
Mathematical Programming 1 (1971) 195-216. North-Holland Publishing Company

REINVERSION WITH THE PREASSIGNED
PIVOT PROCEDURE *

Eli HELLERMAN
Bureau o f the Census, Washington, D.C., U.S.A.

and

Dennis RARICK
Management Seienee Systems, Roekville, Maryland, U.S.A.

Received 8 October 1970
Revised manuscript received 27 February 1971

Mathematical programming computer systems using the product form in the inverse (PFI)
must periodically resort to a reinversion with the ctirrent basis in Order to reduce the amount
of work to be done in the succeeding iterations.

In this paper, we show the consequences of column, pivot selection and sequence upon the
transformation vector (ETA) density and give an algorithm which will tend to minimize eta
density and work done per iteration.

The algorithm has been implemented and tested as a replacement for the previous inversion
algorithm on the OPTIMA system for the CDC 6000 computers and on the MPS/III mathemati-
cal programming system for the IBM 360 computer. A comparative performance table is given.

1. Introduction

Mathematical programming production codes generally use the prod-
uct form of the inverse (PFI) in the course of obtaining solutions.
Studies have shown that PFI or some variant of PFI seems to be one of
the more efficient techniques available for use on large problems [3, 4] .
However, a characteristic of PFI is that with each pivot an increasing
additional amount of work must be done in order to compute the

* This paper was presented at the 7th Mathematical Programming Symposium 1970, The
Hague, The Netherlands.

196 E. Hellerman and D. Rarick

"'pricing" vector and in transforming the "selected" vector to its repre-
sentation in terms of the current basis. This comes about because each
pivot adds an additional transformation vector (7) to the set o f transfor-
mation vectors (ETA) which imply the inverse. It is easy to see that after
some number of pivots the amount of work done per iteration may be
significantly greater than what it was at the initial iteration. At some
point the economics of the situation demands that the larger set of ETA
be replaced by a smaller set representing the same basis. This replace-
ment is usually accomplished by a program called " INVERT" or
' "REINVERT" which resides within the mathematical programming
system. The mathematical problem which " INVERT" tries to solve
may be stated in the following manner:

Given - a set o f basic variables
Find - a set of transformation vectors (ETA) which imply the inverse

of the basis in such a way as to
a) minimize the number of nonzero elements in ETA and
b) minimize the work done in forming the ETA.

Markowitz's [1] observations in connection with the minimization
of the number of nonzero elements when forming the ETA have long
been the starting point for reinversion techniques in mathematical
programming.

In this paper we
a) Review some pertinent aspects of PFI
b) Show the consequences of pivot sequence upon ETA nonzero

density
c) Give an algorithm which seeks to find a pivot sequence which

will tend to minimize the ETA nonzero density and the work
which must be done.

The algorithm discussed is called "Preassigned Pivot Procedure" and it
has been implemented and tested as a replacement for the previous
inversion scheme on the OPTIMA mathematical programming system
for the CDC 6000 series computers and on the MPS/III mathematical
programming system for the IBM 360 computer. It performs the rein-
version some six to ten times faster than its predecessor on OPTIMA.
The Appendix contains a performance comparison between this proce-
dure and the IBM MPS/360 inversion.

It has recently been called to our attention that our work is somewhat
related to that of Steward [2] .

Reinversion with the preassigned pivot procedure 197

2. Pertinent aspects of PFI

It is well known that under suitable conditions a matrix A may be
transformed to the identity matrix I by a series of elementary row
transformations. Furthermore an elementary row transformation on A
may be expressed as the product EA where E is an elementary matrix
whose unique column is in the column index position corresponding to
the pivot row index position. By way of illustration, suppose we have
the vector

m

1

and we wish to apply an elementary
row transformation so as to make it

what must E become?
Another way of expressing the question is

I
1 '~

1 '~
1 '~

1 ?
9

9

] 1

5
2

12
- 7

0
0
0
0
1

i_0

E A

Upon solution we find

1
1

-1/12
1/12

-5/12
-2/12

1/12
7/12

m

li
1

and we see immediately that the rule for forming the elements of the

198 E. Hellerman and D. Rarick

unique column of EP (the superscript denotes the pivot row-column
index) is

~p = 1lap where p = pivot index

rli = --ai/ap (i 4= p) .

This unique column is indeed the r /we previously mentioned. In actual
practice it is only necessary to record the ~ and its pivot index rather
than the full EP in order to apply EP as needed. Also the zeros within
an r~ need not be recorded. There are other more abbreviated ways to
carry a modified r~ but for the sake of exposition we will adhere to the
rules above.

The rule for applying an 77 to an arbitrary vector V is as follows:
a) Extract vp = Vp, then set Vp = 0. (The p comes from E p and

Vp is now_called the scalar multiplier.)
b) Compute V i = V- + v_p r~i"

Note that if vp = 0 than V i = V i and no element of V i will change.
The equivalence of our rules and the arithmetic in extenso of Ep V may
easily be verified by the reader.

An example of the rules is now given. Suppose we have

X =

1
- 1

5
2

12
- 7

.

2

a n d Y = 3 andr/5 =
4
0
6

-1 /12~
1/12|

-5/12|
- 2 / 1 2 |

1 /12 |
7/12~

Then the computat ion of @ X and @ Y appears as

_

1
5

71

+ 1 2

1/12
1/12
5/12
2/12
1/12
7/12

0
0
0

and
0
1
0

1
2
3
4
0
6

+0

- 1 / 1 2]
1/12 /

- 5 / 1 2 [=
-2/12|

1/12 L
7/12.] il

X i + x s rl s = X~

(i~= 5)

Yi +Ysr/5 = Yi = Yi

(i4= 5) .

Reinversion with the preassigned pivot procedure 199

In the case of X we verify our original transformation. The case of Y
shows that if the vector to be transformed has a zero in the position
corresponding to the pivot of the r /be ing applied then no element is
changed because r/has a zero multiplier.

It is necessary to call at tention to just one more aspect o f PFI. We
note that if

EPm m . EPm_~I ... EPl 1 A = I then

(EPm m ~'Pm- 1 EPl I) = A - 1
• r~m_ 1 ...

The implication here is that normally we have a succession o f ETA in
sequence applied to a column of A (say Ai) to transform it to its repre-
sentation in terms of the current basis.

3. Consequences of pivot sequence of ETA nonzero density

The basic procedure in developing the set of ETA representing the
inverse of the basis is as follows:

a) Select a column of the basis not already used for pivoting
b) Transform the column by applying the current set of ETA in the

order of generation.
c) Choose a pivot element for the transformed column in a row

(p) where no column has pivoted previously.
d) Form an r/P from the transformed column and add to the ETA

set.
e) Repeat steps a through d until all columns have been pivoted.

It is unders tood that column selection may be done on a random basis
and within the rules we may pivot on any nonzero because the effect
of these actions is to merely give us a different permutat ion of I and
this is acceptable.

If we do have such freedom of choice in column and pivot row selec-
tion, does the sequence in which we use columns and rows have any
impact on ETA nonzero density? A small example will show that it does.
Take for example the matrix

A.1 A.2 A.3

A2. 0
A3. 4

200 E. Hellerman and D. Rariek

If we were to use the pivot sequence

Col Row

A.3 A3.
A.2 A1.
A.1 A2.

ETA set would be

~./3 771 72

- 3 -~ /4 [I/121
l-i/31

I12 LII 2 _I Lll6 _I

On the other hand if our pivot sequence is

Col Row

A.3 A2.
A.1 A1.
A.2 A3.

~/2 ~71 ~73

[,l L 11 6, o o then the ETA set 0
would be L-I/3J - 2 i/4

To verify the equivalence of both sets let us apply each set to an
arbitrary vector e.

77 3 r/1 r/2

[-~lli2 I-~/41 F1 / 12] l i I i I][- 1/6] A.22/3/A.1] -1 /3] applied to yields ~_ 1/6j A.3
L.,2 j [_ 1/6~

?/2 r/1 r/3

[oO] Ii 1/6 t] 0 | applied to
-1 /3 j [_ -2J 1/4

yields
2/31 A. 1
1/6] A.3

- 1 / 6 j A.2

We note that the values associated with a column are the same in
both cases - only a permutation has taken place. We also observe that
for the first sequence of ETA we have 100% density of nonzeros while
the second sequence has 66.6% density which is exactly the density of
the original matrix.

If we consider how this reduction in nonzeros comes about it be-
comes apparent that we took advantage of zero multipliers. Indeed we
see that if we pivot in sequence down the diagonal of a matrix of the
form L + D (lower triangle plus nonzeros on the diagonal) then no new
nonzeros are added to ETA because each pivot element has nothing but

Reinversion with the preassigned pivot procedure 201

zeros to its right and hence zero multipliers. Therefore, as in fig. 1,

X X ~ X represents nonzero

x
X X X

Fig. 1.

if we can select the sequence of columns and pivot rows in an arbitrary
sparse matrix in such a way as to find this structure we will save all the
work of transforming each vector by the existing set of ETA. The ques-
tion now becomes - how can we find this structure or how close to this
structure can we get?

4. The preassigned pivot procedure

We immediately notice the following:
a) The first or topmost pivot is characterized by the fact that this

is the only nonzero element in the row.
b) The last or lowest pivot is characterized by the fact that this is

the only nonzero element in the column.
Therefore a recursive technique with the following logic is suggested:

1. Initialization:
All references to columns and rows are made via indices.
Let ~-= the number of pivotal positions required.
a) Set the following parameters:

(i) /2 = /2 to be used for indexing the backward triangle
(ii) v = 1 to index the forward triangle
(iii) L = 0 to index spikes

b) Allocate space for the following vectors of dimension ~:
(i) Csequence of column pivots
(ii) R sequence of row pivots
(iii) I column counts
(iv) J row counts
(v) S spikes

202 E. Hellerman and D. Rarick

2. Compute the number of nonzeros in each column and each row
and record in I and J respectively.

3. Scan column counts (array I)
a) if there is no count equal to one, go to 4.
b) if a count of one is found, then

(i) record the column (index) in C u

(ii) record the row (index) of the nonzero element in R u

(iii) reduce the column counts (/) of those columns containing
nonzero elements in the row recorded in R u

(iv) mark the column and row of C u and R u as no longer avail-
able

(v) s e t / a = / ~ - I
(vi) if/a -- 0, go to 5; otherwise go to start of 3.

4. Scan row counts (array J but exclude rows marked tmavailable)
a) if there is no count equal to one, go to 5
b) if a count of one is found, then

(i) record the row (index) i n R v

(ii) record the column (index) containing the nonzero element

in C v
(iii) reduce the row counts (Jr) of those rows for which the

column recorded in C, has nonzeros
(iv) mark the column and row of C~ and R v as no longer avail-

able
(v) s e t v = v + l
(vi) if v >/a , go to 5.
(vii) i fL = 0, go to start of 4; otherwise go to 9.

5. Test for completion or start of bump.
Note that at step 5 we have one of two possible situations: either
the matrix has been completely triangularized or at some point
each remaining row and column has two or more nonzero ele-
ments. In the latter case the number of vectors for which we must
still find pivots is/a - v + 1.

To bring the concept into better focus we illustrate with a matrix
(fig. 2) which we will latter carry on to completion.

Reinversion with the preassigned pivot procedure 203

8

O 1
2
3
4
5
6
7
8
9

10
11
12

Col.
counts

Counts
when
/~---

Co lumn indices

1 2 3 4 5 6 7 8 9

X X
X X X

X X X X X
X X X

X X X
X X X
X X

X X X X

X X X X
X X X X

10 11 12

X

X

X
X

N® x

x® N

3 3 4 3 5 4 4 5 4 2 1 6

Count
Row when v =
counts 1 2

3 2 2
3 3 3
5 5 4
4 3 3
3 3 2
4 3 3
3 3 2
4 4 4
2 1 *
6*
6*
1 *

12
11

C R

12 12
9 9

10 10
11 11

2 3 3 3 4 4 3 5 4 1 * 6
2 2 3 2 4 4 2 4 4 * 5

(~ pivot detected on co lumn scan
[] pivot detected on row scan

Fig. 2.

We have n o w reached a po in t where all r ow and c o l u m n c o u n t s are
t w o or more . A t this p o i n t / 2 - v + 1 = 8 so we k n o w tha t we still have
eight co lumns to p ivo t and these co l um ns are re fe r red to as the " b u m p " .
The reason for this des ignat ion b e c o m e s clear i f we display the ma t r ix
in its rea r ranged f o r m as in fig. 3.

O
t~

Col. indices

121 9

1 X
2
3 X
4 X
5 X
6 X
7 X
8

10 X
11

1 2 3 4 5 6 7 8 10 11

X X
X X X

X X X X
X X X

X X
X X X
X X

X X X X

X X (~) X X
X X X X X (~)

Fig. 3.

204 E. Hellerman and D. Rarick

In general we can present any matrix at this stage (if it has not been
completely triangularized) as in fig. 4,

B

Fig. 4.

where in sections A and E we have found pivots on the main diagonal
and all other nonzero elements are below. Section B is all zero. The
" b u m p " section C has at least two elements in each row and column
within the section. Section D contains the elements below section C.

It has been found that the greatest amount of work and the buildup
of nonzero elements in ETA occur as a consequence of the technique
used in processing sections C and D. This can be understood immediate-
ly when we see that sections A and E have zero multipliers as we proceed
down the diagonal. Therefore the major problem at hand is how to cope
with the nonzero buildup in sections C and D.

A method of reducing such nonzero buildup would be to break sec-
tion C into two or more bumps, so that the nonzero buildup would be
limited to these smaller bumps. Such bumps we call external bumps.
Fig. 5 shows sections C and D broken up into three external bumps,
sections G, H, and K.
Section F, like section B, is all zero. We can treat sections L and M just
like sections A and E.

Remembering the success of the zero multiplier technique in sec-
tions A, L, M, and E, we would like to arrange the rows and columns
of each external bump (sections G, H, and K) so as to have as many
columns as possible with only zeros above the main diagonal. In fig. 6,
everything above the main diagonal is zero except where the vertical
solid lines are shown.

Reinversion with the preassigned pivot procedure 205

G

\

H

\

b4

[
Fig. 5.

The columns of the matrix which contain these vertical lines are called
spikes. The external bumps G, H, and K have been indicated by the
dotted lines. The right hand edge of each external bump is always a
spike with a nonzero in the upper position. This can always be achieved
by a suitable arrangement of rows and columns within an external

I •

I

I

Fig. 6.

206 E. Hellerman and D. Rarick

bump. The other spikes (which are the right hand edges of internal
bumps) should be as short as possible so that they will be transformed
with the smallest subset o f ETA.

The remainder of this paper is devoted to the techniques we develop-
ed to find the spikes and external bumps.

At this time we know that no matter which column we choose to
pivot next, there will be at least one additional column that has an ele-
ment in the pivot row and thus will become a spike. Therefore, instead
of selecting the column to pivot we address ourselves to the problem of
spike selection. It soon becomes evident that the best vector to select
as a spike is one which

a) when its effect is removed from the row counts, will create a
maximum number of row counts of unity (as vectors selected on
the basis of unity row counts need not be updated), and

b) will be able to pivot as soon as possible (thereby being updated
by the smallest subset of ETA).

It is not always possible to achieve these goals with one spike, so to be
realistic, we state our goal to be generally - select the spike in such a
way as to make as many small, row counts as possible become even
smaller. In order to do this we will need a tally function defined as
follows:

tg(n) = the number of nonzeros that column n has in rows
whose row counts are less than or equal to k.

Thus: t2(6) = 3 means that column 6 has 3 elements in rows with a
row of two or less.

We can now give the rules for spike selection. We shall also consider
that these rules are a continuation of the technique already given for
processing the forward and backward triangles of the matrix (section
A and E of fig. 5). Therefore we continue at step 5 of the procedure as
follows:

5. Test for completion or start of bump:
a) if v >/~, go to 14 (END)
b) if v <_ g, then

(i) set k = minimum nonzero row count (J)
(ii) define N as the set of vectors not found in C or S

6. Compute the tally functions tk(n) for all n ~ N
7. Spike decisions:

a) if maximum t k (n) > 1, then
(i) if unique, label it ns, go to 8

Reinversion with the preassigned pivot procedure 207

(ii) if not unique, select n s from the maximum tally columns
as the co lumn with the greatest column count or if these
are equal make an arbitrary selection from among them
and go to 8.

b) if maximum t k (n)= 1, then
(i) define N to be the set of vectors for which t k (n) = 1

(ii) redefine k = min. row count greater than previous value
of k

(iii) go to 6.
8. Spike array entry:

a) s e t L = L + l
b) enter n s into S z

c) reduce row counts of J in all rows for which n s contains non-
zeros.

9. Scan row counts (Jr) for path decisions
a) if rain J > 1, go to 5.b.i. (another spike)
b) if min J = 1 and is unique, or if L = 0, go to 4.b.

Applying these rules to the bump of our sample problem we have:

C R S

6

L=I

1

1 X
2
3
4 X
5
6
7
8

2 3 4 5 6 7 8 J

X
X X X

X X X X
X X

X X
X X X
X X

X X X X

2 k = 2
3 N- - {1, 2, 3 ,4 , 5, 6, 7, 8}
4 t2(1) = 1 t2(5) = 0
3 t2(1) = 0 t2(6) = 3
2 t2(3) = 2 t2(7) = 0
3 t2(4) = 0 t2(8) = 0
2 ns=6
4

1 2 2 3 2 4 4 2 4

Fig. 7.

If we now reduce the row counts in J according to the nonzeros of
column 6 we have:

208 E. Hellerman and D. Rarick

I 2 2

1 2 3 4 5 7 8 6

X X 1
X X X 3

X X X X 4
X X X 3

X X 1
X X X 3
X X 1

X X X X 3

2 2 3 4 4

Fig. 8.

We note that the minimum nonzero J = 1 but it is not unique. This
motivates us to think that if we can find a single vector which will re-
duce two or more counts of J to zero then we would have an oppor-
tunity to assign a pivot row to the spike. In order to find such a vector,
it turns out that the tally fimction is the best tool to use. Therefore we
may continue with the statement of the algorithm rules at step 9.c. in
the following manner:

9. c) if rain. J = 1 and is not unique, then
(i) set k = 1
(ii) define N as the set of vectors not lis,te~l in C or S

10. Compute the tally function tk(n) for all n e N.
11. Vector and pivot selection

a) if maximum t k (n) > 1 then
(i) if unique, label it np, go to 11.c.
(ii) if not unique, select Up from the maximum tally columns

as the column with the greatest column count, or if these
are equal make an arbitrary selection from among them
and go to 11.c.

b) if maximum tk(n) = 1, then
(i) define N to be the set of vectors for which tk(n) = 1.
(ii) redefine k = minimum row count greater than previous

value of k.
(iii) go to step 10.

c) define q = t 1 (rip)

Reinversion with the preassigned pivot procedure 209

12. Make pivot list en t ry .

a) record np in C v
b) record in R~ a row o f np which is n o n ze ro and for w h i c h J = 1.
c) mark np and its p ivot row as no longer available
d) reduce the row counts in J fo r all rows tha t have nonze ros in np
e) set v = v + 1
f) if v > / a , go to 14

g) s e t q = q - 1
h) i f q = 0, go to 9; o therwise go to 13

13. E n t e r spike in to basis list.

a) r ecord the vec to r o f S L in C v

b) record in R~ a row tha t was reduced to zero in J

c) set L = L - 1
d) go to 12.e.

14. End.

We can now finish the example according to the a lgor i thm in the fol-

lowing manner :

C R S

6

L = I

1 2 3 4 5 7 8 6 J

1 X
2 X X X
3 X X X X
4 X X X
5 X
6 X X X
7 X
8 X X X

1 2 2 3 2 4 2 4

X 1 k = l
3 N = (1, 2, 3, 4, 5, 7, 8)
4 t l (1) = 1 t l (5) = 0
3 t l (2) = 0 t l (7) = 0

X 1 t1(3) = 2 t l (8) = 0
3 t l (4) = 0

X 1
X 3 np= 3 q= 2

Fig. 9.

The r e f o r e ve c to r n u m b e r 3 is selected to p ivot in e i ther row 5 or row 7.
We pivot vec to r 3 on row 5 and this leaves row 7 available as a p ivot row
fo r the spike, vec to r 6.

210 E. Hellerman and D. Rarick

C R S

3 5
6 7

L = 0

3 6 1 2 4 5 7 8

5®x
7 x ®

1 X
2
3
4
6 X
8 X

X
X X X

X X X X
X X X

X X
X X X

I 2 2 2 4 2 4

Fig. 10.

Now we have a unique minimum count of one in J, so rule 9.b returns
us to forward triangle (section 4.b). As a result we have:

R S 2 4 5 7 8 J ~ = 2
N = (2 ,4 , 5, 7, 8}
t2(2) = 0 t2(7) = 1

L = 0 t2(4) = 1 t2(8) = 1
t2(5) = 1

3 6 1

s ~ x
7 x ®
1 x ®

2
3
4 X
6 X
8 X

X X X
X X X X

X X
X X

X X X

3 k = 3
4 ;v= (4, s,7, 8}
2 t3(4) = 1 t3(7) = 1
2 t3(5) = 3 t3(8) = 3
3

I 2 2 4 2 4

Fig. 11.

Here we have shown that the minimum row count in J is greater than
unity so we must select a spike. The use of the tally function with k = 2
is not adequate to select the spike, so we raise k to a value of 3 and
work with the reduced set N and find that vectors 5 and 8 are equally
good in tally and in column counts. If we select vector 5 as the spik6
we display our matrix and carry on as follows:

Reinversion with the preassigned pivot procedure 211

C R S

3 5 5
6 7
1 1 L = I

3 6 1

2
3
4 X
6 X
8 X

2 4 7 8 5

X X X
X X X X

X X
X X

X X X

I 2 2 2 4

2 m i n J = 1
3 (unique)
1
2
2

Fig. 12,

We see that the minimum J is one and is unique, so we can assign row 4
as the pivot row for column 7, We show this and continue as follows:

C R. S

3 5 5
6 7
1 1 L = I
7 4

3 6 1 7 2 4 8 5 J

5 ® x
7 x @
1 x ®
4 x ®
2
3 X
6 X
8 X

X
X X X

X X X
X X

X X X

k = 2
N = (2,4, 8)
t2(2) = 2
t2(4) = 2
t2(8) = 4

I 2 2 4

Fig. 13.

It is evident that column 8 is the best choice for the spike so it is enter-
ed in the S array with L = 2. This leads to the following tableau:

C R S

3 5 5
6 7 8
1 1
7 4 L = 2

3 6 1 7 2 4 8 5 J

5 ® x
71 X ~) X (~

4 x ®

2
3 X
6 X
8 X

X

X X X 1
X X X 1
X X 1

X X X 1

2 2

k = l
N = (2, 4)
t l (2) = 2
t l (4) = 2

Fig. 14.

212 E. Hellerman and D. Rarick

The tableau shows that vectors 2 and 4 are equally good for the basis
at this time. Furthermore, either one will give q a value of two so the
spike vector in position S 2 may follow either vector into the basis. This
is illustrated by:

C R S

3 5 5
6 7
1 1 L = I
7 4
2 2
8 8

3 6 1 7 2 8 4 5 J

5 ® x
7 X x®
1
4 XI~)
2 ® x
8 X X(~)

X X
X X

k = l
X N={4}
X t1(4) = 2
X

X X
X

I 2

Fig. 15.

Vector 4 will be pivoted next and this generates a pivot row for the
final spike, vector 5. The complete pivot sequence is now displayed as:

C R S

3 5
6 7 L = 0
1 1
7 4
2 2
8 8
4 3
5 6

6 1 7 2 8 4 5

(1

Fig. 16.

We have designated by a • the creation of a nonzero element in that
position.

The complete structure is displayed as:

Re&version with the preassigned pivot procedure

Col, indices

12 9 3 6 1 7 2 8 4 5 10 11

213

O

12
9
5
7
1
4
2
8
3
6

10
11

Ox ®
x
X

X
X

X
X
X

x x 0 x

x

®

X
X - - -

X

X
® x x
x ® x

x ® x
®
x N

Fig. 1%

Notice that nonzeros are created only within spikes. However it is pos-
sible to prevent the creation of nonzeros outside the rows and columns
of an external bump by partitioning the r/ into the rows within the
external bump and those outside. Thus:

~ 1 2 Col. indices
• @12 9 3 6 3 6 1 7 2 8 4 5 7 2 8 4 5 10

9 I X ? ~ - - ~ (D (D

I X -X @
° x ® x ~ 4 X

2 ®X X (~)
8 -x x® x / O
3 x x x ® x / 0
6 X -X X X C) | (~)

11

10
11

X - X - X - X - X - ~
-x x -x x ®

Fig. 18.

In the figure we have two external bumps, one of dimension 2 and one
of dimension 5. By partitioning as suggested by E.M.L. Beale, we actual-
ly form two sets of ~7 vectors, one for the rows in the bumps and one

214 E. Hellerman and D. Rarick

for the full vector. However, we know that if the set o f r / fo r elements
within the bump are applied to the full vector we will have unity in
each position for which there was a pivot and zero elsewhere within
the external bump. Knowing this we can take advantage of the situation
and save the calculations by merely inserting the 1 where it is needed.
The - X represents the negatives of the original elements of those
columns and rows and this is one of the easiest kinds of transformations
to make. In the example shown there is no real savings to be realized by
partitioning, for the number of unity elements created exceeds the
number of new elements that would be created otherwise. In the gener-
al case, however, there are many more elements below the base line of
the external bump, so the partition does prevent buildup of nonzeros.
The procedure as presented is concerned only with the construction of
the column and row pivot sequence. Tests may be added in steps 3 and
4 to detect singularities. During the scan of column counts (step 3), a
column with a count of zero should be dropped from the basis. During
the row count scan (step 4), the appearance of zero count in an unas-
signed row indicates a redundant constraint.

When the ETA are ultimately formed in the pivot list sequence, it is
necessary to guard against pivoting on an element that is too small.
However, if we assume that all matrix elements are pivotable (this can
be arranged by column and row scaling), then it is~ obvious that all
non-spike columns may pivot wi thout difficulty. If the updated pivot
element of a spike becomes too small to be used as a pivot, it becomes
necessary to "swap" spikes among the set of spikes within the external
bump. We assert that if a matrix is not singular, there exists an arrange-
ment of the set of spikes within each external bump such that every
spike within the bump may pivot upon an element of suitable size *
In' practice we have found that very few spike interchanges are made per
inversion.

5. Conclusions

The preassigned pivot procedure, while heuristic in nature, tends to
give very good results in terms of speed and minimizing the nonzero
buildup of ETA.

* A proof of this statement will be contained in a forthcoming paper.

Reinversion with the preassigned pivot procedure 215

This algorithm performs well for several reasons:
a) Having the pivots preassigned before any r/is created, we know in

what order the basis matrix will be needed, and so can sharply
reduce basis matrix I/O.

b) We have carried triangularization of the matrix much farther than
the old schemes, not just at the front and back of the matrix, but
between the bumps and even within the bumps themselves. For all
of these non-spike vectors, the ~ can be created directly from the
basis vectors themselves, thus saving a considerable amount of work.

c) The few vectors that do need to be updated, i.e., the spikes, are
usually updated only by a small subset of ETA, and so the updat-
ing goes quite fast.

Another feature of this algorithm is that the amount of arithmetic done
is very small, and so the round-off error is smaller than with the older
schemes.
Finally we would like to point out that since the nonzero buildup in
ETA is substantially less than with the older schemes, the iterating
routines run noticeably faster. And since the invert routine is faster,
we cas afford the overhead of an invert more often and hence keep the
ETA small. As a result, most problems solve in 1/2 to 2/3 the time
previously required.

Acknowledgement

This work was essentially completed while the authors were em-
ployed by CEIR Professional Services Division of CDC, Washington.

References

[1] H.M. Markowitz, "The elimination form of the inverse and its application to linear pro-
gramming," Management Science 3, No. 3 (1957) 255-269.

[2] D.V. Steward, "On an approach to techniques for the analysis of the structure of large
systems of equations," SIAMReview 4, No. 4 (1962) 321-342.

[3] P. Wolfe and Leola Cutler, "Experiments in linear programming," Recent advances in
mathematical programming (McGraw-Hill Book Co. Inc., New York, 1963) pp. 177-200.

[4] G. Zoutendijk, Methods of feasible directions (Elsevier Publishing Co., Amsterdam) pp.
52-55.

216 E. Hellerman and D. Rarick

Appendix

Performance comparison between preassigned pivot procedure (MPS/III) and IBM (MPS/360)
inversions

PROBLEM NUMBER I 2 3 4 5

NUMBER OF ROWS 589 782 838 903 977
NUMBER OF BASIC STRUCTURALS 513 651 522 822 782
NUMBER OF BASIS NON ZEROS 4946 7976 5942 3883 4343

NUMBER OF ETA NON ZEROS MPS/III 5734 9485 5833 4176 4780
MPS/360 6543 19879 6212 8651 7806

DENSITY INCREASE MPS/III 0.16 0.19 -0 .02 0.08 0.10
MPS/360 0.32 1.49 0.05 1.23 0.80

TIME TAKEN MPS/III 0.14 0.38 0.22 0.21 0.28
MPS/360 0.45 2.14 0.69 1.33 1.29

FACTOR OF SPEED IMPROVEMENT 3.2 5.6 3.1 6.3 4.6

NUMBER OF BUMPS MPS/III 3 19 16 15 22

NUMBER OF SPIKES MPS/III 23 108 24 32 68

Notes: 1) DENSITY INCREASE = (ETA NON 'ZEROS - BASIS NON ZEROS)/BASIS
NON ZEROS

2) BASIS NON ZEROS includes the slacks for all logicals in the basis.
3) ETA NON ZEROS includes the slacks for only the logicals in the basis which are

on greater than rows.
4) The MPS/360 invert used is the fast invert (i.e., XINVERT = 0) as provided by

IBM in their version 2, mod 9 MPS/360 system.
5) For each problem, the MPS/III and the MPS/360 inverts were executed in the

same job step of the same run so that the timing could be compared. A 360
model 50 and region sizes of 150K and 200K were used.

