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A compact and flexible updating procedure using matrix augmentation is developed. It is 
shown that the representation of the updated inverse does not grow monotonically in size, and 
may actually decrease during certain simplex iterations. Angular structures, such as GUB, are 
handled naturally within the partitioning framework, and require no modifications of the 
simplex method. 
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1. Introduction 

There are basically two methods which are being used for the inversion and 
updating of the basis matrix in linear programming. Until recently the product 
form of the inverse (PFI) was used predominantly because of its simplicity to 
implement. Since then the usage of triangular (LU) decomposition has become 
widely recognized because of the superiority of this form of the inverse over the 
original product form in terms of speed, compactness, and accuracy (see [1, 15]). 
Research in this area is still extensive, and several sparsity-exploiting variants of 
the basic LU decomposition are under study (see [6, 11, 13]). 

In this paper we propose yet another method for updating the inverse basis 
using augmentation and partitioning. Our main interest lies in solving large 
sparse systems that are kept entirely in core. We start out showing how general 
modifications of a reinverted basis B can be handled using augmentation and 
partitioning. Primal simplex iterations are then viewed as a special case, and 
studied in detail. It is shown that for problems with an angular structure (such as 
GUB), a reduced working basis can be maintained without requiring a spe- 
cialization of the simplex method. Finally, the methodology is analyzed and 
compared to existing procedures. 

2. Matrix modifications 

The study of matrix modifications or matrix tearing dates back to the works of 
Kron [9] and Sherman and Morrison [14]. The updating of a basis B in linear 
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programming is an example of a matrix modification where several columns 
previously not in B are interchanged for columns in/3. We will consider various 
modifications of the matrix B. The basic ideas in the following theorem stem 
from the work of Kron [9], and can also be found in Rose and Bunch [12]. 

Theorem 1. The matrix  B is m × m, U is m × p, V is p x m, and  S is p × p. 
A s s u m e  that  S -1 exists. L e t  B = B + U S V  be a modif icat ion o f  the matrix  B. 
Then 

(i) x is a solution o f  13x = b if  and  only i f  x is par t  o f  the solution o f  the 
augmen ted  sys tem 

(ii) x is a solution o f  xB  = c if and only i f  x is par t  o f  the solution o f  the 
augmen ted  sys tem 

[x y] _S_1 = [ c  0]. 

Proof. By construction, the 
augmented system 

[ 0x 
To solve (2.1) is equivalent 

, ~ ] [ , J = [ 0 1  

vector x solves /3x = b if and only if it solves the 

to solving 

(2.2) 

One verifies this by applying the non-singular transformation 

['0 m -i?] 
to both sides of (2.1) to obtain the system (2.2). Similarly, the vector x solves 
x/3 = c if and only if it solves the augmented system 

[x Y] 0 _S_ ~ = [ c  0]. (2.4) 

To solve (2.4) is equivalent to solving 

Ix y] _s_~ = [ c  0]. (2.5) 

One verifies this by applying the non-singular transformation 
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to both sides of (2.4) to obtain the system (2.5). This concludes the proof  of the 
theorem. 

Corollary. I f  B = B + U S V ,  and S -~ is not readily available, one may  use the 
above  theorem f o r  B = B + ( U S ) I p V  = B + UIp(SV)  and consider  either o f  the 
matrices  

I 
In actual applications the Corollary to Theorem 1 is of interest as the inversion 
of S can be avoided when inverting the augmented matrix. If one adds the 
assumption that B -~ exists, Theorem 1 provides us with a representat ion of/3-~. 
Without loss of generality, assume that B = B + UV. Then using Kron 's  par- 
titioning scheme, x =/~-~b can be computed via 

(i) y - - - -Q-1VB- lb ,  

( i i)  x -- B - ~ ( b  - U y ) ;  
and x = c/3 -~ can be computed via 

(i) y = - c B - 1 U Q  -1, 

(ii) x = (c - y V ) B  -1 

where 

Q = ( - lp  - V B  -~ U).  

The following theorem concerning the expansion and contraction of matrices 
will be used in the sequel. 

Theorem 2. Consider  the part i t ioned matrices  

A =  A3 A4 B3 B4J 

where B = A -I, and A1 ~ and B4 ~ are a s s u m e d  to exist. Then knowledge  o f  A [  ~, 
A2, A3, and Q-~= (An-A3AllA2) -1 is sufficient to determine the inverse o f  the 
larger matrix  A ,  and  knowledge  o f  B2 ~, B b  B2, and B3 is sufficient to determine 
the inverse o f  the smaller matrix  A~. 

P r o o f .  It is straightforward to verify that A B  = I whenever  

B~ = A~ l + AllA2Q-1A3A1 l, 

B2 --- - A t l A 2 Q  -1, 

B3 = -Q-1A3AT~,  

B 4 = Q  l, 

and 

Q = (A4-  A3AllA2). 

Then, by substitution, one can verify that A~ I= B I - B 2 B ; ~ B 3 .  This concludes 
the proof of the theorem. 
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Limiting our study of modification to linear programming,  there are four basic 
modifications of a basis matrix B that result in an augmented system. 

(a)  Co lumn  replacement .  Let  the column vector  ai of the m x m matrix B 
be interchanged for the  column vector  a i not yet in B. Then 1~ = B + U V  where 
the 1 x m vector  V is a unit vector  with the one in the ith position, and the m x 1 
vector  U contains the vector  difference a t -  ai. 

(b) R o w  replacement .  Let  the row vector  ri of  B be interchanged for the row 
vector  r i not yet in B. Then B = B + U V  where the 1 x m vector  V contains the 
vector  difference ~ - ri, and the m x 1 vector  U is a unit vector  with the one in 
the i-th position. 

(c) R o w  and co lumn  addition. A modification adding a row and a column to 
the previous basis results immediately in an augmented system. 

(d) R o w  and  co lumn  deletion. After a row and column have been added 
during one stage of the solution procedure,  a subsequent  deletion will result  in a 
reduced system of the same form. 

It is of interest to point out that the above modifications can be per formed in 
any order. This flexibility associated with augmentat ion and partitioning is not 
present  when modifications are executed by either product  form or L U  decom- 
position techniques. 

3. Primal simplex iterations after reinversion 

It is assumed that the sparse matrix A representing the LP problem is stored in 
core, together with a compact  representat ion of the basis inverse B -1. By 
Theorem 1, finding an inverse representat ion for the modi fed  matrix / ~ -  
B + U V  is equivalent to finding an inverse representat ion for the augmented 
system 

This involves the matrices B-! ,  U, ~ V, and Q-l, where Q = ( - I -  V B  -1U).  The 
size of Q is bounded f rom above by the number  of simplex iterations following 
the latest reinversion of the basis matrix. As we will see, the dimensions of Q 
may in some simplex iterations be unaltered, or even diminished. It  is important  
to note that only Q-I  needs to be stored explicitly, and that both U and V are 
stored with pointers. Recall that U contains vector  differences involving 
columns of A, and that V contains unit vectors.  It  is effectively the size of the 
matrix Q that determines the build-up of additional non-zero elements  in the 
simplex method.  It  will be necessary to distinguish between four situations that 
may arise during simplex iterations following the latest reinversion of a basis B. 

C a s e  1. A non-B vector  replaces a B vector.  The dimensions of the Q matrix 
associated with the augmented system (3.1) will increase by one. 

Case  2. A non-B vector  replaces another  non-B vector  (which had entered 
the basis in a previous iteration). The dimensions of Q will be unaltered during 
such interchange of vectors  not belonging to B. 
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Case 3. A B vector  (which had left the basis in a previous iteration) replaces 
another B vector.  As in Case 2, the dimensions of Q will be unaltered. 

Case 4. A B vector  replaces a non-B vector.  The dimensions of the Q matrix 
will actually decrease by one. 

Each of the above cases will be considered separately when discussing the 
modification of the Q matrix in a simplex iteration. 

Assume that k iterations have passed-since the latest reinversion, and that a 
total of l <-k non-B column vectors have been interchanged for B column 
vectors.  The resulting augmented system is 

IV, (3.2) 

The m x l matrix Ut = U] - U~, where U] contains all columns that have entered 
into the basis, and U~ contains all columns that have left the basis. As part of an 
inductive argument (the case l = 1 is straightforward) we assume that 

VIB 1U2= It (3.3) 

after k iterations. It will be shown for each of the above cases that this 
assumption will also be satisfied after the k + 1 st iteration. Note  that 

Q~ = ( - I+ - V~B -~ g t ) ,  

= ( - I t  - V,B ' U] + V~B-' U~), 

= ( -  VtB-1U]). 

At the end of the kth iteration after a reinversion during the revised simplex 
method we have the matrices/vectors B -I, Q71, X0 k (the solution vector),  a k (the 
entering vector),  and ;t + = c~B -1. Here  )t k is a partially updated pricing vector,  
and c~ denotes the vector of objective function coefficients corresponding to the 
basic variables of the kth iteration. Next  we will discuss the computations that 
are needed for a primal iteration. 

Step 1. Transform the Entering Vector. Compute 

w = Q[I(_ ViB-lak),  (save B-lak) ,  

yk = B-l (ak  _ Utw) 

= B - l a  k _ B-1U]w + B-1UPw. 

In this step one needs to access the matrix B -~ twice when computing B- la  k and 
B-1U]w. In the event  that a k belongs to B, the matrix B -~ needs to be accessed 
only once. The matrix B-1Up is a set of l unit vectors where the location of the 
ones is known from the set of pointers determining U~. 

Step 2. Determine the Leaving Vector. Use x0 k to determine the vector  al, the 
ith column of B, that will leave the basis. Establish which of the four cases 
discussed previously has occurred.  Update x k to become x k+l using the vector yk. 

Step 3. Update the Inverse Representation. Modify QF 1 into 0 -1= 
( - V B - 1 0 1 )  -1. This will be done separately for each case following Step 4. 

Step 4. Compute  the Pricing Vector. Let  c~  ÷1 denote the vector  of cost 
coefficients associated with the basic variables of iteration k + 1. Then compute 
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w = ( -  4 + ' B  ' 0 ) 0  -1, 
~rk+1 = (4+1_ w(/)t~ -1, 

where ~r k+~ is the current  pricing vector.  Here  

4+,B- ,  5T = 4+,B-,O,_ 4+,B- ,  02. 

Note  that the matrix B-102 is a set of unit vectors where the location of the ones 
is known from the set of pointers determining 0 e. Also note that 

c~+lB ~ = c~B- I  + dk+JeiB - j ,  

= A k + dk+JeiB -1, 

~. /~ k+l ,  

where d k< denotes the difference between the cost coefficients associated with 
a k and a~ respectively,  and e~ denotes a unit vector  with the one in the ith 
position, where i is the number  of the position of the leaving vector  ai in B. In 
this step one needs to access the matrix B -*¢ when computing (c~ +1- w f Z ) B  -~, 
and eiB -~ (a partial access). Some of the information used in Steps 1 and 4 is also 
needed when Q~  is modified into (~-'. Each of the four cases discussed 
previously will be considered next. 

C a s e  1. The non-B vector  aj replaces the B vector  ai. The matrix U is equal to 
the matrix UI plus an added column vector  containing the difference a i - ai. The 
matrix V is equal to the matrix V~ plus an added row vector  containing an 
m-dimensional  unit vector  ei with a one in the ith position, where i is the number  of 
the position of the leaving vector  a; in B. The induction argument  of (3.3) is 
completed for this case by observing that ~'B-10 2= f = It+l. Here  

where qC = V tB- la i  and [qR q~] = e iB -~O ~. Both B ~a i and eiB -~ are needed in 
each simplex iteration so that no extra sweep through B -~ is required for the 
updating of 0 -~. Let  

Then,  using Theorem 2, 

O, = Q f l  + pQi - , qCqRQf , ,  

0.2 = _ p Q { l q C ,  

Q3 = -pqRQF1 ,  

O n = P, 
p = l] (q  x - q e Q l l q C ) .  

C a s e  2. The non-B vector  a t replaces the non-B vector  ai which occupies the 
pth column of U]. The matrix 01 differs f rom the matrix U~ in that its p th  
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column contains the vector  a t. The matrices O 2 and 1? are exact ly equal to U 2 
and Vl respect ively.  The induction argument  of  (3.3) is completed for  this case 
by observing that V B  -~ 0 2= VIB -1U 2 = fz = It. Here  

O = Q l + s r ,  

where 

with 

s = q - qp (1 x 1), 

r = ep (1 x l), 

q = _ ~ B - l a j  = _ VtB-laj, 

qp, the pth column of Qt, 

ep, the (1 × l) unit vector  with a one in the pth position. 

Note  that q is available f rom Step 1 in the simplex method.  Using Kron ' s  tearing 
formula  [9], one can compute  

0 - 1  = Q[1 + Q~ls (_  1 _ rQf l s ) - l rQi l .  

Note  that 

and that 

( -1  - rQ?ls) = ( -1  - rQ?l(q - qp)) 

= ( - 1 -  rQ?lq + 1) 

= ( - r Q i l q )  

~ - ,  = Q7! + ( - r Q 7 '  q)-~( Q ~  qrQ~' - Qi~ q, rQF'), 

where Q;-lqprQF1 is the zero matrix with the except ion of its p th  row which is 
equal to the pth row of Q~1. 

Case 3. The B vector  a i (corresponding to the flh column of B) replaces the B 
vector  ai (corresponding to the ith column of B). Assume that  aj occupies the 
pth column of U~. The matrix 0 2 differs f rom U~ in that its p th  column contains 
the vector  ai. The matrix V differs f rom the matrix Vt in that its p th  row 
contains a unit vector  with the one in the ith position. The matrix 01 is exact ly 
equal to the matrix U]. The induction argument  of (3.3) is completed for  this 
case by observing that ~?B -~/]2= _~ = It by construction. Here  

O = Q ,+  st, 

where 

s = e. (l × 1), 

r = q -  qv (1 x 1), 

with 

q = - e i B  -1 01,  

qp, the pth row of Qt, 

ep, ei, unit vectors  of length l and m with a one in the pth  and ith 
position respectively.  
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Note that exB -~ is used in Step 4 in the simplex method. Using Kron 's  tearing 
formula [9], one can compute 

0-1 = Q~-1+ Qi-ls(_ 1 _ rQtls)- lrQTl .  

Note that 

and that 

( -1  - rQ; ' s )  = ( -1  - ( q  - q p ) Q f  s), 

= ( - 1 -  q Q f s  + 1), 
= ( -qQ;ms) ,  

0-1  = Q[I + (_qQ?ls ) - l (Q~lsqQ?l  _ Q f  sqpQ~l) 

where Q f s q p Q ?  l is the zero matrix with the exception of its pth column, which 
is equal to the pth column of Q?I. 

Case 4. The B vector a i (corresponding to the jth column of B) replaces the 
non-B vector  ai which occupies the pth column of U]. Assume that a i occupies 
the qth column of U~. The matrix 0 differs from the matrix Ut in that its pth 
column will be empty,  while the qth column of/_72 will contain the pth column of U~. 
The matrix Q differs from the matrix Vt in that its pth row will be empty,  while 
its qth row will contain the pth row of V~. Let  P be a l × I permutation matrix 
which equals the identity matrix with columns p and q interchanged. Note that P 
is symmetric, and therefore p - l =  p , =  p. Le t  R be an I x I reduction matrix 
which equals the identity matrix minus the one in the pth column. Le t  0 = 
0 1 -  0 z, then 

~f l= UIR, 

0 2 = U~PR, 

= RPV, ,  

f~ = RItR. 

The resulting matrix (~ = ( - I -  I~'B -1 U) has its pth column and pth row equal 
to the zero vector,  and therefore contains a smaller matrix with dimensions 
(1 - i) × (l - 1). One may verify this as follows: 

O~ = -RI~R - R P V ~ B - '  U]R + R P V ,  B-1 U~PR, 

= R [ - I t  - P V t B - ' U ]  + P V t B  -~ U{P]R,  

= R [ - L  - PVtB-~U~ + PItP]R,  

= R[ -PV~B-1U]]R ,  

= RPQtR.  

This shows that no new information is needed to update the basis inverse in 
this case. For  the sake of convenience,  redefine 0 to be the ( l - 1 ) ×  ( l - 1 )  
matrix contained in RPQtR.  To determine (~-1 we use the larger inverse (PQI) -1, 
and rely upon Theorem 2. Let  3' be the intersection of the pth row and pth 
column of (PQt) -1 which is equivalent to the intersection of the pth row and qth 
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column of Q;-1. Let  the 1 x ( l - 1 )  v e c t o r  qR be equal to the pth row of Q?I 
without the element  7. Similarly, let the (l - 1) x 1 vector  qC be equal to the qth 
column of Q T  1 without the element 7. Also, let Q~ be the matrix Q~-X without the 
pth row and qth column• Then, by Theorem 2, 

t )  -~ = Q 1 -  ( l [ 7 ) q C q  R. 

This completes the discussion for each of the four  cases that can occur  while 
updating the inverse basis representat ion in the revised simplex method. 

4. Angular structures 

Special attention has been given to angular structures in linear programming in 
an effort to reduce the size of the working basis (see [3, 8]). Chapter 6 in [10] 
gives an excellent discussion of Generalized Upper  Bounding, and its general- 
ization to block-triangular form. Such special linear programs with (m + p) rows 
are solved with a working basis that has size m, where m is usually much smaller 
than p. The result is a substantial saving in storage. The methods used, however ,  
are a specialization of the simplex method, and require special implementation 
because of the increased complexity in updating the reduced working basis. 
Since the growth of the inverse representat ion of this paper is a function of the 
number of iterations following reinversion and n o t  the size of the original 
tableau, a specialization of the simplex method for problems with an angular 
structure is not required. Only a partitioning of the original basis is needed to 
obtain the reduced working basis developed in [10]. Assume that for i = 
0, 1,2 . . . . .  p, A~ is m0 x n~, xi is ni × 1, Di is m~ x ni, and (x0)l is the first 
component  of x0. Then consider the following class of linear programming 
problems. Minimize (X0) 1 subject to 

DlXl  = bl, 

D2x2 - b2, 
• . . 

Dpxp bp, 
Aoxo + A l x l  + A 2 X 2 +  " • " + Apxp = b, 

x i>-O for  a l l i .  

Assume that the row rank of the matrices Di is mi. Then any basic feasible 
solution must include at least ml components  of the vector  xi. The initial basis B 
can therefore  always be partit ioned into the form 

Let  /~ = £f=1 rni. Then 
(i) The ith block of columns in B ,  i = 1 ,2  . . . . .  p corresponds to rn~ com- 

ponents of the vector  &. 
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(ii) The/~ x/3 matrix D is a blbck diagonal matrix consisting of p nonsingular 
blocks with dimensions (mi x me). 

(iii) The/3 x m0 matrix U is a set of vectors which are either zero vectors,  or 
vectors containing mi nonzero elements. 

(iv) The m0 ×/~ matrix V and m0 x m0 matrix /~ consist of selected columns 
f rom the  las t  m0 rows  of  the  or ig inal  t ab leau .  

The  i nve r se  r e p r e s e n t a t i o n  of  B r equ i r e s  on ly  k n o w l e d g e  of  D -1, U, V and  
Q-~, w h e r e  Q = ( / 3 - V D - 1 U )  and D -I cons i s t s  of  p i n v e r t e d  b locks  wi th  
d i m e n s i o n s  (mi x m~). The  (mo x m0) mat r ix  Q is e x a c t l y  the  r e d u c e d  work ing  
bas is  d e v e l o p e d  in [8]. 

L e t  the  (/3 + mo) -d imens iona l  vec to r s  z, d, and  c be pa r t i t i oned  into (zb z0 ,  
(d~, d2) and  (c~, c2) r e s p e c t i v e l y .  Then  B z  = d is c o m p u t e d  via  

(i) z2 = Q ' l ( d 2 -  VD- ldO,  
(ii) zl = D - l ( d ~ -  Uz2) 

and z B  = c is c o m p u t e d  via  
(i) z2 = ( c 2 -  c ID - 1 U ) Q  -~, 
(ii) zl = (cl - z z V ) D  -1. 

5. Empirical evidence and computational aspects 

We studied in detail the pivoting sequence for an agricultural production 
scheduling problem with 1124 rows, 2982 columns and 30,700 non-zero elements 
Table 1 
A pivoting sequence of 9500 iterations 

Iter Case 1 Case 2 Case 3 Case 4 Q-size 

10 9.29 0.60 0.05 0.06 9.23 
(0.82) (0.75) (0.22) (0.26) (0.94) 

20 17.49 1.94 0.21 0.36 17.13 
(1.48) (1.34) (0.45) (0.66) (1.84) 

30 24.95 3.66 0.43 0.96 23.99 
(2.18) (1.91) (0.69) (1.10) (2.83) 

40 32.01 5.81 0.66 1.52 30.49 
(2.90) (2.51) (0.89) (l.44) (3.82) 

50 38.69 7.85 1.01 2.45 36.24 
(3.35) (2.93) (1.09) (1.90) (4.64) 

60 44.92 10.18 1.47 3.43 41.49 
(3.65) (3.36) (1.36) (2.35) (5.26) 

70 51,33 12.98 1.74 3.95 47.38 
(4.45) (4.11) (1.65) (2.65) (6.25) 

80 57.30 15.60 2.20 4.90 52.40 
(4.87) (4.66) (1.82) (2.83) (6.72) 

90 62.94 17.82 2.96 6.28 56.66 
(5.42) (5.01) (1.96) (3.24) (7.64) 

100 68.55 20.57 3.45 7.43 61.12 
(5.74) (5.62) (2.25) (3.81) (8,47) 

The table entries are averages (and standard deviations) 
observed for each of the cases discussed in Section 3 for a fixed 
number of iterations between reinversions. 
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using a commercial  LP code (APEX-III ,  developed by Control Data Cor- 
poration). The average occurrences of cases 1 to 4 between reinversion after a 
fixed number of iterations are shown in Table 1. The resulting matrix Q is 
surprisingly small. 

There are a number of characteristics that are important in algorithms for 
large scale systems. Some of the most important  aspects to consider are: (a) 
storage requirements,  (b) numerical stability, (c) speed, and (d) flexibility. In the 
absence of actual implementation, the following computational analysis will be 
somewhat  superficial. 

(a) Storage Requirements• Let  A be M x N, and let K denote the maximum 
size that Qt  I is allowed to assume (usually K-<50) .  Then, using previously 
developed notation, the basic core requirements involve storage for B -~, A (both 
in super-sparse form), and N-dimensional array for c (usually packed), K 2 
storage locations for Q? ~, one K-dimensional  working array and three M- 
dimensional working arrays to perform steps 1 through 4 of the simplex method. 
Total core requirements beyond that needed for B -1, A and c are therefore  
roughly K2+  K + 3M between every reinversion. The quantity K 2 compares 
favorable with the buildup of new nonzero elements in either the PFI  or LU 
decomposition. The following table is extracted from the paper of Tomlin [15] in 
which he compares the two methods. 

Table 2 
Growth of nonzero elements 

Problem A Problem B Problem C Partitioned 
Iterations (822 rows) (2978 rows) (3496 rows) form of 
after latest 

reinversion PFI LU PFI LU PFI LU Updated inverse* 

10 4340 450 10807 972 3692 409 100 
20 8572 868 21453 1792 22193 1975 400 
30 12965 1118 33400 2971 40677 4357 900 
40 17232 1874 45792 4443 59297 6113 1600 
50 21582 2691 57903 5662 77935 8240 2500 

* It should be noted that core allocation is fixed in advance, so that every number in this 
column is actually the constant 2500. 

In this table the parti t ioned form of the updated inverse is superior to either 
the PFI  or LU decomposit ion from a storage viewpoint. A similar pattern is 
shown in Table 3, which is a typical sequence after reinversion of the agricul- 
tural model used previously. 

• (b) Numerical Stability. As our representat ion of the updated inverse as- 
sumes a fixed partitioning involving B -~ and Q-l,  there are situations in which 
this factorization is unstable. For  instance, if a series of basis matrices progres,  
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Table 3 
Typical non-zero 
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build-up a 

Iterations 
after last 
reinvers~on 

Nonzero elements Nonzero elements 
of inverse Size of of inverse using 
using LU b Q-matrix partitioning 

0 9129 0 9129 
10 15642 10 9229 
20 22807 18 9453 
30 29388 24 9705 
40 36178 31 10090 
50 44072 36 10335 

Agricultural production scheduling problem, see Table 1. 
b Commercial LP code (APEX III) employing LU decomposition. 

ses from an ill-conditioned to a well-conditioned state, the final updated fac- 
torization will not be well-conditioned. This is mainly because the elements of Q 
are determined by B -1. It is, therefore,  important  that the representat ion of B -1 
is stable. In that case the stability associated with the overall representation of 
the updated basis inverse can be monitored essentially via the condition number 
of Q. The size of the condition number of Q may be partially controlled via the 
rejection of unacceptable pivots produced by incoming vectors.  

As we have manipulated the small but explicit matrix Q-~, we have the option 
to improve it numerically via the iteration 

Q7,+~1 = Q • ' ( 2 I -  QQ;' ) ,  i = o, 1, 2 , . . . ,  

where Qo 1 is the latest version of Q-1. This process converges rapidly whenever  
I I I -  QQolll-< ~ < 1, in which case I[I-QQ:,~II <- ~2~. If e-> l, convergence is not 
guaranteed and this may be taken as a signal for  refactorizing the current basis 
[4]. This iterative improvement  of Q-~ removes the potentially negative effect of 
a fixed pivoting sequence induced by the order in which additions to the matrix 
Q were made. 

The above scheme requires only additional storage for Q if the elements of 
Qi -~ are immediately replaced by the newly calculated elements of Qi-+~l. The 
matrix Q, however,  does not have to be kept throughout all iterations between 
reinversions. If the final size of Q-~ is fixed at K, thus reserving K 2 storage 
locations, we can pack Q and Q-~ into the same space until they reach the size 
K/X/~. 

As both the monitoring of the condition of Q and the iterative improvement  of 
Q-~ could be considered expensive if done at every  iteration, one may employ 
stable methods for updating ~a factorization of Q rather than using the methods 
for manipulating Q-~. One such method uses the orthogonal factorizafion 
(~Q = R, where R is upper triangular. In this case, monitoring the condition of Q 
is equivalent to monitoring the condition of R [5, 16]. 

(c) Speed. Comparing the LU decomposit ion and the partit ioned form of the 
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updated inverse from a computational viewpoint is not a straightforward matter. 
At the time of this writing, no actual comparisons on real-world problems using 
efficient implementations of the two methods have been made. In the LU 
decomposition one forward sweep, one backward sweep, and one partial back- 
ward sweep through the updated inverse is required (see [5]). The computations 
involved are comparable to steps 1 and 4 as described previously where Ul, V~, 
and Qi ~ are accessed twice, and B -1 three times fully and one time partially. In 
the event that the incoming vector is a B vector, this reduces to two complete 
and one partial sweep through B -1. Considering that the time spent in forward 
and backward transformations is proportional to the number of nonzero ele- 
ments of the inverse, it looks like the partitioned form will take twice as long for 
FTRAN and BTRAN operations. This is true for the first iterations following 
reinversion. The PF or LU inverse grows virtually always faster than the 
Q-matrix and the breakeven point with the partitioned form is reached in some 
cases very soon. Table 3 shows that a single iteration of the partitioned form is 
already faster after approximately 14 iterations. Additional time could be saved 
by storing B-1U (available from step 1) during the first few iterations, thereby 
eliminating two accesses of B -1 per iteration. 

(d) Flexibility. The partitioned form involves a mixture of sparse and full 
matrix technology. The method is flexible in that one is not locked into just 
column operations. It allows dynamic changes in computational strategies. 
Special structures (partitioning of the A matrix) are handled quite naturally and 
are straightforward to implement. 

6. Summary and conclusions 

In this paper we address the general problem of matrix modifications, and the 
specific problem of updating a basis inverse in linear programming. Our interest 
is in large sparse systems to be solved entirely in core. We develop a partitioned 
form of the updated inverse which we found to be more compact than either the 
PFI or the LU decomposition. This partitioned form involves an interesting 
mixture of sparse and full matrix technology. The method is flexible in that any 
of the four modifications discussed in Section 2 can be made in subsequent 
iterations. Relative to LU decomposition the method is straightforward to 
implement, and no excessive work needs to be done in the actual updating of the 
inverse. A thorough comparison on real-world problems using well implemented 
codes is needed to make any definite conclusions regarding computational 
efficiency. A superficial analysis has shown that the partitioned form of the 
updated inverse has a clear disadvantage regarding the number of computations 
required in backward and forward transformations. On the other hand, the 
procedure has the distinct advantage that the growth of additional nonzero 
elements is not related to the size of the problem, but only to the number of 
iterations following reinversion. It is shown that the representation of the 
updated inverse does not grow monotonically in size, and that it may actually 
contract during certain simplex iterations. This is determined by the pivoting 
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sequence  as it occurs  dur ing  the solut ion process .  It  is shown  that  special  
s t ruc tures  such as G U B  or other  angular  fo rms  may  take advan tage  of this 

par t i t ioned  form of the upda ted  inverse .  
Real iz ing that  the me thod  has clear advan tages  over  other  methods  in te rms of 

compac tne s s  and  imp lemen ta t i on ,  we feel tha t  the par t i t ioned  form of the 
upda ted  inverse  dese rves  definite a t t en t ion  w h e n  deve lop ing  l inear  p rog ramming  
codes  for  large sparse p rob lems .  
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