
Mathematical Programming 13 (1977) 241-254.
North-Holland Publishing Company

MATRIX AUGMENTATION AND PARTITIONING IN THE
UPDATING OF THE BASIS INVERSE

Johannes BISSCHOP and Alexander MEERAUS

Development Research Center, World Bank, Washington, DC, U.S.A.

Received 2 August 1976
Revised manuscript received 3 May 1977

A compact and flexible updating procedure using matrix augmentation is developed. It is
shown that the representation of the updated inverse does not grow monotonically in size, and
may actually decrease during certain simplex iterations. Angular structures, such as GUB, are
handled naturally within the partitioning framework, and require no modifications of the
simplex method.

Key words: Large-scale programming, Basis updating, Matrix modifications, Partitioning
methods.

1. Introduction

There are basically two methods which are being used for the inversion and
updating of the basis matrix in linear programming. Until recently the product
form of the inverse (PFI) was used predominantly because of its simplicity to
implement. Since then the usage of triangular (LU) decomposition has become
widely recognized because of the superiority of this form of the inverse over the
original product form in terms of speed, compactness, and accuracy (see [1, 15]).
Research in this area is still extensive, and several sparsity-exploiting variants of
the basic LU decomposition are under study (see [6, 11, 13]).

In this paper we propose yet another method for updating the inverse basis
using augmentation and partitioning. Our main interest lies in solving large
sparse systems that are kept entirely in core. We start out showing how general
modifications of a reinverted basis B can be handled using augmentation and
partitioning. Primal simplex iterations are then viewed as a special case, and
studied in detail. It is shown that for problems with an angular structure (such as
GUB), a reduced working basis can be maintained without requiring a spe-
cialization of the simplex method. Finally, the methodology is analyzed and
compared to existing procedures.

2. Matrix modifications

The study of matrix modifications or matrix tearing dates back to the works of
Kron [9] and Sherman and Morrison [14]. The updating of a basis B in linear

241

242 J. Bisschop, A. Meeraus/ Matrix augmentation and partitioning

programming is an example of a matrix modification where several columns
previously not in B are interchanged for columns in/3. We will consider various
modifications of the matrix B. The basic ideas in the following theorem stem
from the work of Kron [9], and can also be found in Rose and Bunch [12].

Theorem 1. The matrix B is m × m, U is m × p, V is p x m, and S is p × p.
A s s u m e that S -1 exists. L e t B = B + U S V be a modif icat ion o f the matrix B.
Then

(i) x is a solution o f 13x = b if and only i f x is par t o f the solution o f the
augmen ted sys tem

(ii) x is a solution o f xB = c if and only i f x is par t o f the solution o f the
augmen ted sys tem

[x y] _S_1 = [c 0].

Proof. By construction, the
augmented system

[0x
To solve (2.1) is equivalent

, ~] [, J = [0 1

vector x solves /3x = b if and only if it solves the

to solving

(2.2)

One verifies this by applying the non-singular transformation

['0 m -i?]
to both sides of (2.1) to obtain the system (2.2). Similarly, the vector x solves
x/3 = c if and only if it solves the augmented system

[x Y] 0 _S_ ~ = [c 0]. (2.4)

To solve (2.4) is equivalent to solving

Ix y] _s_~ = [c 0]. (2.5)

One verifies this by applying the non-singular transformation

J. Bisschop, A. Meerausl Matrix augmentation and partitioning 243

to both sides of (2.4) to obtain the system (2.5). This concludes the proof of the
theorem.

Corollary. I f B = B + U S V , and S -~ is not readily available, one may use the
above theorem f o r B = B + (U S) I p V = B + UIp(SV) and consider either o f the
matrices

I
In actual applications the Corollary to Theorem 1 is of interest as the inversion
of S can be avoided when inverting the augmented matrix. If one adds the
assumption that B -~ exists, Theorem 1 provides us with a representat ion of/3-~.
Without loss of generality, assume that B = B + UV. Then using Kron 's par-
titioning scheme, x =/~-~b can be computed via

(i) y - - - -Q-1VB- lb ,

(i i) x -- B - ~ (b - U y) ;
and x = c/3 -~ can be computed via

(i) y = - c B - 1 U Q -1,

(ii) x = (c - y V) B -1

where

Q = (- lp - V B -~ U).

The following theorem concerning the expansion and contraction of matrices
will be used in the sequel.

Theorem 2. Consider the part i t ioned matrices

A = A3 A4 B3 B4J

where B = A -I, and A1 ~ and B4 ~ are a s s u m e d to exist. Then knowledge o f A [~,
A2, A3, and Q-~= (An-A3AllA2) -1 is sufficient to determine the inverse o f the
larger matrix A , and knowledge o f B2 ~, B b B2, and B3 is sufficient to determine
the inverse o f the smaller matrix A~.

P r o o f . It is straightforward to verify that A B = I whenever

B~ = A~ l + AllA2Q-1A3A1 l,

B2 --- - A t l A 2 Q -1,

B3 = -Q-1A3AT~,

B 4 = Q l,

and

Q = (A4- A3AllA2).

Then, by substitution, one can verify that A~ I= B I - B 2 B ; ~ B 3 . This concludes
the proof of the theorem.

244 J. Bisschop, A. Meeraus[Matrix augmentation and partitioning

Limiting our study of modification to linear programming, there are four basic
modifications of a basis matrix B that result in an augmented system.

(a) Co lumn replacement . Let the column vector ai of the m x m matrix B
be interchanged for the column vector a i not yet in B. Then 1~ = B + U V where
the 1 x m vector V is a unit vector with the one in the ith position, and the m x 1
vector U contains the vector difference a t - ai.

(b) R o w replacement . Let the row vector ri of B be interchanged for the row
vector r i not yet in B. Then B = B + U V where the 1 x m vector V contains the
vector difference ~ - ri, and the m x 1 vector U is a unit vector with the one in
the i-th position.

(c) R o w and co lumn addition. A modification adding a row and a column to
the previous basis results immediately in an augmented system.

(d) R o w and co lumn deletion. After a row and column have been added
during one stage of the solution procedure, a subsequent deletion will result in a
reduced system of the same form.

It is of interest to point out that the above modifications can be per formed in
any order. This flexibility associated with augmentat ion and partitioning is not
present when modifications are executed by either product form or L U decom-
position techniques.

3. Primal simplex iterations after reinversion

It is assumed that the sparse matrix A representing the LP problem is stored in
core, together with a compact representat ion of the basis inverse B -1. By
Theorem 1, finding an inverse representat ion for the modi fed matrix / ~ -
B + U V is equivalent to finding an inverse representat ion for the augmented
system

This involves the matrices B-! , U, ~ V, and Q-l, where Q = (- I - V B -1U). The
size of Q is bounded f rom above by the number of simplex iterations following
the latest reinversion of the basis matrix. As we will see, the dimensions of Q
may in some simplex iterations be unaltered, or even diminished. It is important
to note that only Q-I needs to be stored explicitly, and that both U and V are
stored with pointers. Recall that U contains vector differences involving
columns of A, and that V contains unit vectors. It is effectively the size of the
matrix Q that determines the build-up of additional non-zero elements in the
simplex method. It will be necessary to distinguish between four situations that
may arise during simplex iterations following the latest reinversion of a basis B.

C a s e 1. A non-B vector replaces a B vector. The dimensions of the Q matrix
associated with the augmented system (3.1) will increase by one.

Case 2. A non-B vector replaces another non-B vector (which had entered
the basis in a previous iteration). The dimensions of Q will be unaltered during
such interchange of vectors not belonging to B.

J. Bisschop, A. Meeraus/ Matrix augmentation and partitioning 245

Case 3. A B vector (which had left the basis in a previous iteration) replaces
another B vector. As in Case 2, the dimensions of Q will be unaltered.

Case 4. A B vector replaces a non-B vector. The dimensions of the Q matrix
will actually decrease by one.

Each of the above cases will be considered separately when discussing the
modification of the Q matrix in a simplex iteration.

Assume that k iterations have passed-since the latest reinversion, and that a
total of l <-k non-B column vectors have been interchanged for B column
vectors. The resulting augmented system is

IV, (3.2)

The m x l matrix Ut = U] - U~, where U] contains all columns that have entered
into the basis, and U~ contains all columns that have left the basis. As part of an
inductive argument (the case l = 1 is straightforward) we assume that

VIB 1U2= It (3.3)

after k iterations. It will be shown for each of the above cases that this
assumption will also be satisfied after the k + 1 st iteration. Note that

Q~ = (- I+ - V~B -~ g t) ,

= (- I t - V,B ' U] + V~B-' U~),

= (- VtB-1U]).

At the end of the kth iteration after a reinversion during the revised simplex
method we have the matrices/vectors B -I, Q71, X0 k (the solution vector), a k (the
entering vector), and ;t + = c~B -1. Here)t k is a partially updated pricing vector,
and c~ denotes the vector of objective function coefficients corresponding to the
basic variables of the kth iteration. Next we will discuss the computations that
are needed for a primal iteration.

Step 1. Transform the Entering Vector. Compute

w = Q[I(_ ViB-lak), (save B-lak) ,

yk = B-l (ak _ Utw)

= B - l a k _ B-1U]w + B-1UPw.

In this step one needs to access the matrix B -~ twice when computing B- la k and
B-1U]w. In the event that a k belongs to B, the matrix B -~ needs to be accessed
only once. The matrix B-1Up is a set of l unit vectors where the location of the
ones is known from the set of pointers determining U~.

Step 2. Determine the Leaving Vector. Use x0 k to determine the vector al, the
ith column of B, that will leave the basis. Establish which of the four cases
discussed previously has occurred. Update x k to become x k+l using the vector yk.

Step 3. Update the Inverse Representation. Modify QF 1 into 0 -1=
(- V B - 1 0 1) -1. This will be done separately for each case following Step 4.

Step 4. Compute the Pricing Vector. Let c~ ÷1 denote the vector of cost
coefficients associated with the basic variables of iteration k + 1. Then compute

246 J. Bisschop, A. Meeraus] Matrix augmentation and partitioning

w = (- 4 + ' B ' 0) 0 -1,
~rk+1 = (4+1_ w(/)t~ -1,

where ~r k+~ is the current pricing vector. Here

4+,B- , 5T = 4+,B-,O,_ 4+,B- , 02.

Note that the matrix B-102 is a set of unit vectors where the location of the ones
is known from the set of pointers determining 0 e. Also note that

c~+lB ~ = c~B- I + dk+JeiB - j ,

= A k + dk+JeiB -1,

~. /~ k+l ,

where d k< denotes the difference between the cost coefficients associated with
a k and a~ respectively, and e~ denotes a unit vector with the one in the ith
position, where i is the number of the position of the leaving vector ai in B. In
this step one needs to access the matrix B -*¢ when computing (c~ +1- w f Z) B -~,
and eiB -~ (a partial access). Some of the information used in Steps 1 and 4 is also
needed when Q~ is modified into (~-'. Each of the four cases discussed
previously will be considered next.

C a s e 1. The non-B vector aj replaces the B vector ai. The matrix U is equal to
the matrix UI plus an added column vector containing the difference a i - ai. The
matrix V is equal to the matrix V~ plus an added row vector containing an
m-dimensional unit vector ei with a one in the ith position, where i is the number of
the position of the leaving vector a; in B. The induction argument of (3.3) is
completed for this case by observing that ~'B-10 2= f = It+l. Here

where qC = V tB- la i and [qR q~] = e iB -~O ~. Both B ~a i and eiB -~ are needed in
each simplex iteration so that no extra sweep through B -~ is required for the
updating of 0 -~. Let

Then, using Theorem 2,

O, = Q f l + pQi - , qCqRQf , ,

0.2 = _ p Q { l q C ,

Q3 = -pqRQF1 ,

O n = P,
p = l] (q x - q e Q l l q C) .

C a s e 2. The non-B vector a t replaces the non-B vector ai which occupies the
pth column of U]. The matrix 01 differs f rom the matrix U~ in that its p th

J. Bisschop, A. Meerausl Matrix augmentation and partitioning 247

column contains the vector a t. The matrices O 2 and 1? are exact ly equal to U 2
and Vl respect ively. The induction argument of (3.3) is completed for this case
by observing that V B -~ 0 2= VIB -1U 2 = fz = It. Here

O = Q l + s r ,

where

with

s = q - qp (1 x 1),

r = ep (1 x l),

q = _ ~ B - l a j = _ VtB-laj,

qp, the pth column of Qt,

ep, the (1 × l) unit vector with a one in the pth position.

Note that q is available f rom Step 1 in the simplex method. Using Kron ' s tearing
formula [9], one can compute

0 - 1 = Q[1 + Q~ls (_ 1 _ rQf l s) - l rQi l .

Note that

and that

(-1 - rQ?ls) = (-1 - rQ?l(q - qp))

= (- 1 - rQ?lq + 1)

= (- r Q i l q)

~ - , = Q7! + (- r Q 7 ' q)-~(Q ~ qrQ~' - Qi~ q, rQF'),

where Q;-lqprQF1 is the zero matrix with the except ion of its p th row which is
equal to the pth row of Q~1.

Case 3. The B vector a i (corresponding to the flh column of B) replaces the B
vector ai (corresponding to the ith column of B). Assume that aj occupies the
pth column of U~. The matrix 0 2 differs f rom U~ in that its p th column contains
the vector ai. The matrix V differs f rom the matrix Vt in that its p th row
contains a unit vector with the one in the ith position. The matrix 01 is exact ly
equal to the matrix U]. The induction argument of (3.3) is completed for this
case by observing that ~?B -~/]2= _~ = It by construction. Here

O = Q ,+ st,

where

s = e. (l × 1),

r = q - qv (1 x 1),

with

q = - e i B -1 01,

qp, the pth row of Qt,

ep, ei, unit vectors of length l and m with a one in the pth and ith
position respectively.

248 J. Bisschop, A. Meeraus/ Matrix augmentation and partitioning

Note that exB -~ is used in Step 4 in the simplex method. Using Kron 's tearing
formula [9], one can compute

0-1 = Q~-1+ Qi-ls(_ 1 _ rQtls)- lrQTl .

Note that

and that

(-1 - rQ; ' s) = (-1 - (q - q p) Q f s),

= (- 1 - q Q f s + 1),
= (-qQ;ms) ,

0-1 = Q[I + (_qQ?ls) - l (Q~lsqQ?l _ Q f sqpQ~l)

where Q f s q p Q ? l is the zero matrix with the exception of its pth column, which
is equal to the pth column of Q?I.

Case 4. The B vector a i (corresponding to the jth column of B) replaces the
non-B vector ai which occupies the pth column of U]. Assume that a i occupies
the qth column of U~. The matrix 0 differs from the matrix Ut in that its pth
column will be empty, while the qth column of/_72 will contain the pth column of U~.
The matrix Q differs from the matrix Vt in that its pth row will be empty, while
its qth row will contain the pth row of V~. Let P be a l × I permutation matrix
which equals the identity matrix with columns p and q interchanged. Note that P
is symmetric, and therefore p - l = p , = p. Le t R be an I x I reduction matrix
which equals the identity matrix minus the one in the pth column. Le t 0 =
0 1 - 0 z, then

~f l= UIR,

0 2 = U~PR,

= RPV, ,

f~ = RItR.

The resulting matrix (~ = (- I - I~'B -1 U) has its pth column and pth row equal
to the zero vector, and therefore contains a smaller matrix with dimensions
(1 - i) × (l - 1). One may verify this as follows:

O~ = -RI~R - R P V ~ B - ' U]R + R P V , B-1 U~PR,

= R [- I t - P V t B - ' U] + P V t B -~ U{P]R,

= R [- L - PVtB-~U~ + PItP]R,

= R[-PV~B-1U]]R ,

= RPQtR.

This shows that no new information is needed to update the basis inverse in
this case. For the sake of convenience, redefine 0 to be the (l - 1) × (l - 1)
matrix contained in RPQtR. To determine (~-1 we use the larger inverse (PQI) -1,
and rely upon Theorem 2. Let 3' be the intersection of the pth row and pth
column of (PQt) -1 which is equivalent to the intersection of the pth row and qth

J. Bisschop, A. Meeraus [Matrix augmentation and partitioning 249

column of Q;-1. Let the 1 x (l - 1) v e c t o r qR be equal to the pth row of Q?I
without the element 7. Similarly, let the (l - 1) x 1 vector qC be equal to the qth
column of Q T 1 without the element 7. Also, let Q~ be the matrix Q~-X without the
pth row and qth column• Then, by Theorem 2,

t) -~ = Q 1 - (l [7) q C q R.

This completes the discussion for each of the four cases that can occur while
updating the inverse basis representat ion in the revised simplex method.

4. Angular structures

Special attention has been given to angular structures in linear programming in
an effort to reduce the size of the working basis (see [3, 8]). Chapter 6 in [10]
gives an excellent discussion of Generalized Upper Bounding, and its general-
ization to block-triangular form. Such special linear programs with (m + p) rows
are solved with a working basis that has size m, where m is usually much smaller
than p. The result is a substantial saving in storage. The methods used, however ,
are a specialization of the simplex method, and require special implementation
because of the increased complexity in updating the reduced working basis.
Since the growth of the inverse representat ion of this paper is a function of the
number of iterations following reinversion and n o t the size of the original
tableau, a specialization of the simplex method for problems with an angular
structure is not required. Only a partitioning of the original basis is needed to
obtain the reduced working basis developed in [10]. Assume that for i =
0, 1,2 p, A~ is m0 x n~, xi is ni × 1, Di is m~ x ni, and (x0)l is the first
component of x0. Then consider the following class of linear programming
problems. Minimize (X0) 1 subject to

DlXl = bl,

D2x2 - b2,
• . .

Dpxp bp,
Aoxo + A l x l + A 2 X 2 + " • " + Apxp = b,

x i>-O for a l l i .

Assume that the row rank of the matrices Di is mi. Then any basic feasible
solution must include at least ml components of the vector xi. The initial basis B
can therefore always be partit ioned into the form

Let /~ = £f=1 rni. Then
(i) The ith block of columns in B , i = 1 ,2 p corresponds to rn~ com-

ponents of the vector &.

250 Jr. Bisschop, A. Meeraus/ Matrix augmentation and partitioning

(ii) The/~ x/3 matrix D is a blbck diagonal matrix consisting of p nonsingular
blocks with dimensions (mi x me).

(iii) The/3 x m0 matrix U is a set of vectors which are either zero vectors, or
vectors containing mi nonzero elements.

(iv) The m0 ×/~ matrix V and m0 x m0 matrix /~ consist of selected columns
f rom the las t m0 rows of the or ig inal t ab leau .

The i nve r se r e p r e s e n t a t i o n of B r equ i r e s on ly k n o w l e d g e of D -1, U, V and
Q-~, w h e r e Q = (/ 3 - V D - 1 U) and D -I cons i s t s of p i n v e r t e d b locks wi th
d i m e n s i o n s (mi x m~). The (mo x m0) mat r ix Q is e x a c t l y the r e d u c e d work ing
bas is d e v e l o p e d in [8].

L e t the (/3 + mo) -d imens iona l vec to r s z, d, and c be pa r t i t i oned into (zb z0 ,
(d~, d2) and (c~, c2) r e s p e c t i v e l y . Then B z = d is c o m p u t e d via

(i) z2 = Q ' l (d 2 - VD- ldO,
(ii) zl = D - l (d ~ - Uz2)

and z B = c is c o m p u t e d via
(i) z2 = (c 2 - c ID - 1 U) Q -~,
(ii) zl = (cl - z z V) D -1.

5. Empirical evidence and computational aspects

We studied in detail the pivoting sequence for an agricultural production
scheduling problem with 1124 rows, 2982 columns and 30,700 non-zero elements
Table 1
A pivoting sequence of 9500 iterations

Iter Case 1 Case 2 Case 3 Case 4 Q-size

10 9.29 0.60 0.05 0.06 9.23
(0.82) (0.75) (0.22) (0.26) (0.94)

20 17.49 1.94 0.21 0.36 17.13
(1.48) (1.34) (0.45) (0.66) (1.84)

30 24.95 3.66 0.43 0.96 23.99
(2.18) (1.91) (0.69) (1.10) (2.83)

40 32.01 5.81 0.66 1.52 30.49
(2.90) (2.51) (0.89) (l.44) (3.82)

50 38.69 7.85 1.01 2.45 36.24
(3.35) (2.93) (1.09) (1.90) (4.64)

60 44.92 10.18 1.47 3.43 41.49
(3.65) (3.36) (1.36) (2.35) (5.26)

70 51,33 12.98 1.74 3.95 47.38
(4.45) (4.11) (1.65) (2.65) (6.25)

80 57.30 15.60 2.20 4.90 52.40
(4.87) (4.66) (1.82) (2.83) (6.72)

90 62.94 17.82 2.96 6.28 56.66
(5.42) (5.01) (1.96) (3.24) (7.64)

100 68.55 20.57 3.45 7.43 61.12
(5.74) (5.62) (2.25) (3.81) (8,47)

The table entries are averages (and standard deviations)
observed for each of the cases discussed in Section 3 for a fixed
number of iterations between reinversions.

J. Bisschop, A. Meeraus[Matrix augmentation and partitioning 251

using a commercial LP code (APEX-III , developed by Control Data Cor-
poration). The average occurrences of cases 1 to 4 between reinversion after a
fixed number of iterations are shown in Table 1. The resulting matrix Q is
surprisingly small.

There are a number of characteristics that are important in algorithms for
large scale systems. Some of the most important aspects to consider are: (a)
storage requirements, (b) numerical stability, (c) speed, and (d) flexibility. In the
absence of actual implementation, the following computational analysis will be
somewhat superficial.

(a) Storage Requirements• Let A be M x N, and let K denote the maximum
size that Qt I is allowed to assume (usually K-<50) . Then, using previously
developed notation, the basic core requirements involve storage for B -~, A (both
in super-sparse form), and N-dimensional array for c (usually packed), K 2
storage locations for Q? ~, one K-dimensional working array and three M-
dimensional working arrays to perform steps 1 through 4 of the simplex method.
Total core requirements beyond that needed for B -1, A and c are therefore
roughly K2+ K + 3M between every reinversion. The quantity K 2 compares
favorable with the buildup of new nonzero elements in either the PFI or LU
decomposition. The following table is extracted from the paper of Tomlin [15] in
which he compares the two methods.

Table 2
Growth of nonzero elements

Problem A Problem B Problem C Partitioned
Iterations (822 rows) (2978 rows) (3496 rows) form of
after latest

reinversion PFI LU PFI LU PFI LU Updated inverse*

10 4340 450 10807 972 3692 409 100
20 8572 868 21453 1792 22193 1975 400
30 12965 1118 33400 2971 40677 4357 900
40 17232 1874 45792 4443 59297 6113 1600
50 21582 2691 57903 5662 77935 8240 2500

* It should be noted that core allocation is fixed in advance, so that every number in this
column is actually the constant 2500.

In this table the parti t ioned form of the updated inverse is superior to either
the PFI or LU decomposit ion from a storage viewpoint. A similar pattern is
shown in Table 3, which is a typical sequence after reinversion of the agricul-
tural model used previously.

• (b) Numerical Stability. As our representat ion of the updated inverse as-
sumes a fixed partitioning involving B -~ and Q-l, there are situations in which
this factorization is unstable. For instance, if a series of basis matrices progres,

252

Table 3
Typical non-zero

J. Bisschop, A. Meeraus/ Matrix augmentation and partitioning

build-up a

Iterations
after last
reinvers~on

Nonzero elements Nonzero elements
of inverse Size of of inverse using
using LU b Q-matrix partitioning

0 9129 0 9129
10 15642 10 9229
20 22807 18 9453
30 29388 24 9705
40 36178 31 10090
50 44072 36 10335

Agricultural production scheduling problem, see Table 1.
b Commercial LP code (APEX III) employing LU decomposition.

ses from an ill-conditioned to a well-conditioned state, the final updated fac-
torization will not be well-conditioned. This is mainly because the elements of Q
are determined by B -1. It is, therefore, important that the representat ion of B -1
is stable. In that case the stability associated with the overall representation of
the updated basis inverse can be monitored essentially via the condition number
of Q. The size of the condition number of Q may be partially controlled via the
rejection of unacceptable pivots produced by incoming vectors.

As we have manipulated the small but explicit matrix Q-~, we have the option
to improve it numerically via the iteration

Q7,+~1 = Q • ' (2 I - QQ;') , i = o, 1, 2 , . . . ,

where Qo 1 is the latest version of Q-1. This process converges rapidly whenever
I I I - QQolll-< ~ < 1, in which case I[I-QQ:,~II <- ~2~. If e-> l, convergence is not
guaranteed and this may be taken as a signal for refactorizing the current basis
[4]. This iterative improvement of Q-~ removes the potentially negative effect of
a fixed pivoting sequence induced by the order in which additions to the matrix
Q were made.

The above scheme requires only additional storage for Q if the elements of
Qi -~ are immediately replaced by the newly calculated elements of Qi-+~l. The
matrix Q, however, does not have to be kept throughout all iterations between
reinversions. If the final size of Q-~ is fixed at K, thus reserving K 2 storage
locations, we can pack Q and Q-~ into the same space until they reach the size
K/X/~.

As both the monitoring of the condition of Q and the iterative improvement of
Q-~ could be considered expensive if done at every iteration, one may employ
stable methods for updating ~a factorization of Q rather than using the methods
for manipulating Q-~. One such method uses the orthogonal factorizafion
(~Q = R, where R is upper triangular. In this case, monitoring the condition of Q
is equivalent to monitoring the condition of R [5, 16].

(c) Speed. Comparing the LU decomposit ion and the partit ioned form of the

J. Bisschop, A. Meeraus[Matrix augmentation and partitioning 253

updated inverse from a computational viewpoint is not a straightforward matter.
At the time of this writing, no actual comparisons on real-world problems using
efficient implementations of the two methods have been made. In the LU
decomposition one forward sweep, one backward sweep, and one partial back-
ward sweep through the updated inverse is required (see [5]). The computations
involved are comparable to steps 1 and 4 as described previously where Ul, V~,
and Qi ~ are accessed twice, and B -1 three times fully and one time partially. In
the event that the incoming vector is a B vector, this reduces to two complete
and one partial sweep through B -1. Considering that the time spent in forward
and backward transformations is proportional to the number of nonzero ele-
ments of the inverse, it looks like the partitioned form will take twice as long for
FTRAN and BTRAN operations. This is true for the first iterations following
reinversion. The PF or LU inverse grows virtually always faster than the
Q-matrix and the breakeven point with the partitioned form is reached in some
cases very soon. Table 3 shows that a single iteration of the partitioned form is
already faster after approximately 14 iterations. Additional time could be saved
by storing B-1U (available from step 1) during the first few iterations, thereby
eliminating two accesses of B -1 per iteration.

(d) Flexibility. The partitioned form involves a mixture of sparse and full
matrix technology. The method is flexible in that one is not locked into just
column operations. It allows dynamic changes in computational strategies.
Special structures (partitioning of the A matrix) are handled quite naturally and
are straightforward to implement.

6. Summary and conclusions

In this paper we address the general problem of matrix modifications, and the
specific problem of updating a basis inverse in linear programming. Our interest
is in large sparse systems to be solved entirely in core. We develop a partitioned
form of the updated inverse which we found to be more compact than either the
PFI or the LU decomposition. This partitioned form involves an interesting
mixture of sparse and full matrix technology. The method is flexible in that any
of the four modifications discussed in Section 2 can be made in subsequent
iterations. Relative to LU decomposition the method is straightforward to
implement, and no excessive work needs to be done in the actual updating of the
inverse. A thorough comparison on real-world problems using well implemented
codes is needed to make any definite conclusions regarding computational
efficiency. A superficial analysis has shown that the partitioned form of the
updated inverse has a clear disadvantage regarding the number of computations
required in backward and forward transformations. On the other hand, the
procedure has the distinct advantage that the growth of additional nonzero
elements is not related to the size of the problem, but only to the number of
iterations following reinversion. It is shown that the representation of the
updated inverse does not grow monotonically in size, and that it may actually
contract during certain simplex iterations. This is determined by the pivoting

254 J. Bisschop, A. Meeraus/ Matrix augmentation and partitioning

sequence as it occurs dur ing the solut ion process . It is shown that special
s t ruc tures such as G U B or other angular fo rms may take advan tage of this

par t i t ioned form of the upda ted inverse .
Real iz ing that the me thod has clear advan tages over other methods in te rms of

compac tne s s and imp lemen ta t i on , we feel tha t the par t i t ioned form of the
upda ted inverse dese rves definite a t t en t ion w h e n deve lop ing l inear p rog ramming
codes for large sparse p rob lems .

References

[1] R.H. Bartels and G.H. Golub, "The simplex method of linear programming using LU decom-
position", Communications of the Association for Computing Machinery 12 (1969) 266-268.

[2] J. Bisschop and A. Meeraus, "A recursive form of the inverse of general sparse matrices", DRC
technical note # 1, Development Research Center, World Bank (Washington, DC, 1976).

[3l G.B. Dantzig and R.M. Van SIyke, "Generalized upper bounding techniques for linear
programming", Journal of Computer and Systems Sciences 1 (1967) 213-226.

[4l G. Forsythe and C. Moler, Computer solution of linear algebraic systems (Prentice-Hall,
Englewood Cliffs, NJ, 1967).

[5] P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, "Methods for modifying matrix
factorizations", Mathematics of Computation 28 (1974) 505-535.

[6] D. Goldfarb, "On the Bartels-Golub decomposition for linear programming bases", Report CSS,
Atomic Energy Research Establishment (Harwell, Didcot, Oxfordshire, 1975).

[7] E. Hellerman and D. Rarick, "Reinversion with the preassigned pivot procedure", Mathematical
Programming 2 (1971) 195-216.

[8] R.N. Kaul, "An extension of generalized upper bounding techniques for linear programming",
ORC 65-27, Operations Research Center, University of California at Berkeley (1965).

[9] G. Kron, Diakoptics (MacDonald, London, 1956).
[10l L.S. Lasdon, Optimization theory for large systems (MacMillan Company, New York, 1970).
[11] J.K. Reid, "A sparsity-exploiting variant of the Bartels-Golub decomposition for linear

programming bases", Report CSS, Atomic Energy Research Establishment (Harwell, Didcot,
Oxfordshire, 1975).

[12] D.J. Rose and J.R. Bunch, "The role of partitioning in the numerical solution of sparse
systems", in: D.J. Rose and R.A. Willoughby, eds., Sparse matrices and their applications
(Plenum Press, New York, 1972).

[13] M.A. Saunders, "The complexity of LU updating in the simplex method" in: R.S. Anderssen
and R.P. Brent, eds., The complexity of computational problem solving (University Press,
Queensland, 1972).

[14] J. Sherman and W.J. Morrison, "Adjustment of an inverse matrix corresponding to changes in
the elements of a given column or a given row of the original matrix", Annals of Mathematical
Statistics 20 (1949) 621.

[15] J.A. Tomlin, "Modifying triangular factors of the basis in the simplex method", in: D.J. Rose
and R.A. Willoughby, eds., Sparse matrices and their applications (Plenum Press, New York,
1972).

[16] J.A. Tomlin, "An accuracy test for updating triangular factors", Mathematical Programming
Study 4 (1975) 142-145.

