen as the L** norm. Since B is decreasing, ti will 
equal a i + b~s in any optimal solution of  (8 .1) - (8 .3) .  Suppose now that, 
for each i, a set of  grid points {t¢} is chosen and B(ti)  is replaced by  its 
piecewise linearization over this grid: 
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where 

B( t i )  = ~a x i j a ( t q )  
/ 

t i = ~ hi / t i /  

x o = 1, ;~o >- o .  
/ 

DF in (8 .1) - (8 .3)  is then transformed into an approximating linear 
program in the variables Xi/: 

minimize bto s + r ~ XoB( t i i )  (8.4) 
i,/ 

subject to 

- b ~ s +  ~ X i i t i i + r i = a i ,  i = 1 , . . . ,m  
/ 

(8.5) 

•0 --" 1, i = I, .... m (8.6) 
1 

- 6 < s i < 8  , i = 1 ,  .... m (8.7) 

Xii 2 0 ,  a l l / , / .  

An initial basic feasible solution is 

(8.8) 

)kil = 1, til = r i = O . 5 a  i, i =  1 . . . .  , m  

whose associated basis matrix is triangular. The bounds (8.7) can be 
dealt with by upper bounding methods.  

Instead of  choosing the grid points in advance, they can be generated 
via subproblems. Assume a feasible basis for (8 .4) - (8 .8)  is available, 
and let u i and v i be the simplex multipliers of  this basis, with u i asso- 
ciated with (8.5) and v i with (8.6). The relative cost factor  for ?~ is 

cil = r B( t i / )  - u i t  0 - v i . (8.9) 
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The standard simplex criterion is to search for that grid point yielding 
minimal c i i .  This leads to the subproblem 

minimize r B ( t i )  - u i t i (8.1o) 

subject to 

t i >- 0 .  (8.11) 

For this to have an optimal solution with t I > 0 it is necessary and suf- 
ficient that 

r B ' ( t  i )  = u i . (8.12) 

Since B is monotone decreasing, (8.12) has a solution if and only if 
u i < 0. The condition u i <_ 0 can always be guaranteed, since if u i >- O, a 

slack variable can enter the basis. Assuming U i < 0, (8.12) has the solu- 
tion 

t i = ( - -  r / u i )  1/2 if B ( t )  = l / t  

t i = --  f l u  i if B ( t )  = -In( t )  

The grid point with the most negative relative cost factor is used to form 
a column, which is brought into the basis. Solutions for u i = 0 are also 
easily derived. Dantzig [ 17] proves that this algorithm converges in the 
limit. 

In test problems 5-6,  DF was solved by Goldfarb's modification of 
Davidon's method to account for linear constraints [14]. This was 
adapted to the special case of upper and lower bounds, yielding sig- 
nificant simplifications. The linear search required by Goldfarb's al- 
gorithm was accomplished by a regula falsi procedure. The linear Search 
required after a direction of travel is found by DF was done by cubic 
interpolation, similar to the procedure outlined in [ 18]. The termination 
criteria for this linear search were to stop when 

cos0 = - - l s t g [  < 10 -3 
Ilsll, UgLI 

or when 3 cubic interpolations have been made, For purposes of corn- 
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parison, all test problems except that in table 2 were also solved using 
the Davidon-F le tcher -Powel l  algorithm [181 to minimizeP(x,  r). The • 
version used was restarted every n + 1 cycles, as suggested in [ 15 ] and 
[ 19], by resetting the H matrix to the identity, and used the same'one 2 
dimensional search as the P-algorithm. All computat ions were done on 
the Univac 1108 computer  in single precision arithmetic (8 decimal 
digit word length), and all algorithms were coded in FORTRAN 5. 

The number of  cycles given in tables l - 1 2  for both P and Davidon 
algorithms are those required for P to become less than or equal to the 
numbers in the rain P column. These numbers are equal to the final P 
values obtained to 4 or 5 significant figures. Since all computat ions 
carried only 8 decimal digits, and since the directions produced by DF 
were probably correct only to 2 or 3 digits, it was felt that these figures 
best represented the true performance of  both algorithms. In general, 
any iterations beyond those listed made little or no progress in reducing 
P. 

Tables 4 - 6  illustrate 2 different strategies for choosing 6 in N(s)  <_ 6. 
Tables 4 - 5  use a constant value for 6. In table 6, if a i is the optimal 
step size value at iteration i, then 8 was replaced by 8/1.5 i f a i  < 0.8, by 
1.56 if ~i > 1.2, and was unchanged otherwise. The rationale here is that 
ai values near uni ty indicate that P approximates P well over the set de- 
fined by N ( x - x  i) <_ 6, since the actual step size to the minimum of  P 
along s i is nearly that predicted by P. If the ai are less than one, the 
region of  linearization is too large, and conversely if ai > 1. This simple 
strategy produced the best results in problems 3, 4 and 5 (all cycles in 
problem 4 had N(s)  < 6), but led to poor results (84 cycles for r = 1) in 
problem 6, where it decreased 8 prematurely. There, a constant  8 work- 
ed much better. It appears that some method for decreasing 6 as rain P 
is approached is desirable, and that it should be based on the behavior 
of  the sequence of  ai values. However, a more sophisticated rule is need- 
ed. 

In problem 5 for r = l, separable programming required approxima- 
tely 200 pivots to solve each of  the first two direction finding problems, 
and terminated trying to take tile logarithm of  a negative number  in di- 
rection finding problem 3. Hence the Davidon algorithm for bounded 

• variables was adopted. This led to much  more rapid convergence in DF  
In problem 5, computat ions in DF were terminated when 

l i < s l < t t  I =~ l a e / a s t l < e  
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Si = li => O "P/~ S i >- 0 

S i = l l  i ~ a P / a s  i<~ 0 

where e = 10- 2. In problem 6, this led to long computat ion times in D F  
(see the column IGI < 10  - 2  in table 12). Hence an additional criterion, 
which terminated computat ions  when 

% A F =  <T/ 

for 5 consecutive values of" i. Table 12 shows results for rl = 10-2 and 
77 = 10 -4 .  Both result in a much smaller number of  D F  iterations. 77 = 
10-2 appears too loose a condition, since rain P is higher than in the 
other two cases. 

Table 1 
Problem 1, B(z) = l /z  

r Cycles, P Cycles, Davidon Avg. DF cycles rain P 11~TPII 

1 9 3 7 5.3466 < 2 X 10 - 3  
10 - 1  4 2 7 2.1475 < 2 X 10 - 3  
10 - 2  3 2 5.6 1.3388 < 2 × 10 - 3  
10 - 3  3 2 5.6 1.1045 < 2 X 10 - 3  

Table 2 
Problem 1, B(z) = - In(z)  

r Cycles, P" Avg. DF cycles min P UgTP II 

1 6 5.2 3.1990 0.76 X 10 - 2  
10 - 1  3 6.0 1.5961 0.15 × 10 - 3  
10 -2 2 5.0 1.1042 0.20 × 10 -2 
I0 -3 2 5.0 1.1050 0.23 × 10 -2 
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Table 3 
Problem 2, B(z)= 1/z 

r Cycles, P" Cycles, Davidon Avg. DF cycles rain P 

1 3 6 39 10.362 
10 - 1  2 4 25 4.1244 
10 - 2  2 3 18 2.2544 
10 - 3  1 3 13 1.6781 
10 - 4  1 2 7 1.4975 

Table 4 
Problem 3, B(z) = 1/z, 6 = 0.5 

r Cycles,/~ Avg. DF  cycles min P LI PJl 

1 20 36 - 38.136 4.3 
10 - 1  9 22 - 42.333 0.92 
10 =2 9 17 - 43.476 1.4 
10 - 3  8 14 - 43.810 2.2 
10 - 4  7 10 - 43.912 3.1 
10 - 5  6 9 - 43.944 5.5 
10 - 6  4 9 - 43.955 8.5 

Table 5 
Problem 3, B(z) = l/z, 6 = 0.1 

r Cycles, P Avg. DF cycles rain P i! PII 

1 II 37 - 38.179 0.49 
10 - 1  2 28 - 42.344 0.26 
10 - 2  7 19 - 43.501 2.2 
10 - 3  4 13 - 43.845 1.9 
10 - 4  6 8 - 43.950 1.8 
10 - 5  6 8 - 43.983 2.4 
10 - 6  4 9 - 43.993 2.7 

Table 6 
Problem 3, B(z) = l/z,  6 variable 

r Cycles, P Cycles, Avg. DF min P Initial 6 Cycles 6 Final 
Day. cycles binding 

1 11 7 35 - 38.179 0.5 11 0.195 x 10 - 4  
10 - 1  2 3 30 - 42.344 0.1 2 0.1 
10 - 2  2 2 18 - 43.501 0.1 2 0.I 
10 - 3  3 3 13 - 4 3 . 8 4 5  0.1 3 0.444 x 10 - 1  
10 - 4  3 2 10 - 43.951 0.1 3 0.444 x lO - l  
10 - 5  3 4 8 - 4 3 . 9 8 4  0.1 3 0.444 x i0 - 1  
lO - 6  3 7 - 43.994 O.l 3 0.444 x I0 -I 
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Table 7 
Problem 4, B(z) = l/z 
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r Cycles P Cycles, Davidon Avg. DF cycles rain P II Pit 

1 2 15 108 - 30505 0.93 
10 - 1  2 10 35 - 30603 0.53 × 10 - 2  
10 - 2  2 2 35 - 30633 0.46 × 10 - 1  
10 - 3  1 10 21 - 30643 0.66 
10 - 4  1 5 11 - 30646 0.65 
10 - 5  1 5 11 - 30647.3 1.2 
10 - 6  1 4 11 - 30647.6 3.6 
10 - 7  2 2 15 - 30647.7 10.8 

Table 8 
Problem 4, objective sign reversed 

r Cycles P Cycles, Davidon Avg. DF  cycles min P I~ PII 

I 2 15 90 23162 0.28 
I0 -I i 6 53 23090 0.20 
10 -2 2 6 38 23068 0.03 
10 -3 1 6 18 23061 2.4 
10 -4 I 6 9 23058.9 3.0 
10 - 5  1 4 9 23058.2 5,5 
10 "-6 I 5 9 23058.0 3.2 
10 -.7 I 5 9 23057,9 22 

Table 9 
Problem 5, B(z) = - In(z ) ,  6 cons tan t  

r Cycles, P" Cycles, min P 
Davidon 

Avg. DF 
cycles 

II PU 6 

I 
10-2 
10-4 
10-6 

10 11 12 12,424 0.45 0.5 
9 16 16 0 .20986 0.92 × 10 - 2  0.1 
4 11 10 0 .39220 X 10 - 2  0.30 X 10 - 4  0.1 
2 15 8 0 .57642  X 10 - 4  0.26 X 10 .-5 0.1 

Table 10 
Problem 5, B(z) = - In(z ) ,  6 variable 

r Cycles, i ~ Cycles, Avg. DF  min P 9 PD Initial Cycles 8 Final 6 
Day. C3~cles binding 

I I0 II 
10 -2 9 16 
10 "r'4 2 11 
I0 ~6 2 15 

13.5 12.422 0.68 x I0 -I 0.5 4 0.29x 10 -2 
16 0.20985 0.77x 10 -3 0.I 9 0.31xlO -2 
16 0.39237xi0 -2 0.78× 10 -30.l 0 0.I 
5+5 0.57657xi0 -4 0.25 X lO -4 0.I 0 0.I 
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Table 1 1 
Problem 6, Davidon results 

r tl 1 0.25 0.0625 0.015625 0.0039 0.97656 x 10 -3  

Cycles 94 22 29 15 16 7 
Davidon 

minP 49.515 40.804 35.452 33.373 32.667 32,383 

Table 12 
Problem 6, B(z) = -In(z) 

6 10 10 20 
r 

DF stop tGI < 10 - 2  %/xF < 10 - 2  %,~F < 10 - 4  

1 Cycles, P" 
Avg. DF cycles 

IIIIII P 

0.25 Cycles ~7 
Avg. DF cycles 

mm P 

0.0625 Cycles, 
Avg. DF cycles 

rain P 

0.015625 Cycles, 
Avg. DF cycles 

min P 

0.0039 Cycles, P" 
Avg. DF cycles 

mm P 

0.97656 X 10 - 3  Cycles, J~ 
Avg. DF cycles 

mm P 

27 
39 

49,515 

14 
48 

40.775 

32 
65 

35,462 

38 25 
9 33 

49.9(16 4t),519 

42 21 
6 21 

41,206 40.777 

18 22 
5 25 

36.448 35.459 

17 9 
5 20 

34.663 33,378 

15 9 
5 2O 

34.070 32,673 

6 6 
5 5 

33.892 32.457 

9. Summary and conclusions 

The c~mputational results indica te tha t ,  for the problems solved, the 
search dilrections produced  by DF are as good as, and in some cases sig- 
nificantly better than, those of  the I)avidon procedure. This is especially 
true in problem 6, r = 1, and problems 4 and 5. llowever, tile computa- 
tion time required was from the same as to 3 to 4 times greater than 
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that required by the Davidon procedure. This is due to tile relatively 
long times required to solve DF. Clearly a more efficient procedure must 
be developed if tile P algorithm is to be competitive for minimizing 
barrier functions. As discussed in section 4, if the L 2 norm is used, then 
solving DF can be accomplished by unconstrained minimization of  a 
function, L, with positive definite Hessian. In this case, Newton's  meth- 
od should be the best choice. The matrix v2L is the identity plus a sum 
of  outer  products. As shown by Fiacco and McCormick [4],  this struc- 
ture can be exploited to considerably simplify the inversion process., 
Use of Newton's  method should significantly reduce the time required 
to solve DF while increasing the accuracy of  the solution. 

Another  possibility yet  to be studied is to solve DF only partially. 
The limiting case of this strategy is to take only one step of  Newton's  
method in each DF (with initial point s = 0). If the L 2 norm is used and 
the constraint sts <- 6 is incorporated with a Lagrange multiplier X, then 
search d i rec t ionss /are  given by 

S i = --  ( v 2 L ( O ; x i  , r ,  ~k)) - 1  v L ( O ; x i ,  r ,  ]k) 

where 

L(s; x i, r, X) = P(s; x i ,  r) + k s t s .  

Using the definition of  L and (2.17) 

V 2 L ( O ; x i ,  r, ~) = V2p(0 ;x i ,  r) + 2 k I  

V L ( O ; x i ,  r, X) = VP(0;xi ,  r) = v P ( x i ,  r) 

SO 

s i = - (V2P(0;xi ,  r) + 2~,I) - l  vP(xi, r) (9.1) 

By (9.1), s i i~ giveri by a formula like Newton's  method,  but  with V2P + 
2M replacing 72P. Since V 2 P +  2M is positive definite for all X > 0, s i is 
a direction of  descent-for P at x r The step size ai could either be deter- 
mined by a one-dimensional search or could be controlled by varying ~, 
as in [23].  Some recent work by Fletcher [25] ,  whose algorithm is 
similar in its basic l~hilosot~hy to ours, should be useful in determining 
how ~ should be v,lried, 
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The P approach has some advantages other than requiring fewer 
cycles. It requires only first derivatives, and the search direction s i is 
independent of  all past history of  the process. This is true of  no other 
efficient first order algorithm. Because of  this, the P algorithm does not 
require an accurate one dimensional search, as does the Davidon proce- 
dure. This fact was not exploited in the work done thus far. bu t  should 
be of  much significance inreducing computat ion time. Its lack of  mem- 
ory should also make the P algorithm relatively insensitive to numerical 
error, at least of  the cumulative variety. Hence it may function well 
with finite difference derivatives, although this has not y e t b e e n  inves- 
tigated. 

Of  course, the features cited above apply also when the,~-algorithm 
is applied to exterior penalty functions. The additional ability to solve 
DF finitely here suggests that the approach has significant potential. 
Research, both  theoretical and computational ,  is currently in progress 
on this extension. 

Appendix 1 - Test problems (all constraints >- O) 

Problem I 

min f i x )  = (x I - 2) 2 + (x 2 - 7) 2 , 

g l  ( X )  = - -X  2 + X 2 , g 2 ( x )  = - -  X i 

x o = ( -  0.5, 0 .5 )=  (xi, 0 x2. o) . 

Problem 2 

min 

- - x 2 + 2 ,  

f ( x )=x31  - 6 x ~  + l l x  I + x  3 , 

g 3 ( x ) = - - X 3  + 5 ,  g 4 ( x ) = X l  , g s ( X ) = X 2  , 

x 0 = ( 0 . 7 ,  0 .1 ,  3 ) .  

/ 

Problem 3 Kowalik and Osborne,  ref. [20] ,  p. 981 

min 

g6 (x )  = X 3 , 

f(x)'x~+x]+2x]+x 2-5x! -5x 2 - 2 1 x  3 +7x 4 ,  
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g 2 ( X ) =  _ X  2 _ 2X2 _ X  2 _ 2'X 2 + X  1 + X  4 + 1 0 ,  

- 2 x 1  - _ _ 2 x l  + + + 5 ,  

g 4 ( X )  = 5 - - X  1 , 

x o = (0 ,  O, O, O ) .  

Problem 4 Colville, r e f  / 21 / ,  

g5 (x )  = 5 - x 2 , 

a I = 5 . 3 5 7  a 2 = 0 . 8 3 5  a3 = 3 7 . 2 9 3  

a 5 = 8 5 . 3 3 4  a 6 = 0 . 5 6 8 E - 2  a 7 = 0 . 6 2 6 E - 3  

a 9 = 8 0 . 5 1 2  a l o  = 0 . 0 0 7 1 3  a l l  = 0 . 0 0 2 9 9  

a13 = 9 . 3 0 0  a14 = 0 . 0 0 4 7 0  a15 = 0 . 0 0 1 2 5  

m i n  f = al x2 + a 2 x l x 5  + a 3 x l  + a4 ' 

r I = a  5 + a 6 x 2 x  5 + a 7 x l x 4  + a 8 x 3 x 5  , 

r 2 = a 9 + aloX2X5 + a l l X l X  2 + a12 x2 , 

r 3 = a 1 3  + a 1 4 x 3 x 5  + a l s X i X 3  + a 1 6 x 3 x 4  • 

Constraints  (all >- 0 ) :  

, g l  ( X )  = r 1 ( x ) ,  

g3 (X)  = r 2 ( x )  --  9 0 ,  

g5 ( x )  = r 3 ( x )  --  2 0 ,  

g 7 ( x )  = x  1 - -  7 8 ,  

g 9 ( x )  = X 2 --  3 3 ,  

g l l ( x )  = x  3 - 2 7 ,  

g 1 3 ( x )  = x  4 - 2 7 ,  

g x s ( x )  = x  5 - 2 7 ,  

XO 
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a4 = . 4 0 7 9 2  

a 8 = - 2 2 0 E - 3  

a12  = 0 . 0 0 2 1 8  

a16 = 0 . 0 0 1 9 0  

g 2 ( X )  = 9 2  - r I ( X ) ,  

g 4 ( x )  = 1 1 0  - r 2 ( x )  , 

g 6 ( x )  = 2 5  - -  r 3 ( x ) ,  

g s ( X )  = 1 0 2 - - x  1 , 

glo(X)  = 4 5  - x 2 , 

g l 2 ( X )  = 4 5  --  x 3 , 

g l 4 ( X )  = 4 5  --  X 4 , 

g l 6 ( X )  = 4 5  - x 5 , 

= ( 7 8 . 6 2 ] - 3 3 . 4 4 ,  3 1 . 0 7 ,  4 4 . 1 8 ,  3 5 . 3 2 ) .  
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Problem 5 Pearson, ref [221, appendix B 

m a x  

g l  = 1 - x 2 - x , ] ,  

g3 = 1 - x 2 - x6  2 , 

g5 = 1 - (x  1 - x  5 )2 +(X2._X6 )2 ,  

g7 = 1 - (x  3 - x  5 )2 _ ( x  4 _ x 6  )2 ,  

g9 = 1 - - X  2 --  (X 8 - x  9)2  , 

g l l  = X 3 X 9  , 

g13 = X 5 X 8  --  X 6 X 7  , 

I n i t i a l  p o i n t :  

XO 

L, S. Lasdtm 

f ( x )  = ~ [ X l X  4 - - X 2 X  3 + X 3 X  9 - - X 5 X  9 + X 5 X  8 - - X 6 X  71 , 

g2 = l - - x 2 '  

g4 = i -- X 2 --  ( N 2 - - X 9 ) 2  , 

g6 = 1 - (X 1 --X 7 )2 +(X2 _ X  8 )2 ,  

g8 = 1 - (x  3 - x  7 )2 _(X4 _X 8 )2, 

glO = X l X 4  - -  X 2 X 3  , 

g12 = - -  X 5 X 9  , 

g14 = X9 " 

= ( 0 . 4 3 3 ,  0 . 2 5 ,  0 . 4 3 3 ,  0 . 7 5 ,  - 0 . 4 3 3 ,  0 . 7 5 ,  - 0 . 4 3 3 ,  0 . 2 5 ,  

0 . 9 9 9 9 9 ) .  

Problem 6 Pearson [22], appendix B (shell dual problem) 

I0 5 5 5 

-f(x) =- ~ b/y/ + ~ ~ ci/xix/ + 2 ~ dix ~ . 

5 I0 

gt(x) = e i + 2  ~_J c/ix/ + 3dlx 2 - ~_J allY/ >- 0, 
/--i, /,,I 

x ~ > _ O ,  i =  1, ..., 5 

m i n  

yi>_O, i =  1, .. . ,  1 0 .  

i = l  . . . . .  5 
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D a t a  f o r  "p rob l em 6: 

ej 1 

1 
2 

ci/ 3 
4 
5 

dj 

1 
2 
3 
4 
5 

a~i 6 
7 
8 
9 

10 

1 2 3 4 5 

- 1 5  - 2 7  - 3 6  - 1 8  - 1 2  

30 - 2 0  - 1 0  3 2  - 1 0  
- 2 0  39 - 6 - 3 1  32 
- 1 0  - 6 10  - 6 - 1 0  

32 - 3 1  - 6 39 - 2 0  
- 1 0  32 - 1 0  - 2 0  30 

4 8 10 6 2 b i 

- 1 6  2 0 1 0 
0 - 2 0 0.4 2 

- 3 .5  0 2 0 0 
0 - 2  0 - 4  - 1 
0 - 9  - 2 I - 2,8 
2 0 - 4 0 0 

- 1  - 1  - 1 - l  - l  
- 1  - 2  - 3  - 2  - 1  

1 2 3 4 5 
1 1 1 1 1 

- 4 0  
- 2  
- 0.25 

4 

- 4 0  
- 6 0  

5 
1 

I n i t i a l  p o i n t :  

X i = 10 - 4  , 

Y i  = 1 0 - 4  ' 

Y7 = 6 0  • 

i = 1  . . . .  , 5 ,  

i = 1 . . . .  , 1 0 ,  i ~ 7 ,  
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