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We consider the problem of cost allocation among users of a minimum cost spanning tree 
network. It is formulated as a cooperative game in characteristic function form, referred to as 
a minimum cost spanning tree (m.c.s.t.) game. We show that the core of a m.c.s.t, game is 
never empty. In fact, a point in the core can be read directly from any minimum cost spanning 
tree graph associated with the problem. For m.c.s.t, games with efficient coalition structures 
we define and construct m.c.s.t, games on the components of the structure. We show that the 
core and the nucleolus of the original game are the cartesian products of the cores and the 
nucleoli, respectively, of the induced games on the components of the efficient coalition 
structure. 
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1. Introduction 

Cons ider  a ne twork  which is composed  of a c o m m o n  suppl ier  c onne c t e d  to a 

n u m b e r  of geographical ly  separated users  by  a m i n i m u m  cost  spann ing  tree 

graph. A n  example  for such a s i tuat ion is a cab lev i s ion  ne twork .  The cab lev i s ion  

signals are ini t iated at a cer ta in  loca t ion  ( c o m m o n  supplier) ,  and are be ing 

t r ansmi t t ed  to the var ious  cities (users) in the sys tem which are c o n n e c t e d  to the 

c o m m o n  supplier  by a m i n i m u m  cost  spann ing  tree ne twork ,  see also [2, 3]. 

W h e n  the cost  of a l ink b e t w e e n  any  two loca t ions  is k n o w n ,  a ques t ion  that  

can  be na tura l ly  raised is how should the total  cost  be al located a m o n g  the 

var ious  users.  Claus and K le i tman  [2] ini t ia ted the d i scuss ion  of this p rob lem.  

Fo l lowing  [3] we fo rmula te  the p rob lem as a coopera t ive  game in charac-  

terist ic f unc t i on  form, refer red  to as a m i n i m u m  cost  spann ing  tree (m.c.s.t .)  

game. The  core of a m.c.s.t ,  game is defined in fact  by  one of Claus  and 

K l e i t m a n ' s  cost  a l locat ion cri teria [2]. We show that  the core of a m.c.s.t ,  game 

is never  empty ,  and a po in t  in the core can  be s imply  read f rom a ny  m i n i m u m  

cost  spann ing  tree graph connec t i ng  all users  with the c o m m o n  supplier .  Thus ,  

since there exist  ex t remely  efficient a lgor i thms for cons t ruc t ing  m i n i m u m  cost  

* This paper is a revision of [4]. 
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spanning tree graphs, there is virtually no bound on the number  of users in the 
network for which a solution in the core (i.e., a sat isfactory cost  allocation) can 
be found. 

In the last two sections we study m.c.s.t, games with an efficient coalition 
structure. We define and construct  m.c.s.t, games on each one of the com- 
ponents  of the structure. We then show that the nucleolus of the original game is 
the cartesian product  Of the nucleoli of the m.c.s.t, games defined on the 
components  of the structure. A similar result is obtained for the core of a 
m.c.s.t, game. These two results can lead to a considerable reduction when 
attempting to find the complete  core or the nucleolus of a m.c.s.t, game. As far 
as we know, no computat ionally efficient method to find either all the vert ices of 
the core or the nucleolus of a m.c.s.t, game is known. 

1. Game theory formulation 

As it should be apparent  by now, this paper  deals with costs rather then with 
revenues,  which are usually associated with cooperat ive games. Therefore ,  
traditional inequalities in game theory are reversed.  Given a set N = {1 . . . . .  n} of 
players whose power  set 2 N -= {S: S c_ N} is the set of coalitions, a function 

c: 2 N ~ R ,  

with 

c (0 )  = 0 

is the characteristic function of the game (N;  c). If  the characterist ic function c 
is monotone (i.e. c(S)<- c (T)  for S C T C N) ,  then the game (N;  c) is monotone. 
The game (N;  c) is proper if the characterist ic function is subadditive (i.e., 
c ( S ) + c ( T ) > c ( S U T )  for all S, T E 2  N, S V I T = 0 ) .  The core of the game 

(N;  c) is the set 

Throughout  this paper  a graph G is denoted by G = (V, E),  where V is the 
node set and E is the edge set. 

The construction of a minimum cost  spanning tree game is as follows. Each 
city (customer,  player) i is associated with a node i in the complete  graph whose 
node set is N U {0}. The datum is a non-negative symmetr ic  matrix C whose 
generic e lement  cli = c~i is the cost associated with the undirected arc eii = eii 
( iS  j). The diagonal entries c,  (i = 0, 1 . . . . .  n) are all zero. 

Given the c~fs we construct  FN--= (VN, EN), a minimum cost spanning tree 
(m.c.s.t.) graph connecting the n cities (i.e. the node set N )  with the common  

supplier (node 0). Similarly, for S C N Fs -~ (Vs, Es) is a m.c.s.t, graph whose 
node set is S U {0}. Of course,  VN = N t_J {0}. 
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The characteristic function c: 2 N ~ R  of the minimum 
(m.c.s.r) game (N; c) is defined by 

c(O) = o, 

and 

3 

cost spanning tree 

c ( S ) =  ~, cij f o r t t ¢ S C N .  
eljEEs 

Note that every m.c.s.t, game is proper, but not necessarily monotone as the 
following example shows. 

Example 1. Suppose the cities served by the common supplier are labeled 1, 2, 3 
and the common supplier is labeled 0. The various costs of the possible links are 
shown in Fig. 1. 

In this example c({1}) = 1; c({2}) = c({3}) = 1.7; c({1, 2}) -- c({1, 3}) = 2; c({2, 3}) 
=3.4; c({1, 2, 3}) -- 3. 

The monotone minimum cost spanning tree (m.m.c.s.t.) game derived from the 
m.c.s.t, game (N; c) is the game whose characteristic function ~ is 

O(S)= rain c(T) ,  S C N. (1) 
SCTCN 

The use of the characteristic function ~ amounts to the assumption that every 
set of players S is allowed to use nodes in N --- S while constructing its separate 
network. By definition 

~(S) <- c(S)  for all S c N. (2) 

Furthermore, 

6 ( S ) - ~ ( T )  for a l l S c T c N ,  (3) 

i.e. ~ is a monotone set function. In Example 1, 6 (S)=  c(S)  for all S~{2,3}; 
6({2, 3}) = 3 < c({2, 3}). 

3 1.7 2 

\ \ \ l  I///\~, ' 

0 

Fig. 1. 



4 D. Granot and G. Huberman/M.C.S.T. games 

To a given characto:istic function c of a m.c.s.t, game (N;  c) corresponds a 
collection Q(c) of cost matrices (cij), such that for each (cij) E Q(c) ~,elj~Es c~j = 
c ( S ) ,  V S  c_ N.  The collection Q(c) can be characterized as follows: For  each 
(cij) ~ Q ( c )  

(i) Cio = c({i}), i = 1 . . . . .  n, and 
(ii) if c({ i , j } )  = c({i})+ c({j}), then cii>- max{c({/}), c({j})}; otherwise, if 

c({i, j}) < c({i}) + c({j}), then clj = c({i, j}) - min{c({i}), c({j})}. 
Thus Q ( c )  consists of a unique cost matrix (cii) (for which ~e,ic~ s cij = c ( S ) ,  

VS C_ N)  iff c({i, j}) < c({i}) + c({j}) for each pair (i, j). Clearly, if Q ( c )  is not a 
singleton it is an infinite collection of cost matrices. 

Similarly, to a given characteristic function c of a m.m.c.s.t, game (N;  c) 
corresponds a collection O(c) of cost matrices, such that for each (c i j )E  O(c)  

Min { j ~ E S C R  e i R cii} = 6 ( S ) '  V S C _ N .  

One can easily verify that 0 ( c )  is a singleton iff the following is satisfied: 
(i) c({i}) < c({i, j}), Vi, j, 

(ii) c({i, j}) < c({i, j, k}), Vi, j, k, and 
(iii) c({i, j}) < c({i}) + c({j}), Vi, j. 
Further,  let c and 6 denote the characteristic function of a m.c.s.t, game and a 

m.m.c.s.t, game, resp., derived from the cost matrix (c~j). Then, one can easily 
show that Q(c)  c 0(6) .  Finally, let us denote by (N ; c) and (N ; c') the m.c.s.t. 
games corresponding to the cost matrices (c~j) and (c~j), respectively, and assume 
that for each S c_ N c ( S ) =  c ' (S ) .  Then, the last observation (Q(c ) c_  0(6) )  
implies that 6 ( S ) =  6'(S), VS C N, where 6(.) and 6'(.) are the characteristic 
functions in the m.m.c.s.t, games derived from the cost matrices (c~j) and (c~i), 
respectively. 

2. The existence of the core of a m.c.s.t, game 

Claus and Kleitman [2] reviewed the criteria which a cost allocation method 
among users of a minimum cost spanning tree network must satisfy, and state: 
"The method must have a stability against system breakup. It should not be an 
advantage to one or more users to secede from the system. Thus, there are limits 
to which a method can subsidize one user or class of users at the expense of 
others ."  

Formally, let x = (xl . . . . .  x,) represent an allocation of the total cost among 
the cities. In order to comply with the Claus and Kleitman restriction, x must 
satisfy 

x ~ < - c ( S )  f o r a l l S C N ,  
/~s (4) 

x~ = c(N).  
i=1  
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For any vector  x that represents  a cost  allocation scheme and satisfies (4), no 
subset  of cities pays  more than it would have paid, had it established its own 
network. Therefore  no subset  has an incentive to secede. But the vectors  x 
satisfying (4) are the core of the cooperat ive  game ( N ;  c). Thus,  Claus and 
Klei tman set of sat isfactory cost allocations defines precisely the core of a 
m.c.s.t, game (N;  c). A similar definition can be given for the core of the 

m.m.c.s.t ,  game (N;  6). 
The sys tem (4) may include solutions which are not non-negative,  e.g. ( -0 .4 ,  

1.7, 1.7) is a solution of (4) in Example  1. A negative cost  is a payoff,  and one 
may wish to avoid this situation by adding the constraints 

x i - 0 ,  i = l  .... , n  (5) 

to the definition of the core of ( N ;  c). The monotonici ty  of the characterist ic  
function g implies that (5) is redundant  for  the m.m.c.s.t ,  game ( N ; ~ ) .  To see 
this note that if x is in the core, then 

x ,= ~, x i -  ~ x i = e ( N ) -  Y~ x j > - e ( N ) - e ( N - ~ { i } ) - > O .  
jEN jEN ~{i} jEN~{I} 

Next,  we prove  that the core of a m.m.c.s.t ,  game (N;  6) is nonempty.  In fact ,  
we do more than that by showing how points in the core can be simply read f rom 
the various minimum cost  spanning tree graphs associated with the data c~j 
(i, j = 0, 1 . . . . .  n) for any matrix (c~i) in 0 ( c ) .  Keeping (2) in mind we immediately  
have the same result for m.c.s.t, games as well. 

Given a m.c.s.t, graph FN--(VN, EN), denote by e i E E N  (i = 1 . . . . .  n) the 
incident edge to node i which is also in the unique path f rom node i to node 0 in 
Fn. The vector  (x 1, .. . ,  x") is a minimum cost tree solution if every  x ~ is the cost  
associated with the node e i. (In Example  1 the minimum cost  tree solution is 
(1,1,1)). For  S C N ,  let X s = { e i : i E S }  and f ( s = E N < X s .  For  any edge set 
B C EN let re(B) = ~_,(i,i~E~ cij. Thus, 

c ( N )  = m(Xs)  + m(Xs) .  (6) 

Note  that if an edge (i, j) ~ 3(s, then either i E N ~ S or j ~ N ~ S, whereas  if 
(i, j) ~ Es, then both i E S U {0} and j ~ S U {0}. Therefore ,  

Lemma 1. The sets Es and ffs are disjoint. 

Next ,  consider the graph Ys = (VN, E(S)) ,  where 

E ( S )  = Es U Sis. (7) 

From L e m m a  1 we have IE(S)I-- n. We shall prove  that  Ys is connected,  and 
therefore a tree. 

Lemma 2. The graph Ys = (VN, E(S) )  is a tree. 
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Proof. It is enough to show, in this case, that for each al E VN there is a chain in 
3(s (possibly of length 0) emanating from a~ to some node in Vs. 

Let  A~ = {e aI, e a2 .... } denote the unique chain in EN leading from a~ to 0, where 
e ~' denotes the edge (ai, a~÷0, i =  1 ,2 , . . . .  If A~ C 3~s, we are through, since 
O E Vs. If A1<Z3~s, let e ~k be the first edge of A~ that is not in 3~s. Then 
e~kEEN ~ X s ,  so we have ak E S C Vs, by definition. The chain {e ~ . . . . .  e ~*-'} 
therefore provides the desired connection. 

The main result of this section is: 

Theorem 3. Given a cost matrix C, every minimum cost tree solution is in the 

core of both the m.c.s.t, game (N;  c) and the m.m.c.s.t, game (N;  P). 

Proof. Let  x -- (x 1 . . . . .  x n) be the minimum cost tree solution corresponding to a 
m.c.s.t, graph FN of C. Recalling (2) it suffices to show that x is in the core of 
(N;  ~). By its construction, ~i~N X i =  ~(N). 

Now, assume the existence of a coalition R for which 

x i > ~(R). 
i~R /J 

Let  S C N, and R c S such that 

~(R)--  c(S). 

Since x i >- 0 (i = 1 . . . . .  n) we have 

(8) 

(9) 

x ~ > c(S)  (10) 
iES 

or equivalently 

m(Xs)  > c( S) (11) 

which implies, by (6) and (7), that 

c ( N )  = m(Xs)  + m(Xs)  > c(S)  + m(Xs)  = m(E(S) ) .  (12) 

Now, by Lemma 2, Ys is a tree and thus (12) contradicts the optimality of the 
m.c.s.t, graph FN. Hence,  for each coalition R 

x ~ --- ~(R), 
iER 

which implies that (x ~ . . . . .  x n) is in the core of both (N;  c) and (N;  ~). 
Bird [1] has independently studied the class of m.c.s.t, games, and proved the 

nonemptiness of the core of (N;  c). His proof  is, unfortunately,  erroneous since 
he assumes that for every  arc (i, k), where (i, k) is that arc in Es (the edge set of 
Fs) which is on the unique path from i to 0 in Fs, the cost of arc (i, k) is always 
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smaller than or equal to x i. Motivated by [3] and the first version of our paper [4], 
Megiddo [9] has independently proved the non-emptiness of the core of (N;  ~). 
Further,  Megiddo [9] has shown that the core of the game (N;  ~), in which ~(S) is 
the cost associated with the Steiner tree that spans S U{0}, might be empty. 
Megiddo [8] and Littlechild [7] have computed the nucleolus of a special class of 
m.c.s.t, games, see also Granot  and Huberman [5]. 

The core of a game (N;  c) is a compact  convex polyhedron (possibly empty) 
in R n. Any minimum cost tree solution is a point in the polyhedra defined by the 
cores of (N;  c) and (N;  ~). In fact, it is a vertex of both polyhedra. 

Theorem 4. Given a cost matrix C, every minimum cost tree solution is a vertex 

in the core of both the m.c.s.t, game (N;  c) and the m.m.c.s.t, game (N;  ?). 

Proof. The core of the m.c.s.t, game (N;  c) contains that of the m.m.c.s.t, game 
( N ; ~ ) ,  so it suffices to prove the result for the m.c.s.t, game ( N ; c ) .  Let  
x -- (x 1, . . . ,  x n) be a minimum cost tree solution corresponding to a m.c.s.t, graph 
FN of C. We label the nodes {1 . . . . .  n} of FN so that if i > j, then i is not on the 
(unique) path connecting j and o using edges from EN. We have to show that 
there are n -  1 linearly independent inequalities in (4) which are satisfied as 
equalities for x. In fact, the inequalities corresponding to the sets {0, 1 . . . . .  i} 
(i = 1 . . . . .  n - 1) are the required inequalities. 

In light of the above theorem it is apparent that any minimum cost tree 
solution is not entirely 'just'. It suggests that users who are directly linked to the 
common supplier pay the full cost of the link, even though other users indirectly 
use this link. Thus one is motivated to investigate other solutions, preferably in 
the core. In the next two sections we suggest certain reductions of the game 
which can simplify further investigations. 

3. Tree decomposition for the core of (N; c) [(N; ~)] 

We consider the case in which the cost matrix C gives rise to a m.c.s.t, graph 
Fn with more than one (say p > 1) edges incident to the common supplier 0. We 
construct  p m.c.s.t. [resp., m.m.c.s.t.] games (Ni; c i) [resp., (N~; ~i)] (i = 1 .... , p) 
such that the core of the m.c.s.t. [resp., m.m.c.s.t.] game (N;  c) [resp., (N ;  ~)] is 
the cartesian product  of the cores of the m.c.s.t. [resp., m.m.c.s.t.] games (N~; c ~) 
[resp., (Ng; ~I)], (i -- 1 . . . . .  p). A similar result on the nucleolus is obtained in the 
next  section. On the other hand, it is shown that the Shapley value of (N ; c) [resp., 
(N ;  ~)] is not necessarily the cartesian product  of the Shapley values of (N~; c i) 
[resp., (Ni; ~i)]. 

The statement that FN has p edges incident to the common supplier 0 is 
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equivalent to the existence of an efficient coalition structure {N~, .. . ,  N,} in the 
m.c.s.t, game (N;  c), i.e., a partition {N1 . . . . .  Np} of N such that 

p 

c ( N )  = ~ c(Ni). (13) 
i = l  

Now, one can easily show that {N,, ..., Np} is an efficient coalition structure in 
the m.c.s.t, game (N;  c) iff {N~ . . . . .  Np} is an efficient coalition structure for 
(N;  e), i.e. iff 

e (N)  = ~ e(N~). (14) 
i=1 

Without loss of generality we assume (unless otherwise stated) that p = 2, and 

N~ = {1, . . . ,  m}, N2 = {m + 1 . . . . .  n}. (15) 

Graphically this means that EN can be chosen so that there are two nodes, say 1 
and m + 1 such that {(0, 1), (0, m + 1} C EN. 

We use (c,j) to construct a cost matrix C'  = (clj) as follows 

min{cij, minkcN2{clk}} ] -- 0, i E Nl, 

ci'j = min{cij, minkeNl{Cik}} ] = O, i E N2, (16) 

c~j otherwise. 

The cost matrix C ' =  (ci'j) induces the cost matrices C l = (c~ i) and C 2 = (c~) on 
N, U {0} and N2 U {0}, respectively, i.e. c~j = c~'j, ( i , j)  ~ Nz U {0} and c~ = c,'j, 
( i , j )EN2U{0} .  Further,  we denote by ( N ; c ' )  [resp., (N ;? ' ) ] ,  (N~;c ~) [resp., 
(Nt; ~l)] and (N2; c 2) [resp., (N2; ~2)] the m.c.s.t. [resp., m.m.c.s.t.] games asso- 

ciated with the symmetric cost matrices C', C ~ and C 2, respectively. 
Let  ~ = {B~ . . . . .  B~} be a partition of N. The game (N;  c) is called decompos-  

able with partition ~ if for  all S c N 

c(S)  = ~ c(Bj A S). (17) 
i=1 

A game (N;  c) is said to be decomposable if there exists a partition {Bt .... , Br}, 
r -> 2, satisfying (17). 

One can easily verify that the game (N;  c') is decomposable with partition 
{N~, N2}. We have therefore:  

Lemma 5. 

(a) 

and 

(b) 

For all S~ C N~ (i = 1, 2) 

c'(S,)  + c2($2) <- c (& U $2) 

el(S,) + e2(S2) <- e(S~ u $9. 
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Proo| .  

c'(S,) + c2($2) = c'(S,) + c'($2) by definition of C', C t, C 2, 

= c'(S, U $2) since (N; c') is decomposable, 

<- c(S, U $2) by definition of C'. 

To prove the second part we consider the sets R~, S~ C R~ C N~ (i = I, 2) such 
that ~(S, U $2) = c(R, U R2). From part (a) we have c(R, U R2) -> c'(Rl) + c2(R2). 
From (1) we have ci(Ri) - ~i(Si) (i = 1, 2). Thus, 

C(Sl I.J S2) = c(R1 I J R2) ~ c'(Rt) + c2(R2) ~ t~'(Sl) + c2(S2), 

which yields (b). 

Lemma 6. (a) c'(SO + c2(N2) = c(S, U N2) and ?.'(S,)+ c2(N2) = c(Sl  U N2) for all 
S, C N,. 

(b) c'(N,) + c2(S2) = c(N,U $2) and e'(N,)+~2(S2)= C(N,U $2) .for all $2 C 
N2. 

Proof. In light of Lemma 5 and because of symmetry it suffices to show that 

cI(S,) + c2(N2) --- c(St ID N2), 

and 

(18) 

g'(S,) + eZ(N2) --- e(S, U N2). (19) 

Let  Vs,={O}US,,  VN:={0}UN2. We start by selecting (Vs ,  E's) and 
(VN2, E~2) which are minimum cost spanning trees with respect to the cost 
matrices (c~i) and (c~), respectively. Since c2(N2)=c(N2) we may assume 
E~v2 = EN2. We construct a spanning tree graph of S, U Nz (Vs~uN2, E s~UN2) for 
which 

c I(S,) + c(N2) = m(ES'UNO, (20) 

where m(ES'UN0 is the total cost associated with the edge set E s'UN2 calculated 
according to the original cost matrix (c~i) (and therefore m(ES'UNO >-- c(S, U N2)). 
The construction algorithm is as follows. 

Step O. Set V = VN2,/~ = EN2. 
Step 1. Pick (j, k) c E~,, such that j C S, and k E r~. If impossible, stop. 
Step 2. If k ¢ 0  or ci0 = c~0 omit j from S, and add it to V. Also, omit (j,k) 

from E ~  and add it to t~. Go to Step 1. Otherwise, 
Step 3. Find l ~ N2 such that ci~ = CJo. Omit j from S, and add it to V'. Also, 

omit (j, 0) from E~ l, add (j, l) to /~  and go to Step 1. 

Upon termination ( r = S ,  UN2 and E = E  s'uNz. Clearly, the tree (I7",/~) 
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satisfies (20), and therefore 

c~(SO + c2(N2) = c(S1 U N2). 

To prove (19) we consider R~ such that S~ C RI C N~ and ~(S0  = c~(RO. From 
(18) we have c1(RO+c2(N2)>-c(RIUN2) .  By (2) we have c(Rlt.JN2) >- 
?(Sl t9 N2). Thus, 

c l (S l )  + (~2(N2) = cl(RO + c2(N2) -> c(R1 U N2) -> 6(S1 U N2), 

which completes the proof. 

We proceed now to prove the main result of this section. 

Theorem 7. The core of the m.c.s.t. [resp., m.m.c.s.t.] game (N; c) [resp., (N; 6)] 
is the cartesian product of the cores of the m.c.s.t. [resp., m.m.c.s.t.] games 
(Ni; c i) [resp., (Ni; ?i)] (i = I .... ,p) ,  where {N~ .... ,Np} is an efficient coalition 
structure o[ the m.c,s.t, game (N; c). 

Proof. Without loss of generality we assume p = 2. 
Every vector (xx,... ,xn) in the core of the game 

coalition structure {N~, N2} must satisfy 
(N; c) with an efficient 

xj -- c ( N , ) ,  i = 1, 2. (20)  
jENi 

Let (xl . . . . .  x,) satisfy ~,i~s xj <- c(S)  for all S C N. In particular 

~_~ X i ~ c ( S t  [-J N2) for all S~ C N1. (21) 
jES1UN2 

Lemma 6, (20) and (21) imply that 

i~,  xi <- c l(SO for all SIC Ni. (22) 

Similarly, ~j~s2 xj -< c2(52) for all $2 C N2. The other direction of the proof is a 
direct corollary of Lemma 5. The proof for the m.m.c.s.t, game (N; e) is 
identical. 

4. Tree decomposition for the nucleolus of (N; c) 

We will prove in this section that the presence of an efficient coalition structure 
in the m.c.s.t, game (N; c) implies that the nucleolus of the m.c.s.t. [resp., 
m.m.c.s.t.] game (N; c) [resp., (N; ~)] is the cartesian product of the nucleoli of 
the m.c.s.t. [resp., m.m.c.s.t.] games defined on the components of the efficient 
coalition structure. We do that by resorting to the work of Kopelowitz [6], who 
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constructed an algorithm for computing the nucleolus of a cooperative game 
(N; v) by solving a sequence of at most 2" linear programs (where n is the 
number of players). 

Let  us briefly review Kopelowitz's algorithm. The first linear program PI to be 
solved in his procedure is: 
Problem PI: 

min r, 

s.t. r ~ v ( S )  -- k~S Xk for all "S C N, 

~_, xk = v(N).  
k = l  

Let r~ denote the optimal value of r in problem P~; A~ = {x: x is an optimal 
solution to P~}; ~ = {S C N;  r~ = v ( S ) - ~ . i e s  x~ for all x E Ai}. At stage i the 
linear programming problem P~ to be solved is: 
Problem P~: 

min 

s.t. 

r, 

rj = v ( S ) -  ~ xk, 

r >- v(S) - k~.~ES Xk, 

~ xk = v(N) .  
=1 

S E~j~, j = 1,2 . . . . .  i - l ,  

S E 2 N ~- ( Uj=~ ~j), 

The nucleolus is obtained in stage l (1 -< ! -< 2"), whenever AI consists of a single 
vector. 

Given an efficient coalition structure {N1 . . . . .  N~}, we construct the m.c.s.t. 
[resp., m.m.c.s.t.] games (Ni;c  i) [resp., (Ni;6i)] ( i = 1  . . . . .  p) and analyze 
Kopelowitz's linear programs to show that the nucleolus of the m.c.s.t. [resp., 
m.m.c.s.t.] game (N;  c) [resp., (N;  6)] is the cartesian product of the nucleoli of 
the m.c.s.t. [resp., m.m.c.s.t.] games (Ni;c  i) [resp., (Ni;6i)] ( i = 1  .... ,p) .  
Without loss of generality we assume that p = 2. 

We first outline the proof. At stage i in Kopelowitz's procedure we consider 
problems (PI), (p2), (pi) to find the nucleolus of (N1; cl), (Nz; c2), (N; c) [resp., 
(N1; 61), (N2; 62), (N;  6)], respectively. We show that the program (PI) and (p2) 
are relaxations of (P~). Moreover, we show that the cartesian product of any 
optimal cost vectors of (P~) and (p2) is feasible to (P~) and therefore optimal. 

Consider the following three linear programs: 

(P0 max r, 

s.t. r < _ c ( S ) - ~  Xk, S C N ,  
k~S 
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(PI) 

(P~) 

max 

s.t. 

max 

s.t. 

c(NO = k~l  Xk, 

c ( N 9  = k~N~ Xk. 

r 1 , 

rl <-- c l (S ) - -k~  s Xk, 

c 1(NO = k~N, Xk. 

r2~ 

r2 <- c2( S) - k~S Xk, 

c2(N9 = k~s: xk. 

S C Nl, 

S c N2,  

Each one of the programs (P0, (PI), (P~) is the first problem in Kopelowitz 's  
sequence of linear programs that has to be solved to produce the nucleolus of 
(N;  c), (NI; c 1) and (N2; c2), respectively. 

Lemma 8. Problems (PI) and (p2) are relaxations of  (P0. 

Proof.  Every inequality constraint in (P~) is implied by some corresponding 
constraints in (P0. Explicitly, by Lemma 6, the constraint 

r l<-cl(Sl) - ~, xk, SzCNI, 
kES 1 

in (P~) is implied by the constraints 

~u Xk and ~ xk=c(N2)  r<--c(SlUN:)--k~ N: ken2 

in (PI). Similarly, every constraint in (P~) is implied by some corresponding 
constraints in (P0, which completes the proof. 

Let  r~ and r~ be the optimal values of (PI) and (P~), respectively, and denote 
by r ° = min{r], r~}. By Lemma 8, we have that the optimal value of (P0 cannot 
exceed r °. We will show that r ° is in fact attainable by (P0- 

Let (~,  ~2 . . . . .  ~,,) and (~m+~, ~m+2 . . . . .  ~n) be any pair of optimal cost vectors 
for (PI) and (P~), respectively. We will show that (Xl, x2 . . . . .  ;~n, r °) is feasible to 
(P0 and thus optimal. 

Let  S = S~ t9 $2, Si c Ni (i = 1,2). We assume $1 ¢ N~ and the case S~ ~ N~ 
will follow by a symmetry argument. From (P~) we have that 

r °-~ rl -~ c ' (Si)  - k~,  ~k. 
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Fur ther ,  since the cores  of  ( N ,  c ~) (i = 1, 2) are not  emp ty ,  we have  tha t  

c 2 ( $ 2 )  --  . ~ _  "~k ~ 0 .  
g~S 2 

Thus ,  

E us )- Z 
1 k E S 2  k E S l U S 2  

where  the last  inequal i ty  fo l lows f r o m  L e m m a  5. Hence ,  ( ~  . . . . .  ~,, r °) is feas ib le  
to (P~), and thus  opt imal .  

L e t  
Ai = { x :  x is op t imal  to (Pi)} (i = 1,2), 

A1 = {x: x is op t imal  to (P0}, 

~i = {S  C Nj:  c i ( S ) -  E k e s  Xk = r ° for  all x ~ Ai} (] = 1, 2), 

~l = {S C N :  c ( S )  - ~ ,kes  xk = r ° fo r  all x ~ A1}. 

The  a b o v e  a r g u m e n t  showed  tha t  AI × A~ c A1. W e  m a y  have  ~] --- 4) (if r ° = rl < 
r~) or ~2 = ~b (if r~ < rb .  

The  nex t  p r o b l e m s  (P2), (P~), (P~) to be  cons ide red  are 

(P2) max r, 

s.t. r ° = c ( S ) - ~ _ ,  xk, SE~,, 
k E S  

r <- c ( S )  - k~s Xk, S E 2 N --. ~1, 

~. xk = c (NI) ,  
k E N  I 

xk = c(N2). 
k E N  2 

(P2 z) m a x  r l, 

s.t. r ° = c ' ( S ) - ~  xk, S E m i ,  
k ~ S  

r'<-cl(S)- ~, xk, SE2~'- .~ ,  
k ~ S  

~_, Xk = Cl (ND.  
k ~ N  l 

(P~) max  r 2, 

s.t. r ° = c 2 ( S ) - ~  xk, S E ~ ,  
k E S  

r2 <- c2(S)  - k~S Xk, S E 2 N2 ~ ~2, 

x~ = c:(N2) .  
k C N  2 
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To any equality constraint in problem (P~) or (P2 2) there corresponds equality 
constraints in (P2). Indeed, suppose that 

r °=  c l ( S O - ~ , _  X k for some Sl ~ .  
I 

Then, 
r °  = c l ( S O -  k~-SE l xk  = C I ( S I )  - kESEI xk  -}- c(N2) - k~N2E Xk 

~" ~lU Xk. ¢(S1 U N2) -- k~ N2 

Thus S1 U N2 E ~1. 
The above observation implies that (P~) and (P~) are still relaxations of (P2). 
The linear program (P2) is the second in the sequence of problems that we 

need to solve in order to produce the nucleolus of (N;  c) by Kopelowitz's 
method. Similarly, if ~ # 4J [resp., ~ # 4~], then problem (P~) [resp., (p2)] is the 
second in the sequence of problems that has to be solved in order to produce the 
nucleolus of (NI; c 1) [resp., (N2; c2)]. 

In general, let 

ri be the optimal value of r j in problem (Pi) (j = 1, 2), 

0 _ min{r~, r2}, r i - -  

Ai = {x: x is an optimal solution to (Pi)} (j = l, 2), 

Ai = {x: x is an optimal solution to (Pi)}, 

~! = {S: S C Nj, c i (S )  - ~ , ,~s  Xk = r°~ for all x E A!} (J -- 1, 2), 

~i = {S: S C N,  c ( S )  - E k ~ . S  Xk = r ° for all x E Ai} 

where problems (PI), (P~), (p2) are of the form 

(Pi) max r, 

° - c ( S ) - ~  Xk, S E ~ j , j  = l ,  i - l ,  rj . . . .  k~S 

r < - c ( S ) -  Z xk, S E 2  N -(U (;,), 
kES \ j = l  / 

(PI) 

~,  xk = c(N1), 
kEN I 

~,  Xk = C(N2). 
kEN 2 

m a x  r l, 

1 c l ( S )  -- ~ s  Xk, r j  = 

r] <-- cl(S)--k~_~ES Xk, 

~_, Xk = c (NO.  
kEN I 

S E ~ } , j = I  . . . . .  i - l ,  

\ j  = 1 
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(P~) max r 2, 

° - c ( S ) - ~ .  xk, S~_,~, j = l ,  i - I ,  r j - -  ... , 
k~S 

r 2<< - c ( S ) -  ~, xk, S @ 2N2--.. ( U  ~:~), 
k~S \ j= l  

E Xk = c ( N 2 ) .  
kEN2 

The linear programs (Pi), (P~i), (P~) have the following properties: 
(1) Problem (P~) is the ith problem in Kopelowitz 's  procedure to calculate the 

nucleolus of (N;  c). Similar statements can be made with regard to (PI), (P~). In 
view of Kopelowitz 's  result, i -< 2". 

(2) A I × A ~ C A i ,  and r°=min{r~, r~} is an attainable upper bound for the 
optimal value of (Pi). 

(3) It is possible that for some j, either ~l=cb or ~]= ~b, but for all j, 

(4) If for some i, AI [resp., A~] but not AT [resp., AJi] consists of one point, 
then only problems (Pi) and (P~) [resp., (PI)] should be considered for all 
l _ > i + l .  

At the final stage i0 00<-2 ") we obtain the sets of Alo and A~ o which are the 
nucleoli of (N~; c ~) and (N2; c2), respectively. Since Alo x A~0C Ai 0, and because 

o f  the uniqueness of the nucleolus, A~ 0 = A~ o × A~ 0 is the nucleolus of (N ; c). 
The same discussion can be applied to the nucleoli of (N;  ~), (Nt; ~l) and 

(N2; C'2), and therefore a similar result holds. We therefore have: 

T h e o r e m  9. The nucleolus of the m.c.s.t. [resp., m.m.c.s.t.] game ( N ; c )  [resp., 
(N;t?)] is the cartesian product of the nucleoli of the m.c.s.t. [resp., m.m.c.s.t.] 
games (Ni ;c  i) [resp., (Ni; ~)] (i = l . . . . .  p), where {N~ . . . . .  Np} is an efficient 
coalition structure of the m.c.s.t, game (N;  c). 

Example 2. Consider the m.c.s.t, game ({1 . . . . .  5}; c) which is determined by the 
cost matrix C, where 

0 
1 

C = 2 
3 
4 

1 2 3 4 5 

2 5 7 2 3 
3 6 3 4 

4 4 3 
6 5 

2 

A m.c.s.t, graph for C is described 
solution is (2, 3, 4, 2, 2). 

in Fig. 2. The corresponding spanning tree 
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o 

Fig. 2. 

An efficient coalition structure of {{1, ..., 5}; c} is {{1, 2, 3}; {4, 5}}. The m.c.s.t. 
games ({1, 2, 3}; c 1) and ({4, 5}; c z) are determined by the following cost matrices 

1 2 3 4 5 

0 2 3 5  0 [ 2 3  
C 1= 1 3 6 C2= 4 2 

2 4 

Minimum cost spanning tree graphs corresponding to C 1 and C z are described in 
Fig. 3. 

The game ({1,2,3}; c ~) also has an efficient coalition structure {{1}, {2,3}}. 
Therefore it can be further tree decomposed into ({1}; c 3) and ({2, 3}; c4). The 
final tree decomposition is described in Fig. 4. 

The nucleoli of ({1}; c3), ({2; 3}; c 4) and ({4, 5}; c z) are (2), (2.5, 4.5) and (1.5, 
2.5), respectively, Therefore by Theorem 9 the nucleolus of the original m.c.s.t. 
game ({1, 2, 3, 4, 5}; c) is (2, 2.5, 4.5, 1.5, 2.5). Using the same decomposition we 
see that the core of the original m.c.s.t, game is the convex hull of (2, 3, 4, 2, 2), 
(2, 3, 4, 1, 3), (2, 2, 5, 2, 2) and (2, 2, 5, 1, 3). 

As one can see from the above example, a tree decomposition of a m.c.s.t. 
game (N; c) to (N~; c ~) (i = 1 . . . . .  p) might further enable a tree decomposition of 
the induced games (Ni; c~). This leads to a further simplification in finding the 
core or the nucleolus of (N;  c). 

A result similar to that of Theorem 9 is not valid for the Shapley value [10] of 
a m.c.s.t, game as the following example shows. 

4 

0 0 
Fig. 3. 
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211 
4 1 

5 

"~0 °0 
Fig. 4. 

Example 3. Consider the m.c.s.t, game ({1, 2, 3}; c) where c is determined by the 

0 
C = 1 

2 

following cost matrix C 

1 2 

2 3 
2 

Fig. 5a describes a minimum cost spanning tree graph for the game ({1, 2, 3}; c) 
and Fig. 5b describes a final tree decomposition of the game. 

The Shapley value of the game ({1, 2, 3}; c) is (~t, ~, ~t), while the Shapley value 
of each one of the induced games is 2. 

I I [ 3 2 2 2 2 

0 0 0 

b 
8 

Fig. 5. 

A c k n o w l e d g m e n t  
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