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Theoretical results are developed for zero-one linear multiple objective programs. Initially a
simpler program, having as a feasible set the vertices of the unit hypercube, is studied. For the
main problem an algorithm, computational experience, parametric analysis and indifference
sets are presented. The mixed integer version of the main problem is briefly discussed.
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1. Introduction

Multiple objective programs with continuous variables have been exhaustively
treated in the literature [3,5,7,9]. However very little has been done for the
zero-one case. Shapiro [8] mentions several applications and relates our central
problem to recent results in integer programming duality theory [1]. The main
objective of this paper is to provide theoretical results that hopefully will lead to
a better understanding of this problem. As a by-product an algorithm to
determine all efficient solutions is obtained and computational results are
presented. The linear multiple objective program with zero-one variables is
written as

(P) max{Cx: x € F}

where F={xER": Ax=b, x;=0,1,j€J}, Cisa pXn matrix, Aisan m Xn
matrix, b is an m X 1 vector and J ={1,2,...,n}.

A typical practical application that can be reduced to this model is the
“Project Selection Problem”. The columns a’ of A correspond to projects to
be selected or rejected by p interested parties on the basis of the p x1
evaluation vectors ¢’ (the columns of C).

In this paper the partial ordering relation x = y means x; = y; j € J with at least
a strict inequality. The set of interest in a multiple objective program is the set of
efficient solutions. Specifically x°€ F is said to be efficient in (P) if there is no
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122 G.R. Bitran| Zero-one multiple objective programs

other x € F satisfying Cx = Cx". The set of efficient solutions to (P) is denoted
by EF(P).

A central difference between convex and discrete multiple objective programs
is that in the former case, if the Kuhn-Tucker constraint qualification holds,
every efficient point in (P) maximizes a linear functional of the type ACx, for a
A € R” A >0, on the feasible set [2, 5]. In the later case this may not happen as is
shown in the example below:

max{(l —2><x1>_ =0,land x,=0, 1
1 3 N\ :x1=0,land x,=0, } (1.1)

The point (x1, x2) = (0, 0) is efficient in (1.1) but does not maximize a functional
ACx, for any A =0, on F.
The plan of the paper is as follows. In Section 2 the auxiliary problem

1) max{Cx: x;=0,1,j€ J}

is studied in detail. This problem has shown to be very useful for our purpose, a
reason being that every efficient point in (P’), that is feasible in (P), belongs to
EF(P). The set V={v ER" . v;=0,1 or —1, j € J} and a point to set map defined
on V are introduced. They play a central role in the theory developed here.
Section 3 is devoted to the analysis of (P). The results obtained in Section 2 are
extended to (P). An algorithm to generate EF(P) is described. Similarly to what
is done in Kornbluth’s paper [6] on the continuous multiple cobjective linear
program, we characterize, for the zero-one case, the indifference set

p
S(x*) = {/\ =0 E Ai = 1: x* solves max{ACx: x € F}}
i=1

in terms of a linear system and the set EF(P). An approximation to S(x*)
independent of EF(P) is also obtained. Section 3 is concluded with results on
parametric analysis. In Section 4 we comment on the mixed zero-one version of
(P) and determine a local approximation to indifference sets. Some concluding
remarks and areas for future.research are briefly discussed in Section 5. For
future reference we define the following sets and problems.

J={1,2,...,n}

DUC={x€eR":x;=0,1,j€J}.

UC=[DUC]={xER":0=x;=1,j€J} where [] indicates the convex hull.

(P): max{Cx: xEF} where F={x€R": Ax=b, x€DUC}, C is a pXn
matrix, A is an m X n matrix and b is an m X 1 vector.

(P): max{Cx: x € DUC}.

(P"): max{Cx: x € UC}.

EF(P) = the set of efficient points in (P). (x° € F is efficient in (P) if there is no
x € F such that Cx = CxO). .

EF(P") and EF(P”) are respectively the set of efficient points in (P’) and (P").
They are defined similarly to EF(P).

EF(P’)° and EF(P)° are the sets of non-efficient points in (P’) and (P) respec-
tively.
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The difference of two sets A and B is denoted by A—B={xE A:x& B}.

Lower case letters are used to denote vectors. Superscripts differentiate
vectors and subscripts indicate the components of a vector. The transpose sign
is not indicated when the scalar product of two vectors is clear. Otherwise a
capital T is used as a subscript.

2. The auxiliary problem (P')

This section is devoted to the characterization of EF(P’) through the set
V={v'ER", ieKle"zO and v,=0, 1 or -1, i€EK, jEJ} where K=
{1,2,...,k}. The vectors v’ i € K are contained in the reverse polar cone to the
cone defined by the rows of C. They are the directions of preference, i.e., if
x*=x"+ v’ for some i € K then Cx’= Cx'. We say that x* dominates x' in the
direction v’. The set of points, in DUC, dominated in the direction v' can be
characterized as the image of the following point to set map

M:V->DUC as M(")={x"},

where

x,’£'= 0 if v} =1,

x,’-"=1 if v}:=—1,

xi=0,1 if v;=0.
The cardinality of M (v"), for each i €K, is greater than one if at least a
component of v’ is zero.

At this point we are in position to introduce the first results.

Lemma 2.1. (a) If x € M(v) for some v €V, then x + v €DUC and C(x +v)=
Cx, i.e., x is nonefficient in (P’).
(b) If x€DUC is nonefficient in (P') there exists a v € V such that x € M (v).
(¢) Let x€DUC and x& M(v) for some v €V. Then x +v& DUC.

Proof. (a) The definitions of the map M(.) and of the set V imply respectively
M(v)+{v}C DUC and C(x + v)= Cx.

(b) If x € EF(P’) there is x' € DUC satisfying C(x'—x)=0. By letting v =
x'—x it follows that for j€J, v=1, —1 or 0 implies that x;=0, 1, 0 or 1
respectively, i.e. x € M(v).

(c) x& M(v) implies that for some j € J either v;j=1and x; =1 or v; = —1 and
x; = 0. Therefore x + v& DUC.

Theorem 2.2. Uiek M(v") is the set of non-efficient points in (P'), i.e.,
Uiex M(v') = EF(P'Y".

Proof. Lemma 2.1(a) and 2.1(b) show respectively that U.ex M(v") C EF(P')°
and EF(P)° C Uex M(»).
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Corollary 2.3. V =60 implies EF(P") = DUC.

Each M(v"), i € K can be characterized as the set of optimal basic solutions to a
linear programming problem:

Theorem 2.4. For each i € K, M(v') is the set of extreme points that solve
min{v'x: x €UC}.

Proof. Note that for every x € M(v') and every jEJ we have vix;=—1 if
vi=—1 and »jx; = 0 otherwise.

Let (P") be the corresponding problem to (P’) obtained when the integrality
conditions are relaxed to 0= x; =1, j € J and let CV be the cone generated by v,
i € K. Consider the preference cone PC={p €R":Cp =0}. An alternative
definition for efficiency is: given a set X, x°€ X is efficient if X N ({x%}+PC) =
{x". Note that CV C PC. As DUC is the set of extreme points of UC, when the
efficient points in (P') are contained in EF(P"), we have EF(P’) directly generated
by algorithms developed for continuous linear multiple objective programs
[2,3,9]. Unfortunately this condition is not always true. To be more explicit if
x’€EF(P), ie, DUCN{x}+PC)={x%, it is possible that UCN
({x%+PC) # {x°% or even UC N ({x%}+ CV) # {x* as shown below.

Example 2.5.
-1 —1 0 0
1 1 0
n=4, C=| 1 2 1 -2|, DUC={xeER*x,=0,1,j€J}
-1 =2 -1 0
0 0 1 0

and UC={x€R*:0=x;=1,j€J}. It follows that V={v'=(-1,1,1,1), v’ =
(1,—1,1,0)}. By Theorem 2.2, x’=(0,0,0,0) is efficient in (P’). However x'=
(0,0, 1,3 is contained in CV and satisfies C(x' —x% = 0. Thus x° & EF(P”). This
type of example cannot be obtained in a lower dimension space. When for every
x°€ EF(P"), UC N ({x% + CV) = {x° we say that (P’) is regular.

The preference set that is relevant to zero-one multiple objective programs is
CV. When (P') is regular we can reduce the obtainment of EF(P’) to the
determination of efficient extreme points in

(P") max{Cx: x € ucC}

Where C is the objective matrix whose rows are a set of generators of the
reverse polar cone to CV. Since in some cases the determination of C is simple,
see example 2.6, it is important to determine sufficient conditions for (P’) to be
regular.
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Example 2.6. Suppose

2 3 —67

cC=l3 2 -4
00 2]

then V ={(1,0,0), (0, 1,0), (1,1,0)} and

1 0 0]

— o 1 o0

C=lo o 1/
0o 0 —1|

We say that a subset {v’}?'_zl of -V is a set of generators of V if any v’, j € K can
be written as v’ = ZL; e’ with @ =(ay, ..., @) = 0. Note that 0ER" is not in V.
Let ¢' be a column vector with e; =1, ¢j =0, j#i.

Lemma 2.7. If {v'}%,, with v'=¢' or —ef', is a set of generators of V, then
EF(P) = {x € DUC such that x; = max(0,v;), i=1,2,...,q}

Proof. Assume x € EF(P’) is such that for a fixed i, x;# max(0, v)). Then if
v' =e'(—e’) we have that x + e'(x — ¢') is an element of DUC contradicting the
assumption.

Theorem 2.8. A sufficient condition for (P') to be regular is that {v'},, with
v'=1¢ or —e', be a system of generators of V. Moreover the hyperplane
sS4, vhx = 3L, vix® separates UC and the set {x®}+CV at x° for every x°€
EF(P").

Proof. Assume x"€ EF(P). By Lemma 2.7 x!=max(0,v}), i=1,2,...,q. Let
z=Z3L v Any v € V can be written as: v = X%, ayv’ with (ay, ..., a,) =0 thus,
21(x°+ v) = zrx"+ zrv = z1x° + 2L, a; > z1x°, showing that {x"}+CV is on one
side of the hyperplane zrx = zrx". To see that UC is on the opposite side, note
that the n adjacent vertices x* (s = 1,2, ..., n) to x” in DUC are obtained from
x’ by changing its n components one at a time from 0 to 1 or from 1 to 0.
Therefore, since x{=max(0, v}) for 1=i= g and z,=0 for g+1=s=n we
have

0. 0
x " =x —vie' forl=s=gq,

zix™ = z1x’ = zr(vie®) < z1x’, s=1,2,...,q,
zex® = z1x°%, s=gq+1,...,n,
proving that z defines a separating hyperplane. Furthermore x° solves

max{ztx: x € UC}. 2.1

Corollary 2.9. If {v'}{_), with v' = &' or —¢', is a system of generators of V, then
EF(P’) is the set of optimal extreme points of (2.1).
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The set V can be obtained through an implicit enumeration scheme. Since the
number of potential elements of V is of the order of 3" it is important to find
strong rules that reduce significantly the enumeration. Lemmas 2.10 and 2.11 are
a first step in this direction.

Let Jy be a subset of J.

Lemma 2.10. Assume v', v>€V, v} = v}, j@Jo and v} =0, j € Jo. Then M(v") C
M(h.

Proof. Let y € M(v?). By Lemma 2.1(a) y + v>€ DUC. Hence, y; =0 or | and
yi+vi=0or 1, j€J. Clearly yj+ v =0 or 1, j&J,. Moreover since v} =0 we
also have y;+ v} =0or 1, j € Jo. Thus, y + v' € DUC. By Lemma 2.1(c) it follows
that y € M(v").

This lemma suggests one start the enumeration with vectors having as many
zero components as possible. In fact, if some v’ € V has m zero components we
discard at least 3™ — 1 vectors of the type v> because if any of them is in V we
will have M(v>) C M(v").

Lemma 2.11. If C is non-negative, the only n-vectors necessary to constryct
EF(P’) arev'=e', i€ J.

The proof follows by Lemma 2.10 and the fact that any v € V must have at
least one component, corresponding to a non-zero column of C, equal to one.

Next we present a result that will be useful in the algorithm to obtain EF(P).

Lemma 2.12. Let v' and v* be as defined in Lemma 2.10. Then M(v*)+{v’} C
M@oY+ {v'}

Proof. Assume x € M(v%). Define y; = x; + v}, j € Jo and y = x;, j& Jo. By Lemma
2.1(a) for j € J, we have y; =0 or 1. Clearly y € M(v") and y+v' = x + v>

In Section 3 an algorithm to obtain EF(P) is presented together with com-
putational results. However, theoretical results, as the next three lemmas, may
suggest alternative algorithms.

Lemma 2.13. Let x' € M(v") and x*€ M(v®) be such that x’=x"+v'. Then
v} =0, jE T

Proof. Since x’=x"+v'and x'+ ' €DUC, i = 1,2 we have x'+ v'+ v’ € DUC.
Then,

if /=1 =x{=0and v}=0 or —1,
if v/=—1>x/=1and v}=0 or 1 and
if v/=0 =x/=0(or 1) and v}=0o0r 1 (0 or —1).

Thus vjv; <0, jE L.
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Lemma 2.14. Let xX°€ M(v") and x° € M(v"). Then vjv] =0, j€J.

Proof. x°€ M(v") N M(v?) implies, together with the definition of the map M,
that if for some j € J, v} and v} are nonzero then v} = v}.

Lemma 2.15. Let x’€ DUC, x’—v»'€DUC and x*—v*€DUC. Then vjv} =0,
jiel. _

Proof. For any j € J if x! = 1(0) it follows that v} =0 or 1 (0 or —1) and v} =0 or
1 (0 or —1). Therefore vjv}=0, j€ J.

3. The analysis of (P)

In this section we apply the results, obtained up to this point to analyse (P).
Besides the trivial observation as to the inclusion of the extra feasibility
condition Ax = b, it is important to note that although every x @ EF(P)NF is
efficient in (P), a non-efficient point in (P’) is not necessarily non-efficient in (P).
The following lemma relates (P) and (P').

Lemma 3.1. (a) If for some u € K, Av" =0 then F N M(v") C EF(P)". ‘
(b) Assume x"& EF(P’), x’ €EF(P) and let I(x")={i € K : x"€ M(v")}. Then
x°+v'@F for all i € I(x%.

Proof. (a) Let x € FN M(v"). Then, x + v* €DUC and A(x +v*)= Ax+ Av" =
Ax=b,ie, x+0v"€F. Since C(x +v*)=Cx it follows that x € EF(P)".

(b) Let x°€ EF(P). Since C(x"+v')= Cx° it follows that x°+ v'& F for all
i€ I(x%

Let s, = maxyepuc (b — Aax), u=1,2,...,m where b, and A, =(A,,..., Auw)
are the uth component and row of b and A respectively.
8. = by, — minxepuc Aux = by — 2 4«0 Ay, if all A,; =0 define s, = b,.

Lemma 3.2. If for every i € K there is 1= u(i)=m such that Au,v' > suw, then
every point of F is efficient in (P).

Proof. Suppose x’€ F and x°€ EF(P)°. There is £ € F such that C(x —x%=0.
By letting v’ = ¥ — x° we have v' € V. Thus,
AupX = Aupx” + Auipv’ > minxepuc AupX + Suiy = bugy,
Contradiction!
Lemma 3.2 gives a sufficient condition for F= EF(P). For the application

mentioned in Section 1 it is useful to establish relations between a project, or
equivalently the value of a binary variable, and the elements of EF(P).
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Lemma 3.3. (a) If for a fixed j, vi = 1(=1) for all i € K, then any x € F with
x; = 1(0) is efficient in (P).

(b) If some v € V is such that v = e'(—e') and Av =0, then for any x € EF(P)
we have x; = 1(0).

Proof. (a) If x € F and x; = 1(0) it follows that for all i € K, vi+ x; = 2(—1). Thus,
x+v'€DUC, i € K and therefore x € EF(P).
(b) If x € F and x;# 1(0) we have that x + v € F and consequently x& EF(P).

The results presented contain enough information to develop an algorithm to
determine EF(P). Specifically Lemmas 2.10, 2.11 and Lemmas 3.1(a), 2.12 and
3.1(b) play a relevant role in steps 1 and 4 respectively.

Algorithm

The idea of the algorithm is to obtain EF(P) as the union of the points efficient
both in (P’) and (P) with the nonefficient points in (P’) which are efficient in (P).
This is accomplished in step 5. Recall that by Lemma 3.1(b) a nonefficient point
x"in (P") is efficient in (P) if it is not dominated in F in the directions v’ for all i
such that x* € M(v'). The algorithm first determines (step 1) the v”s necessary to
generate ULM(U"). By using Lemmas 2.10 and 2.11 one often needs just a
subset of V which is denoted by {v'}-;. The nonefficient points in (P’) are
directly obtained (step 2) as EF(P")* = U-, M(v') = Ut M(v)). The elements of
DUC efficient both in (P’) and (P) are those in EF(P’) N F. These are determined
in step 3 by first computing EF(P’) as DUC — EF(P')° and next intersecting this
set with F. In step 4(a) the set ¥ = Uen M(v') is obtained. According to
Lemma 3.1(a) it is the set of nonefficient points in (P’) which if feasible in (P)
will also be nonefficient in (P). These points are excluded from M(v'), i € I in
step 4(c). The elements of DUC which dominates the points in M (v") in the
direction v' are determined in step 4(b). At this point it is important to recall that
because of Lemmas 2.10 and 2.12 it is sufficient to consider the subset {v'}i—;
instead of V. In step 4(d) the points efficient both in (P) and (P’) are used to
reduce the candidates as elements in EF(P). These candidates are reduced
further in steps 4(e) and (f) by first checking for feasibility in (P) and next by
verifying if they are dominated in the direction v' by a point in F. Finally, the
subtraction in step 4(g) is necessary because the sets used in the algorithm up to
this point may not be disjoint.

The algorithm is as follows:

LetI'={l=i=<r:Av'=0}and I’={1,2,...,r}—1I" '

Step 1. Through an implicit enumerative scheme generate the subset & = {v'}i—
of V, using Lemmas 2.10 and 2.11, which is necessary to construct EF(P')*=
Ui (M) = Ui M(o).

Note that r = k.

Step 2. Obtain EF(P')".

Step 3. Obtain EF(P") N F = (DUC - EF(P)) N F.

Step 4. Obtain
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(@ ¥=Uen M),
) 4 =M@Y+, iel?
() =M@V, iel?
(d) A= —{x€Q::3y EEEP)NF with Cy=Cx}, i€ I,
() m=ANEF, i€l
) ={x€mn:3Ay€ A NF with Cy = Cx}.
=mi—0, i€,
(g) &= Uier 6 — (U icr 65).
Step 5. EF(P) = (EF(P)N F) U ¢. (3.1

The proof of equality (3.1) is based on the lemmas mentioned above. Lemma
3.1(a) justifies the exclusion of the elements of y as possible candidates to
EF(P). The procedure described in items (b) to (g) of step 4 to obtain the set ¢ is
due to Lemmas 2.10, 2.12 and 3.1(b).

The following straightforward numerical example illustrates the algorithm.

Example 3.4. Consider the problem max{[}{]x: x € F} where F={x € R?: x, =3,
x;=0,1,i=1,2}. We have

Step 1. {v'}i-1={v'=(1,0), v> = (0, 1)} (note that the set V includes besides v"
and v the vector v*>= (1, 1)). It is clear that I' = {1} and I*={2}.

Step 2. M(v")={0,0), (0,1)}, M@@)={0,0), (1,00} and EFP) =
M"Y U M(®@).

Step 3. EF®)={(1, 1)}, EFPYNF =4§.

Step 4. (a) ¥ ={(0,0), (0, 1)}

(b) 4={(0, 1), (1, 1)}

(©) 2.={(1,0)}

(d) A2={(1,0)}

(e) m2={(1,0)}

&) 6.={1,0)}, 6:=9

@ ¢=0.={(1,0).

Step 5. EF(P)={(1, 0)}.

Computational results

Tables 1 and 2 present the computational results obtained with 30 problems of
the type

max{Cx: Ax = b, x € DUC}

The elements of matrices C and A were randomly generated in the interval
{0,99] and a density of negative elements equal to 20% was used in both
matrices. The elements of b were randomly generated in the interval [0, 999].
The computer used is a Borroughs B6700. The program was written in Fortran
GH. In Tables 1 and 2 the dimensions of C and A are indicated as well as cpu
times in seconds, the number of elements of V necessary to obtain EF(P')°, the
number of elements in I', the number of elements in EF(P’), EF(®P) and F.
Finally, for comparison purpose, we present in the column “Time By Definition”
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the cpu times corresponding to the obtainment of EF(P), for each of the 30
problems, by the most trivial algorithm which consists in applying directly the
definition of efficient point in (P) given in the introduction.

From Tables 1 and 2 we observe that:

(1) The number of elements of V necessary to generate EF(P’) is surprisingly
small indicating that Lemma 2.10 is powerful.

(2) There is no conclusive evidence that the partition of the set {1,2,...,r}in
I' and I’ in the algorithm, improves its efficiency.

(3) The algorithm is more efficient than the definition in obtaining EF(P) when
the number of elements in F is large when compared with 2" (the number of
elements in DUC). In particular, since the first column of Tables 1 and 2
correspond to steps 1, 2 and 3 of the algorithm, we see that when F =DUC
(problems 3, 10, 14, 18, 24 and 28) the time required by the algorithm to obtain
EF(P) = EF(P’) is significantly smaller than the definition time.

(4) For a fixed number of variables the cpu time for the algorithm does not
vary strongly when the number of rows in C are between 2 and 4.

15 First problems 15 Last problems

Algorithm Definition Algorithm Definition
Mean time 3.0269 4.1460 69.1114 132.2186
Standard deviation 0.5652 2.5603 15.8827 80.5142

(5) The fact that the numbers of elements in EF(P’) and EF(P) are close,
indicates that the constraints cut, most of the time, nonefficient points in DUC.

Indifference sets

It was mentioned in Section 1 that not every element of EF(P) maximizes a
functional of the type ACx with A >0 on F. However for any A >0, every
solution to

PAr) max{ACx: x € F}

is efficient in (P). The linear functional ACx corresponds to the assignment of
weights to the p criteria. As these weights are usually subjective it is useful to
investigate the set of weights for which a given element of EF(P) solves (PA).
Let

p

S=fA€R’: > n=1,120,i=1,2,...,p}, x"€EF®),
i=1

Sx")y={r €S: x" solves (PA)},

EF(P) = {x € EF(P): x solves (PA) for some A € S}.

To provide a characterization of S(x"), the indifference set for x“, we need the
following result:

Lemma 3.5. Let A€ES and F(A)= {yEF:ACy=max{ACx: x € F}}. Then
FO)NERP) #48.
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Proof. If A > 0 the result is trivial. Assume A1 >0,...,A:>0, Agr1 =" = A, =0,
d <p and x° solves max{=f_4:+1 cix: x € F(A)}, where ¢; is the ith row of C. We
show that x° € EF(P). Suppose x°& EF(P), then there is X € F such that

Ci=Cx° (3.2)

If £& F(A\) we have ACX < ACx’ and thus ¢;% < cix° for some jE{l, 2,...,d}
contradicting (3.2). If x € F(A), ACx = ACx" and 3% 441 X = 2y c,x implying
ACX + 21 art X =, =ACK 4+ 32 gy cix® Wthh contradicts (3.2). Hence x°& EF(P).
Moreover x° € EF(P).

Theorem 3.6. S(x") is the set of A € S satisfying
AC(x* —x)=0, forall xX*€EF(P), withAES (3.3)

Proof. If A°€ S(x*) then A°C(x*—x)=0 for all x€F and A° satisfies (3.3).
Assume A%is a solution to (3.3). Let x € F and x& EF(P). By Lemma 3.5 there is
fE€EF(P) that solves (PA%. Thus, A°C(X—x)=0. But, A’°C(x“-x)=
ACE*—%)+A°C(Ex~x)=0.

When EF(P) is known and we are not able to distinguish the subset ﬁ(P),
S(x*) can still be characterized by the system

AC(x* —x)=0 forall X’ €EF(P), withAE S 3.4

It is straightforward to prove the equivalence of (3.3) and (3.4). However, if
EF(P) is not known it is possible to approximate S(x*). The n extreme points
adjacent to x“ in DUC can be written as x“+r, j€J where =0, i#j and
ri=1(-1) if x{=0(1).

For any x € DUC, x — x" is a non-negative combination of the vectors r, j € J,
ie.,

x=x"+ yr with =0 (3.5)

jeJ
Consider the system

ACF =0, jEJ withA€ES (3.6)

Lemma 3.7. Let S(x*) be the subset of S satisfying (3.6). Then S(x")C S(x"), i.e.,
S(x*) is an approximation to S(x"*).

Proof. Suppose A’E §(x")._ Since F CDUC, (3.5) holds for any x € F. Thus,
AC(x* —x)=—A"Zje;yiCr = 0. Hence A° € S(x*).

This lemma is illustrated by the following example.
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Example 3.8. Let (P) be

20 1
maxi [—2 0 ~—1|x: —2x;—2x:3=-1,x=0,1,j=1,2,3;.
1 1 1
It can be shown that V ={(0,1,0)}, EF(P)={x'=(0,1,1); x’=(1,1,1); x’=
(1,1,0)} and EF(P)={(1, 1, 1), (0, 1, D}. From (3.4) and (3.6) we have that S(x") is
the solution set of the system:
—2M+20—A3=0,
A+ A+ As=1,
A, Ay, =0
S(x") is the solution set of the system
F2A1—2A2+ A3 =0,
— A1+ A2—A3=0,
At A2t A3=1,
A, Az, A=0.
S(x") and S(x") are represented in Figure 1 by areas ABD and BCD respectively.

A3

e

A1

Fig. 1.
Lemma 3.9. If x"€ EF(P") then {A >0: X € S(x“)}=¢.

Proof. x"& EF(P”) implies that there is x€UC, x=x"+Zjcair, a=
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(a1,...,a)=0and C(x — x"*) = Zje;a;Cr’ = 0. But for any A >0, Zje; aACr > 0.
By (3.6) it follows that A& S(x").

Parametric analysis

We conclude this section with some considerations on parametric analysis. A
change in A or b may affect the condition for a point to be efficient or not. The
analysis varies according to the information on V and whether or not the point is
efficient in (P’). The variations in A and b are represented respectively by
the m X n matrix AA and the m X 1 vector Ab. The perturbed problem (P) is
denoted by (P8,6,): max{Cx: x € F(8,, 8,)} where

F(0,0)={xER":(A+0,4A)x=b+6,Ab and x;=0,1,jEJ}, 6,,6,ER.

Lemma 3.10. Suppose x° € EF(P') and that A and b are perturbed by 6,AA and
0,Ab respectively. Then, x* € EF(P,68,) as long as x° € F(6:, 6,).

Proof. x°€ EF(P’) implies that for all i € K, x°+v'@DUC. Since F(6;,6,)C
DUC we also have x*+ v'& F(8,, 6,), i € K. Therefore x° € EF(P6,6,) as long as
x’ € F(84, 62).

Lemma 3.11. Suppose x°@€ EF(P') and that A and b are perturbed by 6,AA
and 0.Ab respectively. Moreover assume V is known. Then, x* € EF(P#6,6,)
as long as x°€ F(0y, 0,) and (A+ 0,4A)(x°+v)Z b+ 0,Ab for all i€ I(x% =
{i€EK :x"€ M}

Proof. Note that according to Lemma 2.1(b) I(x") #@. By Lemma 2.1(c) we
know that x°+ v'@ F(61, 8,) C DUC for i& I(x"). Thus x° € EF(P6,62) as long as
x°€ F(8y, 6,) and x"+v'& F(8,, 62), i € I(x°).

4. The mixed linear multiple objective problem with zero-one variables

We denote the mixed zero-one version of (P) by (MP): max{[C.x + Coy]¢ (x,¥) €
MF} where MF = {(x, V)ER™" : Aix + A,y = b, x;=0,1,jEJ, y 2 0}, Ay, Az, C,
C;are mXn, mXn', pXn and p X n’ matrices respectively and b is an m x 1
vector. _

A pair (x°, y%) is said to be efficient in (MP) if there is no (x, y) € MF such that
Ci(x —x")+ Cxy — y")=0. The set of efficient points in (MP) is denoted by
EF(MP).

(MP) is considerably more difficult to solve than (P). Besides presenting the
same inconvenience as (P) (see example 4.1), its efficient set cannot be always
obtained as union of convex combinations of subsets of extreme efficient points in
(MP) as shown in Example 4.2.
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Example 4.1. Consider (MP) with

12 2
12 4 s
G=l 2 ) G|
21 0

MF={-x+y=0; x1=0,1; x,=0,1; y=0}.
It is not difficult to verify that (xi, x2, ¥y) =(0,0,0) € EF(MP) and does not
maximize AC1x + ACyy over MF for any A =0 such that (AC;, AC2) # 0.

Example 4.2. Consider (MP) with

—1 1
Cl:l: I:l, CZ:[ l:l’
1 -1

MF={x;=0,1; y=1; y=0}.

MF consists of the segments [(0, 0), (0, 1)] and [(1, 0), (1, 1)]. All points of MF are
efficient in (MP) with the exception of (0,0). Note that (Ci, Co)(1, Dr=
(C1, C)(0, O)r.

Lemma 4.3. A sufficient condition condition for EF(MP) to be empty is that the
system Car=0, Aar =0, r=0 has solution.

Proof. Assume (x, y) € MF and the conditions of the lemma hold. Then, Ax +
Afy+r)=Aix+Ay+Ar=Ax+Ay=band y+r=0,ie., (x,y +r)EMF.
Since Cix + Cx(y + r)= Cix + Coy we conclude that (x, y) € EF(MP). ~

When EF(MP) # @ efficient points in (MP) can be obtained by solving
(MPM) max{rCix + AC,y:(x, y) € MF} for any A >0.

In fact every solution to (MPA) with A >0 is efficient in (MP). In what follows
we explore indifference sets and possible approximations. Let (x°, y*) € EF(MP)
and S(x% y©)={A €S :(x° y°) solves (MPA)} denote the indifference set for
(x°, y°). In characterizing S(x°, y°) we refer to Benders’ method [4, pp. 134-138].

At iteration k, the set of known extreme points and extreme rays of (4.1),
below, are denoted by T(k) and Q(k) respectively. Assume that A°€ S(x°, y°).
Thus

{u: uA,Zz2°CrLuz=0}#0 4.1

Steps 1, 2 and 3 of the method are as follows (for a detailed description see [4,
pp- 138].

Step 1. Initialization.
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Step 2. Solve the integer programming problem

max Uy,
U= A°Cix + u'(b — Aix) every u'€ T(k), 4.2)
0=s%b— Ax) every s? € Q(k),
x=0,1, jel.

Call the optimal solution to (4.2) (uf, x*). Go to Step 3.
Step 3. Solve the LP
uF(x*) = A°Cix* + min  u(b — Ax"),
st uA,= A0y, 4.3)
uzl.

The algorithm terminates if uf(x*) = ué. Otherwise update T(k) and Q(k) and go
to step 2.

Assume that (MPA®) was solved by Benders’ method in k° iterations. Clearly
S(x* y%) is the set of A € S such that

ACx?+ ACy* = AC1x + ACyy  for all (x, y) € MF. (4.4)

Unfortunately (4.4) is not operative. However, it is possible to obtain a local
approximation to S(x°, y°) around the point A°.

When solving (MPA®) by Benders’ method each of the u'in T(k°) solves (4.3)
at some iteration and therefore has a corresponding optimal basis denoted by
(BY). Recall that the u'€ T(k® are extreme points of (4.1). By linear program-
ming parametric analysis we have that each u'in T(k°) will remain optimal in its
corresponding problem (4.3) as long as ACx(B5) ' =0. Let u® be the element of
T(k% which solves (4.3) with x* = x° and consider the system

AES, 4.5)
ACABY 'z 0 for all t such that u'€ T(k°), (4.6)
AC;x? + AC,y° = max u°,
s.t.  u"=ACix+u'(b— Aix) for all t such that u'€ T(k°),
0=s5%b— Aix) for all g such that s? € Q(k°),
xi=0,1, jel 4.7

Theorem 4.4. The set of A’s which satisfy (4.5) to (4.7) is contained in S(x°, y°).

We denote this set by S(A°, x°, y°).

Proof. Assume A satisfies (4.5) to (4.7). Then, every u'€ T(k°) is feasible in
min{u(b — A1x%): uA>= ACs, u =0} (4.8)

and in particular #° is an optimal solution. By linear programming duality it
follows that

u'(b— Ax)ZACyYU' € T(K® and u’(b— Ax®) = ACyy*
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(y° is the optimal solution to the dual to (4.8)). Therefore
XCix + u'(b — Aix) Z AC1x° + ACay° = XCix° + u’(b — Aix°), u'€ T(k%.
4.9)
But, (4.7), (4.9) and the terminq_tion criterion of Benders’ method imply that
(x%, ¥°) solves (MPA) and thus, A € S(x°, y°).
Clearly S(A°, x° y°) is an approximation to S(x¢ y¢) around A°. The reader
should note that the matrices (B5) ' are generated at Step 3 during the solution of
(MPA).

5. Conclusions

The main difficulty in obtaining EF(P) is that some, or all, of its points may not
maximize a functional of the type ACx, with A =0, over F={xER": Ax=b
and x € UC}. In fact they may not maximize the functional even over F.
Otherwise we could use any algorithm for continuous linear multiple objective
programs. This  inconvenience points out the necessity to develop special
methods for the zero-one case. In this paper we presented results based
essentially on the set V. We showed that this set contains enough information to
generate EF(P’) and to identify the potential elements of DUC to be efficient in
(P).

Although the number of possible candidates to V is of the order of 3", Lemma
2.10 provides a rule that reduces significantly the number of vectors to be
enumerated. The concept of regular efficient point in (P’) was introduced. It is
intimately related to the cone CV.

The reader should note that most propositions of this paper are valid even if
the set F is not defined by a system of linear inequalities as long as the zero-one
conditions are included.

The results presented are far from being complete and much research and
practical experimentation remains to be done. It is important to investigate
sufficient conditions for any x € EF(P) to be efficient in (Q): max{Cx: x € F} or
in (P): max{Cx: x € F} when C can be easily determined. Parametric analysis in
(P) as well as its mixed integer version are still to be fully explored. Finally it is
the author’s belief that new algorithms, possibly more efficient than the one
presented, can be developed from the theory presented. These algorithms will be
certainly needed since for n > 10 the cardinality of some M(v) can be very large.
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