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Consider the problem of finding the minimum value of a scalar objective function whose 
arguments are the N components of 2 N vector elements partially ordered as a Boolean lattice. 
If the function is strictly decreasing along any shortest path from the minimum point to its 
logical complement, then the minimum can be located precisely after sequential measurement 
of the objective function at N + 1 points. This result suggests a new line of research on discrete 
optimization problems. 

1. Introduction 

The best method for finding the minimum of a unimodal (unique 
local minimum)" function defined on a simply ordered set o f  points is 
known to be the Fibonacci search scheme [4, 5]. This efficient method 
is defined only for functions of  a single variable, a serious limitation in 
practice, where most  problems of  interest involve many independent  
variables. This article considers the case where there are N binary vari- 
ables generating 2 N cases (or points) of  a partially ordered set known 
as a Boolean lattice [1].  This more complicated situation requires a 
regularity assumption just  as the one variable case does, and the assump- 
tion used closely resembles the unimodali ty hypothesis of  the one- 
dimensional case. The optimal search scheme turns out  to be surpri- 
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singly simple, involving only N + 1 adjacent measurements, and it is 
further shown that use of this search scheme is equivalent to assuming 
this multidimensional regularity assumption, called monotonic i ty .  Al- 
though the article gives an example after the theory has been developed, 
the reader looking for practical applications may find it worthwhile to 
read the example first to see if the regularity condition seems plausible. 

2. Regularity assumption. 

Let B N be a boolean lattice partially ordered by inclusion. That is 
B N consists of  2 N N-vectors X i (i = 1, ..., 2 N) each of  whose N distinct 
components  xin (n = 1, . . . ,N)  is either 0 or 1. The fact that the elements 
are ordered by inclusion means that x i and xj are two vectors whose 
components  obey the N inequalities Xin <-- X/n (n  = 1, ..., N ) ,  if  and only 
if x i ~ x i (x i is contained in x/). For example, (0, 1, 0, 1) c_ (1, 1, 0, 1) 
and (1 ,0 ,0 ,0 )c_  (1, 1,0, 1), but  (0, 1,0, 1) ~ (1,0,  0, 0) and (0, 1, 0, 1) 
/~ (1, 0, 0, 0). 

Two vectors x i and xj are said to be adjacent if and only if they differ 
in exactly one component,  i.e., Xin = Xjn for all n 4= k but  xik 4= xjk. A 
minimal  path between two vectors x i and x i differing in exactly K com- 
ponents is any simply ordered set of  K + 1 adjacent vectors x k (k = 
0, 1 . . . .  , K) which differ from x i ( -  x ° )  in exactly k components.  

Let y:  B u -+ R be a real valued function of the vectors x o f B  u .  It is 
desired to find the v e c t o r x ,  where the objective func t ion  y is minimum,  
i.e., 

y ( x , )  < y ( x )  for all x ¢ x , .  

Let x* be the unique vector in B N differing in a l lN components  from 
X , .  

x* ¢ (n -- 1, N). n X~r/  " " '  

Any minimal path (of length N) from x ,  to x* will be called here a 
meridian. The objective function y is said to be monotonical ly  increas- 
ing if and only if it increases strictly monotonically along any meridian 
from x ,  to x*. 
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This regularity condition of  monotonic i ty  is motivated by  the one- 
dimensional search problem in which one seeks the maximum of  a real 
function defined on a simply ordered finite set of  natural numbers. In 
that case, if the function is unimodal, that is, if it has a unique local 
minimum, then the well-known Fibonacci search scheme [4, 5] is op- 
timal in the sense that it uses the least possible number of  function 
evaluations to find the minimum. Since a monotonical ly increasing 
function is unimodal on every meridian, one might expect  that the 
best search scheme in this multivariable case would involve some com- 
plicated variant of  Fibonacci search. However, the next theorem shows 
that the optimal scheme is, surprisingly enough, much simpler. 

Theorem 1A. 
L e t  y be monotonical ly  increasing, and let x i and x/, both in B N, be 
adjacent, wi th  inequality only o f  the nth components  

xin Xjn 

Xim g~ X]m m 4= n,  

then ~- 

y (xi) < y (xj) 

i f  ariel only i f  

l % m N N  

X,n  = X& 4= Xln, 

Proof'. There are two cases: Xin and X,n  are either unequal or they 
are equal. If  Xin -~ X , n ,  then i f P  represents the number of  components  
of  x i differing from the corresponding components  of  the minimum x , ,  
P + 1 will be the number  of  components  of  xj different from those of  
x , .  Hence any minimal path  from x ,  to x t cannot contain x i among its 
P + 1 vectors. Similarly, any minimal path from x] to the maximum x* 
cannot contain x i among its N - P - 1 elements, since x i has one 
more component  different from those of  x* than does x i. The union of  
these two disjoilat minimal paths forms an N + 1 vector minimal path 
from x ,  to x*, which is by definition a meridian x n (n = O, 1, ..., N) ,  
with x ° - x , ,  x e - x i, x e+l - xj ,  a n d x  N - x*. Since the ob jec t ivey  is 
monotonical ly increasing, it follows that y ( x  i) < y (x j ) .  In the second 
case, if Xjn = X , n ,  then Xin 4= X,n  and the above argument can be re- 
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peated with i and j interchanged, giving y(x])  < y ( x  i) and completing 
the proof. 

Theorem 1A shows that evaluation of  a monotonically increasing 
objective at any pair of  adjacent points immediately determines one 
component  of  the minimum point x , .  It follows that the minimum x ,  
can be found after N such comparisons. If  this is done by comparing a 
base point x i to its N adjacent neighbors, then the minimum can be 
found after only N + 1 evaluations of  the objective. Since this method,  
the simplest imaginable, is often used as a heuristic in practice when 
little is known about the objective, it is interesting to know that  use of  
this method is equivalent to assuming monotonici ty,  as the following 
converse theorem 1 B proves. 

Theorem 1B (converse). 
I f  at  every pair o f  adjacent  po in ts  x i and  x], equal in all b u t  the n th  

componen t ,  it  is true that  Y(Xi )  < y ( x j )  i f  and  only  i f  X , n  = Xin --/= Xjn , 
then the f unc t i on  y is mono ton ica l l y  increasing. 

Proof: Let x n (n = O, 1, ..., N )  be a typical point on any meridian, with 
exactly n components  different from the corresponding ones of x , .  Here 
x 0 - x ,  and x n =- x* .  Assume, without  loss of  generality, that adjacent 
points x n_ 1 and x n differ only in their n th  components  (n = 1, ..., N). 
Then x , n  = Xn_ 1 4: Xnn , and by hypothesis Y ( X n _ l )  < Y(Xn).  Thus y 
increases strictly monotonically along this, and hence every meridian. 
Therefore y satisfies the definition of  a monotonically increasing func- 
tion. 

3. A 4 variable quality control example. 

The practical implications of the monotonici ty  assumption are il- 
lustrated in the following example. Consider a manufacturing process 
combining four different raw materials. Management has the option of  
subjecting any or all of  them to special quality control testing. The 
2 4 = 16 possible cases can be represented by four component  vectors 
x ---- ( X l ,  X2, X3, X 4 ),  where x n = 1 if material n is tested, and x n = 0 if it 
is not. The cases may be arranged in the lattice shown in fig. 1. 
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Fig. 1. A 4-v~iable Boolean lattice. 
Values of a monotonically increasing function with minimum a 0101 ate shown below each 

point. 

It is desired to find the policy giving minimum total cost, including 
both the cost of testing and the cost of reprocessing product of inferior 
quality due to faulty raw material. Thus, if a raw material is of  especially 
high quality, or if it has little effect on the final product, one would 
expect testing to be unnecessary. On the other hand, testing is justified 
for possibly shoddy raw materials which can throw the product  off 
grade and cause expensive reprocessing. Thus, the monotonici ty assump- 
tion seems reasonable in this case, for the larger the deviations from the 
optimal policy, the greater would be the cost increase. Values of total 

Table 1 
Search example for four variables 

Case No, Case Objective Comparison Conclusion 
/ x] = (X/l, x/2, x]3, x]4) y(x]) 

1 (0, 0, 0, 0) 6 - - 

2 (0, 0, 0, 1) 4 y(x 2) <y(x  1) x ,4  = 1 

3 (0, 0, 1, 1) 5 y(x 3) <y(x  2) x ,  3 = 0 

4 (0, 1, 0, 1) 1 y(x 4) <y(x  2) x ,  2 = 1 

5 (1, 1, O, 1) 3 Y(X5) <Y(X4) x ,1  = 0 
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cost for each case are given in fig. 1 to help the reader follow the exam- 
ple, although it is of course assumed that they can only be determined 
one at a time by a plant study of non-negligible cost. Table 1 shows how 
the search might proceed, starting from the initial operating policy 
(0, 0, 0, 0), i.e., no testing whatever. As the theory predicts, exactly 5 
cases are examined, one of them, the fourth in this case, being the op- 
timum. 

4. Conclusions 

A straight forward extension of the unimodality assumption of one 
variable minimization to the multivariable case leads to a surprisingly 
simple optimal direct minimization procedure. Moreover, the simple 
procedure is valid only when this multivariable regularity condition, 
known as "increasing monotonici ty"  holds. An article to follow [6] will 
show that similar results are true when the logic in which the variables 
are defined has more than two values. The procedure may find practical 
applications not only in unconstrained discrete optimization problems, 
but also perhaps in constrained pseudoboolean problems converted into 
unconstrained problems by the multiplier method of Hammer, Rosen- 
berg, and Rudeanu [2, 3]. The difficulty in practice would be to prove 
increasing monotonicity.  Since the search method is so simple, future 
research will study how the regularity assumption might be weakened 
at the expense of requiring more sophisticated search procedures. 
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