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For a linear integer programming problem, the local information contained at an optimal 
solution x of the continuous linear programming extension stems from the theory of L.P. solu- 
tions. This paper proposes the use of environmental information (of a global nature but per- 
taining to the discrete vicinity of x), in order to  isolate the set of integer solutions which may 
be considered as true candidates for the optimum. The concept of enumerative inequalities is 
introduced and it is shown how it can be obtained in the context of the convex outer-domain 
theory of Balas, Young, et al. 

Generally speaking, enumerative inequalities can be made arbitrarily strong (deep), but at 
the cost of an increasing amount of work (i.e, enumeration) for their construction. In par- 
ticular cases, however, very little global information can produce enumerative inequalities 
stronger than any valid cut, 

O. Introduct ion  

For a discrete mathematical optimization problem DP, one often 
considers continttotts approximating extensions CP; the feasible solu- 
tions of DP are then contained ill the set of feasible solutions of CP. 
For a linear integer programlning problem, the local inlbrmation con- 
tained at an optimal solution 2 (of the continuous extension) can be 
grouped in the following way: 

- c h a r a c t e r i s t i c s  of Y (with respect to the continuous problem): 
feasibility, optimality. 

- integrality requirements and especially the two sets: 
Ni: set of the integer-constrained variables of the problem in its 
original formulation; 

* This paper was presented at the 7th Mathematical Programming Symposium 1970, The 
Hague, The Netherlands. 
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NI: sol /of  tile integer-conslrained non-basic variablcs al lhc opli- 
1 I1 [I 111 )," '~r 

- algebraic properties which can be derived from the numerical values 
in the optimal tableau A and the integral properties of the variables 
(group structure, for instance). 

This paper proposes the use of  environmental information (global, 
but in the vicinity of  x) in order to isolate the get of  integer solutions 
which may be considered as true candidates for the optimum. The con- 
cept of enttmt'raliJ~e inequalities is introduced; it is shown how lbcy can 
be obhfil]cd in the context of the convex outer-domain lheory of  Balas, 
Yotmg, (;Ioycr, et al. 

The mixcLl-intcgcr cutting planes du.e to Gomory can also be obtain,'d 
as intersection cuts; however their deriyation only makes use of  the local 
information. ~'ollowing the approach'of [3] and [4] enumerative ine- 
qualities can be obtained which generalize the Gomory planes but are 
no longer valid. I t  is shown, however, that they are very intimately re- 
lated to the latter and possess similar characteristics. 

Generally speaking, enumerative inequalities can be made arbitrarily 
strong (deep) but at the cost of  an increasing amount  of  work for their 
construction. In particular cases, however, very little global information 
can produce enumerative inequalities stronger than any valid cut. Two 
examples for the construction of  such inequalities are given in the ap- 
pendix; in a way they illustrate extreme cases in the use of  diamond- 
polytopes as convex outer-domains to generate enumerative cuts. 

1. Convex  outer-domains and intersect ion inequal i t ies  

1.1. The problems 
Consider the linear programming problem 

maximize x 0 = c x .  ( 1 a) 

subject to A x  <~ b ( I b) 

x~>O ( lc )  

where x and c are n-vectors,  b is an m-vector  and A a matrix with  m 
rows and n co lumns.  All the constraints  ( l b  and c) can be expressed by 
the no, n-negativity conditions ~ ~ 0 if  one  def ines  the slack variables 

~ n + l '  Xn+2 . . . . .  "Xn+m" 
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~lc = bk - ~ akixi  >~ 0,  k E M = {n + 1, n + 2,  ..., n + m }  
i E N  

~i=x i>>-O,  i ~ N =  {1, 2, ..., n}.  
(2 

Let us now suppose that only the solutions 
-- which are feasible with respect to (2) 

lllld 

- which salisfy Ihe inlcgrality rcquircmenls (3~ 

x i - 0 ( m o d  1), ¥ i E N  I C N  ~3 

are of interest in the original linear program (1). The conditions (3 
change drastically the nature of the problem. 
Note that when N I = N, one often deals with slack variables ~k, k ~ M I c 
M, which are (automatically) integer vahted; this happens whenever th~ 
k-th row of the matrix A contains only integer coefficients, i.e. 

aki =- 0 

b k - 0  
(mod 1), Vi~ N .  

Hence we may legitimately replace (3) by the s tronger  condition: 

3 i = 0 ( m o d  1), W E ( N  I U M  I) (4 

When (N I u MI)= (N to M), the problem is called all-integer; in all othe 
cases where 

04: (N I u MI) C ( N u  M) 

one speaks of mixed- in teger  problems. 
In the approach adopted here the distinction between continuous ant 

discrete variables is made in a particular way; the problem (2, 4) is sys 
tematically embedded in the continuous analogon (2); then the inte 
grality requirements (4) are translated into extreme point properties o 
polyhedral sets (hyper-cubes or-prisms) in the n-dimensional space R~ 

• xn = {x = (x l , x2 , ..., xn )l x i E ]R, V i E  N }  

the original vector space in which problem (1) is formulated. 
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1.2. L o c a l  charac ter i za t ion  o f  the  c o n t i n u o u s  o p ¢ i m u m  
Suppose that the problem (1) has been solved (say with the simplex 

method) and let ik-be an optimal (feasible) basic solution. It is assumed 
that there exists such an ~, 

I)enotc by 
N = the index set of  tile non-basic variables called t i (j c_ N )  
.2t-= the matrix of the optimal tableau, 

and assume (of course) that ~ does not  solve the integer constrained 
problem (1, 3). 
The local  information which can be called for at the opt imum if has 
a twofold nature: continuous and discrete. The continuous information 
stems from the linear programming optimality criteria: 

a) All the feasible solutions (of the continuous and hence also of  the 
discrete problem) lie within the polyhedral cone C defined by 

ti~>O, /eR. (5) 

b) There exists no feasible solution in C which furnishes a larger 
value of  the objective function than ~ (i.e., t! = O, W ~ N ) .  

c) The optimal basis delivers a correspondence between the original 
variables x l ,  x 2 . . . .  , x n and the current  non-basic variables; it reads 

X i = X i - -  ~ a-)/ t]>~O, i E N .  (6) 

Now the discrete information is still expressed by the integrality requi- 
remants (3) but  in terms of  the non-basic variables t i e IR, ¥] e N, i.e. 

X i - -  ~ a-ii t i - 0 ( m o d  1 ), i E N I . (7)  
/e~7 

Fur thermore  it may well happen that some of  the variables t! are them- 
selves integer-valued, i.e., when 

Nl  = /V n ( N  I u Mi)  4= 0 .  (8)  

Clearly one wishes to make use of  as much local information as 
available in order to derive strong criteria (sharp inequalities) for the 
characterization of  the integer solutions. For  the sake of  completeness, 
one could finallY, mention a third source of  local information which lies 
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in the (algebraic) structure of  the matrix .4 combined with the condi- 
tions (7). Indeed the coefficients~//possess divisibility properties which 
imply t h a t  the variables tj may only appear in certain combinations of  
one another; this algebraic information allows one to impose conditions 
(inequalRy constraints) on the t /which  reflect, in part or in extenso, the 
group structure of  the modulo constraints (7). This is, in essence, the 
aim of  algebraic studies like [8]. 

Whatever local information one finds (more or less readily available) 
in the optimal tableau (A, x) it is not the only one which can be effi- 
ciently employed. The main purpose of  this study is to propose ways of 
exploring the vicinity of.~, and in particular to check the feasibility of  
certain n e i g h b o u r i n g  i n t e g e r  s o h t t i o n s ,  in order to sharpen the inequali- 
ties furnished by the local analysis. From a practical point of  view, it 
often turns out that such a global search in the vicinity of.~ can be made 
at a relatively low cost and yields a better overall efficiency than if only 
local information were used. 

1.3. A n  o u t l i n e  o f  t h e  c o m , e x  o u t e r - d o m a i n  t h e o r y  

Suppose that the simplex method has delivered the continuous opti- 
mum x and the corresponding tableau .4 is in Tucker  format (as custo 
mary in the exposition of  a cutting plane  algorithm using successive 
dual-simplex iterations). The relevant information lies in the column 
vectors ~ and-~/ , /~  N defined by 

x = ( x  I , x 2 , .. . ,  x i,  . . . ,  x n ) = column of  constants 

a /=  (-dip a2/, "", -aij . . . . .  -ani) 

with i ~  N 

on one hand, and, on the other, in the sets of  indices N I c N, N, andN I 

• ~I  = N  n (N I u M l) c N .  

Geometrically speaking, the half-lines ui, j ~ .N 

uJ = ~ - ti~i / , t / ~  0 ( 9 )  

may :be viewed in R n as the edges of  the polytope (cone) (~ previously 
defined, with t /as (half-)line parameter. All this is delivered by the linear 
programming theory. 
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1.3.1. The inequality 

where 

~/ti>>- 1 (lOa) 

,~ > ai~> O, W E N  (lOb) 

is not_ satisfied by the optimal solution x (generated by setting t! = 0, 
X/j~ N), and the system (5, 10) defines a truncated cone C c (7c  Rsuch  
that Y q~ C. An inequality of this type (10) is called valid if it is satisfied 
by every feasible integer solution of the original problem (1 ,3) ;  it is 
conditionally valid if there exists a set $4: ~ of  points which are feasible 
wi th  respect to (1, 3) but do not satisfy (10). A conditionally valid ine- 
quality is also called enumerative; one can only use it "with a clear cons- 
cience" once the set S has been properly searched (typically by implicit 
enumeration) to determine and store away those elements of  S which 
are candidates for the optimal solution of  (1, 3); the algorithmic imple- 
mentat ion of enumerative inequalities is described in more detail fur- 
ther below. 

1.3.2. 77t¢' basic tool ibr generaling an enumerative inequality is simple; 
one merely has to observe that for any convex subsel / )  ol'iU~ conlain- 
ing x, we can generate a culling plane of  the type. (10) which is deter- 
mined by the intersection points of  the t! extreme rays of  the cone (" 
(see fig. 1). 

Fig. 1. 

T1 

× 

.c.or 
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In general, according to the size and shape of  D, there will be integer 
feasible solutions of the problem (1) within the interior of  the set D; 
but clearly, the convexity of D implies that no other integer feasible so- 
lution can be cut off  by the cut H than those lying in the set 6~c~ lnt(D), 
or, afort ior i ,  in lnt(D). If we call S a set of  integer solutions which con- 
tains all ithe integer solutions lying in C c3 int(D), it then becomes ob- 
vious that we may implement the cut !I, just as a valid cutting plane, 
adding a further restraint to problem (1, 3); provided the set S is prop- 
erly enumerated (i.e. after finding among all the elements of S an in- 
teger feasible solution, if there exists one, which delivers the best value 
of  the objective function); naturally much of  the enumerat ion can be 
done implicitly to improve the overall efficiency of the algorithm. 

In our previous notations, the construction of  an enumerative inequa- 
lity can be made as follows: 

i.3.3. Define a convex outer-domain D(X, S) with the properties 
- D(I~, S) is a closed convex subset of  the n-dimensional space Rx n of  

the variables xi, i E N. 
- ~ is an interior point of  D(2, S). 
- S = {xl  x ~ D ( ~ ,  S) ,  x i = 0 ( m o d  1 ), ¥ i  ~ N I } 

Then intersect the ray u! 

UJ = X -- ~,J a j  , )~J ~ O ,  / E 57 

with the boundary of  D(Y, S), and let the intersection point be u / =  x - 
X/aj. One easily shows that X />  0 (see [3] for instance). Finally the in- 
tersection inequality defined by 

where 

l ( l l )  
/ ~  

1 
0~<,,'i=~< ~', Vj~57 

and it has the following properties 
- the continuOus opt imum ~ (corresponding to tj = 0, Vj ~ 57) does 

not  satisfy (1 1 ) 
- a l l  feasible integer solutions of  t h e  original problem (1,3) satisfy 

( 1 1 ) except possibly those which lie in the set S. 
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Clearly this intersection inequality corresponds to our previous defini- 
tion of enumerative inequalities with the possible exception that the set 
S may be empty,  i.e., the inequality may be valid. Of course, there re- 
mains the practical construction, i.e., the computat ion of the coeffi- 
cients a/ arid the  characterization of the set S. Many types of  outer- 
domains have been proposed in the literature for generating valid [ 1, 2, 
3, 6] and conditionally valid [4] inequalities. The classical mixed-in- 
teger cutting planes due to Gomory  [6] seem to enjoy particular pro- 
perties (see [8] ), also in the all-integer case; in section 2, we present 
enumerative inequalities which are intimately related to the above men- 
tioned cutting planes and may be regarded as their generalization. Para- 
doxically however, their derivation was obtained in an effort  to genera- 
lize the intersection cut approach of  Balas [ 1 ]. 

1.3.4. Strengthening an intersection cut with the help o f  integer-valued 
non-basic variables t/, j E FV 1. 

At this point, the convex outer-domain theory makes no  use of  the 
integrality property (8) of  some non-basic variables. We now show how 
(8) can be used to generate (often significantly) deeper intersection 
c u t s .  * 

Consider Y/~  -Nl the rays 

, o 

and u'/= x - -  ~'.f/ , ~J ~ 0 

with ** 

f ~ i / - I ~ i / l , i f d i / -  Ldi/l <~gi=xi - [xil i ~ N i  

f,7 = l i/- if ai/ t i/l> gi / Nl 
~ai/, Yi E N -  N[ and/or  / ~ ,~ - Kr[. 

* The us~ of the non-basic variables to obtain stronger cuts is also proposed in Glover [7].  A 
more general study of this strengthening procedure can b¢ found in Balas [ 13]. 

** For a number q ~ R ,  we um the following notations: 
[ql denotes the smallest integer ;~ q, 
[ql denotes the largest integer < q, 

Clearly [ql = [q] when q is integer. 
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L e m m a  1 : By definition, one has 

I:vi I < ~'~ ...... ./ii ~ IX-~I , v i , / .  

l'ri)oj': by inspection of tile definition. 
Geometrically, tim points (x - f/), j E/Vl are seen to lie in the cubic hy- 
perprism U°(x)= {x ERxnl [xi] <~xi<<" [ x i ] ' ¥ i E N I  I 

x i E  R ,  ¥ i E N - N I .  j 

L e m m a  2: The systems of equations (A) and (F) below have the same 
set of integer solutions, in the sense that: for every solution t with 
ti =- 0, Y/E N 1 one has 

x i  = 0 iff Y i - -  0 i ~ N  I 

The system (A) stems from problem (1)directly, i.e., 

(A) xi=-x i -  ~ a q t j ,  i E N  I 

and the system (F) is derived from (A) by the above-mentioned rules, 
i.e., 

(F) Yi = gi - ~ f i i t j  - ~ Ki j t j  , i E N I . 
jEA/I jE(N-N I) 

Proof:  By construction x i - Y i  - 0 (mod. 1), ¥t, with t~ - O, W ~ Ni" 
q.e.d. 

Proposi t ion:  If D(x, S) D U0(~ -) and if the matrix F = OCij) has rank n 
then the intersection points of the rays ~'J with the boundary of D(~, S) 
correspond to values XJ >__ 1. Furthermore, they generate a legitimate 
(S - conditionally valid) cut. 

Proof:  The intersection points (~ - XJfi) are not interior to U ° (x-) by 
hypothesis; hence, by lemma 1, ~.J >- 1. By hypothesis the vectorsfi are 
independent andhence  E/~.O t / ~ / < -  1 defines a half-space (cut) in ]R". 
From lemma 2 we know that no integer solution to problem (1,3) has 
been cut off except possibly those belonging to S. q.e.d. 
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Remark 1' Since the reduced F-problem is used to generate an intersec- 
tion cut, we consider a domain D(x ,  S ) c  R~ and the elements .ors  are 
points with integer Yi values (i ~ NI). The strengthened cut (generated 
by X/) therefore requires at most  the same amount  of  enumerati.on after; 
as before the reduction of  course, one only needs to search, among the 
elements of  S, for those which satisfy tj =- O, Vj ~ N I. Figures 2a, b and c 
illustrate a strengthening of  this type; in 2a one can see that the reduc- 
tion improves both the depth and the amount  of  enumeration of  a cut. 

0 0 

O 

!L /'k il _ _ -  

" - , .  ° ~  • - O 

. °  

o o / . ~ . . .  ~-..\t;~ o o 

~.. t,~=~ / .--" \\\ 

':7.... - , .  0 ~I~ "-. ... 0 0 
".¢- ~ ' "  . \ 

.-..... . 
• . ~,~-~+% / o . .  o ....: o -.. o i '~ 

Fig. 2a. 
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/ o 0 / 0 0 0 

o J 

f ' "  . . . . . . . . . . . . . . .  

0 0 0 0 

O O 

Fig, 2b. 

Remark 2: In general it will be inconvenient to test the rank of  F. "Phis 
rednclioll in~ly Iherel'~Jrc appear quesiionable from a praclical i~inl ~t" 
vil,w for ;irbilrliry oillt:r-dorn;lins. I:(~rlilnat¢ly, howt;vt'.r, wt; shall St~t: 

that 1: is ~aot required to have rank n for the diamond cuts of  section 2. 

1.4. Direct search or cutting planes? 
Originally, the basic idea underlying the construction of  enumerative 

inequalities was to use implicit enumerat ion as an accessory device to 
improve cutting planes. But it also leads to improvements for the im- 
plicit enumerat ion algorithms by means of  a " t r imming"  device which 
reduces the size and amount  o f  the tree search. 

The improvemefit of  a cutting plane algorithm is conceptually simple: 
one engages a direct search code in the finding o f  the best feasible solu- 
tion o f  the set S attached to each cut  (see section 1.3 for the definition 
of  S). 
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1 /  Q \ ~  o o 
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\ 
0 o 

Fig. 2c. 
Fig. 2. An illustration of the strengthening procedure of section 1.3.4. 

In fig. 2a a 2-dimensional all-integer example for problem (A) is shown. The points  marked 
by small white circlesare integer solutions in R 2. The feasible region (i.e., the cone C) is deli- 
mited by the vectors a 1 and a 2. The integrality of the non-basic variables t I and t 2 can be re- 
presented geometrically by the dot ted grid. A feasible integer solution of  the problem (1, 3) 
therefore can only consist of those points  in C which lie bo th  on the x-grid and the t-grid. One 
such poin t  is marked with a large bold face circle. The Balas-cut generated from the uni t  sphere 
around x is shown. The diamond cuts 1B and IC are obtained by the s trengthening procedure 
and are constructed in figs. 2b and 2c respectively. In this example,  one has laij| --all=gland 
one may therefore choose fij = aij - t~ijl or fij = ~i~" - la--i/'l indifferently. Figures 2b and 2c 
show t h e  reduced_problems obtained for  two different cases of the vector I"2' 1_n fig. 2b one ob- 
tains h 1 = 2 and h 2 = 4. From the points  (t 1 = h l ,  t 2 = 0) and (t 1 = 0, t 2 = h2), in fig. 2a one 
obtains  the valid cut called diamond lB. Note t h a t t h e s e t  S is defined f o r t h e  r-educed problem 
(i.e., on fig. 2b) and not  in the original problem. Thus only the poin t  marked by a bold face 
circle has to be enumerated.  If  the set S has been defined in the original formulat ion,  all the 
points  marked with a crossed black circle (and probably many others,  depending on the  chosen 
convex outer-domain D(x,S))  would have had to undergo enumerat ion.  This il lustrates how in- 
tegraLity properties of the non-basic variables tj can both increase the depth o/an enumerative 
cut and reduce the amount o f  (explicit or implicit) enumeration. In fig. 2c note tha t  no points  
need be enumerated (i.e., S = 0 and the cut  is therefore valid) because the center  of  the cube U 1 
does no t  lie on the dot ted  grid (i.e. t 2 =- 0 (mod 1)). Here one h a s h  I --- 4 and ~2 = 7/3;  this ge- 

nerates the valid cut  called d iamond 1C on fig, 2a. 
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Tilt; itlll)rovc.mt'nl of hranch and houlld algorithl~ls concerns Ihe so- 
called btlcktracking phase, where a new partial solution 1',, is chosen for 
enumeration: one chooses a set S of solutions (S c P~) and defines the 
corresponding enumerative cut in such a way that a bound B~ can be 
obtained (by dual simplex optimization, for instance) which allows us 
to disregard Pv from further consideration. 

The set S is always smaller than P~ : this i s the  reward for the compu- 
tations required by the construction of  the cut. The appendix I presents 
such a constructive procedure; for the 0--1 case one notes that the de- 
finition of  S (I. 12 and 13) corresponds to a parliclllar parlilion of/ ' , , ;  
its implementation i~lto existing codes, which usually make use e r a  
variety of  similar optimality tests, therefore presents no difficulty. 

2. Diamond cuts 

Let us define the parallelotope U(x, A*, A-  ) as the set o f  points x in 
the n-dimensional space Rx n of  the Variables x i ( i  ~ N )  satisfying the fol- 
lowing conditions (see fig. 3): 

÷ 

- - A  ~- <~ x i - -  x i <~ A i , V i  ~ N l 

x i arbitrary Vi ~ (N - N I ) 

where x is a point satisfying the integrality requirements (3) hnd other- 
wise arbitrary, for instance 

where 
x i  = -xi --  g i  , V i  E N t 

either g i  = x i  - [xi] 

o r  

It is fur thermore assumed that ~ lies in the interior of  U(x, A ÷, A -  ) and 
the quantities 

÷ 

A i ~ > 0 ,  

A/- ~ 0 ,  

AT__.0 ( m o d l )  

A t  = 0 ( m o d  1) 
'v'i E N I 
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0 0 0 

0 O. 

t 
h 

; ~ ~ i  ~-~ . . . . . . . . .  ~ . . . . . . . .  z ~ N  

K 

O O 

O 

Fig. 3. 

are subject to 

_A= < g; < ~7 
v i e  U~ 

A t + A ;  /> 1 .  

F~r simplicity, we shall only consider the fol lowing two typical exam- 
ples in this section. 

E x a m p l e  1: U ° (x-). (see fig. 4a) 

Let gi  = -xi - Lxil 

÷ 
and A i = l 

A i = 0 ,  ¥ i  ~ N I, 

then U 0 (x) contains no point satisfying the integrality requirements (3) 
in its interior. It is in a way, the smallest desirable parallelotope U(x). 
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0 0 

Fig, 4a. 

Example 2. U 1 (x). (see fig. 4b) 
Let 

g;=Yi- t~-il if x i -  |x-~J ~< 1/2 
and 

gi = xi - [x-il otherwise.  

i E N  ! 

A ~ + A  i = I ,  i o N  I (12) 

The parallelotope U 1 (x) generated in this manner  contains exactly one 
( n - n  l)-dimensional linear subspace R which satisfies the conditions (3), 
namely 

X i  = x i  - -  g i  = X i  , V i  E N~ I f 
R = ~x (13) 

1 I x i E I ~ ,  V i E ( N - N I ) .  

In a two dimensional all-integer situation the parallelograms U ° (x) and 
U 1 (x-) are shown in fig. 4. Note incidentally that U 1 (x) has a volum~ 
V = 2 nl (in nl-space) while containing only one point x in its interior fol 
any dimension n I. (On the other  hand, the volume of  U°(x) is only 1 fo 
all n I !) In view of  the intersection cut theory,  this may serve as an indi 
cation that U!-(x) is a better  convex outer-domain to begin with tha~ 

We now turn to the construction of  the convex polytopes D(x, k, A" 
A- ) called diamonds in [4] ,  which contain the parallelotope U(x, 4" 
z~- ). These sets D(x, k, z~*, A -  ) are meant  to be used as convex outel 
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1 o~ 

C, v 

0 0 0 

Fig. 4b. 

domains, and their primary motivation therefore probably lies in the 
fact that the coefficients a i of the intersection inequality are relatively 
easy to obtain numerically. Also it turns out that the sets S correspond- 
ing to I)(i~,', k, A +, A-- ) can be conveniently identified, in a quite appro- 
pri~ltc way for ilnplicit cntlnler;llion. 

And finally, let us mention that diamond cuts reflect algebraic pro- 
perties of the matrix ,4, in very much the same way as the mixed-integer 
Gomory cuts [6] ;in fact much of the recent developments of the mixed- 
integer theory [8] can be applied in this context. 

After these few lines of  justification, let us define D(x, k, ~*, A- ). 
First one constructs the section SD(-x, k, z~ ÷, A - )  of D(x, k, ~ ' ,  A - )  
with the ni-dimensional manifold obtained by setting 

x i = x i , ¥ i E N - N  I (14) 

in the space R~. This manifold is the space of the integer constrained 
variables x i (i ~ Nl) '  and D(x-, k, A ÷, A- ) is then the prismal extension 
of  SD(-x, k, ~f,Z~ ÷, A -  ) obtained by letting the remaining variables xi, take 
arbitrary values: x I. E R ,  i E ( N - N I ) .  For brevity we shall define here."- 
the polyhedron SD(-x, k, A ÷, ~-- ), called diamond,  in geometrical terms; 
another definition can be found in [4]. 
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For any given integer k-(1 < k < n l )  and the parallelopiped SU(x ,  
A ÷, A - )  which is the section of  U(x-, A ÷, A - )  according to (14), one 
considers the following (2 nl + 2nl) integer points: (see fig. 5) first, the 
2 nl vertices of  SU(-x, A ÷, A - )  characterized by 

÷ 

= x i  + A i 

x i =  o r  , ¥ i ~ N  i (15) 
= x i  - A i  

and ihcll, the 2n I points lyillg on Ihe coordinate axis througll x,  at the 
ordinate 

o r  

y; + k(A~. - g,) (> ~ )  / 

J 
xi  - k(Ai- + gi) (< x i )  

, i E N  1 (16) 

the other  components  being x s = -xs, s ~ N I - {i}. 
SD(E, k, A*,A-) is then the convex hull of  the above-defined is (2'q + 2nl) 
points (see fig. 5). Since 1 <~ k < n I there are clearly n I diamonds SD. 
For instance, the two 2-dimensional diamonds constructed with UI(x) 
(see fig. 4) are shown in fig. 6. 

2.1. The cuts  
The detailed algebraic characterization of  the faces of  the diamonds 

SD and the formulae for the coefficients a i , ]  ~ N (10) of  the diamonds 
intersection inequalities can be written down in a straightforward man- 
ner. and are presented in [4].  Instead we choose here to derive expres- 
sions for ~/di rect ly  from the inequalities (18) (described below), which 
turn out to be identical with the diamond cuts generated in the mixed- 
integer case from the polytopes D0¢, k, A ÷, A-  ). 

2.1.1" The mixed- in teger  G o m o r y  cut t ing  planes and  their enumera t ive  
ex tensions: 

Consider the i-th row of  A, i E N I 

x i = - £ i -  ~a dii t  i .  (17) 

One may then derive the inequality (for more details see 141, [61) 

°iaitt! ~ (A'i - gi)(A• + gi) (18) 
/~R 
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Fig. 5a. (k = 2). 

Fig. 5b. (k = 3). 
Fig. 5. Example of  the three dimensional diamond polyhedra SD(-x, k, A ÷, A - )  based on U 1 (x), 

* - A T =  1, i= 1,2, 3. i.e. with A i - 

where 
gi  = -Xi -- [Xi I , positive f r a c t i o n a l  p a r t  of Fi 

A~.~ 1, ~{ 9 0  and A~., A~- - 0 ( m o d  1) 

= (A~ --gi)  if ~i/;a 0 ,,t--{ 
= - ( A /  +gi), if atl<O 
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0 

0 

s D = uh~ 

F 

o '\ 

~ "  "" ~ 0 . 4 0  1 

~ . .  

o 

l'ig, 6a. The case k = I, l 'he  2n I points  (16) are not  extreme,  as they lie on tile faces o f  Ul(x); 
this is always the case for :my tl I when k = I. 

Fig. 6. A compar ison of  d iamond and Gomory  cuts in the two dimensional  case. As in fig. 5. the 
d iamond polyhedra  SD here are based on Ul(x-). 

The set S is defined by 

{ I } 
S =  x - _ ( x l , x  2 . . . .  ,Xn)ILE, I , ~ F + I ~ < x i < L x ; I + A ;  ' - 1  • 

Clearly S = ¢ when A~. + z~- = 1 and (18) then corresponds to a'Go-i 
mory cut [6] ;  it is shown in section 2.1.3 how the coefficients di/ can 
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5-~-~- -~ -~  
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\ 

Fig. 6b. The case k = 2. The 2 ni points (15) are not extreme, as they lie on the faces of SD; this 
is always the case for any .n I when k = n I. 

be replaced by their fractional partsfii ,  as for the conventional Gomory  
mixed-integer cut. 

2.1 .2 .  D i a m o n d  cu t s  

Suppose one gene~rates all the n I 
writ ten 

qij ti ~ i , ¥ i  ~ N i 
j~N 

inequalities (18) which can also be 

(19) 
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(Ai - g i )  if ai/<<. 0 

q~/= _ (20) 

ai/ if - > 0 
( A ~  + g i ) '  aij " 

Now, for each /~F/ ,  letus take the ari thmet ic  mean o f  the k (l < k~< hi) 
largest coef f ic ients  q i / ( w h i c h  are all t> 0) and thus set 

a~ = k - l  ~ q i / ,  / ~ N  (21) 
iEN ] 

where 

N / = { i ~ N I I q i  i >l qs/ , Ys  E N l } . (22) 

Clearly (19, 20, 21, and 22) imply the inequality 

(23) 

and, on the other hand, this is the diamond cut generated from D(x, k, 
A ÷, A- ), as can be verified by comparison of (21 ) with the correspond- 
ing result in [4]. 
Because of tile parameters A~ and A T, diamond inequalities can be 
made arbitrarily sharp (deep) and in particular deeper than the classical 
mixed-integer Gomory cuts; but one shouldn' t  forget that they require 
some additional work since there still remains to check the feasible in- 
teger solutions possibly contained in the set S(k ,  A ÷, A -  ) which belongs 
to D(x, k, A ÷, A- ). 

2.1.3. Proposi t ion:  Replacing the quantities Ei/for i ~ N I a n d / ~ / V I  for 
fq according to the following rule I: d , , / -  tdi/J , O, 

f q = '  all [a//1 , 

aij , 

when aij - tail I <~ gi 

if El/= 0 (rood 1) 
(24) 

when ai/ - Laijl >" gi 

when either i ~ N l or ] q~ Nx (or both) 
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with gi = X i  - -  [X-il :¢: 0 one produces a diamond inequality which is uni- 
formly stronger then (21 ,23) .  

A rigorous proof  is not presented here, but  it is, in fact, sufficient to 
remark that the Gomory  cuts are known to become uniformly stronger 
whcn (24) is used; hence tile same will hold for the arithmetic means 
(21). Note that no assumption concerning the matrix F (see scction 
1.3.4) is necessary here; this is due to the fact that the proof  is algebraic 
in nature. 

2.2. Checking the validity o f  a cut 
2.2.1. Let us first describe a very general procedure for generating and 
checking enumerative inequalities. In many ways it is conceptually re- 
lated to the approach given in [9].  In the n-dimensional space R~ con- 
sider the simplex defined by the following system 

Xt=:x t ~a ail t / ;~O, i E N  (25a~ 
j~_N 

uit/t> 1 (26b) 

The above simplex contains all the integer solutions which are eventually 
cut of f  by the cut  (25b); it may therefore be taken as the set S which 
has to be enumerated in order to check the (conditional) validity of  the 
cut (see section 1.3). From a practical point  of  view it is often preferable 
for this enumeration to have the integer-valued variables as non-basics 
and one may therefore decide to exchange the tj, j E ( /V- /V! )  for some 
of the x i, i ~ N! in a few pivot steps; alternately one can simply go 
back to the original tableau A (choosing the constraints corresponding 
to j ~ K/), and transform the coefficients a / o f  the cut  into 

a i= ~ aii, i ~ N  (26) 

(2'5) then become 

"~iXi ~ 1. 
i E N  
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At any rate, whatever definition of  tile simplex one uses, the idea in now 
to use one of  lhe existing implicit enumeration schema either io  dcler- 
Ininc thai there in no inleger solulion or to conlptllt" Iht' illll,,!,,t,r solution 
which maximizes ihc objeclivc fullclion in lhc sitnpIcx. ()f  COlll,,.;t? OllU 
can argue that tiffs is, in principle, a prol~leln which is of  Ihc same type 
as the original one (1), but, in fact, the size of  the enunwration remains 
small here because of  the cut (25b or 26). Obviously there is a trade-off 
here between the depth of  the cut and the amount  of  computat ion in- 
volved in the enumcration. The main advantage of  this approach is that 
it is completely general: there is no need for the definition of  a convex 
outer-domain since the parameters ~i can be chosen arbitrarily W c N 
such that oo > ~i i> 0. 
In contrast to the previous general procedure, we now want to focus our 
attention on the convex outer-domain (used to generate the cut) in 
order to characterize the set S in a more precise and direct way. Here 
again we only consider diamond polytopes D(x, k, A',  A - )  as outer- 
domains (other examples are given in [4] ). 

Naturally the first case which one wants to deal with is the case 
where the convex outer-domain D(x, S) is known (by construct ion) to 
contain no feasible integer points in its interior ( i . e . ,  S = 0). 

2.2.2. Some valid inequalities 
Starting with the parallelotope U°(x)  (and the corresponding para- 

meter A*[ A one considers the diamond polytope  D(X, n). It is shown 
in [31 tl/at the intersection inequalities generated in this manner arc 

with 

a/t~ ~ 1 (27a) 

a /=  ~ 6 io{ (27b) 
f E N  1 

o~= 

ail 

gi 

aii 
(gi -- 1)  ' 

ail ;* 0 

~j< 0 

(27c) 
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where gi = X--i -- [X-i I , 

6igi(1 - -gi)  = 1 
iEN I (27d) 

~i /> 0 ,  v i  E N I . 

Thus the cuts (27) obtained in this manner are arbitrary convex  combi- 
nations of the mixed integer Gomory  cutting planes, generated from the 
rows i v i E N  I. A procedure for improving the diamond cuts (27) is given 
in the appendix I. 

2.2.3. Conditionally valid inequalities 
While the previous section 2.2.2 was concerned with the construction 

of  inequalities which are satisfied by all the feasible integer solutions of 
the original problem (1,3) ,  let us now turn to enumerative inequalities 
of  another  kind, namely where the enumerat ion is used to detect  those 
solutions to (1, 3) which do not  satisfy the new.inequality. For  simpli- 
city of  the exposition let us consider the particular parallelotope U l (x), 
and the corresponding diamond polytopes D(x, k) obtained by setting 
(12) into (15, 16). Since we are primarily concerned with the discrete 
variables in tile enumeration procedure, it is sufficient to examine the 
sections SU t and SD(x ,  k) defined by (14). (Sec fig. 5). For k = I one 
has D(3c-, 1) = U l (3c-) and it has exactly one interior point .~:-~:i = x i -  gi, 
i ~ N I (see (13)). If k >t 2, for each (n-k)-dimensional  face F ~'~--k~, the 
points lying on the border of  U 1 (x) but in the interior of  F Cn-k~ will lie 
in the interior of  D(x,_l), ¥1 ~ k. Algebraically one can characterize all 
the integer points z which lie in the interior of  D(x, k) by the condition 

qi<~ k 
iEN(k) 

where N ( k )  is an arbitrary subset of  N I, containing k elements; 

qi = 

Xi- -  Zi 
, for zi <-~ i 

A~ ~-+ gi 

Xi -- Zi 

g i -  
, for z i > - ~  i .  
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By definition qi > 0 and e v e n  qi > 1 if z ~ int U 1 . It is interesting to note 
that the number of  points in the interior of  D(x, k) grows exponentially 
with k but  not  wi th  the d imens ion  n I. For instance D(x, 2) ha sa t  most 
4n + 1 inner integer points, (this number grows with n as the fk-- I ) pdw- 
er of  n, n (k- 1), fo rD(x ,  k)) among which only those which are feasible 
are of  interest. 
Numerical experiments on small problems have shown a clear gain in 
overall efficiency when diamond inequalities were used in a cutting plane 
algorithm as compared to, say, the classical mixed-integer Gomory  cuts 
[6] (see 2.1.1) or the intersection cuts [1] .  A sample of  small non- 

s t ructured randomly generated problems was selected with the follow- 
ing characteristics: 

a) Less than 10 integer constrained variables and less than 10 con- 
straints. (Some problems were of  the knapsack type.) 

b) Gomory ' s  cutting plane method did not  give the solution in over 
a hundred cuts. 

c) Balas' spherical cut did not  give the solution in over a hundred cuts. 
Various types of  enumerative cuts were then used to solve these prob- 
lems in order to s tudy the comparative strength of  enumerative inequal- 
ities of  different types. All problems were solved in less than 10 cuts 
with an enumeration consisting of  less than a hundred integer solutions. 
One may be encouraged (by the above argumentation) to use enume- 
rative cuts for large problems as well (n I large) but  additional compu- 
tational results are needed. Also for conclusive remarks on their effi- 
ciency in a branch and bound approach, further experimentat ion is 
necessary. 

Appendix I 

Example o f  an enumerative cut * 

Let us consider the inequalities (18) 

q jtj  l ,  (I.I) 

* The approach in this procedure bears several resemblances to the "cut-search" approach pro- 
posed by Glover in [ 12]. 
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where 

gi = xi - [x-il (1.2) 

ai/ 
u 

A_ i + g~ 

qi] = 

_ ai/ 
÷ 

gi Ai 

if a-,7/> 0 (I.3) 

if 6i/< 0 ,  (1.4) 

From (I. 1 -4 )  one may derive the (weaker) inequality 

where 

~/ t  i i> 1 ( I .5)  

a / =  m a x  qii (1.6) 
icoN I 

which is the diamond cut corresponding to k = 1. The algorithm below 
starts with the system (I.1) of  Gomory  cuts (i.e., A~. = 1, A[  = 0) and 
derives the cut  (I,5) which is a weaker inequality implied by (I. 1 ). How- 
ever, by increasing, the parameters A~ in a prescribed manner,  the ine- 
quality (I.5) can be made arbitrarily strong. 

÷ 

Step 0: Set A i = 1 and A,7 = 0, ViE N~, 

Step l: (;enerate the quotients q/] ( I .3-4) .  
Compute a i, V/E N according to (1.6). 
Call iq) the index i 6 N I for which ai = qil (in case there are several 
possibilities, just take one of  them). If one desires a deeper cut  yet,  
then go to 2, else stop. 

Step 2: Determine ]0 ~ K/such that 

§0/% < ~//a/, v / ~  (I.7) 

where ? /a re  the coei'ficients of  the objective function ( topmost  row). 

Step 3: Define i 0 = i(]o) and set 
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At : = A + ~0 i0 + 1 if  aioJo < 0 
or (I.8) 

A ~ . = / Y 0  + 1 if a-,.0i 0 >t 0 .  

At any 'stage o f  the algorithm, the number  of  integer grid points con- 
tained in D(x, 1 ) is 

s = 1-I (a~  + tx;  - 1 ) .  (I .9)  
iE  N I 

The above algorithm is conceived for integrality requirements of tile 
form 

x i =- 0 (mod 1),  i ~ N I 

If they read x i = 0, or 1 (i ~ N i) however, then an improvement  can be 
made in step 3; 

S t e p  3': Define i 0 = i (]o)  and set 

o r  

A*. = + oo if - < 0 
a 0 , aio/0 

A~ ° = + oo, if dio]o >>- O.  

(I.lO) 

At any stage of this algorithmic construction, the cut  may be geome- 
trically represented as an intersection cut  with a convex outer-polytope 
P (often unbounded)  generated by some of  the unit cube constraints 

xi>>. O 
, i ~ N  i 

x t <  1 
(I.I I) 

In fact the algorithm begins with P -- unit cube (I. 1 1 ); 

then, setting {or A~ ; ' }  A [ - - ~  corresponds to deleting 

the c°nstraint {orXi<lo}xi/> 

Thus the outer-domain P becomes step-wise larger and larger. At any 
stage the set S consists of  those vertices of  the unit cube (1. ! i ) which 
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are in the interior  of  P; algebraically these points  are characterized by 

+ 

x i = I , if A i = I 

X i = 0 , if A [ =  0 O.12) 
+ 

x i=  0 o r  1 , if A i = Aj. =co (I,13) 

+ 

Note that  S = 0 whenever  there exists at least one i ~ N I wi th  A i 1 
and A~ = 0. Thus  the number  s o f  e lements  in the set S is 

s = 0 ,  if N o = { i ~ N l l A * i = l a n d A i  = 0 } 4 : 0  

s = 2 nl if a) N O = 0 

and b) N 1 = {i E N I I A  ~ = A[  = oo} 

where n I is the number  of  e lements  in N 1 . 

Practically, it was found  that  this procedure  generates cuts which be- 
come rapidly deeper  than the original G o m o r y  cuts, also when  the num- 
ber s is restricted to small wllues. Figure 6 is an i l lustration o f  this fact. 
l ' u r the rmore  the following remarks speak in i';.ivor o f  the use of  such 
cuts in a branch and bound procedure (as an el iminal ion or " t r i m m i n g "  
device): 

- The cuts have, by  cons t ruc t ion ,  the t endency  to become fairly pa- 
rallel to the objective funct ion.  (Thus the enumera t ion  is con- 
cerned with  relevant points,  and the cuts give good bounds.)  

- The sets S(I. 1 2, 13) represent a way o f  choosing some o f  the vari- 
ables which are not  ye t  fixed (at  the node considered) in a parti- 
cular manner  which improves the bound  at the node whenever  a 
new e lement  of  S (feasible or infeasible solut ion)  is enumera ted .  

- This set S possesses.exactly the same s t ructure  as the partial solu- 
t ions def ined in branch and exclude algori thms [ 11 ] ; it is in fact,  a 
new (smaller) partial solut ion def ined by  (I. 1 2 - 1 3 ) .  The impele- 
men ta t i on  o f  the above procedure  in existing branch and b o u n d  
codes therefore-presents  no  part icular  d i f f icul ty .  
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Appendix II 

Ano ther  example  for  the construction o f  enumerative cuts 

Consider the optimal tableau/1 

xi = -x i -  ~ ~ii t] , i ~ (N u M) . (II.1) 
/e~q 

One has ViE N t c N: 

= D 
g i -  1 i e ~  

ai] ti = ° i  "1 gi( 1 - g i )  (II.2) 

where o i = --gi or ( 1 - gi) 
(thc vector o charactcrizcs a vertex of  U°(x)  and vice vcrsa). One cst~ 
blishcs that the diamond SI)(.v, n I ) defined on S U ° ( x )  is the set of  points 
shtisfying the 2"t following inequalities 

~ 6 i o i d i j t j <  1 (II.3) 
i E N  I ]EIV 

with 

5 i g i ( 1 - - g i )  = 1 , v i E N  ! 

i ~ N  I (II.4) 

6 ; > / 0 .  

The plane (11.3) with equality sign passes through the vertex of  U°(x)  
which corresponds to o, and therefore guarantees that this vertex does 
not  lie in the interior of  D(x, n]). The intersection cut generated by 
the diamond D(x, n t) is valid and reads 

ajtj  ~ l 

with 

i E N  I 
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where 

°! :{ 
= ( 1 - g i ) ,  if di/>JO, i E N  l, / c N  

- gi , i f  8i] < 0 

(II.6) 

(it is a convex combination of Gomory  cuts). 
If one now decides to check a few of  the 2 ni vertices of  U°(x -) directly, 
there is no need any longer for the presence of  the corresponding ine- 
qualities in the system (II.3); these selected (few) vertices then become 
interior to the outer-domains defined by the reduced system (II.3). In 
particular, if one checks the vertex corresponding to o1 for a given ] e N, 
then (II.5) becomes 

i E N  1 

(II.7) 

where 

A / ( 5 )  = min ( ' ~  5/' Id~/I ~ O) 
all o ~ o/  i ~ N  

(11.8) 

= {il~i ¢ o{}.  ( i l . ' ) )  

Thus (II.7) indicates a possible way to make the cut (11.5) deeper pro- 
vided that 

a) the vertex o / i s  checked independently,  " - 
b) the minimum over all possible "o (I1.8) has been determined. 

To avoid the difficulty of  b) one chooses 5 in the following "way: 
/ 

/ 

~[ = [lai/I ~/1-1 >1 o ,  i e N /  

Y'] = ~ I~i/I-1 gi( 1 - g i )  
ieN/ 

N ] = {iE Nl ld i /¢  0} c N ! 

6{ = O, ¥i  e (N I - N])  

( the property II.4 is easily verified). 

( l l .  1 O) 
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Then 
6{idi/I = ( ~ / ) - 1  , Vi E N j 

and 
Aj(~J) = KJ/~_, j ( I I .  1 I) 

where K ! is the number of  elements contained in N. 
This provides now for a simple way of  computing A/ namely; 

- "check"  if the vertex (i.e., integer solution) corresponding to o1 is 
feasible; if yes, evaluate the objective function at this feasible integer 
point (and update the current best solution whenever appropriate). 

- T h e n  set K~ = 1. 
i:urtl~crmore, one may set KI = 2 if one chooses also to "check"  also 

(;), the = n vertices (neighbours) which differ from o/ exactly by one 

component ;  frequently this requires no computat ion because these 
neighbours have been "checked"  in previous steps. In general check- 
ing 

R 

( : )  vertices implies that one may set K' =R + 1. 
r = 0  

Formulae for the construction of  a cut 

with coefficient a/0 = a/o(K/° ) for K io = 0, 1, 2, .... n 

-- ( K,o) 
i~ N ]0 

= iO s~O(K/)) (IX.13) ,~/ ~-1 ( ~ io[iqi / _ 
i~N/O 

N/° - {i ~'Nila-qo ~ 0} (II.14) 

~ =  ~ I~iiol-lgi(l--gi) (II.15) 
iEN]O 
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n 

qi jO = aij 
idi~.o J , i E N  1° (ll .16) 

,s{O(KJ)) 0 is a parameter which depends on KJ(j g: J0)' One may set, for 
instance 

o (K ]) = sum of  the K / smallest values q[iO, i ~ N/°  . 

(A more detailed construction of  these cuts is given in [3] .) 

R e m a r k s  
1) Since in a cut one has ai >I O, there is no need to increase the pa- 

rameter K / beyond the point where (II.7) becomes negative. 
2) The amount  ol' work required by tile enunlerative~ checking grows 

with 
R 

(:) where 
r=0  

As a function o fn  this amount  grows like n R (i.e., not  exponentially).  
3) The above analysis has led to the improvement  of a / f o r  one (pre- 

viously chosen) ] ~ ?7. Naturally the same can be done ¥] E N; one may 
generate n improved inequalities in this manner. There are many con- 
ceivable strategies whicn can be applied here: 

- generate all n inequalities systematically, with for instance ha = K, 
¥] ~ N ("cut t ing-polyhedron" approach). 

- A choice rule to determine K]. Vj E/~/; typically a step-wise impro- 
vement increasing one /~' at a time, as to improve the depth of  the 
cut (in the direction of  the objective function gradient) with rela- 
tively little enumeration. 

4) in the mixed-integer case where N t 4= N,  the explicit enumerative 
checking of  a vertex o amounts to the solution of  a linear program with 
n - n  I (non-basic) variables. 

5) The enumerative checking of  the vertices o of  U°(x) can be made 
explicitely (one after the  other) or implicitly (direct search in the set of  
selected vertices). Because there are ways to accomplish the explicit 
computat ions in a very economical manner,  it is not  clear at this point, 
which one o f  these two alternatives yields the best overall efficiency. 
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6) Basically the example of  appendix II makes use of  the diamond of  
order n, D(x,  n) whereas the example of  appendix I builds on the dia- 
mond D(x-, 1). There are many possible ways to think of  intermediate 
versions based on diamonds D(x-, k), 1 ~< k ~< n. This is an open research 
area for the construction of  inequalities with the best overall efficiency. 

Acknowledgement 

I wish to thank Egon Balas and Ellis Johnson for our many discus- 
sions and their helpful criticism. 

References 

[1] E. Balas, "The intersection cut - A new cutting plane for integer programming", Mana- 
gement Science Research Report No. 187 (1969), Carnegie-Mellon University. 

[2] E. Balas, "Intersection cuts from maximal extensions of the ball and the octahedron", 
7th Mathematical Programming Symposium, The Hague (1970), Mathematical Program- 
ming to be published. 

[3] C.-A. Burdet, "A class of cuts and related algorithms in integer programming", Manage- 
ment Science Research Report No. 220 (1970) Carnegie-Mellon University. 

[4] C.-A. Burdet, "The method of enumerative cuts", IBM, RC 3174 (1970) Watson Research 
Center, New York. 

[5] A. Geoffrion, "Integer programming by implicit enumeration and Balas' method", SIAM 
Review 9 (1967) 178-190. 

[6] R. Gomory, "An algorithm for integer solutions to linear programs", in: Recent advances 
in mathematical programming, Eds. R.L. Graves and P. Wolfe (McGraw-Hill, 1963). 

[7l F. Glover, "Convexity cuts", University of Texas, Austin, Dec. 1969. Operations Research, 
(1971) to appear. 

[8] R. Gomory and E. Johnson, "Some continuous functions related to corner polyhedra", 
7th Mathematical Programming Symposium, The Hague (1970), Mathematical Program. 
ruing to appear. 

[9] F. Hillier. "A bound-and-scan algorithm for pure integer linear programming with general 
variables", Operations Research 17, No. 3 (1969). 

[I0] Hoang Tuy, "Concave programming under linear constraints", Soviet Mathematics (1964) 
1437-40. 

[ 111 A. Land and A. Doig, "An automatic method of solving discrete programming problems", 
Econometrica 28 (1960). 

[ 12] F. Glover, "Cut-search methods in integer programming", 7th Mathematical Programming 
Symposium, The Hague (1970), Mathematical Programming to appear. 

[13] E. Balas, "Integefprogramming and convex analysis", Management Science Report # 246 
(April 1971), Carnegie-Mellon University. 


