Mathematical Programming 1 (1971) 291-300. North-Holland Publishing Company

LINEAR INEQUALITIES, MATHEMATICAL PROGRAMMING AND MATRIX THEORY *

Abraham BERMAN

Université de Montréal, Montréal 101, Canada

and

Adi BEN-ISRAEL

Technion - Israel Institute of Technology, Haifa, Israel

Received 5 November 1970 Revised manuscript received 22 March 1971

A survey is made of solvability theory for systems of complex linear inequalities. This theory is applied to complex mathematical programming and stability and inertia theorems in matrix theory.

Introduction

This paper is a survey of solvability theory for the following systems of complex linear inequalities.

$$Tx = b, \ x \in S . \tag{1}$$

(Section 1, theorem 1)

$$Tx = b, \ x \in \text{int } S \,. \tag{2}$$

(Section 3, theorem 3)

^{*} This paper was presented at the 7th Mathematical Programming Symposium 1970, The Hague, The Netherlands.

 $Tx \in \operatorname{int} S_1, x \in \operatorname{int} S_2$

(Section 3, theorem 4)

where $T \in C^{m \times n}$, $b \in C^m$ and S, S_1, S_2 are suitable cones.

Theorem 1 is a generalization of the Farkas lemma and of a theorem of Levinson, while theorems 3 and 4 imply generalizations of theorems of the alternative of Gordan and Stiemke respectively.

In section 2, theorem 1 is applied to derive duality theorem of complex linear programming, which generalizes the duality theorem of real linear programming and a duality theorem of Levinson.

In section 4, the solvability theory is applied to matrix spaces with suitable inner products and matrix cones. Theorem 5 is a matrix application of theorems 3 and 4. Other applications are mentioned in the remarks which conclude the paper.

0. Notations and preliminaries

 $C^n[\mathbb{R}^n]$ the *n* dimensional complex [real] vector space $C^{m \times n} [R^{m \times n}]$ the $m \times n$ complex [real] matrices the nonnegative orthant in \mathbb{R}^n . R^n_+ For any $x, y \in C^n$: (x, y)the *inner product* of x and y Re x the *real part* of x. For any $A \in C^{m \times n}$: A^{τ} the *transpose* of A A^{H} the conjugate transpose of A R(A)the range of A. the null space of A. N(A)For $A \in C^{n \times n}$: tr(A)the *trace* of A $\sigma(A)$ the spectrum of A A^{-1} the inverse of A. For any $S_1, S_2 \subset C^n$: the cartesian product of S_1 and S_2 $S_1 \times S_2$ int S_1 the *interior* of S_1 .

(3)

A nonempty set S in C^n is a. a convex cone if $S + S \subset S$ and if $\alpha \ge 0 \Rightarrow \alpha S \subset S$. b. a polyhedral (convex) cone if $S = BR_+^k$ for some $B \in C^{n \times k}$. For any nonempty set S in C^n : $S^* = \{y \in C^n ; x \in S \Rightarrow \operatorname{Re}(y, x) \ge 0\}$ is the dual of S. S^* is a closed convex cone. The interior of S^* is int $S^* = \{y \in S^*; 0 \neq x \in S \Rightarrow \operatorname{Re}(y, x) > 0\}$. $S = S^{**}$ if and only if S is a closed convex cone, e.g. [5] theorem 1.5.

1. Linear inequalities over cones

Real linear inequalities can be represented as linear equations over convex cones. For example the system of linear inequalities

$$A u \leq b$$

with given $A \in \mathbb{R}^{m \times k}$ and $b \in \mathbb{R}^m$, can be rewritten as

$$Tx = b, \ x \in S \tag{1}$$

where T = [A, I] and $S = R^k \times R^m_+$.

Complex linear inequalities are systems like (1) with complex data, i.e., with $T \in C^{m \times n}$, $b \in C^m$ and S a closed convex cone in C^n .

A characterization of consistency of the (complex) system (1) is given in:

Theorem 1

Let $T \in C^{m \times n}$, $b \in C^m$ and S a closed convex cone in C^n and let TS be closed. Then the following are equivalent:

(a) $Tx = b, x \in S$ is consistent

(b) $T^H y \in S^* \Rightarrow \operatorname{Re}(b, y) \ge 0.$

Proof *

(a) $\Leftrightarrow b \in TS$ $\Leftrightarrow b \in (TS)^{**}$ (since TS is a closed convex cone) $\Leftrightarrow [y \in (TS)^* \Rightarrow \operatorname{Re}(b, y) \ge 0]$ $\Leftrightarrow (b)$

* Due to R.A. Abrams,

[5]

[7]

Remarks

1. Two sufficient conditions for TS to be closed are:

- a. S is a polyhedral cone
- b. $N(T) \cap S$ is a subspace

2. Special cases of theorem 1 include the lemma of Farkas [11] (choosing $S = R_{+}^{n}$) and a theorem of Levinson [14].

2. Complex linear programming

Definitions

Let $A \in C^{m \times n}$, $b \in C^m$, $C \in C^n$ and let $S_1 \subset C^n$, $S_2 \subset C^m$ be polyhedral cones.

The primal linear programming problem is:

(P) minimize $\operatorname{Re}(c, x)$

subject to

$$Ax - b \in S_2, \ x \in S_1 \ . \tag{4}$$

The dual linear programming problem is:

(D) maximize $\operatorname{Re}(b, y)$

subject to

$$c - A^{\mathrm{H}} y \in S_1^*, y \in S_2^*$$
.

A vector $x^0 \in C^n$ is

- a. a *feasible solution* of (P) if x^0 satisfies (4)
- b. an optimal solution of (P) if x^0 is feasible and $\text{Re}(c, x^0) = \min \{\text{Re}(c, x); x \text{ feasible}\}.$

The problem (P) is:

- a. consistent if it has feasible solutions
- b. *unbounded* if consistent and if it has feasible solutions $\{x^k; k = 1, 2...\}$ with Re $(c, x^k) \rightarrow -\infty$ as $k \rightarrow +\infty$.

Feasible and optimal solutions of the dual problem (D), and the consistency and boundedness of (D), are similarly defined.

The following *duality theorem of complex linear programming* is a symmetric form of theorem 4.6 of [5].

294

Theorem 2

Let (P) and (D) be the problems defined above. Then exactly one case, of the following four cases, holds:

(a) Both (P) and (D) are consistent, have optimal solutions and their optimal values are equal:

min {Re(
$$c, x$$
); $Ax - b \in S_2, x \in S_1$ } =

= max {Re(b, y);
$$c - A^{H}y \in S_{1}^{*}, y \in S_{2}^{*}$$
}

- (b) (P) is inconsistent, (D) is unbounded,
- (c) (P) is unbounded, (D) is inconsistent,
- (d) Both (P) and (D) are inconsistent.

Proof

Let (P) be inconsistent. This means that $[A, -I] \begin{pmatrix} x \\ z \end{pmatrix} = b, \begin{pmatrix} x \\ z \end{pmatrix} \in S_1 \times S_2$ is inconsistent. By theorem 1 there exists a vector y' satisfying

$$A^{\mathrm{H}}y' \in S_{1}^{*}, -y' \in S_{2}^{*}, \operatorname{Re}(b, y') < 0$$

If (D) is consistent, then for any feasible solution y^0 of (D) and any nonnegative k, the vector

$$y^0 - ky'$$

is also a feasible solution of (D) and $\operatorname{Re}(b, y^0 - ky') \to \infty$ as $k \to \infty$, proving (D) unbounded.

For the case where both (P) and (D) are consistent the reader is refered to lemmas 4.4 and 4.5 of [5].

Examples showing that all the four cases mentioned in the theorem are possible are known from real mathematical programming. \Box

Remarks

1. Theorem 2 generalizes the classical duality theorem of real linear programming (where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $S_1 = \mathbb{R}^n_+$ and $S_2 = \mathbb{R}^m_+$) and a duality theorem of Levinson [14].

2. Theorem 1 is also useful in developing a theory of complex nonlinear programming e.g. [1], [2], [3].

3. Linear inequalities over cones with interior

The consistency of the system (2) is characterized in

Theorem 3 [6]

Let $T \in C^{m \times n}$, $b \in C^m$ and let S be a closed convex cone with nonempty interior in C^n . Then the following are equivalent: (a) Tx = b, $x \in \text{int } S$, is consistent (b) $b \in R(T)$ and $0 \neq T^H y \in S^* \Rightarrow \text{Re } (b, y) > 0$.

Proof

Let *E* denote the manifold $\{x; Tx = b\}$. If *E* is empty then both (a) and (b) are false. Suppose, then, that $E \neq \phi$ and (a) is not true, so that $E \cap$ int $S = \phi$. Then by Mazur's theorem (the geometric version of the Hahn-Banach theorem) [18] p. 69, there is a $z \neq 0$ such that

$$Tx = b \Rightarrow \operatorname{Re}(x, z) = c$$
 (5)

$$x \in \operatorname{int} S \Rightarrow \operatorname{Re}(x, z) > c$$
 (6)

(5) $\Rightarrow z \in R(T^{\text{H}})$ that is $z = T^{\text{H}}y$ for some $y \neq 0$. (6) $\Rightarrow 0 \neq z \in S^*$ and c < 0.

 $Tx = b \Rightarrow \operatorname{Re}(x, T^{\operatorname{H}}y) \leq 0 \Rightarrow \operatorname{Re}(b, y) \leq 0$ where $0 \neq T^{\operatorname{H}}y \in S^*$ which shows that (b) is false.

Assume now that (b) is false (and $E \neq \phi$). Then there exists a y such that

$$0 \neq T^{\mathrm{H}} y \in S^*$$
, Re $(b, y) \leq 0$.

Thus $x \in E \Rightarrow \operatorname{Re}(Tx, y) \leq 0 \Rightarrow \operatorname{Re}(x, T^{\operatorname{H}}y) \leq 0 \Rightarrow x \notin \operatorname{int} S$.

Thus (a) is false which completes the proof. \Box

A consequence of theorem 3 is the following characterization of system (3).

Theorem 4 [7]

Let $T \in C^{m \times n}$ and let S_1 and S_2 be closed convex cones with nonempty interiors in C^m and C^n respectively. Then the following are equivalent:

(a) $Tx \in \text{int } S_1, x \in \text{int } S_2$, is consistent (b) $-y \in S_1^*, T^H y \in S_2^* \Rightarrow y = 0.$

296

Proof

(a) may be rewritten as (a') $[T, -I] \begin{pmatrix} x \\ z \end{pmatrix} = 0, \begin{pmatrix} x \\ z \end{pmatrix} \in \operatorname{int} S_2 \times \operatorname{int} S_1 = \operatorname{int} (S_2 \times S_1)$, is consistent (a') is equivalent by theorem 3 to (b') $\begin{cases} 0 \in R[T, -I] \\ \text{and} \\ 0 \neq [T_{-I}^{\mathrm{H}}] \ y \in (S_2 \times S_1)^* \Rightarrow \operatorname{Re}(0, y) > 0. \end{cases}$ which is equivalent to (b).

Remark

Theorems 3 and 4 were used to derive complex theorems of the alternative [6], [7], which generalize classical theorems of Gordan [12] and Stiemke [19].

4. Linear inequalities in matrix theory

The Euclidean inner product in $C^{m \times n}$ is

$$(X, Y) = \operatorname{tr}(XY^{\mathrm{H}}) \tag{7}$$

(7) is reduced in $\mathbb{R}^{m \times n}$ to $(X, Y) = \operatorname{tr}(XY^{\tau})$.

Let V be the real space of Hermitian matrices of order n.

(7) reduces in V to:

$$(X, Y) = \operatorname{tr}(XY) \tag{8}$$

Since $C^{m \times n}$ is isomorphic to C^{mn} and V is isomorphic to $R^{n(n+1)/2}$, the theorems of sections 1 and 3 may be applied to matrix spaces where one can derive interesting matrix theorems by choosing appropriate matrix operators and matrix cones.

This is demonstrated in this section by giving a new proof of characterizations of matrices whose all eigenvalues lie in the interior of the unit circle (that is, matrices C such that $C^n \rightarrow 0$).

Let PSD denote the closed convex cone in V of the positive semi definite matrices. PSD is self dual (with respect to (8)) and its interior, PD, consists of the positive definite matrices [6].

Theorem 5 (Stein–Taussky)

Let $C \in C^{n \times n}$. Define $T: V \to V$ by $T(X) = X - CXC^{H}$.

Then the following are equivalent:

(a) $|\sigma(C)| < 1$

(b) $TX = I_n$, $X \in PD$, is consistent

(c) $TX \in PD$, $X \in PD$, is consistent.

Proof

From (8) it follows that $T^{\rm H} Y = Y - C^{\rm H} YC$. (b) is equivalent, by theorem 3, to

(b') $I_n \in R(T)$ and, $0 \neq T^H Y \in PSD \Rightarrow tr(Y) > 0$,

and (c) is equivalent by theorem 4, to

(c') $Y \in \text{PSD}, C^{\text{H}} YC - Y \in \text{PSD} \Rightarrow Y = 0.$

(b) \Rightarrow (c) is trivial. We show (a) \Rightarrow (b') and (c') \Rightarrow (a).

(a) \Rightarrow (b'). $T^{\rm H}Y = (I_n - M)Y$ where $I_n : V \rightarrow V$ is the identity operator and $M(Y) = C^{\rm H}YC$. Let the eigenvalues of C be γ_i , i = 1, 2, ..., n. Then the eigenvalues of M are $\gamma_i \overline{\gamma}_j$, e.g. [4] p. 227, and by theorem 3.7 of [21], $T^{\rm H}$ is nonsingular and

$$(T^{\rm H})^{-1} = \sum_{p=0}^{\infty} M^p.$$

Thus T is nonsingular and so $I_n \in R(T)$ and $T^H Y \in PSD \Rightarrow Y = (T^H)^{-1}T^H Y = \sum_{p=0}^{\infty} (C^H)^p T^H Y C^p \in PSD$ e.g. [16] p. 84. $Y \neq 0$ since $T^H Y \neq 0$. Thus tr (Y) > 0.

 $(c') \Rightarrow (a')$. Suppose (a) is false and there is a $u \neq 0$ such that $C^{H} u = \lambda u$, $|\lambda| \ge 1$. Let $Y = uu^{H}$. Then $0 \neq Y \in PSD$ and $C^{H} YC - Y = \lambda uu^{H} \overline{\lambda} - uu^{H} = (|\lambda|^{2} - 1) uu^{H} \in PSD$ contradicting (c).

Remarks

1. The equivalence of (a) and (c) is a theorem of Stein [18]. More general operators of Schneider [17] and Hill [13] fit the frame of theorem 4. e.g. [17].

2. In [20] Taussky proved (a) \Leftrightarrow (b) and pointed out the connection of Stein's theorem with the theorem of Lyapunov [15] characterizing stable matrices (i.e. matrices whose spectrum lie in the open half plane Re z < 0). In [6] the theorem of Lyapunov is shown to be a special case of theorem 3.

3. The method demonstrated above may be applied to other matrix cones. The paper is concluded with few examples:

a. Theorem 1, the condition b following it and theorem 3 are used in [7] to prove and relax the assumptions of a well known theorem of Bellman and Fan on linear inequalities in Hermitian matrices.

b. Let K_1 and K_2 be closed convex cones in \mathbb{R}^n and \mathbb{R}^m respectively and denote $A \in \pi(K_1, K_2)$ if and only if $AK_1 \subset K_2$. $\pi(K_1, K_2)$ is a closed convex cone. Theorem 4 was used in [9] with such cones. c. The problem, when does the pencil generated by two given Hermitian matrices contain a positive definite matrix, may be treated by using theorem 4. e.g. [8].

References

- R.A. Abrams, "Nonlinear programming in complex space: Sufficient conditions and duality", (to appear).
- [2] R.A. Abrams, and A. Ben-Israel, "A duality theorem for complex quadratic programming", Journal of Optimization Theory and Applications 4 (1969) 244-252.
- [3] R.A. Abrams, and A. Ben-Israel, "Nonlinear programming in complex space: Necessary conditions" Report No. 70-3, Series in Applied Mathematics (Northwestern University).
- [4] R. Bellman, Introduction to matrix analysis (McGraw-Hill, New York, 1960).
- [5] A. Ben-Israel, "Linear equations and inequalities on finite dimensional, real or complex, vector spaces: A unified theory", *Journal of Mathematical Analysis and Applications* 27 (1969) 367-389.
- [6] A. Berman, and A. Ben-Israel, "Linear equations over cones with interior: A solvability theorem with applications to matrix theory", *Linear Algebra and its Applications* (Forthcoming).
- [7] A. Berman, and A. Ben-Israel, "More on linear inequalities with applications to matrix theory", Journal of Mathematical Analysis and Applications 33 (1971) 482-496.
- [8] A. Berman, and A. Ben-Israel, "A note on pencils of Hermitian or symmetric matrices", SIAM Journal of Applied Mathematics 21 (1971) 51-54.
- [9] A. Berman, and P. Gaiha, "A generalization of irreducible monotonicity", *Linear Algebra* and its Applications (Forthcoming).
- [10] N. Bourbaki, Espaces vectoriels topologiques (Hermann & Cie, Paris, 1953) Chs. 1 et 2.
- [11] J. Farkas, "Über die Theorie des einfachen Ungleichungen", Journal für die reine und angewandte Mathematik 124 (1902) 1-24.
- [12] P. Gordan, "Über die Auflösungen linearer Gleichungen mit reelen Ceoffizienten", Mathematische Annalen 6 (1873) 23-28.
- [13] R.D. Hill, "Inertia theorems for simultaneously triangulable complex matrices", *Linear Algebra and its Applications* 2 (1969) 131–142.

- [14] N. Levinson, "Linear programming in complex space", Journal of Mathematical Analysis and Applications 14 (1966) 44-62.
- [15] A. Lyapunov, "Problème général de stabilité du mouvement", Annals of Mathematics Studies 17 (Princeton University Press, Princeton, N.J., 1947).
- [16] M. Marcus and M. Minc, A survey of matrix theory and matrix inequalities (Allyn and Bacon, Boston, Mass., 1964).
- [17] H. Schneider, "Positive operators and an inertia theorem", Numerische Mathematik 7 (1965) 11-17.
- [18] P. Stein, "Some general theorems on iterants", Journal of Research of the National Bureau of Standards 48 (1952) 11-17.
- [19] E. Stiemke, "Über positive Lösungen homogener linearer Gleichungen", Mathematische Annalen 76 (1915) 340-342.
- [20] O. Taussky, "Matrices C with $C^n \rightarrow 0$ ", Journal of Algebra 1 (1964) 5–10.
- [21] R. Varga, Matrix iterative analysis (Prentice Hall, Englewood Cliffs, N.J., 1962).