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A survey is made of solvability theory for systems of complex linear inequalities. 
This theory is applied to complex mathematical programming and stability and inertia 

theorems in matrix theory. 

Introduction 

This paper is a survey of solvability theory for the following systems 
of complex linear inequalities. 

T x  = b,  x ~ S .  .(1) 

(Section 1, theorem 1) 

T x  = b,  x ~ int S .  (2) 

(Section 3, theorem 3) 

* This paper was presented at the 7th Mathematical Programming Symposium 1970, The 
Hague, The Netherlands. 
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T x  ~:int  $1, x ~ int S 2 (3) 

(Section 3, theorem 4) 

where T • C m x n, b ~ C m and S, S1, S 2 are suitable cones. 
Theorem l is a generalization of  the Farkas lemma and of  a theorem 

of Levinson, while theorems 3 and 4 imply generalizations of  theorems 
of  the alternative of Gordan and Stiemke respectively. 

In section 2, theorem 1 is applied to derive duality theorem of  com- 
plex linear programming, which generalizes the duality theorem of real 
linear programming and a duality theorem of Levinson. 

In section 4, the solvability theory is applied to matrix spaces with 
suitable inner products and matrix cones. Theorem 5 is a matrix applica- 
tion of  theorems 3 and 4. Other applications are mentioned in the re: 
marks which conclude the paper. 

0. Notations and preliminaries 

C n [R n ] the n d imens ional  c o m p l e x  [real[ vec tor  space 

C mxn [R  mxn  ] the m X n c o m p l e x  [real[ matr ices  

R n the nonnegat ive  or than t  in R n. 

For any x ,  y • C n : 

(x, y)  the inner p r o d u c t  o f x  and y 
Re x the real part  of x. 

For  any A • C m x n  : 

A r the transpose of  A 
A H the conjugate  transpose of A 
R (A) the range of  A. 
N ( A  ) the null  space of  A. 

F o r A  • Cnxn: 

tr(A) the trace of A 
o ( A )  the spec t rum of A 
A -1 the inverse of A. 

For  any S 1 , S 2 c Cn: 

S 1 X S 2 the cartesian p r o d u c t  of S 1 and S 2 
int S 1 the interior of S 1 . 
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A nonempty  set S in C n is 
a. a c o n v e x  c o n e  i f  S + S c S and i f  a >- O ~ a S c S. 

b. a p o l y h e d r a l  ( c o n v e x )  c o n e  i f S  = BR~+ for some B ~ C nxx .  

For any nonempty  set S in C n : 

S *  = { y  ~ C n ; x E S ~ Re(y, x) >_ 0} is the dua l  of S. 
S* is a closed convex cone. 
The interior of  S* is 

i n t S * = { y ~ S * ; O q : x ~ S ~  Re ( y , x )  > 0}. 
S = S** if and only i f S  is a closed convex cone, e.g. [5] theorem 1.5. 

1. Linear inequalities over cones 

Real linear inequalities can be represented as linear equations over 
convex cones. For  example the system of  linear inequalities 

A u < = b  

with given A ~ R m x k and b e R m , can be rewritten as 

T x = b ,  x e S  (1) 

where T = [A, I] and S = R e X R m . 
Complex linear inequalities are systems like (1) with complex data, 

i.e., with T ~ C m x n ,  b ~ C m and S a closed convex cone in C n. 

A characterization of consistency of the (complex) system (1) is 
given in: 

T h e o r e m  l 
Let T ~  C m x n  , b E C m 

be closed. Then the following are equivalent: 
(a) T x  = b,  x ~ S is consistent 
(b) T n y  ~ S*  ~ Re (b, y)  >- 0. 

P r o o f  * 

(a)  *~ b E T S  

• ~ b ~ ( T S ) * *  (since T S  is a closed convex cone) 
• ~ [y  ~ ( T S ) *  ~ Re (b,  y )  >_ 0] 
~" (b) 

and S a closed convex cone in C n and let T S  

[] 

* Due to R,A. Abrams, 
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Remarks 
1. Two sufficient  condi t ions  for TS to be closed are: 

a. S is a polyhedra l  cone [5] 
b. N( T) c~ S is a subspace [7] 

2. Special cases of  theorem 1 include the lemma of  Farkas  [ 1 1 ] (choos- 
ing S = R~)  and a theorem of  Levinson [ 14].  

2. Complex  linear programming 

Definitions 
L e t A  E C m × n, b ~ C m , C ~ C n and l e t S  1 c C n, Sz c C rn be poly-  

hedral cones. 
The primal linear programming problem is: 

(P) minimize Re (c, x )  

subject  to 

A x - b E S  2, x ~ S  1 . (4) 

The dual linear programming problem is: 

(D) maximize Re (b, y )  

subject  to 

c -  AI-Iy E S ~ , y  E S~ . 

A v e c t o r x  ° ~ C n is 
a. a feasible solution o f ( P ) i f x  ° satisfies (4) 
b. an optimal solution of  (P) if x ° is feasible and Re(c,  x °)  = rain 

{ Re(c,  x) ;  x feasible}. 
The p rob lem (P) is: 

a. consistent if  it has feasible solut ions 
b. unbounded if consis tent  and if it has feasible solut ions {x k ; k = 1, 2...} 

with Re (c, x k ) -+ - ~  as k -+ + oo. 
Feasible and optimal solut ions of  the dual p rob lem (D), and the 

consistency and boundedness of  (D), are similarly defined.  
The fol lowing duality theorem o f  complex linear programming is a 

symmet r ic  form of  theorem 4.6 of  [5] .  
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Theorem 2 
Let (P) and (D) be the problems defined above. Then exactly one 

case, of  the following four cases, holds: 
(a) Both (P) and (D) are consistent, have optimal solutions and their 
optimal values are equal: 

rain { R e ( c , x ) ; A x - b ~ S  2 , x ~ S  1} = 

= max { R e ( b , y ) ; c - A H y  ~ S ~ , y  ~ S~} 

(b) (P) is inconsistent, (D) is unbounded,  
(c) (P) is unbounded,  (D) is inconsistent, 
(d) Both (P) and (D) are inconsistent. 

Proof  
Let (P) be inconsistent. This means that [A, - I ]  (x) = b, (z x) c S 1 X S 2 

is inconsistent. By theorem 1 there exists a vector y '  satisfying 

A H y  ' ~ S~, - y '  ~ S~, Re(b, y ' )  < 0 

If (D) is consistent, then for any feasible solution y0 of  (D) and any 
nonnegative k, the vector 

yO _ ky '  

is also a feasible solution of (D) and Re(b, yO _ ky')  -~ ~ as k -+ ~,  
proving (D) unbounded.  

For the case where both (P) and (D) are consistent the reader is 
refered to lemmas 4.4 and 4.5 of  [5]. 

Examples showing that all the four cases mentioned in the theorem 
are possible are known from real mathematical programming. [] 

Remarks  

1. Theorem 2 generalizes the classical duality theorem o f  real linear 
programming (whereA E R m×n , b E R m , c @ R n , S 1 = R ~  and S 2 = R m ) 
and a duality theorem of  Levinson [ 14]. 
2. Theorem 1 is also useful in developing a theory of  complex nonlinear 
programming e.g. [ 1 ], [2],  [3]. 
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3. Linear inequalities over cones with interior 

The consistency of  the system (2) is characterized in 

T h e o r e m  3 [61 
Let T c C m x n, b ~ C m and let S be a closed convex cone with non- 

empty interior in C n . Then the following are equivalent: 
(a) Tx  -- b,  x ~ int S, is consistent 
(b) b E R ( T )  and 0 v s T H y  E S*  =~ Re (b ,y )  > 0. 

P r o o f  

Let E denote the manifold {x; Tx  = b}. If  E is empty then both (a) 
and (b) are false. Suppose, then, that E v~ ~b and (a) is not true, so that 
E n i n t  S = q~. Then by Mazur's theorem (the geometric version of  the 
Hahn-Banach theorem) [18] p. 69, there is a z :# 0 such that 

T x  = b ~ Re(x,  z) = c (5) 

x 6 i n t S ~  Re(x,  z) > c (6) 

(5) ~ z ~ R(T  H ) that isz = Tr ty  for somey  4= 0. 
(6) ~ 0 4= z 6 S* and c < 0. 

Tx  - b ~ Re(x, T H y )  <-- 0 =* Re(b, y)  <_ 0 where 0 v~ T H y  ~ S*  which 
shows that  (b) is false. 

Assume now that (b) is false (and E 4= q~). Then there exists a y such 
that 

04= T H y ~ S  *, R e ( b , y ) < _ 0 .  

T h u s x e E ~  R e ( T x , y )  <_ O -  Re(x,  T H y )  <-- O=* x 6 i n t S .  

Thus (a) is false which completes the proof. [] 
A consequence of theorem 3 is the following characterization of 

system (3). 

T h e o r e m  4 [ 7 ] 

Let T ~ C mx  n and let S 1 and S 2 be closed convex cones with non- 
empty interiors in C m and C n respectively. Then the following are 
equivalent: 
(a) T x  c i n t  S1, x e int S 2, is consistent 
(b) - y  E S~,  T H y  ~ S~ =* y = O. 
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P r o o f  

(a) may be rewritten as 
(a') [T, - I ]  (x) = 0, (x) ~ i n t S  2 × i n t S  1 = int (S 2 X $1), is consistent 
(a') is equivalent by theorem 3 to 

( 0 ~ R [ T, - I ]  
(b') { and 

( 0 ¢  [T~] y ~ (S 2 × S1)* ~ Re(0, y)  > 0. 
which is equivalent to (b). 

R e m a r k  

Theorems 3 and 4 were used to derive complex theorems of  the al- 
ternative [6],  [7],  which generalize classical theorems of  Gordan [12] 
and Stiemke [ 191. 

4. Linear inequalities in matrix theory 

The Euclidean inner product  in C m x n is 

(X, Y) = tr ( X Y  H ) (7) 

(7) is reduced i n R  m x n  to (X, Y) = t r (XY' ) .  
Let V be the real space of  Hermitian matrices of  order n. 

(7) reduces in V to: 

(X, Y) = tr ( X Y )  (8) 

Since C m x n  is isomorphic to C mn and V is isomorphic to R n(n+D/2, 

the theorems of  sections 1 and 3 may be applied to matrix spaces where 
one can derive interesting matrix theorems by choosing appropriate 
matrix operators and matrix cones. 

This is demonstrated in this section by giving a new proof  of  charac- 
terizations of  matrices whose all eigenvalues lie in the interior of  the 
unit circle (that is, matrices C such that C n --> 0). 

Let PSD denote the closed Convex cone in V of the positive semi 
definite matrices. PSD is self dual (with respect to (8)) and its interior, 
PD, consists of  the positive definite matrices [6]. 
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T h e o r e m  5 (Stein-Taussky)  
Let C e C nxn .  Define T: V ~  V b y  T ( X )  = X -  C X C  H . 

Then the following are equivalent: 
(a) [o(C)l  < 1 

(b) T X  ~ In ,  X ~ PD, is consistent 
(c) T X  ~ PD,  X ~ PD, is consistent. 

P r o o f  

From (8) it follows that T ~ Y = Y - C H YC. (b) is equivalent, by 
theorem 3, to 

(b') I n ~ R ( T )  and, 0 v~ T H Y ~ PSD ~ tr (Y) > 0, 

and (c) is equivalent by theorem 4, to 

(c') Y ~ P S D ,  C H Y C -  Y ~ P S D ~  Y =0.  

(b) ~ (c) is trivial. We show (a) ~ (b') and (c') ~ (a). 

(a)  ~ (b') .  T H Y = ( I  n - M ) Y  where I n • V --, V is the identity operator 
and M ( Y )  = C H YC.  Let the eigenvalues of  C be 7i, i = 1, 2 .. . .  , n. Then 
the eigenvalues of  M are ~/i7/, e.g. [4] p. 227, and by theorem 3.7 of 
[21 ], T H is nonsingular and 

o o  

(TH) -1  = ~ MP.  

p=0 

Thus T is nonsingular and so I n ~ R ( T )  and Ttt Y E PSD ~ Y = 
o o  

( T H ) - I T H y  = ~ ( C ~ ) P T H Y C  p ~ PSD e.g. [16] p. 84. Y ¢ 0 since 
p=0 

T H Y v~ 0. Thus tr (Y) > 0. 

(c ' )  ~ (a'). Suppose (a) is false and there is a u =~ 0 such that C H u = ku, 
IXl>_ 1. Let Y = u u  H . T h e n  0 ~  Y ~  P S D a n d C  H Y C -  Y = X u u H X -  

uu H = ( L X L  2 - 1)uu  H ~ PSD contradicting (c). 

R e m a r k s  

1.The equivalence of  (a) and (c) is a theorem of  Stein [18].  More 
general operators of Schneider [ 17] and Hill [ 13] fit the frame of  theo- 
r em4 .  e.g. [17].  
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2. In [201 Taussky proved (a) ~* (b) and pointed out  the connection of  
Stein's theorem with the theorem of Lyapunov [151 characterizing 
stable matrices (i.e. matrices whose spectrum lie in the open half 
plane Re z < 0). In [61 the theorem of  Lyapunov is shown to be a 
special case of  theorem 3. 
3. The method demonstrated above may be applied to other  matrix 
cones. The paper is concluded with few examples: 
a. Theorem 1, the condition b following it and theorem 3 are used in 
[7] to prove and relax the assumptions of  a well known theorem of  
Bellman and Fan on linear inequalities in Hermitian matrices. 
b. Let K 1 and K 2 be closed convex cones in R n and R m respectively 
and denote A ~ rr(K 1 , K 2) if and only if A K  1 c K 2. rr(K1, K 2) is a 
closed convex cone. Theorem 4 was used in [9] with such cones. 
c. The problem, when does the pencil generated by two given Hermitian 
matrices contain a positive definite matrix, may be treated by  using 
theorem 4. e.g. [8].  
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