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An algorithm is given for solving the optimum potential problem, which is the dual of the 
classical "out-of-kilter" algorithm for flow problems. Moreover, a new proof of finiteness is 
provided, which holds even for non-rational data; it applies to all the algorithms of network 
theory which include a labeling process. 

1. Introduction 

In 1961, D.R. Fulkerson published his "out-of-kilter" algorithm for 
constructing an optimum flow in a transportation network. To a great 
extent, this method may be regarded as the culmination of the theory 
of network flow; for, besides its own very convenient features - mono- 
tone process, possibility of starting with a non-feasible flow, or of alter- 
ing some data during the c o m p u t a t i o n -  it synthesizes most of the al- 
ready existing algorithms. 

On the other hand, the dual problem, i.e. the optimum tension prob- 
lem, seems to have been largely overlooked. For this problem, we know 
of no algorithm corresponding to "out-of-kilter", and the present paper 
aims at filling this gap. 

The method we describe in the sequel is almost exactly the dual of 
the one given by Futkerson: the only differences between them are the 
following: 
(i) Slightly modifying the rules for altering the potential permits one 
to detect the absence of a finite optimum; 
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(ii) Introducing a total order on t h e  set of  arcs and referring to this 
order during the labeling process enables us to give a new proof  for the 
finiteness of  the algorithm, including the case in which the data are ar- 
bitrary real numbers. 

2. Definitions and notations 

Here G = (X, U) will denote a graph with a set of  vertices X and a set 
of  arcs U. For  sake of  convenience, Uxy will represent an arc which has 
initial vertex x and terminal vertex y. 

We assume that the reader is acquainted with the concepts of  chain, 
path, cycle, and circuit. 

Let p be a cycle on which we have chosen an orientation: p+ 
(resp. p - )  will be the set of  the forward (resp. reverse) arcs of  p. 

Let M be a subset of  X, i.e. a set of  vertices: by definition, the co- 
cycle co(M) is the set of  those arcs which have one end in M and the 
other in X - M. 

Again co+(M) (resp. co-(M)) will denote the class of  those arcs of  
co(M) which go from M to X - M (resp. from X -  M to M). 

A flow is a function from U to the real line ~ which satisfies 
Kirchhoff 's law for currents, i.e. which is conservative at each node. 

If  p is an oriented cycle, ~ will be the unit flow carried by p, whose 
components  are: 

¢xy I i i fUxy ~p+ 
= - if Uxy E p= 

if Uxy ~ p.  

A potential is an arbitrary function from X to JR. 
If M is a subset of  X, ~r M will be the unit potential carried by  M, 

whose components  are: 

1 i f x E M  
~X m 

0 i f x ¢ M .  

A tension is a function from U to IR which satisfies Kirchhoff 's law 
for voltages, i.e. which is a potential difference. 
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If M is a subset of  X, 0 M will be the unit tension carried by co(M), 
whose components  are: 

-i if Uxy e 03+(g) 
Ox~ = if Uxy ~ co-(M) 

if Uxy @ 09 (]1/1) . 

Observe that 0 M derives from potential 71" M. 
If  M reduces to a singleton {x}, we shall simplify the notat ion and 

write: 

+ 0 x ~ x '  ~ x  ' "''' ~X, 

instead of: 

oo({x}), co+({x}) .. . . .  .{x}, o{x}. 

Sometimes, it will be convenient to give an expression like 

Cxy Oxy 
Uxy E U 

the form (c, 0) of  a scalar product,  in which case the (obvious) range 
of  summation remains implicit. 

Finally, let E be a subset of  JR, and inf E = inf (x/x ~ E): by  conven- 
tion, we shall take inf~ = +oo. 

3. Statement  of  the problem 

3.1. Let G = (X, U) be a directed graph which is supposed to be finite, 
connected, and without  loops or multiple arcs. 

For  each arc Uxy of  G, three numbers are given: 

txy e ]R U {_oo} (1) 

Txy e ]R U { + '~} (2) 

Cxy e JR. (3) 
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The problem is to find in G some tension 0 which minimizes the 
total cost 

U 
subject to the constraints 

(4) 

,% 

txy < O~y < T~y (Uxy ~ U). (5) 

If a feasible tension exists, this trivially implies: 

txy <~ rxy (Uxy E U): ( 6 )  

Henceforth,  we suppose these conditions to be fulfilled, and we de- 
note by Axy the closed interval [txy, Txy] in which Oxy must lie. 

On the other hand, the assumption that G has no multiple arcs is by 
no means restrictive. In fact, let the nodes x and y be related by  p dis- 

1 tinct arcs Uxy, U2y, ..., uPy, all oriented from x to y;  obviously, these 
arcs will all bear the same tension Oxy. Now: 

p 
(i) Either n Axky = 4: then G does not  carry any feasible tension; 

k = l  
P 

(ii) Or n Axky 4= qS: then we can equally well replace this set of  arcs 
k = l  

P 
by a single arc Uxy with prescribed interval Axy = n Akxy and cost 

p k = l  

Cxy = ~_g Ckxy. 
k = l  

A similar argument shows that the assumption we made about  loops 
entails no loss of  generality. 

3.2. In order to state that 0 is a tension, the most  convenient way is to 
introduce as usual a potential 7r = Or x )x~X related to 0 by: 

Oxy = ~y - ~x (Uxy e U). (7) 
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with: 

Then we must accordingly transform the objective function: 

(c ,  0 ) = Cxy (Try - 7r x ) 
Uxy~U 

x~x Uyx~O x UxyeW+x 

kx ~ ~ = ( k ,  ~ )  
x ¢ X  

~x = ~ Cyx- ~ % = < c ,  ox>. 
+ 

Uyx e ~ x  Uxy ~ x  

Now the problem reads as follows: 

Min ~ k x rr x 
X 

subject to 

roy - r r  x >~ txy 

7r x --rOy >~ - T x y  

(zr x ) 

(Uxy ~ U) 

(Uxy e U)  

(x e X ) .  

(8) 

(9) 

4. Characterization of the optimal solutions 

4.1. To characterize the optimal solutions of the problem, the simplest 
way is probably to introduce the dual problem and the complementary 
slackness conditions. We thus obtain: 
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[Min G kxTrx] 
X 

[Max ~ (rxy txy - Sxy Txy )1 
U 

(s) 

Oxy 

--Oxy 

=fry -- fr x >~ txy 

= % - lry > - T ~ y  

(~x) 

Uxy E U 

Uxy C U 

x E X  

rxy > O 

Sxy >~ 0 

( r - s ,  0 x } = k x 

(Oxy -- t xy )  rxy = 0 (Uxy E U) 

(T~y - Oxy) S~y = 0 (Uxy ~ U).  

It is a well-known fact that the potential zr will be optimal if and only 
if we can find r and s such that zr, r and s satisfy the system (S). 

4.2. Since flow and tension are dual concepts, we may expect  that 
this system can be transformed so as to express the dual constraints 
and the complementary slackness conditions in terms of  flows. The 
system (S) is in fact equivalent to the following system (S'): 

(S') 

Oxy 

-Oxy  

=Try -- zr x >1 txy 

= Tr x -- try > / - T x y  

(rrx ) 

¢xy 

Uxy E U 

Uxy E U 

x ~ X  

= Cxy + ~Oxy 

GOxy ) 

~ ,  0 x )= 0 

(Uxy ~ U) 

(Oxy - txy ) Cxy ~ 0 (Uxy ~ U) 

(T~y - Oxy) C~y >1 0 (Uxy ~ U). 

The relations: 

I% 0 x ) = 0 (x e X )  (1 O) 

mean that ¢ is indeed a flow in G. 
On the other hand, the equivalence between (S) and (S') can be 

proved as follows: 
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Proposi t ion 1 
I f  (zr, r, s) is a solut ion of  (S), then  (rr, ~0) wi th  ~ = r - s - c  is a solut ion 

of (S') 

Proof 
(i) (~p, 0 x> = ( r - s , O  x > - ( c , O  x > = k  x - k x = 0  
(ii) (Oxy - txy)  C_xy = (Oxy - txy )(rxy - Sxy ) = -(Oxy - txy ) Sxy <<- 0 
(iii) (Txy - Oxy ) Cxy = (Txy - Oxy )(rxy - Sxy ) = (Txy - Oxy ) rxy >t 0 

Proposi t ion  2 
I f  Or, ~o) is a solut ion of  (S'), then  (zr, r, s) with r = sup (c, 0) and 

s = sup ( - c ,  0) is a solut ion of  (S) 

P r o o f  
(i) rxy >~ 0 and 
(ii) ( r -  s, 0 x ) = 

Sky >~ 0 
(r, 0 x > - (s, 0 x ) 

= sup ((c,  0 x >, O) - 
= sup (k x ,  0) - sup 

= k x + O = k  x 
- txy ) rxy = sup ( ( O x y  - -  (iii) (Oxy 

(iv) (Txy - Oxy ) Sxy = sup ( - ( T x y  
Finally,  it is to be observed that  

sup ( - ( c ,  0 x >, O) 

( - k  x, O) 

txy ) Yxy,_O) = o 
- Oxy) c x ) ,  o) = o .  
for any tension 0 we have 

(c ,  0) = (c, 0 > + ( ~ ,  0> = (c, 0> (11) 

since ~o and 0 are orthogonal .  

4.3. Assume tha t  the potent ia l  zr and the f low ~o are given. Then any 
arc Uxy of  G lies in one o f  the mutua l ly  exclusive nine states which are 
listed and depicted below: 

a "C-xy>O and Oxy =txy  
OL 1 " C--xy > 0 and Oxy < txy 
O~ 2 " Cxy > 0 and Oxy > txy  

' C-xy = 0 and txy <-K Oxy <~ Txy 
[31 "-(xy =. 0 and Oxy < txy 
~2 : -C-xy 0 and Oxy > Txy 
3' : C x y < 0  and Oxy =Txy  
3"1 "Cxy < 0  and O x y <  Txy 
3"2 : Cxy < 0  and Oxy > Txy . 



282 J.M. Pla 

~4 2 i 

Fig. 1. 

The arc Uxy will be said "almost-in-kilter" if the tension 0 satisfies: 

txy <~ Oxy <<. Txy 
It will be said "in-kilter" if it lies in states a,/3, or 7, and "out-of- 

kilter" otherwise. 
According to the preceding section, the tension 0 will be optimal if 

and only if we can find a flow ¢ such that all the arcs of G are "in- 
kilter". 

5. Statement of  the algorithm 

(A). Initialization 
a. Select an arbitrary starting potential, for instance zr = 0 

b. Select an arbitrary starting flow, for instance ~ = 0, and take 

c-= C + ~  

c. Define an arbitrary total order 0 on the set U of  the arcs of G. 

(B). Choice of  the target-arc 
a. a 1 If  every arc is "in-kilter", the present tension is optimal: STOP 

a 2 Otherwise, let Upq be the O-smallest arc which is "out-of-kilter" 

(C). Labeling process 
At all times, let M be the set of  the labeled nodes, and z the labeled 

node from which one is trying to extend the labeling. 
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The  arc Uxy is said to  be " labe l ing"  i f  it  lies in one  o f  the fol lowing 

four  states: 

(1')  x = z ~ M, y ~ M, Cxy >~ 0 and Oxy <~ txy 

( l " ) x = z E M ,  y ~ M ,  cxy<O and 

( 2 ' ) x ~ M , y  = z C M, cxy <<.0 and 

Oxy ~ Txy 

Oxy >~ Txy 

(12) 

( 2 " ) x ( S M ,  y = z E M , c x y  > 0  and Oxy>txy . 

a. a 1 I f  Upq lies in s tate  % ,  /31 o r  3'1, give q the label ( - ) ,  take z = q 
and go to b 

a 2 I f  blpq lies in s tate  a2,132 or  3,2, give p the label ( - ) ,  take z = p 
and go to  b 

b. b I I f  the s tar-cocycle  co z conta ins  labeling arcs, let  Uzy or  Uy z be 
the ® -smallest o f  them:  give y the label  (z), take z = y and go 

to  c 

b 2 Otherwise,  go to  d 
c. c I I f  z is tha t  end o f  Upq which has no t  been  labeled at step a, go 

to (E). 
c 2 Otherwise,  go to  b 

d. d 1 I f  z has the label ( - ) ,  go to  (D). 
d 2 I f z  has the label (x),  take z = x and go to  b. 

(D). Non-breakthrough and change o f  po ten tial 
a. Def ine  

P'+ = {Uxy/Uxy Eco +(M) and Oxy <<. Txy} 

P+ = {Uxy/Uxy 6CO +(M) and Oxy> Txy} 

P" = {Uxy/Uxy ~ oo (M) and Oxy >>- txy} 
(13) 

P"_ = {Uxy /Uxy 6 Co- (M) and Oxy < txy } 
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b. Compute 

6+ = inf (Oxy - txy /Uxy e P'+ ) 
,, p,,~ 

6+ = inf(0xy - Txy/Uxy E +, 

6" = inf(Txy - Oxy /Uxy ¢ P' ) 

6" = inf (txy - Oxy /Uxy E P" ) 
t tt 6 = inf (6+, 6+, 6 " ,  6 " )  

(14) 

c. c 1 If  6 = +~o, then the network does not  carry any finite optimal 
tension: STOP 

c 2 If  6 < +oo, then add &r M to the potential rr, 60 M to the tension 
0, erase the labels and go to (B). 

(E). Breakthrough and change or f low 
Let/a  = #÷ u /~- be the cycle we found at step (C), oriented accord- 

ing to the chronological order of the labeling process. 
a. Define 

F +  = 

f = 

{Uxy/Uxy ~#+, txy  4= Txy,Cxy < O and Oxy >~ txy } 

{Uxy /Uxy ~ la-, txy 4= Txy, e-xy > 0 and Oxy <<. Txy} 

b. Compute 
(15) 

e+ = inf (-Cxy /Uxy ~ F+ ) 

e = i n f (  Cxy/Uxy e F  ) 

e = i n f ( e + , e  ) 

(16) 

C. C 1 

C 2 

If e = +0% then the network does not carry any feasible tension: 
STOP 
If  e < +0% then add e ~  to the flow ~o and to the cost ~-, erase 
the labels and go to (B). 
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6. Proof of the validity of the algorithm 

Proposition 3 
If a non-breakthrough occurs with 6 = +0% then the network does 

not  carry any finite optimal tension 

Proof 
The assumptions (1) and (2), the labeling rules (12) and the rules 

(13) and (14) for changing the potential imply: 

Uxy ~ CO+(M) ~ [_oO = txy < Oxy <. Txy and Cxy >i0] 

Uxy ~ co-(M) ~ [txy <<. Oxy < Txy = +~  and Cxy <<. 0]. 

(17) 

Moreover, the cocycle_ co(M) contains the target-arc btpq, which is 
"out-of-kilter"; hence Cpq :/: O. 

It follows that the unit  tension 0 M carried by co(M) satisfies: 

( c ,  O M ) <  O. (18) 

Now let 0 be a finite optimal tension. From (17) and (18), it is clear 
that the tension 0' = 0 + 0 M is feasible and has a cost (~, 0') strictly less 
than the cost (c_ 0) of  0" this contradiction establishes the above result. 

Proposition 4 
If a breakthrough occurs with e = +0% then the network does not  

carry any feasible tension 

Proof 
The labeling rules (12) and the rules (15) and (16) for changing the 

flow imply: 

Uxy ~ #+ ~ [ [Oxy < txy ] o r  [Oxy = txy  and Cxy >~ 0] ] 

Uxy ~ ~-  ~ [[Oxy > Txy ] or [Oxy = Txy and Cxy <. 0] ]. 

(19) 

Since 0 is a tension, we obtain by adding these inequalities: 

Vxy <<- ~ O xy = ~ O xy <~ G txy. 
# -- ~t- i~ ÷ #+ 

(20) 
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Moreover, the cycle/.t contains the target-arc Upq, which is "out-of- 
kilter": hence at least one of  the above two inequalities is strict. 

We have thus found a cycle/.t for which 

~-'vl..a rxy < G txy (21) 
u -  tt + 

and the necessary condition for the existence of  a feasible tension 
(Ghouila-Houri, [3] ) is not  fulfilled. 

Now we must prove that the proposed algorithm always terminates 
in a finite number of  steps. 

LeITlma 
Any arc which is "in-kilter" (resp: "almost-in-kilter") at some stage 

of the computat ion remains "in-kilter" (resp: "almost-in-kilter") during 
the subsequent steps. 

Proof  
(Obvious) 

Proposition 5 
An infinite sequence of  consecutive non-breakthroughs cannot  occur. 

Proof  
Let U a be the set of  those arcs which give the infimum 8 ; three mu- 

tually exclusive cases are to be considered: 
(i) We have 8 = +oo 

Then the algorithm terminates; 
(ii) An arc belonging to U a becomes "in-kilter" or "almost-in-kilter" 

According to the lemma, this case can occur only a finite number 
of  times since G is a finite network; 

(iii) Each arc of  U a was (and remains) "in-kilter" 
Then we have 

Uxy E U a c~ co+(M) ~ [Oxy : txy + 8 and Cxy = 0] 

Uxy e U~ n co-(m) ~ [Oxy Txy - S  andcxy = 0 ]  . 
(22) 

Now let Uvw be the first arc of  U a encountered during the labeling 
process: according to the labeling rules (12) and to (22), Uvw, which 
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was non-labeling, will become labeling for the next  process. On the 
other hand, each labeling arc will remain labeling, since the correspond- 
ing components  of  0 are not  altered by the change of  potential. 

The new set of  labeled nodes will thus strictly include the old one, 
and, again because of  the finiteness of  G, this completes the proof. 

Proposition 6 
An infinite sequence of  consecutive breakthroughs cannot  occur. 

Proof  
Let U e be the set of  those arcs which give the infimum e; three mu- 

tually exclusive cases are to be considered: 
(i) We have e = +~  

Then the algorithm terminates; 
(ii) An arc belonging to U~ becomes "in-kilter" 

According to the lemma, this case can occur only a finite number  
of  times since G is a finite network; 

(iii) Each arc of  U~ was (and remains) "in-kilter" 
Then we have: 

Uxy ~ Ue n i~ + ~ [txy < Oxy = Txy and c-xy = - e l  

Uxy E U~ n u -  ~ [txy = Oxy < Txy and C-xy = e].  
(23) 

Now let Uvw be the first arc of U e encountered during the labeling 
process: according to the labeling rules (12) and to (23), Uvw, which 
was labeling, will become non-labeling for the next process. On the 
other  hand, each non-labeling arc will remain non-labeling, since the 
corresponding components  of  ~0 are not  altered by the change of  flow. 

If  t h e n e x t  labeling process leads again to a breakthrough, the cycle 
g' thus found will be strictly greater than/a in the lexicographical order 
induced by the total order O : this completes the proof  since G has but  
a finite number  of  elementary cycles. 

The above two propositions are not  sufficient to ensure the finiteness 
of  the algorithm. We still have to show that an infinite sequence, consis- 
ting of  a finite number  of  breakthroughs, followed by a finite~ number 
of non-breakthroughs, itself followed by a finite number of  break- 
throughs, and so on ... cannot occur. In order to study this case, it will 
be convenient to introduce some auxiliary networks, which are quite 
similar to the so-called "incremental  ne twork"  used by several authors 
for network flow problems. 
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More precisely, for each target-arc Upq and each flow ~o, we shall 
r construct a n e t w o r k  Gpq (~0) defined as follows: 

r 

(i) apq (~0) has the same set of  vertices X as G 
(ii) Let 0 ° be the tension carried by G when Upq has been selected for 

t 

the first time, and let Uxy be an arc of  G: Uxy induces in Gpq(~p) tWO 
arcs, Uxy from x to y and Uy x from y to x, whose respective lengths lxy 
and l)x are to be read in the table below: 

If Cxy > 0 and O°y = txy then l'xy = 0 , ly' x = 0 
- -  I t l  

! f Cxy > 0 and O°y < txy then lxy = txy - O°y , l jx  = 0 
- -  t t t  

If Cxy > 0 and O°y > txy then l'xy = 0 , l'y x = O°y - txy 
- -  t t t  

If Cxy = 0 and txy <~ O°y <~ Txy then l'xy = Txy - O°y , l'y x = O°y - txy 
- -  ¢ t ¢  

If Cxy = 0 and O°y < txy then l'xy = Txy - O°y , ly x = 0 
- -  t t t  

If Cxy = 0 and O°y > Txy t h e n  lxy = 0 , l'y x = O°y - txy 
- -  f r t  

If Cxy < 0 and O°y = Txy then lxy = 0 , l'y x = 0 
- -  ¢ t ?  

If Cxy < 0 and O°y < Txy then lxy = Txy - O°y , ly x = 0 
- -  r r t  

If Cxy < 0 and O°y > Txy then lxy = 0 , ly x = O°y - Txy .  

These networks could be used to compute  separately the alterations 
to be made on 0 and ~. Nevertheless, we introduce them only to make 
the proof  of  the next Proposition easier. 

Now let us say that the network G is "partially saturated" when a 
breakthrough is about  to follow a non-breakthrough with the same 
target-arc. 

Propos i t i on  7 
The number of  partial saturations for a given target-arc is necessarily 

finite. 

P r o o f  
Let Upq be the given target-arc, 0 ° the tension in G when Upq has just  

been selected for the first time, 0 i and ~ the tension and the flow at the 
i-th partial saturation S i relative to Upq, and let us assume for instance 
that the state of  Upq is such that one tries to increase Opq. 

At the i-th partial saturation S i, the increase (O~q - O~q ) given to Opq 
is clearly equal to the length X~q of  a shortest path going from p to q in 

r i the  n e t w o r k  Gpq (~fl ). 
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Now let i and ] be two integers with ] > i. The partial saturations S i 
and S] are separated by at least one non-breakthrough: hence X~q < Xlpq 
and consequently ' i ' ' Gpq (qo) -J= Gpq ( ~ ) .  But the number  of  auxiliary net- 
works associated with a given target-arc is obviously finite, and this 
completes the proof. 

Finally, we may state the following: 

Theorem 
The "out-of-kilter" algorithm for tension problems terminates in a 

finite number  of  steps. 

Proof  
This theorem is a straightforward consequence of  propositions 3 

through 7. 

We may notice that the above arguments do not make use o f"s lack  
numbers" as in the original paper by Fulkerson [2]. 

Nevertheless, if the data are integers or rational numbers, introducing 
such slack numbers permits one to simplify rather considerably several 
proofs, especially when the starting tension is assumed to be feasible. 

7. The lexicographical labeling: a general tool in network theory 

Using a lexicographical labeling process is the major difference be- 
tween our algorithm and the classical "out-of-kilter" given in [2] and 
[1]. Only this new device enables us to prove the finiteness of  the 
procedure even if the data are arbitrary real numbers. But this rather 
simple trick can be introduced with the same success into all other al- 
gorithms which solve network problems by means of  a labeling process, 
in particular into the original "out-of-kilter". Thus, for instance, the 
counter-example given on p. 21 of  [1] does not  hold for a lexico- 
graphical max-flow algorithm. 

In fact, this new result is not  surprising: for it is well known that the 
simplex algorithm, at least in its lexicographical form, always terminates 
in a finite number  of  steps even if the data are not  rational numbers. It 
is intellectually satisfying to verify that a similar method applied to a 
simpler case is not  less powerful. 

Moreover, it must be observed that this improvement is not  at all ex- 
pensive, for the programmer who writes down a code which contains a 



290 ZM. Pla 

labeling process must make a choice and give the computer a nonambig- 
uous list of  instructions: but the lexicographical method is precisely 
one of  the most natural ways to perform this process. That is why we 
believe that most of  the existing codes are - unintentionally - of  the 
lexicographical type. 
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