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We describe an algorithm for the asymmetric traveling salesman problem (TSP) using a 
new, restricted Lagrangean relaxation based on the assignment problem (AP). The Lagrange 
multipliers are constrained so as to guarantee the continued optimality of the initial AP 
solution, thus eliminating the need for repeatedly solving AP in the process of computing 
multipliers. We give several polynomially bounded procedures for generating valid inequalities 
and taking them into the Lagrangean function with a positive multiplier without violating the 
constraints, so as to strengthen the current lower bound. Upper bounds are generated by a 
fast tour-building heuristic. When the bound-strengthening techniques are exhausted without 
matching the upper with the lower bound, we branch by using two different rules, according to 
the situation: the usual subtour breaking disjunction, and a new disjunction based on 
conditional bounds. We discuss computational experience on 120 randomly generated asym- 
metric TSP's with up to 325 cities, the maximum time used for any single problem being 82 
seconds. This is a considerable improvement upon earlier methods. Though the algorithm 
discussed here is for the asymmetric TSP, the approach can be adapted to the symmetric 
TSP by using the 2-matching problem instead of AP. 

Key words: Traveling Salesman Problem, Assignment Problem, Branch and Bound, 
Lagrangean Relaxation, Hamiltonian Circuits, Arc Premiums/Penalties. 

I. Outline of the approach 

The t rave l ing  sa l e sman  p rob lem (TSP),  i.e., the p rob lem of f inding a m i n i m u m -  

cos t  tour  (or hami l ton i an  circuit)  in a d i rec ted  graph G = (N, A),  can  be for-  

mula ted  as the p rob lem of min imiz ing  

sub jec t  to 

~, ciixii, (1) 
iEN j ~ N  

~ , x i i = l ,  i E N ,  
jEN 

xii = 1, j E N ,  
iEN 

(2) 
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xij E {0, 1}, i, j E N ,  (3 

x is a tour. (4 

For (i, j) E A, co is the cost associated with the arc (i, j); for 
(i, j) ~ A, cii = oo. 

Condition (4) can be replaced (see [10]) by the subtour elimination inequaliti 

E ~ x , j -<lsI-  1, S e N ,  l < f S l < n ,  (5 
iES i~S 

which can also be written as 

~ x i j~ l ,  S C N ,  l < f S l < n ,  (61 
iES j~N~S 

with n = INI. 
If co = qi, i, j ~ N, the TSP is symmetric; otherwise it is asymmetric. The 

symmetric TSP can be formulated more concisely on an undirected graph 
However, in this paper we are concerned with the asymmetric case only. 

The assignment problem defined by (1), (2) and 

xo>O, i , j ~ N  (7) 

will be denoted by AP. 
The TSP is a classical combinatorial optimization problem with wide ap- 

plicability to the modeling of many important real-world situations in the areas 
of scheduling, sequencing, routing, etc. For background material see the surveys 
[4, 3], and more recently, [5, 9 and 15]. 

The TSP is NP-complete. Most exact methods for its solutions are enumera- 
tive, and they differ primarily in the way they generate lower bounds. The main 
vehicle for obtaining lower bounds is usually some easily solvable relaxation of 
the TSP, like the assignment problem [11, 17,3,7, 18[, or the shortest 1-tree 
problem [13, 14, 6, 12]. The approach discussed in this paper is also enumerative, 
with the assignment problem as the relaxation used to derive lower bounds. 
Within this common general framework, however, our approach has essential 
new features: 

(1) Unlike in the earlier procedures, the assignment problem used to derive 
lower bounds is a Lagrangean problem obtained from AP by subtracting from 
the objective function positive or negative multiples of the inequalities (5), (6) or 
their combinations. This has the effect of applying premiums or penalties to 
certain arc sets, and produces tight lower bounds. 

(2) Instead of maximizing the Lagrangean dual by some iterative method 
involving the repeated solution of assignment problems, we restrict the multi- 
pliers to values that keep the solution to AP optimal for the modified objective 
function, and we give polynomially bounded procedures for approximating the 
maximum of the resulting restricted Langrangean problem. This keeps the lower 
bounds computationally cheap. 
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(3) We apply a tour-building heuristic to certain subgraphs defined by the 
,agrangean form. This provides tight upper bounds at a low cost. 

(4) Finally, we use some new branching rules that exploit problem structure. 
As a result of these features, the procedure discussed here requires sub- 

tantially smaller search trees and shorter computing times to solve randomly 
:enerated asymmetric TSP's, than earlier methods. 

We first outline the procedure, then discuss its various components in detail. 
For any problem P, we denote by v(P) the value of (an optimal solution to) P. 

f S and T are node sets, we denote (S, T) = {(i, j) E A I i E S, j E T}. Also, we 
[enote by X the set defined by the constraints (2), (7) of AP. 

If we write the subtour elimination constraints (5), (6) in the generic form 

~ a~jxij>>-a~, t@T, (8) 
iEN j~N 

hen the Lagrangean problem obtained from TSP by taking into the objective 
unction the inequalities (8) is 

max L(w) (9) 
w~0 

vhere 

L ( w ) = m i n  ~ ~ (ci,-t~ewtali)x,j+t~wtat o. 
xEX i ~  ]EN 

The value of (9) is a lower bound on v(TSP). 
Now let ~ be an optimal solution to AP, and consider instead of (9) the 

• estricted Lagrangean problem 

max L(w) (10) 
w~W 

¢ehere 

and 

W={wERIrPlw>-Oand(u,v,w)@Zforsome u, v E R " }  

Z= (u,v,w) ui+vj+~,w,ai~ <cijif~ij " 
tET 

In (10), w is restricted to values for which the minimum in L(w) is attained for 
~. At first this seems a complicating factor; in fact, however, it makes it 
considerably easier to approximate the value of (10) than it would be to do the 
same thing for (9). Since (10) is a lower bound on (9), it is also a lower bound on 
v(TSP). Further, we have 
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Proposition I. 

m a x L ( w ) =  max ~, u,+ ~ vj+ ~ w,a6. (11 
wEW (u, v, w)EZ iEN i. EN tET 

Proof. If ~ E W maximizes L(w), the dual of the linear program L(~)  attains it! 
maximum for a vector (a, ~) such that (a, ~, ~) E Z and 

~, a, + ~ ~j + ~, wta6 = L(~) .  (121 
iEN jEN tET 

Conversely, if (tT, ~, ~) E Z solves the problem on the right hand side of (1 l) 
then g solves the linear program L(~) ,  and (12) holds. 

The restricted Lagrangean problem (10) has two useful properties. First, fol 
any (u, v, w )~Z ,  one has from (11) 

Z_~ ui +j~N vj + t~  wta6 <- v(TSP), (131 

i.e., any such (u, v, w) provides a valid lower bound on v(TSP). Second, while 
remains an optimal solution to the assignment problem with the modified 
objective function L(w), the process of maximizing L(w) tends to create new, 
alternative optima. Whenever such an alternative optimum ~ for some w = 
turns out to be a tour, it has the following property. 

Proposition 2. If Y¢ satisfies with equality all inequalities (8) for which fit > 0, ~ is an 
optimal tour. 

Proof. 2 and (tL ~3, if) are feasible solutions to the linear program (1), (2), (7), (8) 
and its dual, respectively, and in addition 

w t a  ij = Cij 
tET  

whenever ~ > 0. This, together with the condition of the proposition, means that 
and (fi, ~, ~b) satisfy the complementary slackness conditions. Thus ~ is an 

optimal solution to (1), (2), (7), (8), hence an optimal tour. 

We start by solving AP. At an arbitrary node of the search tree, we solve the 
assignment problem in the free variables. Next we use several procedures for 
generating an increasing sequence of lower bounds on v(TSP), by successively 
identifying inequalities (8) that 

(i) are not satisfied by the current solution ~ to AP, and 
(ii) admit a positive multiplier wt which, together with wl . . . . .  wt-l, satisfies 

w E W .  
At a given stage, the admissible graph Go = (N, A0) is the spanning subgraph of 
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containing those and only those arcs with zero reduced cost, i.e., 

A o : { ( i , j ) ~ _ A l u , + v i +  ~, wta,]=ci,}. 
tET 

When no more inequalities (8) satisfying conditions (i) and (ii) can be found, the 
admissible graph Go is strongly connected. We then store the bound given by (13) 
and try to find a tour in Go. If a tour is found which satisfies with equality all 
inequalities associated with positive multipliers, it is optimal for the given 
subproblem. If a tour is found which violates this condition for some inequalities, 
attempts are made at finding new inequalities which satisfy the condition and admit 
positive multipliers. If successful, these attempts strengthen the lower bound, and 
they may also eliminate the inequalities that are slack. In any case, the value of the 
tour (in the original costs c~j) provides an upper bound on v(TSP), while (13) 
provides a lower bound for the current subproblem; and we branch. Finally, if no 
tour is found in Go, we add arcs to Go in the order of increasing reduced costs until a 
tour is found in the resulting graph. The cost of this tour again provides an upper 
bound on v(TSP), and we branch. 

The assignment problems are solved by the Hungarian method, and the same 
method is used to recalculate the reduced costs whenever some u~ and v i have to 
be changed. The bounding procedures are polynomial-time algorithms, con- 
siderably more efficient (in terms of improvement obtained versus computational 
effort) than earlier approaches, as evidenced by the computational results of 
Section 5. Searching the admissible graph Go for a tour is accomplished by a 
specialized implicit enumeration procedure, with a cut-off rule. Finally, for 
branching we use two different rules, one which derives a disjunction from a 
conditional bound, and one which breaks up a subtour. 

A preliminary version of our approach, with fewer and less sophisticated 
bounding procedures, was discussed in [2]. 

2. Bounding procedures 

We use three types of inequalities (8), and we will denote by T~, T2 and T3 the 
corresponding subsets of T. For t ~ T, let ~ ~ St C N and St = N --, St. An arc set 
of the form Kt = (St, St) is called a (directed) cutset. The first two types of 
inequalities are, in our current notation, 

and 

xij --- 1, t ~ T1 (8a) 
~i, i)EK t 

- ~ ~ xij>- l - IS , [ ,  t @ T2, (8b) 
i E S  t jGS t 

corresponding to (6) and (5) respectively. 
For a given set St, the subtour elimination constraints (8a) and (8b) are 
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equivalent; nevertheless, an inequality (8a) may admit a positive multiplier wher 
the corresponding inequality (8b) does not (without changing other multipliers), 
and vice-versa. 

For any k E N and St C N ~ {k}, St # ~, the arc sets 

K~ = (St, L "-- {k}) and K7 = (St "-- {k}, St) 

are (directed) cutsets in the subgraph (N --{k})of G induced by N ~ {k}. The 
third type of inequality used in our procedure is 

~_~ Xii >- l, t E T3. (8C) 
(i, j)e: K ~U K'~ 

Every inequality (8c) is the sum of the inequalities 

- x , j - > - I s ,  I, (8b) ,  
iEStU{k} jEStu{k} 

- ~ ~ x,j -> 1 - I St[, (8b)2 
lESt jESf 

and the equations 

j~N xij = l' i C S,, 

Y x0=l, jeS, .  
iEN 

Again, though the inequalities (8c) are implied by (8a), (8b) and (2), they often 
admit positive multipliers when the corresponding inequalities (8a) and (8b) do 
not. 

The components of w associated with the inequalities (8a), (8b), and (8c) will 
be denoted by A,/x and u respectively. 

2.1. Bounding  procedure 1 

This procedure starts by searching for an inequality (8a) which satisfies 
conditions (i), (ii) of Section 1; i.e., is violated by g and can be assigned a 
positive multiplier without changing the reduced costs. These conditions are 
satisfied for the inequality (8a) defined by a cutset Kt, if and only if 

Kt f3 A0 = 0, (14) 

where A0 is the arc set of the admissible graph Go. 
To find K, satisfying (14), we choose any node i E N and form its reachable 

set R( i )  in Go. If R( i )  = N, there is no cutset (S, S) with i E S satisfying (14), so 
we choose another j @ N. If for some i C N,  R( i )  ~ N,  then Kt = (S, S) satisfies 
(14) for S = R(i ) ,  and 

ht = rain ~ii (15) 
(i, j ) e K  t 
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s the largest value that can be assigned to the corresponding multiplier without 
naking some reduced ~osts negative. We thus set 6~j ~-- c~i - ;tt, (i, j) E Kt, i.e., we 
~pply a premium of )q to each arc of the cutset Kt. As a result, the arcs for 
~¢hich the minimum in (15) is attained become admissible, and we add them to 
A0. 

Next, we extend the reachable set R(i)  of node i by using the new arcs of Go 
~nd either find R(i)  = N, or locate another cutset Ks satisfying (14). If R(i)  = N, 
igain we choose another node. This procedure ends when R(i)  = N, Vi @ N. At 
:hat stage Go is strongly connected, and K N A0 ¢ 0 for all cutsets K = (S, S), 
S c N .  

Proposition 3. Bounding procedure 1 stops after generating at most ½(h-1)  
ih + 2) cutsets, where h is the number of subtours in ~. 

Proof. Starting with node il belonging to subtour Si, every cutset adds to Go an 
arc which includes into R(iO a new subtour. After generating at most h - 1  
zutsets, R(il) -- INI. Now starting with node i2 belonging to subtour $2 ¢ S~ and 
proceeding to find R(i2), again at most h - 1 cutsets can be generated. However, 
since we now have i2 E R(i~) and il E R(i2), the number of strong components of 
the current graph Go is at most h - 1 .  Thus, continuing to find R(i3) for some 
aode i3 belonging to a subtour $3, Sl ¢ $3 ¢ $2, at most h -  2 cutsets can be 
generated, and since the vertices of S~, $2 and $3 now form a strong component,  
the number of strong components in the current graph Go is at most h - 2 .  
Continuing in the same way, the number of cutsets generated by the procedure 
~until Go becomes strongly connected) is at most 

( h -  1 ) + ( h -  1 ) + ( h - 2 ) + ( h - 3 ) + . . . +  1 = ~ ( h -  1)(h +2). 

Generating a cutset that satisfies (14) or showing that none exists requires 
O(mn) steps, where n = INI, m = Ial. 

Since the optimal dual variables til, 13j associated with £ are not changed by 
this procedure, and since 

,~_~ ~, + , ~  ~, = c~ = v ( a P ) ,  

if T~ is the index set of the inequalities generated by bounding procedure 1, the 
lower bound obtained for the current subproblem is, from (13), 

BI = v(AP) + ~ At. (16) 
t I 

2.2. Bounding procedure 2 

This procedure starts by searching for an inequality (8b) which is violated by 
and admits a positive penalty without changing any of the At, t E T1. If Sj . . . . .  Sh 
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are the node sets of the h subtours of ~, every  inequality (8b) defined by St 
t = 1 . . . . .  h, is violated by ~; but a positive penalty /xt can be applied withou 
violating the condition that ~ij = 1 implies 60 = 0, only by changing the values ol 
some u~ and vj, and only if an additional condition is satisfied. This condition car 
best be expressed in terms of the assignment tableau used in conjunction witt 
the Hungarian method. A line of the tableau is a row or a column, a cell of th~ 
tableau is the intersection of a row and a column. Ceils correspond to arcs ant 
are denoted the same way. 

Let  St be the node set of a subtour of ~, let 

At = {(i, J) C A0 ] i, j E St}, A't = {(i, j) ~ At [ ~,j = 1}. 

Proposition 4. A positive penalty can be applied to the arcs with both ends in St ij 
and only if there exists a set C of  lines such that 

(i) every (i, j ) E  A[ is covered by exactly one line in C, 
(ii) every (i, j) E At --. A't is covered by at most  one line in C, 

(iii) no (i, j ) E  Ao--. At is covered by any line in C. 
I f  such a set C exists, and it consists of  row set I and column set J, then tht 

maximum applicable penalty is 

where 

/x, = min (ij, (17) 
(i, j)cM 

M = (/, J) U (t, £ )  U (8,, J). (18) 

Proof. Sufficiency. Suppose there exists a line set C, consisting of row set I and 
column set J, satisfying conditions (i), (ii), (iii). Then adding an amount t~ > 0 to 
cij for all (i, j) ~ (St, St), as well as to all ai, i E / ,  and all vi, J C J, produces a set 
of reduced costs ei'j such that P[j = 0 for all (i, j) ~ A', since C = I U J satisfies (i). 
Further,  from proper ty  (ii) of the set C, c[i -> 0, V(i, j) E At ~ A;; and from (iii), 
ci'j = c0 = 0, V(i, j) E A0 -- At. Thus the only reduced costs that get diminished as 
a result of the above modification, are those associated with arcs (i, j ) E  A for 
which either (ct) nothing is added to cij and /x  is added to ai or to ~j; or 03)/x is 
added to c0 and to both t~ and fij. The two sets of arcs for  which (ct) holds are 
(/, St) and (St, J);  whereas the arc set for  which 03) holds is (/, J). The union of 
these three arc sets is M defined by (18). Thus a positive penalty at most equal 
to/xt defined by (17) can be applied to the arc set (St, St) in the above described 
manner without producing any negative reduced costs. 

Necessity. Suppose a penal ty /x  > 0 can be applied to the arc set (St, St). Since 
adding ~ > 0  to e~i, V( i , j )E (S t ,  St), produces positive reduced costs for all 
(i, J ) E  At,  in order to obtain reduced costs 6~ = 0 for all (i, j ) E  A't, one must 
increase by/~  the sum t~i + ~ for all (i, j) E A~. It is easy to see that if this can be 
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done, then it can be done by adding /~ to ai or ~7~ (but not to both), for every 
(i, j ) E  A~; hence there exists a set C of lines satisfying condition (i). Further, if 
(i, j) ~ At ~ A~, then/x cannot be added to both tii and ~i without creating 61j < 0, 
hence C must satisfy (if). Finally, if (i, j ) E  A0-~ At, then/~ cannot be added to 
either ti~ or ~Tj without making 61j < 0, hence condition (iii) must also hold. 

Given the node set St of a subtour, we have to check whether a set of lines C 
satisfying (i), (if), (iii) exists. This can be done as follows. 

First, every row i @ St such that (i, j) ~ A0 for some j E N ~ St, and every column 
j E St such that (i, j) E A0 for some i E N ~ St, can be ruled out as a candidate for 
entering C. Let  R and K be the index sets of such rows and columns respectively, 
and let 

I i = { i ~ N  [( i , j )~A~andj~K},  J I={ jEN [(i , j )EA~andiER}.  

Since by (i) every cell of A't must be covered by at least one line in C, C must 
contain 11 t_J Jl. For the same reason, if A~ fq R fq K ~ 0, then no positive penalty 
can be applied to the arc set (St, St). 

Since by (i) and (if) every cell of At must be covered by at most one line in C, 
if At M 11 A J~ ~ 0, then again no positive penalty can be applied to the arc set 
(St, St). Now assume both sets are empty. Then if (11, J1) covers A~, we set 
C = 11 t,.JJl and we are done; otherwise we use the Hungarian algorithm to 
complete the search for a cover satisfying (i), (if), (iii). If such a cover exists, the 
Hungarian algorithm finds it, and /zt given by (17) can be applied as a penalty; 
otherwise the Hungarian method finds a cover which violates some of the 
conditions (i), (if), (iii), in which case no positive penalty can be applied. 

If T2 is the index set of the inequalities (8b) which admit positive penalties/~t, 
we have the following: 

Proposition 5. A lower bound on the value of the current subproblem is given by 

B2 = B1 + t.~r2/xt. (19) 

Proof. Whenever a penalty/xt > 0 is applied to an arc set (St, St) associated with 
a constraint (8b), the cost function of AP is modified, and the value of the 
solution ~, hence also the value of a solution to the dual of AP, the assignment 
problem with the modified costs, is increased by [Stllxt. Thus, after applying IT2[ 
penalties ~t, the value of an optimal solution (fi, ~3) to the dual of AP is 

i~_ ~ ti, + Z-~ 13, = v(AP)+ ,~2 IStl/x" 

Using (13), and noting that a~= 1 for t E T1 and a~= 1-1Stl for t ~ T2, we 
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obtain the lower bound 

= B1 + t ~  2/xt. 

2.3. Bound ing  procedure  3 

This procedure searches for inequalities of the form (8c) which are violated by 
and admit a positive multiplier vt without requiring changes in the multipliers 

assigned earlier. This is done by checking for each node whether it is an 
articulation point of Go. If node k is an articulation point, i.e., if the subgraph 
(N -{k}) of Go is disconnected, with St as one of its components,  then denoting 
K~ = (St, gt ~- {k}) and K'[ = (gt ~- {k}, St) we have 

K ~ N A o = 0 ,  K ' / n  Ao = 0. 

Thus we can apply a positive premium to the arcs in the pair of cutsets K~, K'/, 
whose value is 

vt = min g~j. (20) 
(i, i)Er ;u K'; 

If Ts is the index set of all those inequalities (8c) found to admit a positive 
multiplier, at the end of bounding procedure 3 we have (from (13) and (19)) the lower 
bound 

B3 = B2 + ~ lh 
t E T  3 

= v (AP)+  ~ A, + ~ /xt + ~ yr. (21) 
t ~ T  I t C T  2 tcT3 

If at any time during the bounding procedure the current lower bound matches 
(or exceeds) the upper bound given by the value of the best available tour, the 
current subproblem is fathomed and we turn to another node of the search tree. 
Otherwise, after obtaining the bound B3 we try to find a tour in Go. 

2.4. E x a m p l e  

Consider the 9-city TSP whose cost matrix is shown in Table 1. 
The solution to AP has value 31. The reduced cost matrix [g0] is shown in 

Table 2 and the solution )/ is given by  $ij = 1 for those (i, j) corresponding to 
boxes in that matrix, J/i/= 0 otherwise. The corresponding admissible graph is 
shown in Fig. 1. 

Bounding procedure 1. Cutset K1 = ({1, 2, 3}, {4, 5, 6, 7, 8, 9}) admits ;tl = 4, and 
cutset K2 = ({4, 5}, {1, 2, 3, 6, 7, 8, 9}) admits )t2 = 3. The lower bound, from (16), 
becomes BI = 31 + 4 + 3 - - 3 8 .  The new reduced cost matrix is shown in Table 3 
and the corresponding admissible graph in Fig. 2. 
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Table 1 
1 

1 × 
2 8 
3 6 
4 13 

[c~] = 5 10 
6 7 
7 5 
8 4 
9 9 

2 3 4 5 6 7 8 9 
2 8 11 15 12 12 11 13 

× 4 12 18 14 12 14 17 
9 × 15 20 17 13 10 17 

15 17 × 5 8 11 15 16 
14 16 3 × 16 12 15 13 
7 11 9 14 x 3 7 8 
7 6 2 4 11 × 2 8 

10 7 9 12 10 13 × 4 
5 9 11 8 2 7 7 × 

2 
3 
4 

[g~j] = 5 
6 
7 
8 
9 

Table 2 

1 2 3 4 5 6 7 8 9 

x [] 6 9 13 10 10 9 11 
4 x [] 8 14 10 8 10 13 
[ ]  3 x 9 14 11 7 4 11 
8 10 12 x [] 3 6 10 11 
7 11 13 [ ]  x 13 9 12 10 
4 4 8 6 11 × [ ]  4 5 
3 5 4 0 2 9 × [] 6 
0 6 3 5 8 6 9 x [ ]  
7 3 7 9 6 [ ]  5 5 × 

3 

I ~ (5 

5 4 

Fig. 1. Graph Go defined by the AP solution. 

Bounding procedure 2. The subtours of the AP solution are (1, 2, 3), (4, 5) and 
(6, 7, 8, 9). Subtours (1, 2, 3) and (6, 7, 8, 9) do not admit positive values of txt. 
However ,  inequality (8b) for subtour (4,5) is 

- -  (X45 "~ X54) ~ - -  1, 

and a set C of lines of the matrix of Table 3 satisfying the conditions of 
Proposition 7 for this subtour is given by: (row 5, column 5). From this set C we 
compute/xt  = 2, and the lower bound becomes  B: = 38 + 2 = 40. 
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Table 3 
1 2 3 4 5 6 7 8 

1 
2 
3 
4 

[gol = 5 
6 
7 
8 
9 

× [ ]  6 5 9 6 6 5 7 
4 × [ ]  4 10 6 4 6 9 

[ ]  3 × 5 10 7 3 0 7 
5 7 9 × [ ]  0 3 7 8 
4 8 10 [ ]  × 10 6 9 7 
4 4 8 6 11 × [ ]  4 5 
3 5 4 0 2 9 × [ ]  6 
0 6 3 5 8 6 9 × [ ]  
7 3 7 9 6 [ ]  5 5 x 

8 

2 

I 6 

Fig. 2. Go after bounding procedure 1. 

The  new r e d u c e d  cos t  ma t r i x  [?ij] is s h o w n  in Tab le  4, and the c o r r e s p o n d i n g  

admis s ib l e  g raph  in Fig.  3. 

B o u n d i n g  p r o c e d u r e  3. V e r t e x  8 is an  a r t i cu la t ion  p o i n t  o f  the  admis s ib l e  

g raph  of  Fig.  3. The  cu t se t s  c o r r e s p o n d i n g  to this  a r t i cu l a t ion  po in t  a re  K~ = 

({1, 2, 3}, {4, 5, 6, 7, 9}) and  K~' = ({4, 5, 6, 7, 9}, {1, 2, 3}). A p p l y i n g  (20) to Tab le  4, 

we ob ta in  vt = 2, c o r r e s p o n d i n g  to e l e m e n t  (5,1); and  the  l ower  b o u n d  b e c o m e s  

B3 = 40 + 2 = 42. The  new r e d u c e d  cos t  ma t r i x  and the  c o r r e s p o n d i n g  admiss ib l e  

g raph  are  s h o w n  in Tab le  5 and Fig.  4 r e spec t i ve ly .  

[e~i] = 

Table 4 
1 

1 × 
2 4 
3 [ ]  
4 5 
5 2 
6 4 
7 3 
8 0 
9 7 

2 3 4 5 6 7 8 9 

1 - ~ 6  5 7 6 6 5 i t  7 × [ ]  4 8 6 4 6 9 
3 × 5 8 7 3 0 
7 9 × [ ]  0 3 7 
6 8 [ ]  × 8 4 7 
4 8 6 9 × [ ]  4 
5 4 0 0 9 × [ ]  6 / 
6 3 5 6 6 9 × 
3 7 9 4 [ ]  5 5 



E. Balas and N. Christoj'ides/ Lagrangean approach to TSP  

5 

Fig. 3. Go after bounding procedure 2. 
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Table 5 
1 

1 x 
2 4 
3 [ ]  
4 3 

[c~i] = 5 0 
6 2 
7 1 
8 0 
9 5 

2 3 4 5 6 7 8 9 
[ ]  6 3 5 4 4 5 5 
x [ ]  2 6 4 2 6 7 
3 x 3 6 5 1 0 5 
5 7 x [ ]  0 3 7 8 
4 6 [ ]  x 8 4 7 5 
2 6 6 9 x [ ]  4 5 
3 2 0 0 9 x [ ]  6 
6 3 5 6 6 9 x 
1 5 9 4 [ ]  5 5 

5 8 

,9  
2 

I 6 

Fig. 4. Go after bounding procedure 3. 

3. Finding a tour and improving the bound 

Establishing whether a graph contains a tour (i.e., is hamiltonian) is, from the 
point of view of worst-case analysis, of the same order of difficulty as finding an 
optimal tour. However, for the vast majority of all possible graphs, the first 
problem is incomparably easier than the second one. We use a specialized 
implicit enumeration procedure, the multi-path method of [8, ch. 10], for  finding 
a tour in Go if one can be found without exceeding a given time limit. Let 
denote the solution associated with such a tour. If 2 satisfies with equality all 
inequalities associated with positive multipliers (i.e., if the tour defined by 
crosses exactly once each cutset Kt, t E T~, contains exactly IS t l -1  arcs with 
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both ends in St for each St, t E T2, and contains exactly one arc of each pair of 
cutsets, K't, K'[, t E T3), then ~ defines an optimal tour for the current sub- 
problem, and the latter is fathomed. 

For example, after bounding procedure 3, when Go is the graph of Fig. 4, the 
following tour is detected in Go: H = (1, 2, 3, 8, 9, 6, 7, 4, 5, 1). This tour satisfies 
with equality all four constraints with positive associated Lagrange multipliers; 
hence H is an optimal solution to the TSP and B3 = 42 is its value. 

For inequalities that are slack for ~, we attempt to strengthen the current 
lower bound by introducing some new inequalities (of the same type) that are 
tight for ~, and that admit positive multipliers. If the attempt is successful, it may 
also result in the removal of the inequality that is slack for ~. 

3.1. Bound ing  procedure  4 

Suppose the inequality (8a) associated with the cutset Kt is slack for ~, i.e., the 
tour H defined by ~ intersects Kt in more than one arc, and let /~ NKt  = 
{(h, jl), . . . ,  (ip, jp)}. For every (it, jr) E I21 tq K,, let S r be a set of nodes containing 
jr and such that, denoting ~r = N -. S r, the cutset Ktr = (S ' ,  S r) contains no other 
arc of H than (ir, jr). Then the inequalities 

j • K  xij >- l '  r = l  ,p  
(i ,  tr  

are all satisfied with equality by ~. Since every Ktr contains an arc with zero 
reduced cost, namely the arc (i,., jr) also contained in Kt, the above inequalities 
do not admit a positive premium, unless the premium At applied to Kt is reduced. 
If this is done, however, then a positive premium may be applicable to several of 
the sets Kt,,, and the sum of these premia may well exceed the amount by which 
At must be reduced, i.e., an improvement of the lower bound may be obtained. 
The conditions under which this is possible are stated in the next two pro- 
positions. 

Proposition 6. The tour H intersects the cutset  Ktr -- (~r, S r) only in the arc (it, jr), 

if and only if the arcs o f  121 with both ends in S r f o r m  a pa th  whose first node is jr. 

Proof. Let /~ = {i(1) . . . . .  i(n)}, and without loss of generality, a s s u m e  (ir, j r ) :  
[i(1), i(2)]. Now suppose either S" = {i(2)}, or the arcs of H with both ends in S r 
form a path {i(2) . . . . .  i(k)}. Then /4  intersects the cutset Ktr ---- (~r, S r) in the single 
arc [i(1), i(2)] = (ir, jr). 

Conversely, suppose s r ~  {i(2)} and the arcs o f / 4  with both ends in S r either 
form a path P whose first node is not i(2), or do not form a path. In the first 
case, /~ t~ Kt,. = [i(h), i(h + 1)], where i(h + 1) is the first node of P. In the 
second, the arcs of H with both ends in S r form k paths Pj . . . . .  Pk, with k--> 2; 
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and /~ n Ktr = [i(hl), i(hl + 1)1 . . . . .  [i(hk), i(hk + 1)], where i(h, + 1) is the first 
node of Pr, r = 1 . . . . .  k. 

Proposition 7. A positive premium can be applied to the cutset Ktr (provided that 
At is decreased) if and only if 

(Ktr "-- Kt) N Ao = ~. (22) 
I f  R ¢ O  is the set of those r E { l  . . . . .  p} for which (22) holds, the maximum 

premium applicable to each Ktr, r ~ R, is 

hr=min{h t ,  min ~,i}>0; (23) 
(i, j)EKtr~.Kt 

provided the premium At applied to Kt is replaced by 

,(t = At - max X'. (24) 
rER 

This replaces the current lower bound B by 

B' = B + r~R A r - maXr~_R A r. (25) 

Proof. A decrease in At increases the reduced costs of all arcs of Kf; hence 
makes it possible to apply a positive premium to the arcs of those, and only 
those, cutsets Ktr satisfying condition (22). The maximum size of the premium on 
Ktr is A r defined by (23), positive for those r for which (22) holds. The premia A r are 
however applicable only if At is diminished by the amount of the largest premium 
applied to the arcs of any cutset Ktr, i.e., only if At is replaced by ,(t of (24) (otherwise 
some of the reduced costs become negative). If this is done, the current lower 
bound B is replaced by 

B'= B + ,~'~'k Ar +(At-At) 

which yields (25) after substituting for ?~t. 

Bounding procedure 4 looks for cutsets Kt to which a premium At > 0  has 
been applied and which are intersected by the t ou r /q  in more than one arc. For 
each arc (i,, jr) of /~ that belongs to a cutset Kt, we try to find a set S r of nodes 
containing jr and satisfying the conditions of Propositions 6 and 7. As a matter 
of practicality, we first try Isrl--2,  then Isrl = 3 etc., until either we find a set 
which satisfies (22) or we find out that none exists. In the latter case, we take 
another arc of /~ A K,; in the former one, we compute )t r, the premium to be 
applied to the cutset Ktr, and then take the next arc o f / ~  A K ,  When all arcs of 
/~ f3 Kt have been examined, we compute the new value At of the premium 
applicable to the arcs of Kt, and replace At by )~t. All this replaces the reduced 



34 E. Balas and N. Christofides/ Lagrangean approach to TSP 

costs 6ij by 

C q - - A  r, (i,j) EKtr-- .Kt ,  r E R ,  
_~ cq-Ar+maxseRA s, (i,j) E K t r N K t ,  r E R ,  

c~J - ] 6ij + max~Rh ~, (i, j) E Kt ~- (L.JsERKts), 
[ c~i, all other (i, j) E A, 

and the lower bound B by B' defined in (25). If ,(t = 0, i.e., maxreRh r = At, then 
the inequality corresponding to Kt vanishes from L(w)  and we have succeeded 
in replacing this constraint, slack for the solution g, with a set of inequalities that 
are all tight for ~. 

If Ti ~ is the index set of those inequalities (Sa) that are slack for g and for 
which IRI # 0, and if we attach a subscript t to the index sets R associated with 
each cutset Kt and to the premia h '  indexed by R, then at the end of bounding 
procedure 4 we have the lower bound 

B4--B3+ Z Z h ; -  Z m a x h L  
tET T rER t t~T~ rER, 

Next we turn to the inequalities (8b). 

(26) 

3.2. Bounding procedure 5 

Suppose the inequality (8b) defined by the node set St is slack for ~, and let Gt 
be the subgraph of G induced by the arc set 121 A (St, St). Note t h a t / 4  rq (St, St) 
may be empty, since it is possible for a tour to contain all nodes in St without 
containing any arc with both ends in St; and when this is the case, no new 
inequalities can be derived from St. 

Assume now t h a t / 4  fq (St, St) ¢ O, and let C 1, ..., C s be the (connected) com- 
ponents of Gt. For q E Q = {1 . . . . .  s}, let S q and A q denote the node set and arc 
set, respectively, of C q. By construction, each C q is an open (directed) path, 
with 2 -< [sql <~ [St[- 1 and IAq[ = ]Sql-  1; hence i satisfies with equality each of 
the inequalities 

- ~ ~ xi i ->l- [Sq[ ,  q ~ Q .  (27) 
i~S q jES q 

Since (S q, s q ) N A o  ~O, Vq E Q, these inequalities do not admit a positive 
penalty (without a change in the dual variables tT, ~), unless the penalty /~t 
associated with St is reduced. If, however, this can be done, then each of the 
inequalities (27) admits a positive penalty and the current lower bound may be 
strengthened. The next proposition states the conditions for this. 

Let  Ft be the set of those arcs of G having both ends in St, but not both ends 
in the same set S q, for any q E Q; i.e., let 

F, = (S,, S,) - U (S~; S~). 
qEO 
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Proposition 8. A penalty Ix* > 0 can be applied to each of the arc sets (S q, sq), 
q ~ Q (provided that the penalty Ixt is decreased), if and only if 

Ft f3 A0 = 0. (28) 

I f  (28) holds, then 

Ix* = min ~Y~j > 0, (29) 
(i, i.)~-F t 

and the penalty g* can be applied to each arc set (S q, S q) if Ixt is replaced by 
Ixt - Ix*. This replaces the current bound B by 

B' = B + (IQI- 1)Ix*. (30) 

Proof. Since ( S  q, S q) C (St, St)  and (S q, S q) N Ao ~s O, Vq E Q, a penalty Ix* > 0 
can be applied to any (and all) of the arc sets (S q, S q) if and only if the penalty Ixt 
on the arc set (S,, St) can be reduced by the same amount Ix*. This, however, is 
possible if and only if condition (28) is satisfied and Ix* does not exceed the 
reduced cost of any arc in Ft. When these conditions are present, all arc sets 
(S q, sq), q E Q, can be penalized by the amount Ix* specified in (29), provided Ixt 
is replaced by Ixt-  Ix*. The effect of all this on the lower bound is to add IX* as 
many times as the number ]QI of components of Gt, and to subtract Ix* once; 
which results in the bound B' of (30). 

Bounding procedure 5 takes an inequality (8b) that is slack for :~, and forms 
the associated arc set Ft defined above. If (28) is not satisfied, we go to the next 
inequality that is slack for :L If (28) holds, we calculate Ix* given by (29) and 
penalize by IX* all arc sets (S q, sq), q E Q, defined by the components of the 
graph Gt; while replacing the penalty Ixt on the arcs of (St, St), by Ixt-  Ix*. This 
replaces the reduced costs 6ij by 

I eij-Ix*,  ( i , j )EFt ,  
eli= - ( i , j ) ~ A  E, [ c i j ,  ~ .  

and the current lower bound B by B' defined by (30). If IX* = Ixt, the inequality 
associated with St vanishes from L(w), and we have succeeded in replacing this 
constraint, slack for ~, by a set of other constraints that are all tight for ~. 

Next the procedure goes to another inequality (8b) that is slack for ~. When all 
such inequalities have been examined, let T~ be the index set of those among 
them for which condition (28) was satisfied, and for each t E T +2, let ]Qtl be the 
number of components of the graph Gt. Bounding procedure 5 then produces the 
lower bound 

B5 = B4+ ~ (IQtl- 1)ix*. 
tET 2 

Finally we turn to the inequalities (8c). 
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3.3. Bounding  Procedure 6 
Suppose the inequality (8c) associated with the articulation point k and the 

cutsets K ' t = ( S ,  S t '~{k}) ,  K'[=(St  ~{k}, St), is slack for ~, and let /4 n 
(K~ U K'[) = {(i~, h) , - . . ,  (ip, jp)}. For every (Jr, jr) E ISI n (K~ U K'~), r = 1, . . . ,  p, we 
will specify a node set S ' C N - - { k }  such that, denoting ~ r = N  ~ S  ~ and 
K~r : ( S  r, ~r ~ {k}), K~r :- (~r  ~ {k}), s r ) ,  the only arc o f / t  contained in K'tr U K't'r 

is (ir, jr). 

Propos i t ion  9. The only arc of  17t contained in K~, U K't'r is (it, jr), if and only if 
S r = S ~ {k}, where S is the node set o f  one o f  the two paths  PI = {k . . . . .  Jr} and 
P2 = {j . . . . . .  k} in I:I. 

Proof. Assume S r :  S " ~  {k}, where S is the node set of Pr or P2. In the first 
case, H n K[ r=  {(Jr, jr)} and /4 N K~'r = ~; in the second, /4 n K~r = ~ and /4 n 

t t  

K't'r = {(it, jr)}. In both cases, (it, jr) is the only arc o f / 4  contained in Kfr U Ktr. 
Conversely, let (Jr, jr) be the only arc o f / 4  contained in K~r U K"tr. Then either 

{(it, jr)} = ISI n K~r and 2Q n K~'r = 0, or {(Jr, jr)} = H N K't'r and H N K~r = ~. In the 
first case, /4 enters S r from k rather than from some node of S'---{k}, since 
/4 O K~'r = 0; and it exits S r exactly once, through it; hence S r = S ~- {k}, where S 
is the node set of P1. In the second case, H exits S r through an arc whose front 
end is k, rather than some node of ~r-~{k}, since H n K'tr--0; and it enters S r 
exactly once, through jr; hence S r = S ~ {k}, where S is the node set of P2. 

Thus, if the node sets S r, r = 1 . . . . .  p, satisfy-the conditions of Proposition 9, 
then the inequalities 

~, xii >- l, r = l . . . . .  p 

are all satisfied by ~ with equality. The next proposition states the conditions 
under which a positive premium can be applied to the sets K'tr U K"tr. 

Propos i t ion  10. A positive premium can be applied to the arc set K[r U K~'r if and 
only if 

[(K~r U K~r) -~- K t ]  n A0 = ~. (32) 

I f  R ~ ¢) is the set of  those r E {1 . . . . .  p}, f o r  which (32) holds,  the m a x i m u m  
premium applicable to each K[r U K't'r, r E R, is 

1/r = m i n { v ,  min ?ij}, (33) 
(i, j)EK 

where K = (K'tr U K't'r) "-- Kt;  provided the premium vt applied to Kt is replaced by 

~t = vt - m a x  v r. (34) 
rER 



E. Balas and N. Christofides/ Lagrangean approach to TSP  

This replaces the current lower bound B by 

B' = B + ~' ,  V r - -  max U r. 
r~R 

3 7  

(35) 

Proof. Analogous to the proof  of Proposit ion 7. 

Bounding procedure 6 looks for indices t @ T3 for which a positive premium vt 
has been applied to the arc set K'tUK'[, and for which /4 N(K' tUK'D = 
{(il, jl) . . . . .  (ip, jp)}, with p > 2. Given such a t E T3, for each r E {1 . . . . .  p} we use 
the node set of the path P, = (k . . . . .  it) in /4, after removing from it node k, to 
derive an arc set of the form K~, U KTr defined in Proposit ion 9. We then check 
whether K'tr U K'/r satisfies (32), and if so, we calculate the premium v r to be 
applied to K~r U KTr; otherwise we move to the next  r E {1 .... , p}. When all arcs 
o f / ~  n (K~ U K'~) have been examined, we compute the value Pt of the  premium 
applicable to the arcs of Kt, as given by (34), and replace vt by 13t. All this 
replaces the reduced costs ~ij by 

rK'  U K  "~ Kt, r E R  f e ~ j - v  r ( i , j ) ~  ,, , r J~  

-, ]~ij--v" +max~RV ~ (i , j)  E(K~rU K'/r)NKt, r E R  
= K"  ~ cij i~ij+max~ERV~ ( i , j ) E K t ~ U ~ e R ( K ~ U  t~j 

~cij all other (i, j) E A 

and the lower bound B by B'  defined in (35). 
As in the case of procedures 4 and 5, if bt = 0, the inequality associated with 

K~ U K'[ vanishes from L(w)  and is replaced by new inequalities that are tight 
for  ~. 

Le t  T~ be the index set of those inequalities (8c) that are slack for i and for 
which R #  ,g, and let us attach a subscript t to the index set R associated with 
K~ U K'~ and to the premia v r indexed by R. At the end of bounding procedure  6 
we then have the lower bound 

B 6 = B s +  ~ ~ v [ -  ~ m a x v  r. (36) 
tET~ rER t tET~ rCRt 

Naturally, if at any stage of the procedure the lower bound for the current  
subproblem matches the upper bound on v(TSP) given by the value of the best 
tour at hand, the current  subproblem is fathomed. 

At this point we may find ourselves in one of two possible situations: (o0 we 
have found a tour in Go, and used it to obtain the lower bound 86 on the value of 
the current subproblem; or (p) the at tempt to find a tour was unsuccessful,  and 
83 is the best lower bound we have for the current  subproblem. In case (p), 
we define Gt = (N, At), with At = {(i, j) E A I ~ii -< E}, where the ~/j are the 
current  reduced costs and e is the smallest number for  which we are able to find 
a tour in G~ within the given time limit. In either case, we denote b y / c / t h e  tour 
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at hand, by ~ the associated solution, by 6~j, (i, j ) E  A, the last set of reduced 
costs, and by B the lower bound for the current subproblem. Obviously c~, 
where c is the original cost vector, is an upper bound on v(TSP), and the best 
such upper bound at each stage will be denoted by B* 

3.4. Computational complexity of the bounding procedures 

Each of the six bounding procedures discussed in Sections 2 and 3 is 
polynomially bounded. For each of them except for the first one, the number of 
operations required in the worst case is O(n3), where n is the number of cities. 
For procedure 1, this number is O(n4). Solving the assignment problem at the 
start also requires at most O(n 3) operations. 

At every node of the search tree, the bounding procedures are applied once 
(after solving the assignment problem, if necessary) in the order 1, 2, 3. If at that 
point the node was still not fathomed (i.e., the lower bound is still below the 
current upper bound), an attempt is made at finding a tour in Go. Though there is 
no algorithm guaranteed to accomplish this in polynomial time, we let our 
implicit enumeration procedure run only for a fixed amount of time, that is an 
input parameter defined as a linear function of n. If a tour is found, bounding 
procedures 4, 5, 6 are applied in that order; otherwise we branch. 

In conclusion, the amount of work performed at any given node of the search 
tree is O(n 4) in the worst case. 

4. Branching rules 

Before branching, we attempt to fix some variables by using the bounds B and 
B*. Let  

Qo={( i , j )~  A [ eij> B * - B } .  

It is not hard to see that, if the reduced costs ?ij are derived from the same dual 
solution and Lagrange multipliers as the lower bound B (as is the case here), 
then any solution x to TSP such that cx < B* must satisfy the condition x~j = O, 
V(i, j ) ~  Qo. Hence we set xij = O, (i, j ) E  Qo for the current subproblem and its 
descendants, i.e., we replace A by A ~- Q0. 

Next we describe two branching rules, which we use intermittently. The first 
rule derives a disjunction from a conditional bound; the second rule derives one 
from a subtour-breaking inequality. 

4.1. Disjunction [rom a conditional bound 

A disjunction from a conditional bound can be obtained as follows [1]. 
Consider a family of sets Qk C A, k = 1 . . . . .  p, such that 6ij >0 ,  V(i , j )E  Qk, 
k = 1 . . . . .  p. Then if the inequalities 
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(~,J~EOk Xij ----- 1, k = 1, ..., p 

were added to the constraint set of LP,  the lower bound B could be improved by 
choosing appropriate multipliers for these inequalities. Further, if this improved 
bound (termed conditional, because of the hypothetical nature of the in- 
equalities) matches the upper bound B*, then every solution better than the one 
associated with B* violates at least one of the above inequalities; i.e., satisfies 
the disjunction 

~ l  (Xij : 0,  V(i ,  j) ~_ Qk). (37)  
k-1 

To implement this principle, we first remove from L ( w )  those inequalities (8a) 
and (8c) that are slack for ~ (the solution corresponding to the current tour) 
while the associated multiplier wt is positive. Let  ~j denote the reduced costs, 
and /3 the lower bound, resulting from this removal. Next, we choose a 
minimum cardinality arc set S C/-I, S = {(il, JO . . . . .  (ip, jp)}, such that 

>_ B * -  (38) 
(i, j)ES 

and construct a p × IAI 0--1 matrix D = (d~) with as many l 's  in each column as 
possible, subject to the conditions dk,  = 1, k = 1, .. . ,  p, and 

dijciok<--(.ii, ( i , j ) ~ A .  
k=~ 

It can then be shown (see [1]) that every solution x to TSP such that cx < B* 
satisfies the disjunction (37) for the sets Qk = {(i, j) ~ A ] d~ = 1}, k = 1 . . . . .  p. 

The disjunction (37) creates p subproblems. In the k-th subproblem we have 
x~j = O, (i, j) ~ Qk, and since (i~, jk) ~- I:I fq Qk, the tour /:/ becomes infeasible for 
each of the subproblems. On the other hand, the current solution to AP remains 
feasible for each of the subproblems. 

4.2. Disjunction f rom a subtour breaking inequality 

A disjunction from a subtour breaking inequality is obtained in the usual way; 
i.e., if S is the arc set of a subtour of the AP solution, then every solution to 
TSP satisfies the disjunction: 

V (xi#~ = 0 and x~ = 1, Vl -< k - 1) (39) 
(ik, Jk)ES 

At an arbitrary node of the branch and bound tree, a subset S' of the arc set 
S (of the subtour selected for branching) may already have been fixed to be in 
the solution. In this case set S in disjunction (39) is replaced by S ~ S'. 
Branching on (39) creates [S -~ S'] subproblems. For each of these subproblems, 
the AP solution to the parent problem becomes infeasible. 
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In choosing the arc set S for the disjunction (39), it is desirable to give 
preference to subtours (of the current AP solution) having either a minimum 
number of arcs (rain ISI), or a minimum number of free arcs (rain IS --. S'I). In the 
computational tests discussed in the next section we used the first of these two 
criteria. 

As to the two disjunctions (37) and (39), an efficient procedure must use them 
intermittently, since (37) can on occasion be considerably stronger than (39), 
while at other times it can be much weaker. We tried several rules for mixing 
them, and the one actually used in the tests is discussed in the next section. 

5. Implementation and computational experience 

Our algorithm was programmed in FORTRAN IV for the CDC 7600 and tested 
on a set of 120 randomly generated asymmetric TSP's of sizes varying between 
50 and 325 cities. Here we discuss some features of the implementation, give the 
computational results, and interpret them. 

5. I. Use of sparsity 

Unlike in the case of those symmetric TSP's whose costs are based on 
distances and can therefore be generated whenever needed from the 2n coor- 
dinates of the cities, in the case of the asymmetric TSP one has to explicitly 
store the costs, whose number in case of a complete graph is n(n - 1). However,  
as discussed at the beginning of Section 4, our procedure uses the bounds to fix 
at 0 certain variables, and the number of variables for which this can be done 
before the first branching is usually very high. Therefore at that point we 
actually remove from the graph all those arcs whose variables can be fixed at 0, 
and from then on we work with a graph (usually quite sparse) represented by a 
list of nodes and a list of arcs with their costs. Additional fixing of variables (at 0 
or 1) later in the procedure is handled via cost modifications. 

5.2. Branching and node selection 

The two types of branching discussed in Section 4 are used intermittently 
according to the following rule. A branching of type 1 (based on disjunction (37)) 
is performed whenever a set of arcs S c H can be found, such that (i) inequality 
(38) is satisfied; (ii) IS I < (d2) + l, where r is the number of arcs in the smallest 
subtour in the current A P  solution; and (iii) at least n/3 variables can be fixed at 
0 on each branch. 

Whenever any of the above conditions is violated, a branching of type 2 (using 
disjunction (39)) is performed. 

The node selection rule used in the code is to choose a successor of the 
current node whenever available, and otherwise to select a node k for which the 
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following evaluation attains its minimum: 

s ( k ) -  1 
E(k) = [B(k) - v(AP)] • s(-~-- ~(--k)" 

Here B(k) is the lower bound for subproblem k, v(AP) is the value of the 
(initial) AP, while s(0) and s(k) are the number of subtours in the solutions to 
the initial AP and the current one (at node k), respectively. The integer s(k) is 
used as a measure of the "distance" of the AP solution at node k from an 
optimal tour. 

5.3. Information stored for each subproblem 

All subproblems are stored on a linked list in order of increasing lower 
bounds. For each subproblem k the following information is stored: the AP 
solution; the value of the associated bound; a pointer to the father node of node 
k; a code to indicate the type of branching (one of the 2 types described above) 
that produced node k; the number of sons of the father of node k, the rank 
(index) of node k among its brothers; a list of the arcs of S in (38) (if node k was 
obtained from a disjunction (37)), or a pointer to the subtour in the AP solution 
corresponding to S in (39), (if node k was obtained from a disjunction (39)), and, 
finally, a list of the operations (in coded and ordered form) which produced the 
current matrix [cij] from the matrix for the predecessor node. 

5.4. Computational results 

The above described code was run on the CDC 7600 to solve 120 randomly 
generated test problems whose associated (directed) graphs are complete and 
whose cost coefficients were drawn from a uniform distribution of the integers in 
the range [1, 1000]. The problems belong to 12 classes based on size, with n = 50, 
75 . . . . .  300, 325, and with l0 problems in each class. Table 6 summarizes the 
results. These results are quite remarkable, in that the number of nodes 
generated is surprisingly small, and seems to increase only slightly faster than 
the number of cities. This is also illustrated on Fig. 5, where the slope of the 
curve is only slightly steeper for 200 <- n -< 325 than for 50 -< n -< 200. Note, also, 
that the maximum time required to solve any one of the 120 problems was 82 
seconds. 

Table 7 shows the ratio between computing time and the number of variables, 
whose growth with problem size is surprisingly slow. 

Since the average cost of the various bounding procedures is not proportional 
to their usefulness, we have tested each of the procedures individually and in 
subsets to see whether their use pays off. The outcome of our tests was that 
using all 6 bounding procedures is more efficient than using any subset of these 
procedures. 

An interesting feature of the approach discussed here is the large number of 
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Fig. 5. Number of nodes in the search tree as a function of number of cities (n). 

Table 7 

Ratio of computing time to number of variables 

n 50 75 100 125 150 175 200 225 250 275 300 325 

T × 10 5 
8 5 7 7 8 13 15 20 21 28 42 47 

T = computing time in seconds; n = number of cities. 

arcs that can be removed from the graph at the root node of the search tree, as a 
result of the test discussed at the beginning of Section 4 (see Table 8). This 
shows the power of the bounding procedures used in our approach. For a 
comparison, if only the bound obtained from AP is used, then the percentage of 
variables removed in problem classes l, 2 and 3 is on the average 87% (and this 
percentage does not seem to increase with problem size). 

Table 9 compares our computational results with those reported for two of the 
most successful other codes available for asymmetric TSP's. The Smith-Thomp- 
son [18] code is an implementation of a branch and bound algorithm that generates 
bounds from the AP solution by estimating the effect of fixing variables, and 
branches on the arcs of a subtour. It is the most successful of the 3 versions 
evaluated in [18]. The Kubo-Okino [16] code is also an AP-based branch and 
bound procedure. Both codes were tested by their authors on a set of randomly 
generated asymmetric TSP's with integer coefficients drawn from a 
uniform distribution over the interval [1, 1000], just like our problems. Thus, 
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Tab le  8 

P e r c e n t  of  a rcs  r e m o v e d  on the a v e r a g e  a t  the  roo t  node  

Problem class 1 2 3 4 5 6 7 8 9 10 11 12 
A × IO0 

95.3 96.4 97.1 97.3 97.5 97.6 97.9 98.1 98.4 98.3 98.6 98.7 

A = A r c s  r e m o v e d  ( ave rage ) ;  ,~ = To ta l  a rcs .  

Tab l e  9 

C o m p a r i s o n  of  a v e r a g e  runn ing  t imes  ( s econds )  

S m i t h -  K u b o -  B a l a s -  

T h o m p s o n  [18] Ok ino  [16] Chr is tof ides  

U N I V A C  1108 H I T A C  8800 CDC 7600 

5 p r o b l e m s  10 p r o b l e m s  10 p r o b l e m s  

in e a c h  class in e a c h  class  in e a c h  class 

50 1.7 4.8 .20 

60 9.3 - - 

70 8.5 

75 - - .29 

80 13.8 - - 

90 42.0 - - 

100 53.0 45.2 .71 

110 22.3 

120 62.9 - 

125 - - 1.13 

130 110.1 - - 

140 165.2 - 

150 65.3 109.5 1.97 

160 108.5 - - 

170 169.8 - - 

175 - - 4.18 

180 441.4 - - 

200 - > 281.3 a 6.06 

225 - - 10.44 

250 - > 252.5 b 13.65 

275 - - 21.74 

300 - > 275.0 c 38.37 

325 - - 49.66 

a v e r a g e  fo r  7 p r o b l e m s  

b a v e r a g e  fo r  8 p r o b l e m s  

a v e r a g e  fo r  6 p r o b l e m s  

r e m a i n i n g  p r o b l e m s  could  not  be so lved  

in 600 s econds  e a c h  

though the three codes were run on different sets of problems, the results should 
be comparable after correction for differences in computer speed. The CDC 7600 
is about 3 times as fast as the UNIVAC 1108, and the HITAC 8800 is 
comparable in speed to the UNIVAC 1108 [19]. The largest problems solved by 
Smith and Thompson had 180 cities. Kubo and Okino went up to 300 cities, but 
beyond 150 cities were unable to solve all 10 problems within the time limit of 
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600 seconds for each problem. The most relevant aspect of the comparison, 
which is unaffected by computer speed, is the change in the ratio min{S-T, K-  
O}/(B-C) as a function of problem size. Here S-T, K-O and B-C stands for the 
computing times reported for three codes. While for the 50 city problems this 
ratio is about 8/1, for the 100 city problems it becomes about 55/1, and for the 
180-200 city problems it is of the order of 100/1. 

6. The symmetric case 

Our algorithm can of course be applied to symmetric TSP's as it is, but it 
would not be efficient for such problems in its present form. This is so because 
of the well known fact that AP's associated with asymmetric TSP's tend to have 
optimal solutions involving a large number of subtours of length two. However, 
our approach can be adapted to the symmetric case by replacing the assignment 
problem with the 2-matching problem as the basic relaxation of the TSP. We are 
in the process of developing such an algorithm for the symmetric TSP. 
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