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This paper describes a partitioning method for solving a class of structured nonlinear pro- 
gramming problems with block diagonal constraints and a few coupling variables. 

The special structure of the constraints is used to reduce the given problem by elimination 
of variables. In variance to other methods proposed previously, this elimination is effected 
through the use of the general solution to an underdetermined system of linear equations re- 
presenting the active constraints at a given feasible point. For weakly coupled systems, this 
arrangement provides a drastic reduction in the number of variables. The solution to the overall 
problem is obtained by solving a sequence of the reduced nonlinear programs. Primal feasibility 
is maintained throughout the optimization procedure. Computational experience and results 
are presented. 

1. Introduction 

Large mathematical programming models arising in practice almost 
always exhibit some structure in their constraints and in the composi- 
tion of their objective function. The most common of these is the block 
diagonal structure with a few coupling constraints or variables or both. 
Such problems usually originate from industrial applications involving 
the scheduling of production, inventory and distribution activities. 
Other sources include dynamic  economic systems, decentralized pro- 
duction systems and some stochastic programming problems. 

* This paper was presented at the 7 th Mathematical Programming Symposium 1970, The 
Hague, The Netherlands. 

** This work was supported in part by the National Science Foundation under Research 
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During the last decade, various methods of treating such large prob- 
lems have been proposed. Geoffrion [ 1 ] gives excellent reviews of these 
methods and a complete compilation of references for this area. The 
Dantzig-Wolfe Decomposition Principle [2] was the first method sug- 
gested for solving structured linear programming problems. Treatment 
of structured nonlinear programs by Partition Programming wa~ origi- 
nally proposed by Rosen [3, 4]. 

The partitioning method presented here applies to a class of non- 
linear programs, stated in section 2, with linear constraints exhibiting 
the familiar block diagonal structure and a relatively small number of 
coupling variables. This class of "weakly coupled" problems differs 
from the one treated in [4] since, for fixed levels of the "coupling 
variables" y, the problem naturally decomposes into several nonl inear  
programming problems each in the "block variable~" x/;  ] = 1, ..., k. 
Elimination of variables based on basis arguments is not effective 
since normally, the number of active hyperplanes at '~ a feasible point 
(~ti ,  ,.., ~tk, y t )  is much smaller than the dimensiona!ity of the problern~ 
The proposed method uses the general solution to an underdetermin- 
ed system of linear equation~ representing the active constraints at 
( ~  . . . .  o x-t ,  y t )  to eliminate all x/variables. The transformed problem, 
in terms of the coupling variables y, is then solved to obtain a step and 
an improved point (x] +1 . . . .  , xtk+l, y t+l ) ,  Subsequent minimization in 
at least one block with fixed y ~= yt+l gives a further possible improve- 
ment in the x/-spaces resulting in the point (x] +1 , ..., x-~ +1 , yt+l ) and a 
possible ~hange in the set of active contraints for that block. The pro- 
cess is then repeated, starting with this improved point. 

Geometrically, this general procedure is equivalent to limiting the 
search for a feasible point with an improved function value to points 
lying in the intersection of the currently active block constraints. This 
assumption allows the estab!ishment of a mapping of feasible points 
onto the space of the coupling variables y and an inverse mapping of 
feasible points in the y-space onto the (temporarily fixed) intersection 
of active constraints, These mappings may be performed by projection 
operators associated with the "particular solution" to the generally 
underdetermined linear system of equations representing the active 
constraints in each block, assuming that the homogeneous solution is 
temporarily fixed. This .assumption is then effectively relaxed by fixing 
y and minimizing in the x/-spaces for some blocks ]. 

The algorithm may best be illustrated by a small example of a 
one block problem in ~3 (fig. 1.1). The block variables are x = 
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(x) 2 Fig. 1.1. Illustrative example. 

((x)l, (x)2) ~ 112 and the coupling variable y E R 1 . The feasible region 
consists of the nonnegative orthant in 113 bounded by the plane de- 
noted by Qo. Suppose that a feasible point (~-o, yO) ~ Qo is given. Eli- 
mination of the variables x using the linear system of equations defining 
Qo, or the equivalent projection operation, projects the feasible region 
onto the y-space. The implication here is that the homogeneous solu- 
tion has been fixed to some vector p = p ~ 112. It corresponds to tem- 
porarily limiting the search to points lying in the subspace QO ~ QO 
parallel to that denoted by the parameter p = ft. Now a minimization 
over feasible points in the y-space is performed to obtain an improved 
point y l  The corresponding x 1 is obtained by projecting yl  onto the 
manifold C3 ° ~ Q° defined by p = p_ When p = 0, this may be regarded 
as choosing x I so that (x 1, y l )  ~ Oo c QO and so that, for the chosen 
y l ,  (x I _ x  o) has minimum Euclidean norm. The effect of fixing 
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Oo c QO and QO is now reviewed and possibly rectified, by fixing y = y l  
and performing a minimization in the x-space. This results in the point  
(x-l, y l  ) and the new set of  active constraints given by the intersection 
of  Q° and the subspace x I = 0. The process is repeated starting with 
( y l ,  y l ). 

Section 2 contains a formal statement of  the structured nonlinear 
problem (P). Section 3 describes the theoretical and algorithmic aspects 
of the proposed method. The algorithm is presented in section 4 and 
the question of  minimization within the manifold Qt is examined in 
section 5. Some computational  aspects and experimental results are 
given in section 6. Appendix 1 presents some results for underdeter- 
mined systems of  linear equations and Appendix 2 gives a small numer- 
cial example. 

2. The nonlinear problem (P) 

n .  , 

Let xj ~ ~ 1 ; 1 = 1, ..., k, y E I~ n°. For notational purposes let the 
k 

pair (x, y)  ~ IR n°+n ; n = ~ nj represent the vector  (x l ,  ..., x k, y) • 
4 = 1 

• n°+n . Let S, .be open sets in p nj;j = 0, 1, ..., k, let Y be a closed c o n -  

subset o f S  o in [R n° , and let the given numerical function v e x  

k 

f i x ,  y) =fo(Y)  + ~ fi(xj, y) (2.1) 
/=1 

be continuously differentiable and convex over the open set S = 
S~ × ... X S-k × So" Furthermore,  let hj be given my-vectors, Bj be given 
(n/, mj)-matrices and Dj be given (nj, mj)-matrices for j = 1, ..., k such 

k 

that Dj is nonzero for at least one j. We let m = ~ m i.. The nonlinear 
j=l 

minimization problem (P) to be considered here is then defined as: 
P: Find (x*, y*),  if it exists, such that 

f i x* ,  y*)  = min { f (x ,  y) I (x, y) ~ S = 
k 

nsj} 
j=O 

(2.2) 
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S O = { x j ~  R n j ; j  = 1 . . . .  , k , y ~  y}c_ Rno +n ( 2 . 3 )  

S i = { x j e S I ; y E  YIB)xj+D)y<-h]}C- R n°+n ; 1= 1 ....  , k .  

(2.4) 

It will be assumed that the sets Sj; ] = 1 . . . .  , k are bounded for each 
y ~ Y. Hence, S is compact  convex and the differentiable function 
f (x ,  y) will achieve a finite minimum on S. 

In practice, the set Y will be either defined as Y---- R n° or specified 
in terms of  the nonempty  set 

Y=  { y E S  o IDo(Y)<-h  o} (2.5) 

where D o (y) is a given too-dimensional continuously differentiable and 
convex vector  function on S o and h o is a given m o-vector. It will be as- 
sumed that Y satisfies the K u h n - T u c k e r  or Slater's constraint qualifica- 
tion (see e.g. Mangasarian [5] ). However, quite commonly  D o (y) = D'oY 
where D o is a given (n o , m o )-matrix. 

Procedures for handling linear equality constraints directly, wi thout  
increasing the size of  the problem and implicit t reatment of  given upper 
or lower variable bounds are given in [6].  

In order to simplify the ensuing discussion we will consider P for 
only one block (k = 1) and omit the block subscript ] whenever ] = 1, 
except  where necessary to avoid notational confusion. We will also use 
the mult iblock notat ion whenever appropriate. The interior and bound- 
ary of  a set A will be denoted by Int (A) and Bdy (A) respectively. A 
prime will indicate the transpose of  a matrix. 

3. The method 

Definition 3.1: A given y =yt will be called feasible if and only i f y  t E Y 
and there exists a vector 

x t = x ( y t ) ~ X ( y t )  = { x ~ S -  1 ! B ' x < _ h - D ' y t } ; X ( y t )  c S  1.[] (3.1) 
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In practice, a feasible y is usually known or can be constructed. For  a 
fixed feasible y = y t ,  p reduces to k smaller nonlinear programs 

PI t. Find x t, such that: 

f ( x  t, y t )  = min { f ( x ,  y t )  Ix E X ( y  t) } ( 3 . 2 )  
x 

which will be referred to as Problem [ at y = y t  and generally denoted 
by P / f ( -  f I / ( y t ) ) ; j _  = 1, ..., k. 

Assuming that x t ~ B d y ( X ( y t ) ) ,  the feasible (x  t, y t )  induces the fol- 
lowing partitioning of  the constraints of  P: 

- - t  D to (y t )  =h__t ; ~ t  ( y t )  < ho (3.3) 

B__t'x t + D t ' y t  = h_t ;~ t '  x t  + D t ' y t  < ~t (3.4) 

and the corresponding partitioning of  Lagrange multipliers into: 

ut = (Uto ' -  ~to, -- ut' ~t).  (3.5) 

where the underbar denotes the active and the overbar the inactive con- 
straints. We let I o = { 1 . . . .  , m o } be the index set of  the constraint rows 
defining Y; I = {1, ..., m} (for the multiblock case I/_ = {1, ..., mi}) be 
the index set of  the block constraint rows;!o c_ Io ' Io = Io _ -/o be the 
index sets of  the rows of  D_ o (y) and D o (y) respectively and / c_ I, jr= I-_/ 
be the index sets of  the rows of  (B_' D')  and (B' D')  respectively. 

Using the above notation the K u h n - T u c k e r  Stationary Poin t  Problem 
(KTP) [7] corresponding to P is defined as: 

KTP(P): Find (x t, y t )  ~ S and (Uto, u t) = (u_~ t , Uto, u_ t , u t) ~ R m°+m , if 

if they exist, such that 

t 0 V y f ( X t ,  y t) + D t u  t + D t u t  + V y D o ( Y  t) u o = 

V x f ( X t , y t )  + B t u  t +-~t~t  = 0 

~o ( ~ t  ( y t )  _ ~ t  ) + ~ t ( g t , x t  + ~ t , y t  _ h-t) = 0 

(3.6) 

(3.7) 

(3.8) 

(u_~t,-t u t) > 0. (3.9) U 0 , u_t~ 



A projective method for structured nonlinear programs 3 2 7 

The corresponding problem for PI  t is: 
KTP(pIt ) :  Find x t 6 X (yt) and (u_ t, u t ) ,  if they exist, such that 

V x f ( X t ,  y t) + B t u  t + B t u t  = 0 (3.1 O) 

u t ( f f t ' x t  + D t ' y  t - h t )  = 0 (3.11) 

(u t, u t) >_ 0. (3.12) 

Defini t ion 3.2: A point which solves the K T P  for any given problem P' 
with nontrivial (Uto, u t) will be called a Constrained Stationary Point  
(CSP) of  P'. [] 

In general, we will require that PI  t is solved to obtain x t as a SP or 
CSP of PI  t. The use of  either the Gradient Projection M e t h o d  (GPM) 
(Rosen [8] )  or its modification, Conjugate GPM (CGPM) (Goldfarb 
[9]) incorporating Davidon's variable metric approach, is advantageous. 
Various quantities computed by GPM or CGPM in the course of  solving 
P1 t will be directly employed in formulae for the proposed method.  

Since a feasible point  (2 t, y t )  exists, we seek to obtain (~'t+l, yt+l) 
such that f ( x  t+a , yt+l ) < f ( x  t, y t ) .  We define 

~-t+l =~ t  +v--t ; yt+l = y t  + w t (3. ~ 3) 

where v t and w t denote the change in x and y respectively. The latter 
can be normalized in the form (-~t, w t ) =  r-tst, where r - t  = II(v t, wt)ll > 0 
is the "step length" and ~t = (~t, wt)/~-t is the "direction";  ~t is a "fea- 
sible direction" (Zoutendijk [10] )  if there exists "r t > 0 such that 
(xt+l ,yt+l ) = ( x t , y t )  + TtS t E S. A feasible direction is "usable" if in ad- 
dition 7 f ( x  t, y t )  . )2 < 0, so that f ( x  t+l , yt+l ) <  f ( x  t, y t ) .  Thus, in this 
terminology, we a t tempt  to define a method of  selecting a usable direc- 
tion or step to move from (x  t, y t )  to (x  t+l , yt+l ). 

Such a usable direction, indeed the "bes t"  step (v*, w*), will be 
available from P when expressed in terms of  (v, w). This Equivalent  
Problem at  (x t, y t )  is obtained by using (3.13): 

Ept: Find (v*, w*), if it exists, such that 

k 
f* (v*, w*) = min {Jr(v, w) t (x t + v , y t + w )  E S  t =  fl S t } 

/=o 
(3.14) 
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S t  = n.  . - o  {v/"E ]R J ; / =  1 ..... k ; y t + w E Y }  (3.15) 

Sf = {vj E ~ . ; y t  + w e  Y I B } v I  + D} w<~ h/"};j = 1, ..., k 
(3.16) 

hp t =h/" - B } x  t - D}y t ;  /=  I, ..., k .  (3.17) 

Unfortunately,  EP t is a problem with as many variables as P and would 
involve as much work as the original problem. The point  (x t, yt) is a 
CSP of P if (v*, w*) = 0 in EP t. 

At (x  t, yt). either x t E I n t ( X ( y t ) )  or B d y ( X ( y t ) ) .  We will assume 
that the latter holds and leave the former case for discussion in section 
5. 

The point (x  t, y t )  necessarily lies in the intersection of  the q (>0) 
hyperplanes defined by the solution to PI t. 

B_t'x + D_t'y = h t . (3.18) 

In choosing the next point (x t+l , yt+l ) we will, quite arbitrarily, require 
that it satisfies (3.18), i.e. B_t'(x t + v) + D_t'(y t + w) = h t or equivalently 

require that: 

B t ' v  + D t ' w  = 0 .  ( 3 . 1 9 )  

We will denote this (n + n o -  q)-dimensional subspace* of  ~ n  formed 
by the intersection of  q linearly independent hyperplanes parallel to 
(3.18), as Qt (Q~ for the multiblock case). The relationship imposed on 
the choice of  (v, w) is simply to require that it lies in Qt. Thus, we may 
define a Modif ied  Equivalent  Problem at (x t, y t )  by incorporating the 
restriction (3.19) into Ept: 

MEpt:  Find (~t, a t ) ,  if it exists, such that: 
k 

f t (~ t ,  vgt) = rain { f t ( v ,  w) I (x t + v, y t  + w) E S t = fl S S} 
1"=1 

(3.20) 
S t  = ~ n j .  , . . . ,  y t  o {v/" E , j = 1 k; + w E Y} (3.21) 

IB--~ v / " + D S ' w < h [ t  (3.22) 

. Qt  designates a subspace in (v, w)-space and a linear manifold in (x, y)-space. 
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~ / . t=  h- 7 _ "-'J =t _ D~,yt  . (3.23) 

Two obvious results relate EP t and M E p t  : (1) (v t, w t) solves EP t if 
and only if (~t, ~ t )  solves M E P  t and u t _> 0, since K T P ( M E P  t) is the 
same as K T P ( E P  t) except for the nonnegativity restriction on the u~ and 
(2) f t ( v  *, w * )  <-f t (~t ,  #t), since S t c S t .  

M E P  t is computationally just as unattractive as EP t or P. Suppose, 
however, that a solution to M E P  t is at tempted using GPM or CGPM. 

"t y t  f ( x  t, y t )  is a Any (~t, ~ t )  v~ 0 for which f ( x  t + v , + ~ t )  < candi- 
date for a "usable" direction, for we must have Vf(x t, y t )  . (~t, ?vt)/ 
ii(~t, g,t)II < 0. Although in practice one would not  have to insist on:op- 
timality o f M E P  t for the purpose of  obtaining an improved point, it will 
be required in this paper for showing that the solution to P is obtained 
after a finite number  of  M E P  problems. The "best"  direction for each 
manifold Qt is given by the optimal solution to M E P  t, which theoreti- 
cally may not be a finite procedure except when f is quadratic and S 
polyhedral. 

Two possibilities may arise: 
a) The optimal solution to P, (x*,  y * )  E Qt, so that Q* = Qt is an 

"optimal face". This is indicated by the nonnegativity of u*. 
b) (x*, y*)  q~ Qt as evidenced by (~t+l)i < 0 for at least one i E _/t so 

that Qt @ Q, .  Thus, a n e w  manifold Qt+l is sought such that 

f(~t+.2,pt+2)%f(~t+l,pt+l);  (~t+l,3~t+l)E O t  (~t+2,j~t+2)~ Qt+l. 

We choose_/t+l = _/t __/t- where] t -  E {il (~t+l)i < 0}. Iff(x t+l ,j3t+l ) < 
f (~ t ,  33t), we choose _/t+l = { il (B'~ t+l )i + (D')3t+l)i = (h)i} - - / t - .  That 
is, we replace Qt by the intersection of  all constraints satisfied as equal- 
ities at (~t+l, j3t+l ) except all, or at least one, of  those with (h t+l )i < 0. 

The rather intuitive approach to improving Qt from one cycle to the 
next  has been exploited by various methods recently classified as Mani- 
fold Optimization or Restriction Methods (Zangwill [1 1], Geoffrion 
[1] .) 

It is stated in the latter that this approach is "principally useful for 
problems with many nonnegative variables". Thus, it is assumed that the 
restricted constraints are chosen from the set of  orthogonal hyperplanes 
defining the nonnegativity of  the variables. It is precisely this assump- 
tion that could he the key to efficiency for linear problems. However, it 
is well known in practice that for nonlinear problems the number  of  ac- 
tive constraints is usually much smaller than the number  of  variables in 
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the problem. Consequently, partitioning methods using elimination of 
nonnegative variables based on this assumption are not  effective since 
the reduction of variables, not  of constraints, is desirable for structured 
nonlinear programs. 

Thus, the reduction of P into a sequence of MEP problems will not  
be computationally feasible unless effective means of drastically reduc- 
ing the number of variables are devised. In our case such a manipulation 
is possible and will be based on the linear independence of the rows of 
B S' which is identified by GPM or CGPM as a part of the PI t solution. 
The inverse (B_S'B})- 1 is also readily available. A study of the linear sys- 
tem of constraints in (3.22), in terms of the stated properties of B t', 
leading to a smaller system is presented in appendix 1. 

In view of these results and the fact that rank (B_ t') = q, we may apply 
the Process o f  Elimination (definition A. 2) with p -- 0 to solve for vj, 
which limits (v/, w) to the no-dimensional subspaces Q~ c Q~, defined 
by: 

vj = - R  5'w; j = 1 . . . . .  k (3.24) 

= (Rt.'  R t ~ -  1 t , .  R t '  (_B_5')t D S ' :  B 5 ~ ,  ~ ,  D_], j :  1 . . . .  , k (3.25) 

and substitute (3.24) into the remaining constraints of MEP t. This is 
equivalent to using the projection operator 

Tj ~" 
0 0 

-R~ I 
(3.26) 

to project the normals to the hyperplanes defining 55 in (3.22) onto_ the 
subspace vj = 0 along the orthogonal complement of the subspace Q~ as: 

r, 
v_, 

0 0 

0 - j  - j  , 

(3.27) 

The resulting feasible region defined by: 

Spl t={y t  + w @  Y I ( D  t ' - - t '  t, _ -  B) nj )w < h ? ' } ; / =  l, ..., k 
(3.28) 



A projective method for structured nonlinear programs 331 

which may be empty if and only if S t = 0, represents the orthogonal 
projection of  S~ n ~)~ onto the subspace defined by vj = 0 (fig. 3.1). 

"Backsubstitution" of any point w t E S f  t into (3.24) to obtain the 
corresponding v s is similarly equivalent to the projection operation 

0 

w t 

[ - R  t '  wt  

w t ~ W t ] 
(3.29) 

giving a unique (v~, w t) E S tj o Q/~t of minimum Euclidean norm (theo- 
rem A. 2). 

In order to express M E P  t completely in terms of w, it is necessary to 
confine the function and gradient evaluations only to those points sa- 

k 

tisfying (3.24). This, of course, will be the case for any y t  + w ~ fl S f  t 
j=0  

and the corresponding (unique) vj given by (3.24). However, in certain 
instances it is computationally advantageous to introduce this require- 
ment  into the definition of the function: 

F ( w )  = f t ( x  t - R t ' w ,  y t + w )  + f t  o ( y t  + w )  (3.30) 

and use the chain rule to state: 

V F ( w )  = - R t V v f t ( x  t + v, y t  + w )  + V w f ( X  t + v, y t  + w )  . 

(3.31) 

t - t  

/__qt 

vj r 
Fig. 3.1. Projection of S t n QS" 
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Equivalently, we may project the gradient by 

In terms of these relations, we define the reduced problem, to be 
referred to as Prob lem H a t  ( x  t, y t ) ,  as :  

PIIt:  Find (w t) if it exists, such that 

If P is a convex program, then PI I  t is also a convex program since 
F ( w )  has been obtained from f ( x ,  y )  by a linear transformation. The 
solution to PI I  t may be obtained by using any of the available efficient 
and computationally successful methods. However, since PI I  t generally 
will have a small number of variables and a rather large number of  con- 
straints, computational intuition suggests the use of  a method in the 
dual space such as GPM or CGPM. 

The K T P  problem corresponding to PII  t is of interest since it will 
provide a basis for detecting solutions to P. 

KTP(PII t ) :  Find w t E SP t and (u~ t , ~ ,  u t) such that 

L e m m a  3. 1 : Let the current H I  t be given by (3.33)-(3.37)  where F ( w )  
is continuously differentiable and let SP t be bounded. Suppose w t is a 
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solution to this problem obtained by GPM and that ( ~ ,  Uto, u t) is the 
vector of  dual variables obtained as part of  the solution. Then w t is a 
CSP o f  P I I  t . 

Proof'. The Lemma follows from the equivalence of  the GPM termina- 
tion criteria and K T P ( P I I  t) (Mangasarian [ 121, Rosen [4] ). [] 

The partitioning of  P into P !  and PI I  is obviously advantageous since 
at no time would a problem with as many variables as P have to be ex- 
plicitly treated. However, this advantage would be of  no value unless 
the solutions to these smaller problems gave means for recognizing the 
optimality conditions KTP(P) .  The following generalization of  t heorem 

2 in [4] illustrates this point. 

Theorem  3.1" Let a feasible y t  be given and let x t be a CSP o f P I  t. Then 
(x t, y t )  is a CSP o f  P if and only if w t = 0 is a CSP o f P I I  t and u t >_ 0 
where 

u_t = ( _ B t ' ) t '  ( V x f ( ~ t ,  y t )  + B t u t )  . (3.41) 

Proof'. We consider KTP(P) ,  KTP(PI I t ) .  To show sufficiency, we note 
that from (3.24) v t = 0 for w t = 0 and thus ( x  t + v t, y t  + W t) @ S. Simi- 
larly, (3.39) for w t = 0, in conjunction with (3.37) gives (3.8). Premul- 
tiplying (3.41 ) by ~ t ,B t ) gives 

B t , ( B t u  t + y x f t ( x t ,  y t )  + ~ t u t  ) = 0 (3.42) 

m 

for which the second term vanishes since by assumption x t is a CSP o f  

P I  t . This is precisely (3.7). The conditions (3.6) are shown to result 
from (3.38) as follows. Applying the chain rule to F ( w )  gives (3.31) 
which for w t = 0 becomes: 

V w F ( w  t) = _ R  t Vx f ( x  t, y t )  + Vy f ( x  t, y t )  . (3.43) 

Upon substituting (3.43) into (3.38), using (3.36), (3.25) and (3.41), 
we obtain (3.6). Finally, (3.9) results from (3.40) and the assumption 
that x t is a CSP o f  PIt .  

For necessity, observe that (y t  + W t) E }1 when w t = 0, and that 
(x t, y t )  c S gives (3.24) via def in i t ion  A.2 ,  l e m m a  A . 1  and thus w t = 
O ~  SP t. 

Similarly, (3.39) results from (3.8) for w t = 0 by using (3.24), (3.25), 



334 M.D. Grigoriadis 

(3.36), (3.37). Premultiplying (3.7) by ( B t ' g t ) - l B  t '  gives (3.41); pre- 
multiplying (3.7) by - R  t, adding the resulting relation to (3.6) and 
using (3.24), (3.25) and (3.31) gives (3.38). The nonnegativity of the 
Lagrange multipliers (3.40) follows from (3.9). [] 

Corollary 3 . 1 :  If w t = 0 is an (unconstrained) stationary point ofF(w),  
then (x t, yt)  is a CSP o f  P 

Proof: Since w t = 0 @ Int(SP t) solves KTP(PIIt), then u t = 0 and, in view 
of (3.24)-(3.25),  X t + l  = X t solves KTP(pIt).  Thus, 

Vx f ( x  t, y t )  + B tu t + ~t~t '= 0 (3.44) 

which is precisely (3.7). Also, from (3.43) and assumption: 

Vw F ( w  t) = _ R  t Vx f (X t  ' y t )  + Vy f (X  t, y t )  = O. (3.45) 

Using (3.25) and (3.44) relation (3.45) gives (3.6). The remaining op- 
timality conditions follow from the proof  to theorem 3.1. [] 

Corollary 3.2: Let f (x ,  y)  and Do(Y) be differentiable and convex at 
(x t, yt) .  Then, (x t, y t )  solves P if w t = 0 is an unconstrained minimum 
of F(w). 

Proof: A straightforward application of KTP(P) to corollary 3.1. [] 
The above results establish optimality criteria of computational re- 

levance even for nonconvex problems. If w t = 0 and U t ) 0 given by 
(3.42), the point (x t, y t )  is the desired CSP (or global minimum in case 
l a n d  D o are convex). 

4. The partitioning algorithm 

The algorithm described in this section generally follows Rosen's pro- 
cedure in [4]. The principal differences lie in the construction and 
content of PII and the special use of PI for bringing hyperplanes in and 
out of the subproblem set of active constraints. However, the underly- 
ing process is quite different than Rosen's in that no use of  the basis 
properties of the subproblems is made for eliminating the subproblem 
variables. Instead, the Process o f  Elimination (definition A. 2 in appendix 
1), is used in conjunction with the pseudoinverse of the matrix of the 
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active constraints for the subproblem. Due to the properties of  this 
operation, it may not  generally be assumed that the solution of  PII  t 
and the relations (3.24), (3.13)will  necessarily yield a solution to M E P  t. 
This difficulty is circumvented by requiring that the set of  inequalities 
fixed as equalities in M E P  t remains the same for several additional cycles 
until the minimum in this fixed subspace, earlier denoted by Qt, is ob- 
tained. We denote this sequence of  "subcycles"  for a particular "cycle"  
t by {(x  tr, ytr)}; r = 1, 2, ... In general, { (x tr, y t r )}  will be an infinite 

sequence even when relatively strong differentiablity and convexity as- 
sumptions on f ( x ,  y )  are made. This point, along with an accelaration 
procedure which will guarantee finiteness of  { (x tr, ytr)} will be discussed 
in the next section. 

We may now outline the iterative solution in terms of  a typical par- 
titioning "cycle"  t and the "subcycles"  t r. We start a "cycle"  with a 
feasible y t .  The subproblem PI t for this value of  y t  is solved to obtain 
x t, the active constraint set ! t and the levels of  the dual variables u_ t. 
The corresponding PII  t for. this value o f  x t and for a fixed subspace Qt 
defined by the set of  ind ices / t ,  is constructed and solved to obtain the 
step w t in the y-space. Using the relations (3.24)-(3.2,5),  which en- 
force the choice of  Ot c_ Qt, 
(xt+l, yt+l  )= Oct, y t )  + (vt, w t )  

feasible point  is obtained if T t 
feasible,  since PII  t along with 

to compute  v we obtain the next  point  
with a step length r t = II(v t, wt)ll. A new 
> 0 with a reduced function value. It is 
(3.24) contains all the constraints of  P. 

If w t = 0 and u__ t as computed by (3.41) is nonnegative, the optimal so- 
lution to P is given by (x t, y t ) .  Otherwise, we define.the next  PI  for this 
value o f y  and repeat the procedure for the next cycle t + 1. 

It is worthwhile to note again that the solutions to each PI  and PII  
may be an infinite sequence whose convergence to a CSP, and whose 
convergence under appropriate convexity assumptions to a minimum, is 
assumed here. Finiteness of  this sequence when obtained via CGPM is 
shown in [91 for quadratic functions. 

A summary of  the "finite" algorithm follows: 
Step  O. Let a feasible yO e Y be given. Let y t  = yO, E t = ~), t = O, r = 0 
where E t denotes the set of  constraint indices defining Qt. 
S tep  1. Define and ~olve the subproblem PItr = PI(E t, ytr). This gives 
the solution x tr. I f E  t = 0, l e t E  t = !  t, compute  R t by (3.25), go to step 
3. Ot, herwise, go to step 2. 
S t e p 2 ,  (2a): If  etr = (x  tr - x ~r) = 0, then the po in t  (x tr, y tr) ~olves 

t r --t t r M E P t ± i .  S e t E  t ~ O , r  = 0, go to step 1 . ( 2 b ) : I f c  v~0, s e t x r ~ x "  go 
to step 3. 
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S t e p  3. Define and solve PI I  tr a t  (-x tr, ytr) .  This gives w tr and the func- 
• t 

tlon value F ( w  r). Compute U tr via (3.41). If W tr = 0 and U tr ~-- O, then 
• t t r - -  the point (x r, y ) solves P. Stop. If W tr =~ O, Or W tr = 0 a n d  there exists 

at least one i such t h a t  (y_tr)i ~ O, then the next point is obtained as fol- 
lows: 

If this step was entered from step 2b, compute:  

P tr  = - R  t' W tr (4.1) 

xtr+ l = jctr + vtr ; y tr+ l = ytr  + wtr (4.2) 

so that 
f ( x t r+l ,  ytr+l ) = F ( w t r )  < f ( x t r ,  y t r )  . (4.3) 

so that 

Let r + 1 -~ r and return to step 1 to start another "subcycle".  If this 
step was entered from step 1, compute:  

ptr = _ R  t' wtr 

xt+ l = xtr  + vtr ; yt+ l = ytr  + wtr 

f ( x t + l ,  yt+l ) = F ( w t r )  <_ f ( x  t, y t )  

(4.4) 

(4.5) 

(4.6) 

Let E t+l = E t, t + 1 -+ t and start another  "cycle"  at step 1. [] 
. . t r tr We note that effectively, the determination of  the step at (x , y ) 

for the tr- th "subcycle" is made in two stages. First, by solving PI I  tr-1 
and using (3.24), we obtain the step (V tr- 1, wtr - 1 ) and the correspond- 
ing point (X tr, y tr) via (3.13). Then, by solving P/tr we obtain a step C tr 
in the x-space which m o d i f i e s  (v tr 1, wtr - 1 ) to (v tr- 1 ,  wtr - 1 •) = (vtr - 1 + 

t t . . . - - t  t . . . .  
y I" c r, w r) resulting in the point (x , y ). This is depicted I n  f i g .  4.1. The 

same procedure is applicable for the determination of  the step for a 
"cycle"• Clearly if [Iw°r II = e > O, then [l(v tr, W tr) [1 ~-- e. 

L e m m a  4.1" Let f ( x ,  y )  and Do(Y) be continuously differentiable and 
let a constraint qualification be satisfied for Y. Then, 

f ( x t + l ,  yt+l ) < f ( x  t, y t )  (4.7) 

where, (x t, y t )  and (x  t+l , yt+l ) denote the values of  (x, y )  at the t-th 
and (; + 1)-th "cycles" respectively. 
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Fig. 4.1. Effective subcycle step. 
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If the normals to the hyperplanes active at (x t, y t )  are linearly inde- 
pendent,  strict inequality holds in (4.7). 

Proof:  In the ( t - 1 ) - t h  "cycle",  we obtained an optimal solution to 
M E p t -  1 so that (x t, y t )  c Qt-  1 c S t-  1 w i th  f ( x  t, y t ) .  Subsequently,  we 
let E t-  1 = ~ and sought a minimum to the problem P1 t = PI(Y t) esta- 
blishing x t, and the new Qt e, I_t. Then, fixing Qt we obtained a mini- 
mum (x t+l , yt+l) E Qt, after several "subcycles",  with f ( x  t+l , yt+l). 

Clearly then, each "cycle"  either lowers or leaves unchanged the 
value o f f ( x ,  y).  Hence, { f ( x  t, y t ) }  is nonincreasing. 

If u__ t >-- 0, then (x t, yt) solves P. If  there are no redundant  active con- 
straints at (x t, y t )  for which (_u_t)i < 0 for at least one i c I t-  1 then PI t 
will result in the new set Of active constraints I_ t 4: I_ t -  1 (and Qt ,~ Q t - I  ). 
Subsequent  minimization in Qt will provide (x t+l, y t+l )  such that 
f(xt+a, yt+l ) < f ( x  t, y t ) .  [] 

Theorem 4.1: Let f(x,  y )  and Do(Y) be differentiable and convex and 
let a constraint qualification be satisfied for the set Y. Furthermore,  let 
the normals to the hyperplanes active at each "cycle"  be linearly inde- 
pendent. Then, if P has an optimal solution it is obtained in a finite 
number of  "cycles".  

Proof'. First note that if the algorithm terminates, the point  (X t, yt) 
must be an optimal solution to P, for if not  the nonnegativity test on u t 
would fail, i.e. the KTP(P)  would not  have a solution at (x t, yt, ut), 
initiating the next  "cycle".  
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To show finiteness of "cycles", we note that, by .assumption and 
lemma 4.1, f (x  t+l , yt+l ) < f (x  t, y t )  for (x t, yt)  E Qt- 1 and (x t+ 1, yt+l ) E 
Qt and note that Qt- 1 4: Q t  It is clear that the proof  of  lemma 4. 1 in- 
sures the impossibility of returning to the same Q at any later cycle s 
with a lower function value, i.e. QS 4= Qt-1 for all s > t -  1. There are, o f  
course, only a finite number of  possible choices for QS since P has a 
finite number  of constraints. If follows that after a finite number  of 
cycles an optimal solution to P is obtained. [] 

Remark 4.1" The proof  of  lemma 4. 1 shows that the manifold Q is al- 
tered in two steps. First, for y fixed, by canceling the requirement  that 
all constraints with indices i ~ E t- 1 are kept as equalities, the larger 
feasible domain X(y t) is obtained. A minimization over this domain 
gives a point (~t, y t )  such that f ( x  t, y t )  < f (x  t, yt) ,  except when there 
are redundant  constraints at (x t, y t )  E X(yt) .  In this case, a possibility 
of cycling exists, Nevertheless, it can easily be prevented by applying 
one of the well known perturbation techniques (see e.g. Dantzig [ 13] ), 
Subsequent "subcycle" minimizations in PI and PII can only improve or 
leave the function value unchanged. Therefore, in practice, a strict in- 
equality in (4.7) may be assumed. 

Remark 4.2: In section 2 boundedness of  the feasible region S was as- 
sumed. In the absence of this assumption, the above algorithm gives a 
practical procedure for detecting an unbounded solution to P. ! f P  has 
an unbounded solution, from the proof  of  theorem 4.1 it follows that a 
problem MEP t is encountered after a finite number of  cycles with an 
unbounded solution. 

5. Minimization in the linear manifold Qt 

The special case of  a problem P with a stationary or minimum point 
(x*, y*)  such that x* ~ X(y*), is of  particular interest since the algo- 
ri thm reduces to sequential changes in x and y. This is comparable to 
the simplest scheme ("sectioning'or "'one-at-a2time": D'Esopo [14], 
Wilde [ 15 ] ) for minimizing an unconstrained function of several vari- 
ables by a sequence of  minimizations along each variable while keeping 
all remaining variables constant. Our case is a generalization of  this 
scheme and resembles the method in Warga [16] which uses minimiza- 
tions with respect to a subset of variables while keeping all remaining 
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variables fixed. To be more precise, given a point  (x  t, y t)  E •n we ob- 
tain x t+l as: f ~ t + l ,  y t )  = minxf(X, yt),  and yt+l as: f ( x  t+l, yt+l ) = 
minyf(-x t+l, y). The process is then repeated to obtain X t+2 with yt+l 
fixed, etc. Its convergence to a minimum is established in the following 

Theorem 5.1 [16]" Let f (x ,  y)  be continuously differentiable and let 
f (x ,  -y), f (x ,  y)  be strictly convex for any fixed y ~ 1t % and x 6 fl  n , 
respectively. Then, if (x*, y* )  is a limit point  of  {(x t, yt)}; t = 0, 1, 2 . . . .  
f ( x* ,  y*)  = min { f (x ,  y)  I(x, y )  c S}. [] 

However, the convergence of  the sectioning (one variable at a time) 
process is known to be very poor  and may be intolerable if (x*, y* )  lies 
on a "ridge" (see fig. 5.1). Similar, but  relatively improved, behavior 
could be expected in sectioning with a subset of  variables. 

For  a given practical problem P, it is unlikely that (x*, y* )  will be 
interior to all block constraints. Nevertheless, the above discussion is 
relevant in another way. Suppose that a PII t is solved to give w t and the 
corresponding point  (x t+l, yt+l) is obtained by (3.24) and (3.13). In 
general, because of  our decision to fix p = 0 in (A. 1), we may not  as- 
sume that (x t+ l ,  yt+l) solves MEP t. As mentioned earlier, in order to 
obtain a CSP or minimum in the manifold Q', several cycles, each re- 
quiring separate minimizations in x and y may be necessary. This situa- 
tion may arise when the optimal face Q* is reached and (x*, y* )  ~ Q* 
is sought. 

To improve convergence one must provide certain nonorthogonal  
directions to modify  the d i in fig. 5.1. The choice of  such directions is 
rather heuristic although several problems have benefited from such 

Y 

~OyO) x 

Fig. 5.1. Sectional search. 
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treatment. For example, in Hooke - Jeeves  [17] a "pattern search" 
technique is devised to remain on the "crest of  a ridge" and similar 
"diagonalization" devices are used in Fau re -Huard  [ 18]. 

As an extension of  these techniques to our algorithm, we will at- 
tempt to enrich the mix of  directions available to PH by providing 
some directions based on performance of  the previous steps in PI 
(Rosen [ 19] ). 

Suppose that the (n, r)-matrix C consisting of linearly independent  
columns c i ~ Qt c p,n ; i = 1, ..., r <-- n--q is available. In view of theo- 
rem A. 1, we may rewrite (3.24) as: 

v = - R t ' w  + Ca (5.4) 

where a E R r are newly appended variables. Use of  this relationship to 
derive PII, instead of  (3.24) results in the A u g m e n t e d  Problem H (APII)  
at the poin t  ( x  t, y t ) :  

APIIt:  Find (w t, a t) ~ I~ n°+r, if it exists, such that 

k 
F ( w  t, a t) = rain { F ( w ,  a) I (w, oO ~ SP t = fl STt} (5.5) 

j=0 
Spt =_ S t (5.6) 

0 

sTt= {yt + w e  YiHf'w+ f'cjaj<_ 1,...,k (5.7) 

( D r ' -  1, . . ,  k (5.8) 

G.,t= ~ _NS,xS _ •.t,y; j =  1, ..., k .  (5.9) 

Since c i • Qt, for any (w t, a t) ~ Sp t and for the corresponding v t 
computed by (5.4), (v t, y t )  • Qt and consequently by (3.13) we obtain 
(xt+l, yt+l ) E Qt. 

The intuitive notion that one needs to incorporate only some well 
chosen direction, leads us to append these extra variables to PII one at 
a time but  only whenever Qt remains the same for several cycles. These 
variables may be omitted from PII whenever their levels remain insig- 
nificant. This process, which creates the matrix C in (5.4), is outlined 
below. 

Defini t ion 5.1 : The Acceleration Procedure (AP)  is the following modi- 
fication of  the algorithm of section 4: 
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Replace step (2b) of the algorithm by: 
"2b) I f  c tr 4: O, se tUr  -~ xtr and let 

r 

v tr = - R t ' w  + ~ cti~i (5.10) 

i = 1  

Append the variable % and column ~t, err to APII. " 
The remaining steps of the algorithm are the same except that we read 
A P I I  tr for PII  tr and F(w ,  ~) for F ( w )  whenever r > 0. Similarly (4.1) 
and (4.4) are replaced by (5.10). [] 

The crucial requirement of linear independence among the columns 
of C in (5.4) is given in the following 

Theorem 5.2: A P  produces mutually linearly independent directions 
c tr for r < n - q .  

Proof:  We have Qt c Rn+no-q given by the q active constraints (3.19). 
From the results of appendix  1, in particular l emmas  A. 1 and A. 2, we 
know that the relation (3.24): 

v = - R t ' w  (5.11) 

defines a linear subspace ~)t such that "0 t c_ Qt. 
The proof will be by induction. Let C tl 4 = O, as defined in AP,  which 

has resulted from the PI  tl for a fixed y tl and consequently corresponds 
to w = 0. Thus, the direction (C tl , O) ~ ~ t  since it does not satisfy (5.10) 
for C tl 4= O. Therefore, (e tl , O) ~ Qt is linearly independent from all di- 
rections in ~)t. The new PIIq  is then based on 

v = - R t ' w  + c t1~1 (5.12) 

instead of (5.11). 
Now let PII  tr, r < n - q -  1 be constructed with 

r 

v - R t ' w  + ~ ti = c a i  ( 5 . 1 3 )  
i = 1  

instead of (5.11). Its solution and (5.13) give (v tr, w tr) which, via (3.13) 
gives: 

X tr+l = X tr + V tr ,' y tr+l = y  tr + W tr • (5.14) 
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We may regard the overall problem in x with fixed y as: 

• t r ytr+l ) f ( x  tr+l , y tr+l ) = mxna i f ( x  + v, (5 .15 )  

for if c tr+l = (x -tr+l - x tr+l ) ~ O, then the corresponding w = O. It fol- 
lows that if the PItr+ l solution (~-tr+l, y tr+ l ) E Qt,  then (c tr+ l , O) is lin- 
early independent of the space spanned by c q ,  ..., ctr for if not, a dif- 
ferent choice of  the a i could have provided a lower function value in 
PI I  t. [] 

6. Computational aspects 

The simplified computational algorithm for the multiblock case is 
based on the algorithm of  the previous section as outlined below. 
S t e p  O. Obtain a feas ib le  yO by some initialization procedure. Let j = 1 
and t = 0. 
S t e p  1. Define and solve PI~ ( - P I i ( y t ) ) .  This gives x 5, ~.t and the set of  
active constraints ~.t. 
S t e p  2. If c, t. = ~t _ x~ 4: 0, compute -~*t by (3.37). (2a): If_I, t. = j r . -  1 
let R~ = R~ LI , / ~  = / ~ t - 1 .  (2b): lf j~ ¢ '_/~-1 compute R~ by (3:25) and 
~ t  by (3.36). 

] ~ ~ 
I f c  t = 0, t h e j - t h  block is optimal . In either case, i f j  < k, set 

j + 1 --, j and go to step 1. Otherwise, go to step 3. 
S t e p  3. Define and solve P I I  t at the point (x],  ..., x~, y t )  to obtain w t 
and the function value F ( w t ) .  Compute u4t; j = 1, ..., k via (3.43) (see 
discussion below). 

If w t = 0 and u t -> 0 ; / =  1, ..., k then the point (x~ .... ,x~c ' y t )  solves 
P. Terminate. 

If w t "/= O, the next point is obtained by computing 

so that 

v S = - R S ' w t ;  j = 1, ..., k 

- -  t . , ..., yt+ l = y t  w t x ] + l  = + v~ , / = 1 k ;  + 

(6.1) 

(6.2) 

f ( x ] + l ,  -.., X~+I, y t + l )  = F ( w  t) ~ f ( x l  ' ..., xtk ' y t ) .  (6 .3)  

Set j  = 1, t +  1-+ t and go to step 1.[] 
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We note that the computat ion for g4. t (in step 3) for every cycle is not  
necessary. For w t = 0, u} = u) .t which is available from the solution of  
P/1 t ;] = 1, ..., k in step 1. For w t 4= O, the level of_u} is not  required since 
the removal or addition of  hyperplanes to the manifold Qt is handled by 
solving PI  t+ 1 ; / = 1, ..., k. 

The A P  (Def ini t ion 5.1)  amounts to replacing step (2a) above, when- 
ever c 5 v~ 0, by: 

"2a) I f ~  =_/S -1 let 

R S ' = ( R } t - l ) ' , c } )  (6.4) 

/q~' : (R}t- i)', BS'cS) (6.7) 

and append the variable a S to APII ,  i.e. we set (w, aS) -+ w. " 
The remaining parts of  the algorithm remain the same except that we 

read A P I I  t for P H  t, 
Formally, the above summary of  the algorithm differs from the ex- 

position in section 4. No "subcycles" have been introduced to insure 
that the minimum in the manifold Qt is obtained at each "cycle". The 
exact minimization in Qt, and thus the solution o f M E P  t was necessary 
to insure finiteness of  the sequence of  cycles. Computationally, however, 
this stringent requirement may be relaxed until the last stages of the op- 
timization process. The resulting effect is intuitively pleasing since 
otherwise much computational effort  would be expended for finding 
the minimum in a manifold which is not  contained in the optimal mani- 
fold Q*. The theoretical implications of  this computationally advan- 
tageous modification are well known. A possibility exists that, after a 
number  of  cycles, one could return to the set of  active constraints of  an 
earlier cycle with a lower function value. Thus, the sequence (x t, y t )  
may be infinite. 

Various commonly known methods to prevent this behavior may be 
employed. One such unappealing device consists of  r eco rd ing / t  for 
each cycle t and insisting on minimization in Qp whenever ! s = !P ; s < p. 
For most problems, this will be unnecessary since the same set of  con- 
straints does not  normally reappear after a number of  cycles except 
when it is the optimal set. In the latter case, application o f  A P  will ob- 
tain the optimal point in a finite number  of additional cycles. 

An experimental computer  program * for solving P has been written 
in F O R  T R A N  under the time sharing system CP/6 7-CMS and has been 

* This experimental program is for  IBM internal use only. 
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tested on a number of  test problems. Although the program is com- 
pletely core resident, it makes extensive use of peripheral direct access 
devices for storing the given problem data and intermediate results 
which are needed in subsequent cycles. Thus, it provides a vehicle for 
future large scale testing of the partitioning algorithm and various modi- 
fications and extensions which may be proposed later. 

The program is divided into 25 subroutines which essentially perform 
the following functions: 

(a) The program and file initialization phase reads in the problem 
sizes and performs certain system functions for creating four direct 
access files A, B, C and D. File A will contain the initial problem data 
arranged by blocks in the sequence j = 1, ..., k, 0. Files B and C will 

-- t  contain intermediate results needed in the following cycle such as: x/, 
_/~, classification of  subproblem row indices not in-/S into linearly de- 
pendent actives, inactives, etc., (Bt'B_t)/-1 (although this is not  neces- 
sary) RS, fTS, ~ , t  and some other index arrays. These are arranged in 
increasing order of j = 1, ..., k. In each cycle fi!es A and B will be used 
alternately to write on one and read from the other. Their roles are 
switched after the completion of each cycle. File D contains interme- 
diate data from PII t solution such as selected index arrays, w t, etc. 

(b) The input phase for the j-th subproblem reads in the index set 
for equality constraints (if any), B/, hi, Ulc.per and lower bounds (if any) 
on the variables x], and D/. Then, it computes the scaling divisors and 
normalizes Bj, h/, Dj. The input of  the given function arrays is perform- 
ed next by calling a portion of a (user written) subroutine defining the 
function and gradient computations. All of  these data are then written 
on file A. This phase is used only in the first cycle. All subsequent cycles 
use the setup phase (c). 

(c) The setup phase for P/~ is called to restore the p//t-1 data from 
file A into core. Then, it computes the right hand side of  the P// con- 
straints for the fixed value of  y = y t :  Optionally, the initial point x t or 
)-t-1 and the inverse (B(t-1) 'B(t-1))  -1 of P[ t-1 are restored. 

(d) The solution o f  PI! is then obtained by calling CGPM which in 
turn uses the function and gradient evaluation routine. 

(e) The PII definition phase extracts the solution vectors, index ar- 
rays, matrices etc. from CGPM. It computes R~, ErS, ~.,t and stores all 
the data on file B. 

(h) The PII setup phase concatenates matrices Do,-' A¢] . . . .  , H k-' and 
right hand sides h o, h~, ..., h-~ to arrange them in a single constraint 
matrix and right hand side vector for use by CGPM. Certain rows of 
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this matrix with zero coefficients and positive right hand side elements 
are cancelled. Superfluous constraint detection mechanisms may be in- 
cluded at this point to reduce the row size of the matrix further. The 
function and gradient subroutine is called next to create and store in 
core the appropriate arrays for the PII function F(w). 

(i) The PII solution phase simply calls CGPM which in turn uses the 
portion of the function and gradient evaluation subroutine pertaining 
to F(w). 

(j) The "next point" phase extracts the solution w t and other rele- 
vant index arrays from CGPM and computes the new feasible point 
(x~+l . . . . .  x~+l, yt+l) by applying (3.24), (3.13) which require a sequen- 
tial review o f x  S and R t ; ]  = 1, ..., k on file B. 

(k) The output  phase prepares the final solution report as well as in- 
termediate output,  both on the offline printer and the user terminal 
where the solution path may be monitored. 

A number of  strictly convex quadratic programming test problems 
were solved successfully by the experimental program outlined in the 
preceding section. The data for these problems were randomly generated 
as in Rosen-Suzuki  [20], Grigoriadis [6]. No claims will be made on 
the resemblance of these to actual industrial problems. In fact, our 
test cases are too small to allow meaningful inference for problems of 
much larger sizes for which the proposed partitioning method is pri- 
marily intended. The results for the eight test cases presented in table 
6.1 should be regarded only as preliminary since various refinements to 
the computer  program, such as strategies for avoiding the solution of  all 
PI at each cycle, the acceleration procedure (AP), etc., have not been 
fully tested and were inoperative during the solution of these test cases. 
All problems were started with the same "feasible" yO vector. The initial 
points (x °, yO) constructed by the partitioning algorithm and CGPM 
were different in their choice of  x °. CGPM, being a "second order" 
method,  is particularly suited for solving strictly convex quadratic pro- 
gramming problems which accounts for the relatively small number  of  
iterations and function evaluations. Nevertheless, strict comparison of  
the number of iterations could be misleading since the problem dimen- 
sionality for the complete P and the PI and PII problems are quite 
different. For instance, problem No. 7 requires 73 function evaluations 
at points (x, y)  ~ R 36, or equivalently 95,000 multiplications as op- 
posed to 487 function evaluations at points x 6 ~R 8 , and 66 evaluations 
for points y ~ R 4, or equivalently 40,000 multiplications. Additional 
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Table 6.2. 
Solution history for problem 7. 

347 

t tlwtll No. blks w~ No. optim. ~/Function val.~ 
new basis blocks 

0 0.457 30 4 0 -278.371 244 
1 0.103 46 3 0 -278.782 080 
2 0.016 04 0 0 -278.807 451 
3 0.002 40 0 0 -278.810 390 
4 0.000 67 0 3 -278.811 177 
5 0.143 85 1 2 -278.894 334 
6 0.018 16 1 0 -278.906 247 
7 0.040 94 1 0 -278.907 790 
8 0.028 36 1 0 -278.909 139 
9 0.023 42 1 0 -278.909 933 

10 0.030 46 0 0 -278.911 071 
11 0.039 51 0 0 -278.912 986 
12 0,050 88 0 0 -278.916 183 
13 0.065 99 0 0 -278.921 556 
14 0.034 54 1 0 -278.928 771 
15 0.096 35 0 0 -278.936 310 
16 0.125 33 0 0 -278.955 610 
17 0.023 49 0 0 -278.974 745 
18 0.047 45 1 0 -278.980 563 
19 0,019 92 0 0 -278.983 745 
20 0,008 24 0 0 -278.984 297 
21 0.003 65 0 1 -278.984 405 
22 0.001 36 0 3 -278.984 422 
23 0.000 38 0 4 -278.984 425 

effort is, of  course, necessary for constructing PII whenever the set of  
active constraints is altered, which in this case was infrequent. 

The results appear quite promising since they clearly indicate that 
implementation of  the above refinements, in particular AP, will con- 
siderably improve convergence. This assumption is based on the expe- 
rimental observation that the set of  active constraints is infrequently 
altered and that the optimal set is normally identified during the early 
stages of  the optimization procedure. The majority of  cycles are perfor- 
med to locate improved points in the intersection of  the active con- 
straints. This behavior was to be expected (see Section 4) since the AP 
was not employed. Table 6.2 illustrates this point for problem 7. 

Experimentation with larger convex and nonconvex programming 
problems via a more sophisticated revision of  the present computer 
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program and a substantial amount of computer time will be required to 
conclusively show the efficiency or superiority of this method over 
other methods for ordinary nonlinear programs. However, the advantage 
of the partitioning method lies in its ability to handle large nonlinear 
problems, perhaps by an order of magnitude, than those handled by 
any currently available nonlinear programming code. This is due to the 
fact that a prohibitive amount of computer storage is required for treat- 
ing such problems directly. 
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Appendix 1 

Linear Systems o f  Equations, the Pseudoinverse and the Process o f  
Elimination 

We consider the linear system of equations A x  = b, where A is a non- 
zero real (m, n)-matrix (m <_ n) and b is an m-vector. The system A x  = b 
is consistent if b is in the column space ofA. The notation used in this 
appendix is independent of that in other sections. 

The general solution to this system has been characterized by a num- 
ber of results originally due to E.H. Moore [22]. It has also been dis- 
cussed in detail in Penrose [23], Greville [24], Zadeh-Desoer [25]. 
The pivotal result in this theory is the generalization of the notion of 
the inverse transformation A-1 (of the nonsingular linear transforma- 
tion A: ~n ~ ~ n  ) to the pseudoinverse (also called generalized inverse 
or generalized reciprocal) transformation A t.  

Definition A . I :  Let rank (A) = m. The (right)pseudoinverse of A is de- 
fined as the (n, m)-matrix At = A ' ( A A ' ) - 1 .  [] 

It may easily be shown that a unique At exists. 
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T h e o r e m  A . I :  Le t  r ank  (A) = rn and l e t p  be  any  vec to r  in 1R n. The  ge- 

neral so lu t ion  to  A x  = b, i f  it exists,  is given by:  

X = A t  b + (I - A t A ) p  (A.1)  

Proof'. First ,  ver i fy  tha t  x = A t  b is a par t i cu la r  so lu t ion  to A x  = b. 
Second,  i f x  = (I - A t A ) p  for  any,  p • JR n, t h e n A x  = A ( I  - A t A ) p =  

(A - A A t A ) p  = 0 and converse ly  i f A x  = 0 then  A t A x  = x - x  or x = 

(I -AtA)x .  The  sum o f  the  par t icu lar  and h o m o g e n e o u s  so lu t ions  gives 

(A. 1). [] 

Theorem  A .2 :  Let  r ank(A)  = rn. Le t  the general  so lu t ion  to A x  = b exist  

and be given by  x o = A t b  + (I - A t A ) p  for  any  p • IR n. Then ,  f o r a  

f ixed p = p the  so lu t ion  x o is unique .  

P r o o f ( Z a d e h - D e s o e r  [ 25] ) :  Let  x = x o + x  1 fo r  a n y x  I ~ 0 such tha t  

x I • N ( A )  = { x [ A x  = 0}. Thus  A x  = A x  o = A ( x  o + x 1). Let  k = (I -- 
AtA)- f i .  Then ,  b y  def in i t ion  x o • R ( A t ) =  { ( x - k ) •  1 R n l x - - k = A t b  

for  all feasible  b} and since R ( A t  ) = R ( A ' )  = N ( A )  ± (where  N ( A )  l de- 

no tes  the l inear  m an i fo l d  o r t h o g o n a l  to N ( A ) ) ,  we have x o • N ( A )  I.  

There fo re ,  [Ixll 2 + Ilx 1 II 2 = Ilx o + x  1 II 2 and  since x~ ~ 0, we have  Ilx o II < 

Hxll. Thus  x o is the  on ly  so lu t ion  which  possesses m i n i m u m  norm.  [] 
The  above  t h e o r e m  establ ishes  an i m p o r t a n t  p r o p e r t y  o f  the l inear  

m a p p i n g  A t  • l~ m -+ IR n . Due  t o  the  fac t  tha t  r ank  ( A t )  = rn (_<n) and 

d im R ( A ?  ) = rn, there  exist  po in t s  x • IR n such tha t  no b • 1R m can be 

f o u n d  such tha t  x = A t  b. C ons equen t l y ,  A t  m a y  n o t  be  regarded  as a 

one - to -one  mapping .  This  p red ic tab le  obse rva t ion  is never the less  extre-  
m e l y  i m p o r t a n t .  F ix ing  p = p,  is in e f fec t  eqo iva len t  to  ar t i f icial ly in- 
t roduc ing  ( n - m )  cons t ra in t s  so tha t  R ( A t )  does  no t  span the ent i re  
JR n . The  on ly  w a y  tha t  any x • IR n m a y  be  expressed  in t e r m s  o f  A t  is 
b y  in t roduc ing  p • IR n as var iables  in the  general  so lu t ion  to  A x  = b. 
Since x • ]R n, b • IR m and p • IR n, it is necessary  to  cons ider  on ly  

( n - m )  c o m p o n e n t s  o f p  in the general  solut ion.  In the fo l lowing  we will 
fix p = p and la ter  let  p = 0. 

Def in i t ion  A .2 :  Let  the  fo l lowing cons i s ten t  sy s t em o f  l inear  equa t ions  
be  given: 

A i x  + A 2 y  = b 1 (A.2)  

A 3 x  + A 4 Y  = b 2 (A.3)  
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where A1, A2, A3, A 4 are (rn i , n), (m 1 , no), (m 2, n) and (m 2 , nd)-sub- 
matrices (m I <- n), b I and b 2 are rn 1 and m2-vectors, x a n d y  are n and 
no-vectors respectively, and rank (A 1 ) = m 1 (<-n). The process of  elimi- 
nation for eliminating x from the given system is defined as: 
1) Usingxthe general solution to (A.2) for some fixed p ~-p ~ IR n, solve 
for x: 

x =A?  1 (b I - Azy)  + (I - A[A 1)p .  (a .4)  

2) Substi tute into (A.3) to obtain: 

(A 4 - A 3 A ] A 2 ) Y  = A 3 ( I  - A ~ A 1 ) P + ( b  2 -A3At lb l ) .  [] (A.5) 

We note that when A 1 is square and nonsingular, A~ = A-1  and 
I - A~A 1 = 0. Thus, both A 1 and A ;  1 are one-to-one linear mappings 
and R(A 1 ) = [Rn' Then, the above process is the well known variant of  
the Gauss - Jordan  elimination referred to as "block elimination" or 
"block pivoting" (Dantzig [25] ). Such elimination schemes have been 
used in conjunction with various decomposit ion or partitioning methods 

(e.g. [4, 26, 27, 28, 29, 30, 21] ). 

We let Q c R n+n° be the (n + n o - m 1 )-dimensional subspace paral- 
lel to (A.2) and let 

0 = {(x ,y)  E 1R n+n° [x +A~Azy = 0} C - q 

Q1 = {(x ,y)  e ]R n+n° I x = 0} 

~)±= Q2 = { (x ,y )  E IR n+n° ly = (A~A2)'x } 

Q3 = {(x, y) E IR n+n° l y = 0} 

where dim Q = dim Q1 = no and dim Q2 = dim Q3 = n. 

Lemma A.I: The process of  elimination is equivalent to a nonortho- 
gonal projection operation projecting the normals to the m 1 hyperpla- 
nes defined by (A.3) onto  Q1 along Q2" 

Proof. Consider the homogeneous system (A.2) - (A.3)  

A 1 A2)  x 
By = = 0 (A.4) 

A 3 A 4 Y 
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Since rank (A 1 ) = rn (<_ n o ), we can define the matrix operator 

0 0 ) (A.5) 
T= )' i 

-(A?IA 2 

where (A[A2) '  is an (n o, n)-submatrix of T. We note that the range and 
the null space of  T have the property that 

R(T)  = IT  = = Y 

{(x ,y )e  R n+no I x=O}---Q1 (A.6.1) 

( . s x )  Rhino 0 
N(T) = 

= { ( x , y ) ~  R n+n° I y = ( A [ A 2 ) ' x  } - Q 2 .  (A.6.2) 

Furthermore,  T 2 = T and therefore (Thm. C. 12.9, pp. 256 in Zadeh - 
Desoer [25]),  T projects on Q1 along Q2. Now apply the projection 
operation to the normals of  the manifolds (A.2) - (A.3)  to obtain: 

TB '= (00 0 

(A 4 - A 3 A ~ A 2 ) '  

(A.7) 

and compare the result to definition A. 2. [] 
Similarly, T c = I - T is the projection operator projecting any g = 

( x , y ) ~  1R n+no onto Q2' along Qa since Q1 • Q2 = IRn+n° and f0ru  6 Q1, 
v ~ Q2, Teu = ( I - T )  u = 0; TCv = ( I - T )  v = v and (Tc) 2 = ( I - T ) ( I - T )  = 
I - 2T + T 2 = T. It is also interesting to note that T' projects any 
g E ~ n+no onto Q along Q3 and T c' = T 'c = I - T  c projects any g onto 

Q3 along Q. 
The orthogonal projection operator 

P = I -  
Ai 

A; 

(A 1 A2) 
A'I 1)-1 (A 1 

A'211 
A2) (A.8) 
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projects any point g E ~x n+n° onto Q and consequently pc = I - P  proj- 
ects any  g onto Q1- The operators P and pc are of particular interest in 
GPM (Rosen [3] ). For the class of  large scale problems studied in this 
paper, P may not be easily computed. However, the following two re- 
sults establish means by which the projection of  a point under P can be 
measured in terms of its projection under T. 

As an illustration of these projection operations, consider the affine 
hyperplane: x + 2y = 0 where (x, y) E IR 2, m I = 1, n = n o = 1. Then, 
A ~ = I , A ~ A 2 = 2 ,  

T= 
0 0  

- 2  1 

; T c = I - T  = 
1 0 

2 2 

p=  
1 

0 

0 

1 
:)/ (1, 2) 

1/1 
2 

(1, 2) =(1/5) 
Ii -2 

- 1 

1 2 

PC= (1/5) 
2 4 

Then, the point g=  (2, 1) has projections: Tg= (0, 3); TCg = (2, 4); T'g = 
( -2 ,  1); TC'g = (0, 4); Pg = 3/5(2, - 1 )  and p c g =  1/5(4, 8) (fig. A. 1). 

Lemma A.2: Let rank (A 1) = rn 1 and let P and T be matrix operators 
defined by (A.8) and (A.5) respectively. Then, for any point g = 
(x, y )  E ]R n+no ' PTg = Pg. 

Proof: First we note that the (ml ,  m I )-order inverse 

(A 1 A2) 

tAi/ 
= (I + K-1A2A'2) -1 K -1 =M -1 K -1 

where K-  1 = (A 1A ] )-  1 exists since rank (A 1 ) = m 1. Furthermore, p2 = 
P, P' = P  and T' = T but T' 4= T. Since both P and T are projection ope- 
rators it suffices to show PT = P. Consider 



A pro/eetive method for structured nonlinear programs 353 

o. 3 

T~g 

O. 2 

QI I 
I 
I pCg I 

"... [ 

/ 

/ 

/Ipg 
/ 

/ 
/ 

I TCg 
I 

n+n o 
| 

g = (R,~) 

TC-g 

Fig. A.1. Projections under T, T c, T', P and pc. 

_ M-1K- I (A  1 
o  A'2 

- I  0 1 + (A '  

- A K A '  0 ~A' 

i/ 

Sli S12 ) 

$21 $22 

M-1K-I(A1 +A2A'2K-IA 1 O) = 

Clearly, S12 = 0 and $22 = 0. Furthermore,  

Sll  = - I  + A ~M -1 K -1 (I + A 2A'2 K-  1 )A 1 = I +A 'IM-1K-1M'A 1 

since M' = (I + A2A'zK-1).  Postmultiplying by A ] K  -1 and premul- 
tiplying by K-1A, we have: K-1A 1SnA'I K-1A 1 = -K-1  + M-  1 K-  1M'. 
Postmultiplying this equation by M and using the symmetry of  M and K 
gives: M K - 1 A 1 S l l A ~ K - 1 A  1 = -MK-1  + K-1M' = 0. By assumption, 
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M and K are nonsingular. Thus, A I S u A ' .  = 0, which in view of  the linear 
independence  of  the co lumns  o f  A]  can only be true when S l l  = 0. To  
show that  $21 = 0, consider  

$ 2 1  = --A'2,~Z-IA'~ i +A'2 M-1K-1 (A1 +A2A'2K-1A1) = 

- _a' v - l a ,  +A'2M-1K-1M,A1 ~ 2  . . . .  1 

and pos tmul t ip ly ing  by  A ] K -1 

S21A'IK-1 = _A'2K-1 + A'2M-1K-1M' = 

= A ~ ( - K  -1 + M - 1 K - 1 M  ') = a '2 M - 1  ( - M K  - 1 K - 1 M  ') = 0 

or S21A' 1 = 0 which requires that  $21 = 0. [] 

Theorem A.3: Let g ~ 1R n+n° be any given point.  Then,  IIPgll _< [ITgll. 

Proof: F r o m  lemma A.2, IlPgll = IIPTgll <- IIPIIIITgll <- IlZgll since tlPII = 
sup IIPgll = 1. [] 

IIgll = 1 

The impor tance  of  this theorem is obvious.  For  a given e > 0, if 
IITgll < e, then IlPgll < e is established w i thou t  explici t  knowledge  of  P. 

Append ix  2: 

A simple numerical example 
We consider  the p rob lem P: min {fix,  y )  I B'x + D'y -< h} where  

x ~ ~ 2 ,  y ~ IR 1 a n d f ( x , y )  = ex + ~ x m x + x P y + d y +  ~yNy. c= 
( - 1 / 4 ) ( 8 ,  7 ) ; P  ' =  (1, 1 ) ; d  = - 7 / 4 ; N  = 2; 

M = {i i) ;D' = 0 ;h = 
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We define 

f (  x t + v, y t  + w)  = f ( x  t, y t )  + (cv + l vMv + vPw + dw + l w N w )  + 

+ x t (Mv  + Pw) + y t ( N w  + P'v) 

where v, w represent  the change in x, y respectively. 
We start  wi th  the "feasible"  yO = 3/4. 

Pl°'min{f(x'Y°)l(X)"+(x~;)<--(X)I,  (X)2 ~ 01""~ '}  ,~: 

gives x - °  = (1'/4, 0 ) ; I  ° = {1 3}, and we c o m p u t e f ( x ° , y  °)  = - 1  

. . . . .  R o r ~ _ .  

I:) 1 /  = - -  W . 

1I:1:( 0 :) (:):(:) 

Subst i tut ing this in to  f ( x  ° + v, yO + w )  and into  th e constraints  we ob- 
tain PII  °" min {F(w) I - 3 / 4  <- w <- 0} with  F ( w ) =  f ( x  ° , yO ) + 3 w + (w)2 
which has an interior m in imum at w ° = - 3 / 8 .  Thus, 

f(x 1 ' y l  ) = F(w1 ) = -1  - 9/32 + 9/64 = - 7 3 / 6 4  = - 2 9 2 / 2 5 6  

and since v 1 = - ( 1 ,  0 ) ( - 3 / 8 )  = (3/8, 0), we obta in  

( x l , y  1 ) = (1/4, 0, 3i4)  + (3/8, 0, - 3 / 8 )  = (5./8, 0, 3/8), 

~,1 m~n/~x:~l, I ~)1 + ~)~ ~ ~ ~ : ~ }  
(x) 1 ~(x) 2 >_ 0 ~ 

gives x 1 = (7/16, 3/16)  v~ x 1 ;_/1 = {1}, and we compu te  
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x ° t y ° )  ; f=-1 

/ 
/ 

/ I ?>I " I / 
/ J__ / 

/ /"  t /  

/ /  

/ /  

2/// 
/.__ Q1 

(p=B=o) 

yl~)Xl,y 1) ; f=-292/256 
< / 2 5 6  

y2) ; f=-30~/256 

(x) 1 

~1 c Q1 

(x)  

Fig. A. 2. Solution path for numerical example. 

The funct ion value is f ( ~ l  ; y l )  = - 3 0 1 / 2 5 6 .  Substituting into f and 
constraints, we obtain 

PII 1 : rain {F(w)  I - 3 / 8  <__ w <_ 3/8} 
with 

F(w) = f ( x  1 , y l  ) + ( 3 / 1 6 ) w  + ( 3 / 4 )  (W) 2 

which has an interior minimum w I = - 1 / 8 .  Thus, 

f ( x  2 ' y 2 ) =  F(W1 ) = -301/256 + (3/16)(-1/8) + 

+ ( 3 / 4 ) ( 1 / 6 4 )  = - 3 0 4 / 2 5 6  
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and since v I = - (1 /2 ) (1 ,  1 ) ( -1 /8 )  = (1/16,  1/16), we obtain 

( x Z , y  2) = (7/16, 3/16, 3/8) + (1/16, 1/16, - 1 / 8 )  = 

= (1/2, 1/4, 1/4) 

PI 2" min(f(x,y) (X)l,(X)l + (x)2 < - l ( x )  2 ~ 0 _ y 2  = 3 / 4 )  

gives x -2 = (1/2, 1/4) =x2;_/2 = {1} ;with 

u 2 = ( - 1 / 2 ) ( 1 ,  1 ) ~ ' x f ( x 2 , y 2 ) = ( - 1 / 2 ) ( 1 ,  1) 1 /2 /  

= 1 / 2 >  0 .  

Thus, we conclude that ix*, y*)  = (1/2, 1/4, 1/4) solvesP. The solution 
path is shown in fig. A.2. Note that the direction of the step ((x 2 , y2 ) _ 
(~-1, y 1 )) is parallel to the line denoted by p = p = 0. 
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