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Certain types of necessary optimality conditions for mathematical programming problems 
axe equivalent to corresponding regularity conditions on tile constraint set. For any problem, a 
certain natural optimality condition, dependent upon the particular constraint set, is always 
satisfied. This condition can be strengthened in numerous ways by invoking appropriate regu- 
laxity assumptions on the constraint set. Results are presented for Euclidean spaces and some 
extensions to Banach spaces are given. 

1. Introduction 

Consider the optimization problem 
P: maximize f ( x ) ,  subject to 

g(x )<- -O  (1.1) 

x E D C _ _ R  n (1.2) 

where the objective function f:  R n --~ R and the constraint functions 
g: R n ~ R m are assumed cont inuous on an open set containing D. For  
simplicity and without  loss of  generality it can be assumed that any 
equality constraints of  interest have each been rewritten as a pair o f  
inequalities and are thereby included in P. ** 

* This work was supported in part by the Office of Naval Research, Contract No. N00014-  
6 7 - A - 0 3 2 1 - 0 0 0 3  (NR-047-095) .  

** This assumption is purely for expository convenience. For purposes of computing it is ineffi- 
cient to transform equality constraints into pairs of inequalities, For recent algorithmic dis- 
cussions, see, for example, Abadie [ 1 ], Colville [6 ] and Fletcher [ 10], and references therein. 
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Associated with problem P is the constraint set S, defined to be the 
collection of  points satisfying (1.1) and (1.2). It is said that any objec- 
tive function f, to be optimized over S, has a local constrained maximum 
at x 0 6 S if x 0 is a local solution to P, i.e., there exists an e > 0 such 
that for allx E S n {x: IIx-x 0 II < e}, f(x)  <_f(xo). This paper deals only 
with objective functions and constraint functions which are differenti- 
able at some distinguished local solution, x 0 . 

An optimality criterion for P is a condition on the gradient of  f 
which must hold at points where f has a local constrained maximum. 
F o r  example, the usual Kuhn-Tucker optimality criterion [19] asserts 
that if f has a local constrained maximum at x 0 then there is a non- 
negative k ~ R m such that 

m 

v f ( x  0 ) -  ~ Xivgi(Xo)=O 
i=1 

(1.3) 

(k, g(Xo)) = 0. (1.4) 

It is known that without  an additional regularity assumption, called a 
constraint ,qualifigation, the above assertion may not  be true. As an ex- 
ample, consider the problem 

maximize - x 1 - x 2 , subject to 

gl ( x l , x 2 ) = x 2  - x~ < 0 (1.5) 

g2(x l , x2 )  = - x  2 <- 0 

and take D to be tile entire space R 2. This problem has a solution at 
x 0 = (0, 0), but there is no nonnegative )t ~ R 2 such that (1.3) and (1.4) 
hold. To rule out such possible exceptions it has been customary to 
impose a constraint qualification, which is a regularity condition as- 
sumed to be satisfied by the constraints g and the constraint set S at 
some point x 0 E S . ! t  will be seen that such a condition implies that a 
specified optimality criterion is satisfied by all objective functions ( d i f  
ferentiable at x 0) with a local constrained opt imum at x 0. 

In their 1951 paper Kuhn and Tucker presented a constraint qualifi- 
cation such that (1.3) and (1.4) are valid when the qualification is sa- 
tisfied. Since then numerous other papers on constraint qualifications 
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have appeared. The interest l{as been mainly in determining the weakest 
possible such qualifications, in determining strong but "easily verifiable" 
qualifications, and in extending the results to increasingly general prob- 
lems. See, for example, the papers by Abadie [2], Arrow, llurwicz, 
Uzawa [3], Cottle [7], Evans [81, Mangasarian and Fromovitz [211, 
Slater [24], Ritter [221, Varaiya [25], Guignard [15], Canon, Cullum 
and Polak [4], tturwicz [17], Zlobec [27], Gould and Tolle [ 131, [14l, 
and the books by Hadley [16], Karlin [18], Zangwill [26], and Man- 
gasarian [ 20]. 

It is thus apparent that the topic of constraint qualifications has 
been one of the most extensively researched theoretic areas in mathe- 
matical programming, and numerous authors have contributed results, 
as referenced above. In this paper a discussion of constraint qualifica- 
tions and necessary optimality criteria is presented which is based en- 
tirely o11 the source papers due to Guignard [1 5] and the authors [ 13l, 
[14].While the paper is expository in nature, it is not intended to be a 
general survey of the many previous works on constraint qualifications. 
Rather, our intent is to present a synthesis of the known geometric re- 
lations between constraint qualifications and necessary optimality con- 
ditions. For comparisons with other works and particularly for more 
detailed discussions of relations between previous works underlying 
this paper the interested reader is referred to the sources [13], [14], 
[15] and to the above mentioned references. It should also be men- 
tioned that the main emphasis here is on Euclidean spaces, though in 
the last section extensions to a Banach space are given. 

In summary, the following exposition describes relations between 
each member of a family of constraint qualifications and a correspond- 
ing optimality condition. It is shown that in a certain sense each opti- 
mality condition is equivalent to a condition on the geometry of the 
constraint set, and that for any problem a certain natural optimality 
condition, dependent upon the particular constraint set, is always sa- 
tisfied. This condition can be strengthened in numerous ways by in- 
voking stronger constraint qualifications. 

This work, as stated above, is based upon the results of Guignard 
[15] and previous works of the authors [13] and [14]. Guignard de- 
monstrated the existence of optimality criteria which are different 
from the usual Kuhn-Tucker conditions (1.3) and (1.4). This allowed 
the application of optimality theory to problems such as (1.5) which 
could not be previously treated. The authors have focused on the usual 
Kuhn-Tucker conditions in [ 13], and on extensions to Banach space in 
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[14] ,  and have presented a constraint qualification which is necessary 
and sufficient for these conditions to hold for all f with a local cons- 
trained maximum at the point under consideration. Some open ques- 
tions and directions for further research are also discussed. 

2. Notat ion and terminology 

An arbitrary point x 0 ~ S will be distinguished for consideration. In 
terms of  this point, define the following entities. 

F 0 = {objective functions f with a local constrained maximum at x0} 

O F  0 = {z E R n :z = V f ( x  O) for some f E  F0} 

I 0 = { i E  {1, 2, ..., m} : g / ( x 0 ) =  0 } 

C 1 = { z E R  n : (z ,  Vg i ( xo ) )<-  O, a l l / z / 0 }  

B ~  = { g E R n : z = ~_,i0 h i V g i ( X o )  for some scalars ;k i > 0}. 

The term "active constraints" is used for those constraints indexed 
by I 0. The set C 0 is ;i closed convex cone called tile lincarizing cone, 
;llltl /.1~) is a closcd convex cone called the cone of  gra t l icn ls .  

I fA  and H are sets in R" ,  then ,;1 will denote the closure of  A, A / l l  
the relative complement  of  H in A, and A + H will be the set of  all 
points of  the form x + y, where x E A, y E H. 

Def in i t ion  1. x ~ R n is said to be in the polar  cone  of  A, d e n o t e d A ' ,  if 
and only if (x, y)  <- 0 for all y E A. 
Properties of  the polar cone relevant to this work are 

(i) A' is a closed convex cone 
(ii) A l CA z=~A~ ~ A ]  
(iii) A "  = A *==, A is a closed convex cone 
(iv) A'  = [convex hull of  A ] '  
(v) (A 1 
(vi) If  A 1, A 2 are convex polyhedral cones, then A ~ + A ~ = A ~ + A '2 

and hence, by (v), (A i n A2) '  =A~ +A~.  
For  a discussion of  polar cones and their properties see [ 12],  [ 15], and 
[23] .  
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Definition 2. IfA is nonempty,  then the cone o f  tangents toA at x 0 ~ A, 
denoted T(A, x o), is the set of  all x E R n such that there exists a se- 
quence {Xn} ~ A,  converging to x 0, and a nonnegative sequence {X,} 
R such that {Xn(Xn-Xo)  } converges to x. The set T(A, Xo) is a non- 
empty  closed cone determined by the geometry of  A. It need not be 
convex, but  if A. is convex then T(A, x o) is also convex. The cone of  
tangents has been previously described by Abadie [2] and has been 
employed in numerous papers by a variety of  authors. It will be seen 
that the set T'(S, x o) plays a key role in the following exposition. 

3. Optimality conditions in Euclidean space 

It can be shown that if f is an objective function with a local cons- 
trained maximum at x 0 then Vf(x 0) 6 T'(S, x0)  [2] ,  [15] ,  [25] .  In 
terms of  the notation introduced above, D F  o c__ T'(S, x o). In [13] it 
was shown that this result could be strengthened to 

D F  o = T'(S,  x o ) .  (3.1) 

That is, every vector  in T'(S, x o) is actually a gradient of  some objec- 
tive function which has a local constrained maximum at x 0. It will be 
seen that the equivalence of  these two sets is of  interest in describing 
the relationship between constraint qualifications and optimali ty con- 
ditions. Another  useful relation which follows from a result o f  Abadie 
[2],  is that T(S, x o) ~ C O . Then, since S c: D, it must be true that 
T(S, x 0 ) c__ T(D, x o), and hence T(S, x 0 ) c_c__ C O n T(D, x o). Now using 
properties (ii) and (v) o f  polar cones one obtains 

C~ + T'(S,  x o ) =  [C O n T(D, xo)  ]' c_c_ T'(S,  x o ) .  (3.2) 

A final relation of  immediate interest is 

e =c; (3.3) 

which has been shown [2] ,  [ 13], by an application of  Farkas'  lemma 
[9],  

It is worthwhile to note that the cone C o is a local linearization at 
tile point x 0 of  tlmt portion o[" tile constraint set S determined by tI|e 
active constraint lkmctions g, ignoring the set D. As an example, con- 
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sider fig. 1, where for notational convenience it will be assumed that 
D = R 2 .. The constraint functions are given by 

gl (Xl , X 2 ) =  X 2 -- X 2 <- 0 

g 2 ( X I , X 2 ) = X  2 + X  2 - -  2 < - -  0 .  

The linear approximations to gl and g 2  at x o = (1, 1), denoted g l  , g 2 ,  

are given by 

gl (x) = gl (Xo) + (Vgl (Xo), x --X 0 ) = (Vgl (Xo), X--Xo ) 

"g2 (X) = g2 (Xo) + (Vg2 ( x 0 ) ,  x - -  X 0 ) = ( V g  2 ( x  0 ) ,  x - -  x 0 ) . 

At the point x 0 , t h e  constraint set S, given by {X: g(x) <- 0}, is appro- 
ximated by x: g(x) <-- 0 , which is the intersection of  the two half- 
spaces gl (x) <_ 0, g'2 (x) < 0. The linearizing cone C o is simply the trans- 
lation of  this approximating set to the origin, and (3.3) indicates that 
the polar of  C o is B~, the polyhedral cone of  gradients determined by 

Vgl (x 0 ), V g  2 ( x  0 ). 

It cana l so  be verified that for the example illustrated by fig. l the set 
T(S, x O) is the same as C O and hence T'(S,  x o) = C~. 

By now combining the relations (3.1), (3.2) and (3.3) it is seen that 
the following scheme is justified. 

DF o = T'(S,  xo)  D_ [C O n T(D, xo)] '  
II 

B~) + T'(D, x O) = C~ + T'(D, x o) C_ C~ + T'(D, x 0 ) .  
(3.4) 
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From this it is immediate that the reduced scheme 

D F  o = T ' (S ,  x o) 

ul  (3.5) 

holds. Now consider the Kuhn-Tucker optimality conditions (1.3) and 
(1.4), which can be conveniently rewritten as 

3 ~k i ~> O, i ~ I0, 3Vf(Xo)  -- ~ ~i ~Tgi(Xo) = O. 
1 o 

(3.6) 

In terms of the above notation, (3.6) is equivalent to tile assertion thai 
V.//x 0) is in tile cone of  gradients B~. Ilence, (3.6) holds i'or all obicc- 
Live functious with a local constrained nlaxinlut|l at-~"0 if and oiIly if 

D F  o C B~ . (3.7) 

But from (3.5) it is seen that (3.7) holds if and only if 

T' (S ,  x o) = C~ . (3.8) 

Note that (3.8) is a condition which refers to the constraint set S and 
the constraint functions g, but it is independent of the objective func- 
tion f in P. Actually the left side of (3.8) depends only upon the geo- 
metry of S, whilst the right side is determined by the analytic specifica- 
tion of the problem. Since, by (3.3), C~ is the polyhedral cone deter- 
mined by the gradients of the active constraints, enlarging the number 
of constraints can only enlarge the set C~. If the constraint set S satis- 
fies a regularity condition of  being "well enough specified" by the cons- 
traints g, then (3.8) will hold. Examples are easily constructed to show 
that by adding redundant constraints (those which do not change S) a 
situation where C~ is a proper subset of T'(S ,  x o) can be converted to 
one in wh~h  (3.8) holds. For instance, in example (1.5) C~ is a proper 
subset of  T (S, x0)TIf the additional constraint - x  1 <- 0 is added, then 
S remains unchanged but C~ is enlarged to the extent that (3.8) holds. 
In this sense it may appear that the validity of (3.8) is merely a ques- 
tion of "proper specification," or "proper problem formulation." How- 
ever, it is not  known whether every nonlinear program can be "regula- 
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rized" in the sense of  forcing (3.8) to hold by the addition of  a finite 
number of  redundant constraints. This notion might be a topic for fruit- 
ful research. The idea of  "regularizing" cozlstrainl sels I I'or I~urpost's 
other titan those of  concern here) has bccll tlscl'ul ill Ime;~r i~rogram - 
ruing 15 1. 

A relation such as (3.8) is called a constraint qualification. All cons- 
traint qualifications have the property that the objective function in P 
can be changed without  influencing whether or not they hold. As dis- 
cussed above, a constraint qualification is an assumption about  the re- 
lation between tile geometry and the analytic specification of  the cons- 
traint set. 

The above remarks now lead to the following theorem which indi- 
cates the importance of  the qualification (3.8). 

Theorem 1. The optimality condition (3.6) is valid for  all f ~ F o i f  and 
only is the constraint qualification (3.8) is satisfied. 

Those problems for which T'(S, x o) = C~ enjoy in the sense of  theo- 
rem 1, the best of  all known situations, because the Kuhn-Tucker opti- 
mality criterion (3.6) is the strongest known necessary condition. How- 
ever, with references to the scheme (3.5), it is possible to have problems 
for which C~ is a proper subset o f  T'(S, x 0) and (3.8) is not  true. Then 
there will exist objective functions with a local constrained maximum at 
x 0 for which the Kuhn-Tucker optimality conditions do not hold. The 
example ( I ,5)  illustrates this possibility. Until recently there has been 
the uncomfortable  necessity of  dismissing such bizarre cases without  
much discussion. However, it will be shown that it is indeed possible in 
such cases to find new optimality criteria which will hold for all f.  * In 
obtaining these new conditions the requirement that C6 be as large as 
T'(S, x 0 ) is relaxed, and accordingly it will be seen that the new optima- 
lity criteria are weaker and hence less satisfactory as necessary condi- 
tions. 

Considering, then, tile possibility that ('~ is a proper subset of  
7"(S, x0), it is noted from (3.4) that tile following reduced scheme is 
always valid 

* There are other known conditions, called the Fritz John conditions [11] ,  which are known 
to apply to all problems regardless of whether or not (3.8) is true. However, the Fritz John 
conditions appear to be of substantial interest only when (3.8) holds, in which case they re- 
duce to the Kuhn-Tucker conditions. For further discussion see [13] ,  [22] .  
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DF o = T'(S, x o) 

ul  u l  

B3 + T'(D, x o ) = C~ + T'(D, x o ) .  

(3.9) 

Now consider the new optimality criterion 

3 X i >- 0, i ~ I 0 , 3 v f (x  0 ) - ~ Xivgi(Xo ) E T'(D, x o ) .  (3.10) 
I 0 

The condition (3.10) holds for all f ~ F 0 if and only if 

DF o c_c_ B~ + T'(D, x o) .  (3.11) 

But from (3.9) it is seen that (3.11 ) holds if and only if 

T'(S, xo)  = C~ + T'(D, x o ) .  (3.12) 

The condition (3.12) can also be considered to be a constraint qualifica- 
tion and it is clear that the following result is true. 

Theorem 2. The optimality condition (3.10) is valid for all f ~ F o i f  and 
only  i f  the constraint qualification (3.12) is satisfied 

Note that if (3.8) holds then (3.12) holds also, but  for a problem 
where (3.8) does not  hold it may be possible that the less restrictive 
condition (3.12) holds, in which case the optimali ty condit ion (3.10) 
is valid for all f with a local constrained maximum at x 0 . As an example, 
consider the problem 

max - x  I - x 2, subject to 

g l ( X l , X 2 ) = X  2 - - X  3 (-- 0 

g 2 ( X l , X 2 ) = - - X  1 ~ 0 

x E D ,  

where D is tile complement  of  {(x I , x 2): Xl 2 + (x 2 + 1)2 < 1 }. The quan- 
tities of  interest for this problem are sketched in fig. 2. Although the 
objective function can be made arbitrarily large on S, there is actually 
a local constrained maximum at the point  x 0 --" (0, 0). It is easily veri- 
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Fig. 2. 

fled that C6 is the second quadrant, T'(S, x o) consists of the second 
and third quadrants, and hence C6 is a proper subset of T'(S, x o). It is 
also easily verified that the Kuhn-Tucker conditions do not hold  at x o. 
However, T'(D, x o) is the nonpositive portion of the x 2 axis, and hence 
T'(S, x 0) = C6 + T'(D, x 0). Consequently, by theorem 2, (3.10) must 
be valid. For this problem, then, the following optimality condition 
must hold: there exist nonnegative scalars ~'1, ~'2 such that 

t3g 2 
Of_~.v, ( x ° ) - X i  ~ g t  ( x ° ) - ~ 2  ~-il ( x ° ) = O  

Of Ogl Og2 
( x o ) -  <_ o. 

o.~ 2 

As mentioned earlier, tile Kuhn-Tucker criterion is tile strongest known 
necessary condition for optimality. This means that tile criterion (3.(~) 
is "better than" (3.10) ill the sense thai it specifies a smaller set of can- 
didaics for optimalily. ()n the other hand, the validity of (3.10) can be 
guaranteed for a larger class of problems. 

The above discussion will now be generalized to show that for any 
problem P a nontrivial optimality criterion can be found which will be 
valid for all objective functions with a local constrained maximum at 
x 0. The criterion will be dependent  upon the constraint geometry of  
the particular problem and the validity of the criterion for all f E F 0 
will be equivalent [6 a constraint qualification which will always be 
satisfied. 

The following lemma will be employed. 



Geometry of  optimality conditions 11 

Lemma. Suppose A, It, and K are nonempty cones, with K convex, and 
A U H= K. T h e n K = A  +H. 

Proof. Suppose x ~ K. Then x ~ A or x ~ H. Since A and H each con- 
tain the origin, x E A + H. Hence K c_ A + H. Suppose x c A + H. Then 
x = a + h, a E A, h c H .  Bu tA  C- K andHC--K, hencex=a  + h, aG K, 
h ~ K. Since K is a convex cone, K + K = K. Hence a + h ~ K, x ~ K, and 
A+HC_K.  

To employ this result, observe, from (3.5), that C6 c C_ T'(S, x o) and 
also T'(S, Xo)/C ~ c_ T'(S, Xo). We.recall that T'(S, Xo)/C ~ denotes  the 
relative complement  of  C6 in T'(S, x o). The set T'(S, x o)/C6 does not 
contain the origin and hence is not a cone. However ,  letting {0} denote 
the set containing the origin, T'(S, x o)/C6 o {0} is easily seen to be a 
cone. Since T'(S,x o) is convex and since T'(S, xo)= C6 u T'(S, xo)/C ~ u 
{ 0 }, it follows from the above lemma that 

T'(S, xo) = C~ + (T'(S, xo)/C ~ u {0}).  (3.13) 

From (3.13), (3.1) and (3.3) it follows that the scheme 

DF o = T'(S, x o) 

II II (3 .  i 4 )  

B~ +(T'(S, xo)/C ~ o {0}) = C 6 +(T'(S, xo)]C 6 o {0}) 

is always true. Now consider the optimali ty criterion 

3;k i >__ 0 ,  i ~ I o , 9 v f ( x  o) - ~ ]kiVgi(Xo) 
I o 

T'(S, x o)/C~ u {0}. (3.15) 

It follows from (3.14) that 

Theorem 3. Given any problem, P, the optimality condition (3.15) is 
valid for all f ~ F o . 

In the special case of  problems for which (3.8) is satisfied, then 
T'(S, Xo)/C ~ is empty  and (3.15) reduces to the Kuhn-Tucker condi- 
tions. However, considering problems for which (3.8) is not  satisfied, 
theorem 3 guarantees that there exists a set of  nonnegative multipliers 
and a cone G c__ T'(S, Xo) such that v f ( x  o)  - )21o )~i vgi(Xo ) E G if 
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f E F 0. In particular one can take any cone G which satisfies the rela- 
tion T'(S, x 0) = C~ + G. It should be noted that this does not imply 
that G = 7"(S, x o)/C~ u {'0}, as in certain cases numerous cones G c_ 

T'(S, x o ) will satisfy 

T'(S, x o ) = C  ~ +(T'(S, xo)/C ~ w {0}) =C~ + G .  (3.16) 

For example, consider again problem (1.5) for which (3.8) is not  sa- 
tisfied an~l the Kuhn-Tucker condi!ions do not hold. As indicated in 
fig. 3, t hqcone  C 0 is t h e x  I axis, C O is thex.~ axis, T(S, x0) is thc non- 
negativex' l axis, and 7"(S, xo)/C ~ u {0} is {(x l , x 2 ) : x  ! < 0} u {(0,0)}. 
In this case, if G is taken to be any half ray leading to the left from the 
origin (i.e. into T'(S; Xo)/C~) ) then (3.16) will hold. In particular, as 
illustrated in [ 15] by Guignard, G can be taken as the nonpositive part 
of  the x I axis to obtain the optimality conditions: there exist non- 
negative scalars )'1, )k2 such that 

al' (x0) - )`, agL ag2 ax-  ";3x, (x0) - x2 ) xi (x0) 0 (3.17) 

Of _ agl ag2 
aX---22"(Xo ) -  ~'I'-~--X2 (Xo)--)`2 a ~ 2  ( X o ) = 0  (3.18) 

which are valid for a l l f E  F 0. 
It is important  to note that the conditions (3.17) and (3.18) are 

stronger than (3.15). The latter would yield (3.17) without  (3.18). It 
is obviously desirable to obtain the strongest possible optimalRy con- 
ditions for a given problem P. Accordingly, as pointed out by Guignard 
in [15a],  in such cases as that illustrated by the above example, it 
would be desirable to have a tighter theory in order to find the "smal- 
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lest sets" G, smaller than T'(S, Xo)/C ~ u {0} which satisfy (3.16). This 
appears to be another interesting direction for further research. 

In general, then, it has been shown that independent  of  any special 
regularity assumptions the optimality condition (3.15) holds for all 
f E  F 0. Furthermore,  it is seen that if G is any cone contained in 
T'(S, x o ) such that 

~ f  

T'(S, x 0) = C 0 + G (3.19) 

holds, then the optimality condition (3.20) 

there exist ;k i >- 0, i E Io, such that 

v f ( x  0 ) -  ~ ~k i Vg i(x O) E G 
I o 

(3.20) 

is valid for'all f ~  F 0. Conversely, if (3.20) is valid for all f ~ F 0 then 
the constraint qualification (3.19) must be satisfied. To obtain the 
strongest known conditions, those of  Kuhn-Tucker, the cone G is taken 
to be {0}, in which case the qualification (3.19) reduces to (3.8). Ill tile 
oilier eXll't'lllt', lo oblain (nonlrivial) weak COlldiliollS which are always 
wllid, lake (; Io [~e Ihe cone 7"(N, .v 0//('~'~ t! {()}. In bt'lwt'tUl ihcse iwo 
extremes a family of natural oplimalily comlitions can be slated by 
varying the choice of  G. Each such condition is equivalent to a corres- 
ponding constraint qualification given by (3.19) in the sense that it is 
valid for all f ~  F 0 if and only if (3.19) is satisfied. 

Thus. if the geometry of  a given problem is well understood then a 
"best"  optimality condition for that problem can be stated. This is il- 
lustrated by the conditions given in equations (3.17) and (3.18). If on 
the other hand it is desired to consider all problems for which a spe- 
cified optimality condition is valid, then it must be assumed that the 
geometry satisfies certain corresponding regularity conditions. 

Finally, it is noted that the Kuhn-Tucker conditions (3.6) are entirely 
algebraic and are independent  of  the particular problem geometry. The 
geometric dependence is removed by the assumption (3.8). The more 
general conditions (3~-20) a r e n o t  entirely algebraic, since the set G ex- 
plicitly depends upon the particular constraint set S and the functions g. 
Thus the underlying relations between optimality conditions and geo- 
metric considerations are somewhat more explicit in the criterion (3.20). 
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4. Results in Banach space  

In this section we briefly describe an extension of tile above presen- 
tation to Banach space. All of  this m~tc, ri~fl is bascd upon results pre- 
sented in 1141 aml 1151. {Ritter 1221 has done some rchilcd work in : i  

parti~llly ordered l~anach space,  ~lnd Zlobec 1271 has prest ;nlcd soine o f  
the following structure in his weakening of  Guignard's sufficient condi- 
tions presented in [ 15 ] ). Let X, Y denote Banach spaces, each with the 
norm topology,  and assume X is reflexive. Suppose A x C X, Ay c_C_ y 
and assume g: X ~ Y. Define the constraint set 

S =A x o g - l ( A y ) .  (4.1) 

Suppose f:  X-~ R. Then the optimization problem of  interest is 

max .f(x), subject to 

x 6 S .  (4.2) 

An arbitrary point x 0 ~ S is distinguished for consideration and f and g 
are assumed to be differentiable at  x 0. The sets F 0 and DF o are analo- 
gous to the corresponding sets defined in the previous section. Denote  
the topological duals o f  X, Y as X*, Y*, respectively, and for any set 
N* c__ X* let N-* denote the closure of  N* in the weak * topology.  Let 
M be an arbitrary subset o f  X. 

Definition 3. The polar cone o f  M denoted M', is the subset  o f  X* given 
by 

M' = {x* ~ X*: x*(m)  <- 0 Vm ~ M} 

Properties (i) thru (v) of  polar cones in Euclidean spaces, given in section 
2, are also true in Banach spaces [25] ,  [14] ,  [15] .  

Definition 4. The cone o f  tangents to M at x 0 ~ M, denoted T(M, x o ), 
is the set o f  all x ~ X such that there exist sequences {~'n} ~ R,  ;k n >- 0, 
all n, and {Xn} ~-M such that 

( i )  x n -+ x 0 
( i i ) ) , .  ( x ,  - x o )  -~ x .  
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Definition 5. The weak cone o f  tangents to M at x 0 , denoted T w (M, x o ), 
is defined the same as T(M, x o) except that  (ii) is replaced by 

(ii)' X. (x n - x o ) ~ x weakly. 

Definition (i. The weak cone o.['l~Set/dolattgeltls lo ill al .v 0 (.i ill, demoted 
Pw (M, x 0 ), is the closure of the convex hull of  7 w (M, x o ). 

Definition 7. The weak pseudolinearizing cone at x 0 ~ S, denoted 
Kw(x0), is the subset of  X given by {x ~ X: D g ( x o ) ~  P w ( A y , g ( X o ) ) } ,  
where Dg(x o) de.notes the derivative o f g  at x 0 . 

Bw (.Xo), is Definition 8. The weak cone o f  gradients at x 0 ~ S, denoted * " 
the subset of  X* given by 

B * ( x  o) = {z* ~ X*: z* = qS*o Dg(xo )  for some 
(4.3) 

qz* ~ T w ( A y , g ( X o ) ) }  . 

Properties of  the above sets are discussed in [ 1 4 ] ,  where it is shown 
that the following relations hold. * 

D E  o = T w (S, x 0 ) 

u I (4.4) J 

Now consider the optimality condition 

D f ( x o )  e ~ )  . (4 .5 )  

Since * B w (x 0) is not necessarily closed, this condit ion does not guarantee 
the existence of  a q~* e Tw(Ay, g(Xo)) such  that  

D f ( x o )  = ql* o Dg(xo)  , 

* This can be simplified when A .  is convex.  In this case it is demonstrated in [14] that 
Tw(A y,  g(x o) ) = T(A y ,  g(x o) ) ffi lfw(A y,  g(x o) ). 
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However since B* w (x 0) is convex and X is reflexive, the weak * closure 
and the strong closure of  B*(x  o) are the same. Hence (4.5) means that 
there exists a sequence {~*} E Tw(Ay, g(Xo) ) such that 

Df(xo) = lim {~I,*o Dg(xo) } 
n - - ~  oo 

Thus condition (4.5) can be viewed as a type of  asymptot ic  Kuhn- 
Tucker condition (for a discussion of  asymptot ic  sufficient condit ions 
see Zlobec [27] ). Conditions under which B*(x  o) is closed are given in 
[14]. 

It is apparent that condition (4.5) is valid for a l l f ~  F 0 if and only if 
DF o c Bw (x 0). Consequently,  the scheme (4.4) implies 

Theorem 4. The optimality condition (4.5) is valid for all f ~ F o if and 
r t only if  the constraint qualification T w (S, x 0 ) = K w (x o ) holds. 

It is also shown in [ 14] that if reflexivity of  X is dropped,  then the 
following scheme holds 

DF o c__ Tw(S, xo) 

wl 

0--~ (x0)  Kw (Xo) a w  ~ P " 

(4.6) 

Now let G be any prescribed cone in T'w(S, x o) such that the constraint 
qualification 

t 
.T~j(S,.x O) = Kw(x 0) + G (4.7) 

r t 

holds (note that if Tw(S, x 0) c__ Kw(X0) + G then the assumption that G 
is a cone in ~v (S, x 0), plus the facts that K'w(X o) c_c_ Tw (S, x o ) and 

P r 
T' w (S, x 0 ) is convex imply that K w (x 0 ) + G c__ T' w (S, x o ) + T w (S, x 0 ) = 
T'w(S, x O) and hence (4.7) holds). Then it follows from (4.6) that the 
optimality criterion 

E Df(xo) _Bw (Xo) + G (4.8) 

is valid for all f ~ F 0. If X is reflexive then it follows from (4.4) that 
(4.7) is a necessary and sufficient condit ion for (4.8) to be valid for all 

f E F  O. 
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If for a yen optnmzat~on problem" Kw(x0) is a proper  subset of  
T'w (S, x 0) then (4.5) may not  be valid. However, for any problem (4.7) 
is always satisfied if G is taken to be T' w (S, x O)/K' w (x 0) u { 0 }. Hence, 
in this case, the  opt imali ty condi t ion 

Df(xo)  E Bw(X0) + (Tw(S , Xo)/Kw(xo)  u {0}) (4.9) 

holds for all f E  17 0 wi thout  any regularity assumptions on (4.2). 
It is also apparent  that  the cone G in T'w(S,x o) can be varied to give 

various optilnality condit ions and tllat tile results for Euclidean spaces 
can be paralleled in higher dimensional spaces. 
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