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Theoretical results are developed for zero-one linear multiple objective programs. Initially a 
simpler program, having as a feasible set the vertices of the unit hypercube, is studied. For the 
main problem an algorithm, computational experience, parametric analysis and indifference 
sets are presented. The mixed integer version of the main problem is briefly discussed. 
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1. Introduction 

Multiple object ive programs with continuous variables have been exhaust ively 
treated in the literature [3, 5, 7,9]. H o w e v e r  very little has been done for  the 
zero-one case. Shapiro [8] mentions several  applications and relates our central 
problem to recent  results in integer programming duality theory [1]. The main 
object ive of  this paper  is to provide theoretical  results that  hopefully will lead to 
a bet ter  understanding of this problem. As a by-produc t  an algorithm to 
determine all efficient solutions is obtained and computat ional  results are 
presented.  The linear multiple object ive program with zero-one variables is 
writ ten as 

(P) max{Cx: x E F} 

where F = { x E R " : A x < - b ,  x j = 0 ,  1, i E J } , C i s a p x n  matrix, A i s a n  m x n  
matrix, b is an m z 1 vector  and J = {1, 2 . . . . .  n}. 

A typical practical  application that can be reduced to this model is the 
"P ro jec t  Selection Prob lem" .  The columns a i of A cor respend  to projects  to 
be selected or re jected by  p interested parties on the basis of the p x 1 
evaluation vectors  c j (the columns of C). 

In this paper  the partial ordering relation x -> y means xj _-> yj j E J with at least 
a strict inequality. The set of interest  in a multiple object ive program is the set of 
efficient solutions. Specifically x ° E  F is said to be efficient in (P) if there is no 
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other x ~ F satisfying Cx >-- Cx °. The set of efficient solutions to (P) is denoted 
by  EF(P).  

A central difference be tween convex and discrete multiple object ive programs 
is that in the fo rmer  case, if the K u h n - T u c k e r  constraint  qualification holds, 
every efficient point in (P) maximizes  a linear functional of the type ;tCx, for  a 
h E R p A > 0, on the feasible set [2, 5]. In the later case this may not happen as is 
shown in the example  below: 

m a x { (  11 - 2 ] ( x , ]  1}. (1.1) 
- 3 /\x2]: xl = 0, 1 and x2 = O, 

The point (xl, x2)= (0, 0) is efficient in (1.1) but does not maximize a functional 
hCx, for any h-> 0, on F. 

The plan of the paper  is as follows. In Section 2 the auxiliary problem 

(P') max{Cx: xj = 0, 1, j E J} 

is studied in detail. This problem has shown to be very useful for  our purpose,  a 
reason being that  every  efficient point in (P'), that  is feasible in (P), belongs to 
EF(P).  The set V = {v ~ R" : vi = 0, 1 or - 1 ,  j E J} and a point to set map defined 
on V are introduced. They play a central role in the theory developed here. 
Section 3 is devoted to the analysis of (P). The results obtained in Section 2 are 
extended to (P). An algorithm to generate  EF(P) is described. Similarly to what  
is done in Kornbluth ' s  paper  [6] on the continuous multiple object ive linear 
program, we characterize,  for  the zero-one case, the indifference set 

S(x*) = {X _-> 0 ~ hi = 1: x* solves max{hCx: x E F 

in terms of a linear sys tem and the set EF(P).  An approximat ion to S(x*) 
independent  of  EF(P) is also obtained. Section 3 is concluded with results on 
parametr ic  analysis. In Section 4 we comment  on the mixed zero-one version of 
(P) and determine a local approximat ion to indifference sets. Some concluding 
remarks  and areas for future~research are briefly discussed in Section 5. For  
future reference  we define the following sets and problems.  

Y = { l , 2  . . . . .  n}. 
DUC = {x E R "  :xj = 0 ,  1, j E J } .  
UC = [DUC] = {x E R" : 0 _-__ xi = 1, j E J} where [] indicates the convex  hull. 
(P) :max{Cx:  x G F }  where F = { x C R " : A x < = b ,  x C D U C } ,  C is a p x n  

matrix, A is an m × n matrix and b is an rn × 1 vector.  
(P'): max{Cx: x E DUC}. 
(P"): max{Cx: x E UC}. 
EF(P) -= the set of efficient points in (P). (x ° E F is efficient in (P) if there is no 

x E F such that Cx >- Cx°). 
EF(P')  and EF(P") are respect ively the set of efficient points in (P') and (P"). 

They are defined similarly to EF(P).  
EF(P ' )  c and EF(P) c are the sets of non-efficient points in (P') and (P) respec-  

tively. 
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The dif ference of  two sets A and B is deno ted  by  A - B  = {x E A : x ~  B}. 
L o w e r  case letters are used  to deno te  vec tors .  Superscr ip ts  differentiate 

vec to rs  and subscr ip ts  indicate the c o m p o n e n t s  o f  a vector .  The  t r anspose  sign 
is not  indicated when  the scalar  p roduc t  of  two vec tors  is clear. Otherwise  a 
capital  T is used as a subscript .  

2. The auxiliary problem (P') 

This sect ion is devo ted  to the charac te r iza t ion  of  EF(P ' )  th rough  the set 
V = { v ~ E R  ", iEKICv~>--O and v~=0 ,  1 or  - 1 ,  i E K ,  j E J }  where  K =  
{1, 2 . . . . .  k}. The  vec tors  v g i E K are con ta ined  in the reverse  polar  cone  to the 
cone  defined by  the rows  of  C. T h e y  are the di rect ions  of  p re fe rence ,  i.e., if 
x z = x 1 + v i fo r  some  i E K then Cx 2 >- Cx ~. We say that  x 2 domina tes  x ~ in the 
direct ion v ~. The  set  of  points ,  in D U C ,  domina ted  in the di rect ion v ~ can be 
charac te r i zed  as the image of  the fo l lowing point  to set map 

where  

M : V ~ D U C  a s  M(vi)={xir}r, 

i [x~ r =  0 if vj = 1, 
i ~x~ r =  1 if vj = - 1 ,  

• i [x~ r = O , 1  if v j = O .  

The  cardinal i ty  of  M(v~), for  each  i E K ,  is greater  than one if at least a 
c o m p o n e n t  of  v" is zero.  

At  this point  we  are in posi t ion to in t roduce  the first results.  

Lemma 2.1. (a) I f  x E M(v )  for  some v E V, then x + v E D U C  and C(x + v)>- 
Cx, i.e., x is noneyficient in (P'). 

(b) I f  x E D U C  is none1~cient in (P') there exists a v E V such that x E M(v) .  
(c) Let  x E D U C  and x ~  M ( v )  for  some v E V. Then x + vf£ D U C .  

Proof.  (a) The  definitions of  the map M(.)  and of  the set V imply respec t ive ly  
M(v)  + {v} C D U C  and C(x + v) >- Cx. 

(b) I f  x E EF(P ' )  c there  is x~E D U C  sat isfying C(x ~-  x)>_ O. By letting v = 
x l - x  it fo l lows that  fo r  j E J ,  v j =  1, - 1  or  0 implies that  xj = 0 ,  1, 0 or  1 
respec t ive ly ,  i.e. x E M(v) .  

(c) x ~ M ( v )  implies that  fo r  some  j E J  either v~ = 1 and xj = 1 or vj = - 1  and 
xj = 0. The re fo re  x + V ~E D U C .  

Theorem 2.2. U i e r M ( v  i) is the set of  non-e1~cient points in (P'), i.e., 
U ieKM(v i) = EF(P ' )  c. 

Proof.  L e m m a  2.1(a) and 2.1(b) show respec t ive ly  that  U l e r M ( v i )  CEF(P ' )  c 
and EF(P ' )  c C U i ~  M(vi) .  
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Corollary 2.3. V = ~l implies EF(P')  = DUC. 

Each M(vi),  i E K can be characterized as the set of optimal basic solutions to a 
linear programming problem: 

Theorem 2.4. For  each i E K,  M ( v  i) is the set o f  ex treme points  that  solve 
min{vix: x E UC}. 

Proof. Note that for every  x E M(v  i) and every ] E J we have ' v jxj = - I if 
i i vi = - 1 and vixi = 0 otherwise. 

Let  (P") be the corresponding problem to (P') obtained when the integrality 
conditions are relaxed to 0 _-< xi --< 1, j E J and let CV be the cone generated by v", 
i E K.  Consider the preference cone PC = {p E R " : C p - > 0 } .  An alternative 
definition for efficiency is: given a set X, x ° E X is efficient if X n ({x °} + PC) = 
{x°}. Note that CV C PC. As DUC is the set of extreme points of UC, when the 
efficient points in (P') are contained in EF(P"), we have EF(P')  directly generated 
by algorithms developed for continuous linear multiple objective programs 
[2, 3, 9]. Unfor tunately  this condition is not always true. To be more explicit if 
x ° E E F ( P ' ) ,  i.e., DUCA({x  °}+PC)={x°},  it is possible that U C N  
({x °} + PC) # {x °} or even UC n ({x °} + CV) # {x °} as shown below. 

Example 2.5. 

n = 4 ,  C = 1 2 1 - 2  , 
- 2  - 1  

0 1 

DUC = {x E R4: xj = 0, 1, i E J} 

and U C = { x E R  4:0_-<xj_-<l , jEJ}.  It follows that V = { v  1 = ( - 1 , 1 , 1 , 1 ) ,  v 2 :  
( 1 , - 1 ,  1,0)}. By Theorem 2.2, x° = (0, 0, 0, 0) is efficient in (P'). However  x 1= 
(0, 0, 1,1) is contained in CV and satisfies C(x  1 -  x °) >-O. Thus x ° ~  EF(P"). This 
type of example cannot be obtained in a lower dimension space. When for every  
x ° E EF(P') ,  UC n ({x °} + CV) = {x °} we say that (P') is regular. 

The preference set that is relevant to zero-one multiple objective programs is 
CV. When (P') is regular we can reduce the obtainment of EF(P')  to the 
determination of efficient extreme points in 

(P') max{Cx: x E UC} 

Where C is the objec t ive ,matr ix  whose rows are a set of generators of the 
reverse polar cone to CV. Since in some cases the determination of C is simple, 
see example 2.6, it is important to determine sufficient conditions for (P') to be 
regular. 
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E x a m p l e  2.6. S u p p o s e  

C =  2 - 4  , 

0 2 

t h e n  V = {(1, O, 0), (0, l ,  0), (1, 1, 0)} a n d  

0 0 
0 0 - 

W e  s a y  t h a t  a s u b s e t  {v;}7=~ o f  V is a s e t  o f  g e n e r a t o r s  o f  V if  a n y  v j, j E K c a n  
b e  w r i t t e n  as  v j = E7=1 air  i w i t h  a = ( a l  . . . . .  aq)  -> 0. N o t e  t h a t  0 @ R n is n o t  in V. 

L e t  e i b e  a c o l u m n  v e c t o r  w i t h  el = 1, e~ = 0, j ¢  i. 

L e m m a  2.7. I f  {vl}Ll ,  with  v i =  e i o r  - e  i, is a set  o f  genera tors  o f  V, then  

E F ( P ' )  = {x E D U C  such  tha t  xi = m a x ( 0 ,  vl) ,  i = 1, 2 . . . . .  q}. 

P roo f .  A s s u m e  x ~ E F ( P ' )  is s u c h  t h a t  f o r  a f ixed  i, x~¢ m a x ( 0 ,  vl).  T h e n  if  
v i = e i ( - e  ;) w e  h a v e  t h a t  x + e i (x  - e i) is an  e l e m e n t  o f  D U C  c o n t r a d i c t i n g  the  
a s s u m p t i o n .  

T h e o r e m  2.8. A suf f ic ient  cond i t i on  f o r  (P ' )  to be  regular  is tha t  {vi}q~l, with  
v i =  e i or  - e  i, be a s y s t e m  o f  genera tors  o f  V. M o r e o v e r  the h y p e r p l a n e  

ET:l vi~x= ET-l viTx° separa tes  U C  and  the set  { x ° } + C V  at  x ° f o r  every x ° E  

E F ( P ' ) .  

P roo f .  A s s u m e  x ° E E F ( P ' ) .  B y  L e m m a  2.7 x ° = m a x ( 0 ,  vl) ,  i = 1, 2 . . . . .  q. L e t  
z = ET_l v ~. A n y  v E V c a n  b e  w r i t t e n  as :  v = E~=l air i w i t h  ( a l  . . . . .  aq)  -> 0 t h u s ,  

ZT(X ° + V) = ZTX ° + ZTV = ZTX ° + ET=l at  > ZxX °, s h o w i n g  t h a t  {x °} + C V  is on  o n e  
s ide  of  t he  h y p e r p l a n e  zvx  = zxx  °. T o  see  t h a t  U C  is on  the  o p p o s i t e  s ide ,  n o t e  
t h a t  t he  n a d j a c e n t  v e r t i c e s  x °s (s = 1, 2 . . . .  , n )  to  x ° in D U C  are  o b t a i n e d  f r o m  
x ° b y  c h a n g i n g  i ts  n c o m p o n e n t s  o n e  a t  a t i m e  f r o m  0 to  1 o r  f r o m  1 to  0. 
T h e r e f o r e ,  s i n c e  x ° = m a x ( 0 ,  vl) f o r  1 -<_ i N q a n d  Zs = 0 f o r  q + 1 <= s - n w e  
h a v e  

x ° s = x  ° - G e  s f o r  l<__s=<q,  

ZTX °' = ZTX ° -  ZT(Ge s) < ZTX °, S = 1, 2 . . . . .  q, 

ZTX Os = ZTX O, S = q + 1 , . . , ,  n, 

p r o v i n g  t h a t  z d e f i n e s  a s e p a r a t i n g  h y p e r p l a n e .  F u r t h e r m o r e  x ° s o l v e s  

max{zTx:  x C UC}.  (2.1) 

C o r o l l a r y  2.9. I f  {vi}7_l, with  v i =  e i or  - e  i, is a s y s t e m  o f  genera tors  o f  V, then 

E F ( P ' )  is the  set  o f  o p t i m a l  ex t reme  p o i n t s  o f  (2.1). 
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The set V can be obta ined  through an implicit enumera t ion  scheme.  Since the 
number  o f  potent ial  e lements  of  V is of  the order  o f  3" it is impor tan t  to find 
s t rong rules that  r educe  significantly the enumerat ion .  L e m m a s  2. I0 and 2.11 are 
a first step in this direction.  

Le t  J0 be a subset  of  J. 

L e m m a  2.10. A s s u m e  v 1, v2E V, v]= v 2, ]~Jo  and v] = 0 ,  j E J o .  Then M ( v 2 ) C  
M(vl ) .  

Proof.  Le t  y E M(v2). By L e m m a  2.1(a) y + u2EDUC. Hence ,  yj = 0  or  1 and 
y j +  v 2=  0 or 1, ] E J .  Clearly yj+ v] = 0 or  1, j ~  J0. M o r e o v e r  since v] = 0 we 
also have yj + v] = 0 or  1, ] E J0. Thus ,  y + v ~ ~ D U C .  By  L e m m a  2.1(c) it fo l lows 
that  y E M(vl) .  

This l emma suggests  one start  the enumera t ion  with vec tors  having as m a n y  
zero  c o m p o n e n t s  as possible.  In fact ,  if some  v ~ E V has m zero  c o m p o n e n t s  we 
discard at least 3 m - 1 vec tors  of  the type  v 2 because  if any  of  them is in V we 
will have  M ( v  2) C M(vl ) .  

L e m m a  2.11. I f  C is non-negative, the only n-vectors necessary to construct  
EF(P ' )  are v i = e ~, i @ J. 

The p roof  fol lows by  L e m m a  2.10 and the fac t  that  any  v ~ V must  have at 
least one  componen t ,  co r respond ing  to a non-zero  co lumn of  C, equal  to one. 

Nex t  we present  a result  that  will be useful  in the algori thm to obtain  EF(P) .  

L e m m a  2.12. Let  v ~ and v 2 be as defined in L e m m a  2.10. Then M(v2)+{v2}C 
M(v') + {v'}. 

Proof.  A s s u m e  x E M(v2).  Define Yi = x] + v~, j E Jo and y = xi, ] ~  J0. By  L e m m a  
2.1(a) fo r  j E J 0 w e  have  y j = 0  or  1. Clearly y E M ( v  1) and y + v  ~ = x + v  2. 

In Sect ion 3 an algori thm to obtain EF(P)  is p resen ted  together  with com-  
putat ional  results. H o w e v e r ,  theoret ical  results,  as the next  three lemmas,  may  
suggest  al ternat ive algori thms.  

L e m m a  2.13. Let xIEM(v 1) and x2EM(v 2) be such that x 2 = x l + v  1. Then 

Proof.  Since x 2 = x I + /)1 and x i + v i E D U C ,  i = 1, 2 we have  x ~ + v I +/)2~ D U C .  
Then,  

if v ] = l  ~ x ] = O a n d  v ] = 0 o r - l ,  
if v ] = - l ~ x ] = l  and v 2 = 0  or  1 and 
if v ] = 0  ~ x ] = 0 ( o r  1) and v ] = 0 o r  1 (0 o r - l ) .  

Thus  v] v2 ~ O, j E J. 
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Lemma 2.14. Le t  x° E M ( v  1) and x° E M(v2) .  Then vilvj2>O, j E J .  

Proof .  x ° E M ( v ' ) n M ( v  2) implies ,  toge the r  wi th  the definit ion of the  m a p  M, 
tha t  if fo r  s o m e  j E J, v] and  v~ are nonze ro  then  v] = v~. 

1 2 > ~  Lemma 2.15. L e t  x ° E D U C ,  x ° - v l E D U C  and x ° - v 2 E D U C .  Then v i v j = u ,  

j ~ J .  

0 1(0) it fo l lows  tha t  v] = 0 or  1 (0 or - 1 )  and v~ --- 0 or  Proof .  F o r  any  j ~ J if xi = 
1 2 >  1 (0 or  - 1 ) .  T h e r e f o r e  vjv~ = 0 ,  j E J .  

3. The analysis of (P) 

In  this sec t ion  we  app ly  the  resul ts ,  ob ta ined  up to this po in t  to ana lyse  (P). 
Bes ides  the tr ivial  o b s e r v a t i o n  as to the inclusion of  the ex t r a  feas ibi l i ty  
condi t ion  A x  <= b, it is i m p o r t a n t  to no te  tha t  a l though e v e r y  x @ E F ( P ' )  O F is 
efficient in (P), a non-eff ic ient  po in t  in (P')  is no t  necessa r i ly  non-eff ic ient  in (P). 
The  fo l lowing  l e m m a  re la tes  (P) and (P').  

Lemma 3.1. (a) I f  f o r  s o m e  u ~ K,  A v "  <- 0 then F n M ( v " )  c E F ( P )  c. 
(b) A s s u m e  x ° ~ EF(P ' ) ,  x ° E E F ( P )  and  let I ( x  °) = {i E K : x ° E M(vi)}.  Then 

x° + v i ~  F f o r  all i E I(x°) .  

Proof .  (a) L e t  x E F N M ( v " ) .  Then ,  x + v" E D U C  and A ( x  + v ") = A x  + A v "  <= 
A x  <- b, i.e., x + v" E F. Since C(x  + v") >-- Cx  it fo l lows  tha t  x E E F ( P )  c. 

(b) L e t  x ° E  EF(P) .  Since C ( x ° +  vi) >>- Cx  ° it fo l lows  tha t  x ° +  v i ~  F for  all 
i E I ( x  °) 

L e t  Su = maxx~DUC (b,  - A , x ) ,  u = 1, 2 . . . . .  m w h e r e  b. and A,  = (Aul . . . . .  A . , )  
are the  uth c o m p o n e n t  and row of  b and A respec t ive ly .  

s, = b. - minx~DUC A , x  = b, - ~Auj<O Auj, if all A,i --> 0 define Su = b,. 

Lemma 3.2. I f  f o r  every i E K there is 1 <- u(i)  <= m such that  Au(i)v  i > Su(i), then 
every po in t  o f  F is e1~icient in (P). 

Proof .  S u p p o s e  x ° E F and x ° E E F ( P )  c. T h e r e  is £ E F such tha t  C(£  - x °) -> 0. 
By  lett ing v i =  £ -  x ° we  h a v e  v i e  V. Thus ,  

Au(i)x = Au(i)x° + Au(i)v i :> minxEDUC A,(i)x + s,(o = bu(i), 

Cont rad ic t ion!  

L e m m a  3.2 gives  a sufficient condi t ion  for  F = EF(P) .  Fo r  the  appl ica t ion  
m e n t i o n e d  in Sec t ion  1 it is use fu l  to es tabl i sh  re la t ions  b e t w e e n  a p ro jec t ,  or  
equ iva len t ly  the va lue  of  a b ina ry  var iable ,  and the e l emen t s  of  EF(P) .  
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Lemma 3.3. (a) I[ for a fixed ], v ] = 1(-1) for  all i E K, then any x E F with 
xj = 1(0) is el~cient in (P). 

(b) I f  some v E V is such that v = e~( - e ~) and Av  <_ O, then for  any x ~ EF(P)  
we have xi = 1(0). 

Proof. (a) If x E F and xj = 1(0) it follows that for all i ~ K, v}+xj = 2(-1).  Thus, 
x + v~ff DUC, i E K and therefore x E EF(P). 

(b) If x @ F and xi~ 1(0) we have that x + v ~ F and consequently x ~  EF(P). 

The results presented contain enough information to develop an algorithm to 
determine EF(P).  Specifically Lemmas 2.10, 2.11 and Lemmas 3.1(a), 2.12 and 
3.1(b) play a relevant role in steps 1 and 4 respectively. 

Algorithm 

The idea of the algorithm is to obtain EF(P) as the union of the points efficient 
both in (P') and (P) with the nonefficient points in (P') which are efficient in (P). 
This is accomplished in step 5. Recall that by Lemma 3.1(b) a nonefficient point 
x ° in (P') is efficient in (P) if it is not dominated in F in the directions v ~ for all i 
such that x ° E  M(v~). The algorithm first determines (step 1) the v~'s necessary to 
generate Uk=lM(vi) .  By using Lemmas 2.10 and 2.11 one often needs just a 
subset of V which is denoted by {v~}~=l. The nonefficient points in (P') are 
directly obtained (step 2) as EF(P')  c=  U~=I M ( v  i) = Uk=l M(v~). The elements of 
DUC efficient both in (P') and (P) are those in EF(P')  n F. These are determined 
in step 3 by first computing EF(P')  as D U C -  EF(P')  c and next intersecting this 
set with F. In step 4(a) the set ~ =  U ~ r M ( v  ~) is obtained. According to 
Lemma 3.1(a) it is the set of nonefficient points in (P') which if feasible in (P) 
will also be nonefficient in (P). These points are excluded from M(v~), i E 12 in 
step 4(c). The elements of DUC which dominates the points in M(v  ~) in the 
direction v ~ are determined in step 4(b). At this point it is important to recall that 
because of Lemmas 2.10 and 2.12 it is sufficient to consider the subset {vi}r=~ 
instead of V. In step 4(d) the points efficient both in (P) and (P') are used to 
reduce the candidates as elements in EF(P). These candidates are reduced 
further in steps 4(e) and (f) by first checking for feasibility in (P) and next  by 
verifying if they are dominated in the direction v g by a point in F. Finally, the 
subtraction in step 4(g) is necessary because the sets used in the algorithm up to 
this point may not be disjoint. 

The algorithm is as follows: 
Let  11 = {1 - i =< r : A v  i ~ 0} and 12 ----- {1, 2 . . . . .  r } -  11. 
Step 1. Through an implicit enumerative scheme generate the subset 17 = {v~}r=~ 

of V, using Lemmas 2.10 and 2.11, which is necessary to cohstruct  EF(P')  c=  
r i k 

Ui=l(MV ) =  Ui=lM(Vi).  
Note that r ~ k. 
Step 2. Obtain EF(P')  c. 
Step 3. Obtain EF(P')  n F = (DUC - EF(P')  ~) n F. 
Step 4. Obtain 
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U i ~ l t  M(/)I), 
M ( v i ) + { v i } ,  i @ -/2, 
M ( v  i) - ~ ,  i E 12, 
O~ - {x E Oi : 3 y E EF(P ' )  N F wi th  Cy >- Cx}, i E 12, 

(a) ~ = 

(b) Ai = 
(c) Oi = 
(d) Ai = 
(e) rli = Ai n F, i ~ 12, 
(f) O i = { x ~ . o ~ : 3 y ~ A i n F  with C y ~ C x } .  

O~ = tie - Oi, i ~ 12, 

(g) 4' = U i~r~ 0~ - ( U  ~i2 0D. 
Step 5. E F ( P )  = (EF(P ' )  fq F )  U ~b. (3.1) 

The  p r o o f  of  equal i ty  (3.1) is ba sed  on the l e m m a s  m e n t i o n e d  above .  L e m m a  
3.1(a) justif ies the exc lus ion  of  the e l emen t s  of  ~b as poss ib le  cand ida tes  to 
EF(P) .  The  p r o c e d u r e  desc r ibed  in i tems (b) to (g) of  s tep 4 to obta in  the se t  ~b is 
due to L e m m a s  2.10, 2.12 and 3.1(b). 

T h e  fo l lowing s t r a igh t fo rward  numer ica l  e x a m p l e  i l lustrates  the a lgor i thm.  

Example  3.4. Cons ide r  the p r o b l e m  max{[~ °]x: x E F} whe re  F = {x ~ R 2 : x2_-__ ~, 
xi = 0, 1, i = 1, 2}. W e  have  

Step 1. {vi}~=l = {v ~ = (1, 0), v 2 = (0, 1)} (note tha t  the se t  V includes  bes ides  v ~ 
and  v 2 the vec to r  v 3 = (1, 1)). I t  is c lear  tha t  11 = {1} and  12 = {2}. 

Step 2. M ( v ~ ) = { ( 0 , 0 ) ,  (0,1)}, M ( v 2 ) = { ( 0 , 0 ) ,  (1,0)} and EF(P ' )  °--  
M ( v  z) U M(vZ).  

Step 3. EF(P ' )  = {(1, 1)}, EF(P ' )  n F = 0. 
Step 4. (a) ~U = {(0, 0), (0, 1)} 
(b) a2 = {(0, 1), (1, 1)} 
(c) /22 = {(1, 0)} 
(d) A2 = {(1, 0)} 
(e) "02 = {(1,0)} 
(f) 02 = {(1, 0)}, O~ = 0 
(g) ~b = 02 = {(1, 0)}. 
Step 5. E F ( P )  = {(1, 0)}. 

Computa t iona l  results 

Tab les  1 and 2 p r e sen t  the  c o m p u t a t i o n a l  resul ts  ob ta ined  with  30 p r o b l e m s  of  
the  type  

max{Cx:  A x  <= b, x ~ DUC} 

The  e l emen t s  of  ma t r i ces  C and A were  r a n d o m l y  gene ra t ed  in the in terval  
[0,99] and  a dens i ty  of  nega t ive  e l emen t s  equal  to 20% was  used  in bo th  
mat r ices .  T h e  e l emen t s  of  b were  r a n d o m l y  gene ra t ed  in the in terval  [0,999]. 
The  c o m p u t e r  used  is a Bor roughs  B6700. The  p r o g r a m  was  wr i t ten  in Fo r t r an  
G H .  In Tab le s  1 and 2 the d imens ions  of  C and A are indicated as well  as cpu  
t imes in seconds ,  the  n u m b e r  of  e l emen t s  of  V n e c e s s a r y  to obta in  EF(P ' )  c, the 
n u m b e r  of  e l emen t s  in I ~, the n u m b e r  of  e l emen t s  in EF(P ' ) ,  EF(P )  and F. 
Final ly ,  fo r  c o m p a r i s o n  pu rpose ,  we  p r e sen t  in the  co lumn  " T i m e  By  Def in i t ion"  
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the cpu times corresponding to the obtainment of EF(P),  for each of the 30 
problems, by the most trivial algorithm which consists in applying directly the 
definition of efficient point in (P) given in the introduction. 

From Tables 1 and 2 we observe that: 
(1) The number of elements of V necessary to generate EF(P')  is surprisingly 

small indicating that Lemma 2.10 is powerful.  
(2) There is no conclusive evidence that the partition of the set {I, 2 , . . . ,  r} in 

11 and 12, in the algorithm, improves its efficiency. 
(3) The algorithm is more efficient than the definition in obtaining EF(P) when 

the number of elements in F is large when compared with 2" (the number of 
elements in DUC). In particular, since the first column of Tables 1 and 2 
correspond to steps 1, 2 and 3 of the algorithm, we see that when F = DUC 
(problems 3, 10, 14, 18, 24 and 28) the time required by the algorithm to obtain 
E F ( P ) - - E F ( P ' )  is significantly smaller than the definition time. 

(4) For  a fixed number of variables the cpu time for the algorithm does not 
vary strongly when the number of rows in C are between 2 and 4. 

15 First problems 15 Last problems 

Algorithm Definition Algorithm Definition 
Mean time 3.0269 4.1460 69.1114 132.2186 
Standard deviation 0.5652 2.5603 15.8827 80.5142 

(5) The fact that the numbers of elements in EF(P')  and EF(P) are close, 
indicates that the constraints cut, most of the time, nonefficient points in DUC. 

Indifference sets 

It was mentioned in Section 1 that not every  element of EF(P) maximizes a 
functional of the type ACx with A > 0  on F. However  for  any A > 0, every  
solution to 

(PA) max{ACx: x E F} 

is efficient in (P). The linear functional )tCx corresponds to the assignment of 
weights to the p criteria. As these weights are usually subjective it is useful to 
investigate the set of weights for  which a given element of EF(P) solves (PA). 
Le t  p 

. . S = { A ~ R P : ~ A i = I ,  A i=O, i=I ,2 ,  . ,p} ,  x U ~ E F ( P ) ,  
i=l 

S(x ~) = {A E S: x u solves (PA)}, 

E-if(P) = {x E EF(P):  x solves (PA) for some A E S}. 

To provide a characterization of S(x~), the indifference set for  x u, we need the 
following result: 

Lemma 3.5. Let A ~ S  and F ( A ) = { y E F : A C y = m a x { A C x : x ~ F } } .  Then 
F(A) n EF(P) ¢fk. 
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Proof. I f  A > 0 the result  is trivial. Assume A~ > 0 . . . . .  Ad > 0, )[d+l . . . . .  Ap : 0, 

d < p  and x ° solves max{X~'=d+l cix: x E F(A)}, where  ci is the ith row of C. We 
show that  x ° E  EF(P).  Suppose x ° ~  EF(P) ,  then there is g ~ F such that  

C~ >- Cx ° (3.2) 

If  ~ F(A) we have  AC£ < XCx ° and thus cj$ < q x  ° for  some j E {1, 2 . . . . .  d} 
contradicting (3.2). If  ~ E F(A),  AC~ = ACx ° and Ef=d+~ c~$ = E~=u÷1 c~x ° implying 
AC~+ " E~=d+~ c~Y, <= ACx ° + E~:d+l q x  ° which contradicts  (3.2). Hence  x ° E EF(P).  
Moreover  x ° ~ EF(P).  

Theorem 3.6. S(x" )  is the set o f  A E S sat is fy ing 

AC(x"  - x ~) >= O, f o r  all x ~ E EF(P),  with A ~ S (3.3) 

Proof. I f  A°E S(x" )  then A°C(x  " -  x ) > 0  for all x E F and A ° satisfies (3.3). 
Assume A ° is a solution to (3.3). Le t  x E F and x~E EF(P).  By L e m m a  3.5 there is 

E E F ( P )  that solves (PA°). Thus,  A°C($ - x) >= 0. But, A°C(x  " - x ) =  
A°C(x  u - Y,) + A°C(~ - x) > 0. 

When EF(P)  is known and we are not able to distinguish the subset  EF(P) ,  
S(x" )  can still be character ized by the sys tem 

AC(x"  - x j) >= 0 for all x i E EF(P) ,  with A E S (3.4) 

It is s t raightforward to prove  the equivalence of (3.3) and (3.4). However ,  if 
EF(P)  is not known it is possible to approximate  S(x") .  The n ex t reme points 
adjacent  to x" in DUC can be writ ten as x " +  r j, ] ~ J  where ~ =  0, i~  ] and 

= 1(-1) if x~ = 0(1). 
For  any x E DUC,  x - x" is a non-negative combinat ion of the vectors  r ~, j E J, 

i.e., 

x = x " + ~ y j r  j withyj_-__O (3.5) 
jeff 

Consider  the sys tem 

ACr i <- O, j E J w i t h A ~ S  (3.6) 

Lemma 3.7. L e t  S(x") be the subset  o f  S sat is fying (3.6). Then S ( x  u) C_ S (x" ) ,  i.e., 
S ( x" )  is an approx imat ion  to S (x" ) .  

Proof. Suppose A°~ S(x"). Since F C_ DUC,  (3.5) holds for  any x E F. Thus,  
A°C(x" - x) = - A  ° Ej~j yiCr j > O. Hence  h ° E S(x") .  

This l emma is illustrated by the following example.  
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Example 3.8. Let (P) be 

max 0 - x: 
1 

-2xl  - 2x3 ~ - 1, x i = 0, 1, j = 1,2, 3/.  

It can be shown that V={(0 ,  1,0)}, E F ( P ) = { x  ~= (0, 1, 1); x2=(1 ,  1, 1); x 3= 
(1, 1, 0)} and EF(P) = {(1, 1, 1), (0, 1, 1)}. From (3.4) and (3.6) we have that S(x  ~) is 
the solution set of the system: 

-2h i  + 2A2 - 3.3 => 0, 

A I +  A 2 + A 3  = 1, 

AI, A2, A3 => 0. 

S(x 1) is the solution set of the system 

+2A1 - 2A2 + A3 --< 0, 

-- h i +  A 2 - A 3 ~ 0 ,  

Al+ A2+A3 =1 ,  

AI, h2, A3 ~ 0. 

S(x  ~) and S(x ~) are represented in Figure 1 by areas ABD and BCD respectively. 

~3 

E 

A 

Fig. 1. 

L e m m a  3.9. I f  xU~ EF(P") then {A > 0 : A E S(x~)} = 0. 

Proof. xU~EF(P")  implies that there is x E U C ,  x = x  u + x i ~ s a / ,  ~ = 
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(a~ . . . . .  a , )  > 0 and C(x - x") = Zm~ a jCr  i -> 0. But for  any h > 0, EiEs t~jhCr i > 0. 
By (3.6) it follows that  h ~ S(x"). 

Parametric analysis 

We conclude this section with some considerat ions on parametr ic  analysis. A 
change in A or b may affect  the condition for  a point to be efficient or not. The 
analysis varies according to the information on V and whether  or not the point is 
efficient in (P'). The variations in A and b are represented respect ively  by 
the m x n matrix AA and t h e  m × 1 vector  Ab. The per turbed problem (P) is 
denoted by  (P0102): max{Cx: x E F(Oa, 02)} where 

F(01, 02) = {x ~ R n : (A + 01AA)x ~ b + 02Ab and x i = O, 1, ] ~ J}, 01, 02 ~ R. 

Lemma 3.10. Suppose x ° E EF(P' )  and that A and b are perturbed by OIAA and 
02Ab respectively. Then, x ° E EF(P0102) as long as x ° E F(01, 02). 

Proof. x ° E  EF(P ' )  implies that  for  all i E K, x°+ v i~  DUC. Since F(01, 02)C 
DUC we also have x°+ vif~ F(01, 02), i E K. Therefore  x ° E  EF(P0102) as long as 
X ° E F(Oa, Oz). 

Lemma 3.11. Suppose x° ~ EF(P ' )  and that A and b are perturbed by 01AA 
and 02Ab respectively. Moreover assume V is known. Then, x°@EF(POa02) 
as long as x ° E F(01, 02) and (A + 01AA)(x ° + v i) ~ b + 02Ab for  all i ~ I (x  °) = 
{j E K : x ° E M(vi)}. 

Proof. Note  that  according to L e m m a  2.1(b) I (x  °) #(k. By L e m m a  2.1(c) we 
know that x°+ v i~  F(01, 02) C DUC for  i~  I(x°). Thus x ° E  EF(P0a02) as long as 
x ° E  F(01, 0z) and x°+ v i~  F(O1, 02), i ~ I(x°). 

4. The mixed linear multiple objective problem with zero-one variables 

We denote the mixed zero-one version of (P) by (MP): max{[ClX ÷ C2y]] (x, y) E 
MF} where MF = {(x, y) E R"+"' : Alx  + A2y <- b, xi = 0, 1, j E J, y = 0}, A1, A2, CI, 
Cz are m x n, m x n' ,  p x n and p x n '  matrices respect ively  and b is an m x 1 
vector.  

A pair (x °, y0) is said to be efficient in (MP) if there is no (x, y) ~ MF such that 
C l ( x - x ° ) +  C2(y-y0)_> 0. The set of efficient points in (MP) is denoted by 
EF(MP).  

(MP) is considerably more difficult to solve than (P). Besides presenting the 
same inconvenience as (P) (see example  4.1), its efficient set cannot  be always 
obtained as union of convex  combinat ions of  subsets of ex t reme efficient points in 
(MP) as shown in Example  4.2. 
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Example 4.1. Consider (MP) with 

C1 = 4 , C2 = 

-2  fil 
M F = { - x 2 + y _ - < 0 ;  x l = 0 ,  1; x2=0,  1; y_->0}. 

It is not difficult to verify that (x~, x2, y ) =  (0, 0, 0)E EF(MP) and does not 
maximize AC~x + )tC2y over MF for any A -> 0 such that (AC~, AC2) # 0. 

Example 4.2. Consider (MP) with 

- 1  

M F = { x ~ = 0 ,  1; y=_l ;  y - 0 } .  
MF consists of the segments [(0, 0), (0, 1)] and [(1, 0), (1, 1)]. All points of MF are 
efficient in (MP) with t h e  exception of (0,0). Note that (CI, C2)(1,1)T-- > 
( C ,  C2)(0, 0)T. 

Lemma 4.3. A su~cient  condition condition for  EF(MP) to be empty is that the 
s y s t e m  C2r >-- O, AEr <-- O, r >--_ 0 has solution. 

Proof. Assume (x, y) E MF and the conditions of the lemma hold. Then, Alx  + 
A 2 ( y + r ) = A ~ x + A z y + A 2 r < - A ~ x + A z y _ - < b  and y+r_->0, i.e., (x, y + r) E M F .  
Since ClX + C2(y + r) ~- Clx + C2y w e  conclude that (x, y) ~ EF(MP). 

When E F ( M P ) ~  ~ efficient points in (MP) can be obtained by solving 

(MP)t) max{AClx+AC2y:(x,  y)@MF} for any )t >0 .  

In fact every solution to (MPA) with A > 0 is efficient in (MP). In what follows 
we explore indifference sets and possible approximations. Let  (x e, ye) E EF(MP) 
and S(x e, ye) = {A E S : (x e, ye) solves (MPA)} denote the indifference set for 
(x e, ye). In characterizing S(x  e, y") we refer to Benders'  method [4, pp. 134-138]. 

At iteration k, the set of known extreme points and extreme rays of (4.1), 
below, are denoted by T(k)  and Q(k) respectively. Assume that A°E S(x  e, ye). 
Thus 

{u: uAz>= •°C2, u ~ 0} ~6 ~ (4.1) 

Steps 1, 2 and 3 of the method are as follows (for a detailed description see [4, 
pp. 138]. 

Step 1. Initialization. 
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Step 2. Solve the integer programming problem 

max Uo, 

UO ~ )t°Clx d- ut(b - N i x )  every u t ~ T(k), (4.2) 

0 <= sq(b - A l x )  every s q ~ Q(k) ,  

xj = 0 ,  1, j E J .  

Call the optimal solution to (4.2) (u~, Xk). Go to Step 3. 
Step 3. Solve the LP 

u*(x k) = )t°Clxk + min u(b - A1xk),  

s.t. uAa >---- )t °Ca, (4.3) 

u=>0. 

The algorithm terminates if u*(x k) = u~. Otherwise update T ( k )  and Q(k) and go 
to step 2. 

Assume that (MP)t °) was solved by Benders '  method in k ° iterations. Clearly 
S ( x  e, ye) is the set of A E S such that 

)tClX e -}- )tC2y e >~ )tClX -~- )tC2y for  all (x, y) ~ MF. (4.4) 

Unfor tunate ly  (4.4) is not operative. However ,  it is possible to obtain a local 
approximation to S(x  e, ye) around the point )t °. 

When solving (MP)t °) by Benders '  method each of the u t in T ( k  °) solves (4.3) 
at some iteration and therefore  has a corresponding optimal basis denoted by 
(Bt~). Recall that the u tE  T ( k  °) are extreme points of (4.1). By linear program- 
ming parametric analysis we have that each u t in T ( k  °) will remain optimal in its 
corresponding problem (4.3) as long as )tCE(Bt~)-l_--__ 0. Le t  u e be the element of 
T ( k  °) which solves (4.3) with x k =  x e and consider the system 

)t E S, (4.5) 

)tC2(B~) 1>_ 0 for all t such that u tE  T(k°) ,  (4.6) 

) tClx e + )tC2y e ~ max u °, 

s.t. u 0 ~ )tC1x --1- ut(b - AIX) 

0 ~ sq(b - A l x )  

xi = 0, 1, 

for all t such that ut~ T(k°) ,  

for  all q such that s q E Q(k°), 

j E J. (4.7) 

Theorem 4.4. The set o f  A ' s  which sat is fy  (4.5) to (4.7) is conta ined  in S ( x  e, ye). 
We denote  this set  by S()t °, x e, ye). 

Proof. Assume 2 satisfies (4.5) to (4.7). Then, every u tC T ( k  °) is feasible in 

min{u(b - AlXe): uA2>= ACz, u >= 0} (4.8) 

and in particular u e is an optimal solution. By linear programming duality it 
follows that 

ut(b - A I x  e) >= ~C2yeu t E T ( k  O) and ue(b - A lX  e) = ~C2y e 
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(ye is the optimal solution to the dual to (4.8)). Therefore  

~ C l x  e -1-//t(b - A I X  e) ~ ~ C l X  e a t- £ C z y  e : ~ C l X  e Jr- I~e(b - A l X e ) ,  g t ~ T(k°). 

(4.9) 
But, (4.7), (4.9) and the termination criterion of Benders '  method imply that 
(x e, ye) solves (MPA) and thus, A E S(x e, ye). 

Clearly S(A °, x e, ye) is an approximation to S(x e, ye) around )t °. The reader 
should note that the matrices (B[) -l are generated at Step 3 during the solution of 
(MPA°). 

5. Conclusions 

The main difficulty in obtaining EF(P) is that some, or all, of its points may not 
maximize a functional of the type hCx, with h -> 0, over P = {x C R" : Ax <= b 
and x EUC}.  In fact  they may not maximize the functional even over F. 
Otherwise we could use any algorithm for continuous linear multiple objective 
programs. T h i s  inconvenience points out the necessity to develop special 
methods for the zero-one case. In this paper we presented results based 
essentially on the set V. We showed that this set contains enough information to 
generate EF(P')  and to identify the potential elements of DUC to be efficient in 
(P). 

Although the number of possible candidates to V is of the order of 3", Lemma 
2.10 provides a rule that reduces significantly the number of vectors to be 
enumerated. The concept  of regular efficient point in (P') was introduced. It is 
intimately related to the cone CV. 

The reader should note that most propositions of this paper are valid even if 
the set F is not defined by a system of linear inequalities as long as the zero-one 
conditions are included. 

The results presented are far from being complete and much research and 
practical experimentation remains to be done. It is important to investigate 
sufficient conditions for any x E EF(P)  to be efficient in (Q): max{Cx: x E F} or 
in (P): max{Cx: x E F} when C can be easily determined. Parametric  analysis in 
(P) as well as its mixed integer version are still to be fully explored. Finally it is 
the author 's  belief that new algorithms, possibly more efficient than the one 
presented, can be developed from the theory presented. These algorithms will be 
certainly needed since for n > 10 the cardinality of some M(v)  can be very large. 
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