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Mathematical programming computer systems using the product form in the inverse (PFI) 
must periodically resort to a reinversion with the ctirrent basis in Order to reduce the amount 
of work to be done in the succeeding iterations. 

In this paper, we show the consequences of column, pivot selection and sequence upon the 
transformation vector (ETA) density and give an algorithm which will tend to minimize eta 
density and work done per iteration. 

The algorithm has been implemented and tested as a replacement for the previous inversion 
algorithm on the OPTIMA system for the CDC 6000 computers and on the MPS/III mathemati- 
cal programming system for the IBM 360 computer. A comparative performance table is given. 

1. Introduction 

Mathematical programming production codes generally use the prod- 
uct  form of  the inverse (PFI) in the course of  obtaining solutions. 
Studies have shown that PFI or some variant of  PFI seems to be one of  
the more efficient techniques available for use on large problems [3, 4] .  
However, a characteristic of  PFI is that with each pivot an increasing 
additional amount  of  work must be done in order to compute  the 

* This paper was presented at the 7th Mathematical Programming Symposium 1970, The 
Hague, The Netherlands. 
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"'pricing" vector and in transforming the "selected" vector to its repre- 
sentation in terms of  the current basis. This comes about  because each 
pivot adds an additional transformation vector (7) to the set o f  transfor- 
mation vectors (ETA) which imply the inverse. It is easy to see that after 
some number of  pivots the amount  of  work done per iteration may be 
significantly greater than what  it was at the initial iteration. At some 
point  the economics of  the situation demands that the larger set  of  ETA 
be replaced by a smaller set representing the same basis. This replace- 
ment  is usually accomplished by a program called " INVERT"  or 
' "REINVERT" which resides within the mathematical programming 
system. The mathematical problem which " INVERT"  tries to solve 
may be stated in the following manner: 

Given - a set o f  basic variables 
Find - a set of  transformation vectors (ETA) which imply the inverse 

of  the basis in such a way as to 
a) minimize the number  of  nonzero elements in ETA and 
b) minimize the work done in forming the ETA. 

Markowitz's [1] observations in connection with the minimization 
of  the number of  nonzero elements when forming the ETA have long 
been the starting point for reinversion techniques in mathematical 
programming. 

In this paper we 
a) Review some pertinent aspects of  PFI 
b) Show the consequences of  pivot sequence upon ETA nonzero 

density 
c) Give an algorithm which seeks to find a pivot sequence which 

will tend to minimize the ETA nonzero density and the work 
which must be done. 

The algorithm discussed is called "Preassigned Pivot Procedure" and it 
has been implemented and tested as a replacement for the previous 
inversion scheme on the OPTIMA mathematical programming system 
for the CDC 6000 series computers  and on the MPS/III mathematical 
programming system for the IBM 360 computer.  It performs the rein- 
version some six to ten  times faster than its predecessor on OPTIMA. 
The Appendix contains a performance comparison between this proce- 
dure and the IBM MPS/360 inversion. 

It has recently been called to our attention that our work is somewhat  
related to that of  Steward [2] .  
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2. Pertinent aspects of  PFI 

It is well known that under suitable conditions a matrix A may be 
transformed to the identity matrix I by a series of  elementary row 
transformations. Furthermore an elementary row transformation on A 
may be expressed as the product  EA where E is an elementary matrix 
whose unique column is in the column index position corresponding to 
the pivot row index position. By way of  illustration, suppose we have 
the vector  

m 

1 

and we wish to apply an elementary 
row transformation so as to make it 

what must E become? 
Another  way of  expressing the question is 

I 
1 '~ 

1 '~ 
1 '~ 

1 ? 
9 

9 

] 1 

5 
2 

12 
- 7  

0 
0 
0 
0 
1 

i_0 

E A 

Upon solution we find 

1 
1 

-1/12 
1/12 

-5/12 
-2/12 

1/12 
7/12 

m 

li 
1 

and we see immediately that the rule for forming the elements of  the 
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unique column of  EP (the superscript denotes the pivot row-column 
index) is 

~p = 1lap where p = pivot index 

rli = --ai/ap ( i 4= p ) .  

This unique column is indeed the r /we previously mentioned. In actual 
practice it is only necessary to record the ~ and its pivot index rather 
than the full EP in order to apply EP as needed. Also the zeros within 
an r~ need not be recorded. There are other more abbreviated ways to 
carry a modified r~ but  for the sake of  exposition we will adhere to the 
rules above. 

The rule for applying an 77 to an arbitrary vector V is as follows: 
a) Extract  vp = Vp,  then set Vp = 0. (The p comes from E p and 

Vp is now_called the scalar multiplier.) 
b) Compute V i = V- + v_p r~i" 

Note that if vp = 0 than V i = V i and no element of V i will change. 
The equivalence of  our rules and the arithmetic in extenso of  Ep V may 
easily be verified by the reader. 

An example of the rules is now given. Suppose we have 

X =  

1 
- 1  

5 
2 

12 
- 7  

. 

2 

a n d Y  = 3 andr/5 = 
4 
0 
6 

-1 /12~  
1/12|  

-5/12| 
- 2 / 1 2 |  

1 /12 |  
7/12~ 

Then the computat ion of @ X  and @ Y appears as 

_ 

1 
5 

71 

+ 1 2  

1/12 
1/12 
5/12 
2/12 
1/12 
7/12 

0 
0 
0 

and 
0 
1 
0 

1 
2 
3 
4 
0 
6 

+0 

- 1 / 1 2 ]  
1/12 / 

- 5 / 1 2 [  = 
-2/12| 

1/12 L 
7/12.] il 

X i + x s rl s = X~ 

(i~= 5) 

Yi +Ysr/5 = Yi = Yi 

(i4= 5) .  
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In the case of  X we verify our original transformation. The case of  Y 
shows that if the vector  to be transformed has a zero in the position 
corresponding to the pivot of  the r /be ing  applied then no element is 
changed because r/has a zero multiplier. 

It is necessary to call at tention to just  one more aspect o f  PFI. We 
note that if 

EPm m . EPm_~I ... EPl 1 A = I then 

( EPm m ~'Pm- 1 EPl I ) = A -  1 
• r~m_ 1 ... 

The implication here is that normally we have a succession o f  ETA in 
sequence applied to a column of  A (say Ai) to transform it to its repre- 
sentation in terms of  the current basis. 

3. Consequences of  pivot sequence of  ETA nonzero density 

The basic procedure in developing the set of  ETA representing the 
inverse of  the basis is as follows: 

a) Select a column of  the basis not  already used for pivoting 
b) Transform the column by applying the current set of  ETA in the 

order of  generation. 
c) Choose a pivot element for the transformed column in a row 

(p) where no column has pivoted previously. 
d) Form an r/P from the transformed column and add to the ETA 

set. 
e) Repeat  steps a through d until all columns have been pivoted. 

It is unders tood that column selection may be done on a random basis 
and within the rules we may pivot on any nonzero because the effect  
of  these actions is to merely give us a different permutat ion of  I and 
this is acceptable. 

If we do have such freedom of choice in column and pivot row selec- 
tion, does the sequence in which we use columns and rows have any 
impact on ETA nonzero density? A small example will show that it does. 
Take for example the matrix 

A.1 A.2 A.3 

A2. 0 
A3. 4 
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If we were to use the pivot sequence 

Col Row 

A.3 A3. 
A.2 A1. 
A.1 A2. 

ETA set would be 

~./3 771 72 

- 3  -~ /4  [I/121 
l-i/31 

I12 LII 2 _I Lll6 _I 

On the other hand if our pivot sequence is 

Col Row 

A.3 A2. 
A.1 A1. 
A.2 A3. 

~/2 ~71 ~73 

[,l L 11 6, o o then the ETA set 0 
would be L-I/3J - 2  i/4 

To verify the equivalence of both sets let us apply each set to an 
arbitrary vector e. 

77 3 r/1 r/2 

[-~lli2 I-~/41 F1 / 12 ] l i  I i  I ][- 1/6] A.22/3/A.1 ] -1 /3]  applied to yields ~_ 1/6j A.3 
L.,2 j [_ 1/6~ 

?/2 r/1 r/3 

[oO ] Ii 1/6 t]  0 |  applied to 
-1 /3 j [_ -2J  1/4 

yields 
2/31 A. 1 
1/6] A.3 

- 1 / 6 j  A.2 

We note that the values associated with a column are the same in 
both cases - only a permutation has taken place. We also observe that 
for the first sequence of ETA we have 100% density of nonzeros while 
the second sequence has 66.6% density which is exactly the density of 
the original matrix. 

If we consider how this reduction in nonzeros comes about it be- 
comes apparent that we took advantage of zero multipliers. Indeed we 
see that if we pivot in sequence down the diagonal of a matrix of the 
form L + D (lower triangle plus nonzeros on the diagonal) then no new 
nonzeros are added to ETA because each pivot element has nothing but 
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zeros to its right and hence zero multipliers. Therefore, as in fig. 1, 

X X ~  X represents nonzero 

x 
X X X 

Fig. 1. 

if we can select the sequence of columns and pivot rows in an arbitrary 
sparse matrix in such a way as to find this structure we will save all the 
work of transforming each vector by the existing set of ETA. The ques- 
tion now becomes - how can we find this structure or how close to this 
structure can we get? 

4. The preassigned pivot procedure 

We immediately notice the following: 
a) The first or topmost  pivot is characterized by the fact that this 

is the only nonzero element in the row. 
b) The last or lowest pivot is characterized by the fact that this is 

the only nonzero element in the column. 
Therefore a recursive technique with the following logic is suggested: 

1. Initialization: 
All references to columns and rows are made via indices. 
Let ~-= the number of pivotal positions required. 
a) Set the following parameters: 

(i) /2 = /2 to be used for indexing the backward triangle 
(ii) v = 1 to index the forward triangle 
(iii) L = 0 to index spikes 

b) Allocate space for the following vectors of dimension ~: 
(i) Csequence of column pivots 
(ii) R sequence of  row pivots 
(iii) I column counts 
(iv) J row counts 
(v) S spikes 
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2. Compute the number of  nonzeros in each column and each row 
and record in I and J respectively. 

3. Scan column counts (array I) 
a) if there is no count equal to one, go to 4. 
b) if a count of  one is found, then 

(i) record the column (index) in C u 

(ii) record the row (index) of  the nonzero element in R u 

(iii) reduce the column counts (/) of  those columns containing 
nonzero elements in the row recorded in R u 

(iv) mark the column and row of  C u and R u as no longer avail- 
able  

(v) s e t / a = / ~ - I  
(vi) if/a -- 0, go to 5; otherwise go to start of 3. 

4. Scan row counts (array J but exclude rows marked tmavailable) 
a) if there is no count equal to one, go to 5 
b) if a count of  one is found, then 

(i) record the row (index) i n R  v 

(ii) record the column (index) containing the nonzero element 

in C v 
(iii) reduce the row counts (Jr) of  those rows for which the 

column recorded in C, has nonzeros 
(iv) mark the column and row of C~ and R v as no longer avail- 

able 
(v) s e t v = v + l  
(vi) if v >/a ,  go to 5. 
(vii) i fL  = 0, go to start of  4; otherwise go to 9. 

5. Test for completion or start of  bump. 
Note that at step 5 we have one of  two possible situations: either 
the matrix has been completely triangularized or at some point 
each remaining row and column has two or more nonzero ele- 
ments. In the latter case the number of  vectors for which we must 
still find pivots is/a - v + 1. 

To bring the concept into better focus we illustrate with a matrix 
(fig. 2) which we will latter carry on to completion. 
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8 

O 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

Col. 
counts  

Counts  
when 
/~--- 

Co lumn indices 

1 2 3 4 5 6 7 8 9  

X X 
X X X 

X X  X X X  
X X X 

X X X 
X X X 
X X 

X X X X 

X X X X 
X X X X 

10 11 12 

X 

X 

X 
X 

N® x 

x® N 

3 3 4 3 5 4 4 5 4 2 1 6  

Count  
Row when v = 
counts  1 2 

3 2 2 
3 3 3 
5 5 4 
4 3 3 
3 3 2 
4 3 3 
3 3 2 
4 4 4 
2 1 * 
6* 
6* 
1 * 

12 
11 

C R 

12 12 
9 9 

10 10 
11 11 

2 3 3 3 4 4 3 5 4 1 * 6  
2 2 3 2 4 4 2 4 4  * 5 

( ~  pivot  detected on co lumn  scan 
[ ]  pivot detected on row scan 

Fig. 2. 

We have n o w  reached  a po in t  where  all r ow and c o l u m n  c o u n t s  are 
t w o  or  more .  A t  this p o i n t / 2  - v + 1 = 8 so we k n o w  tha t  we still have  
eight  co lumns  to p ivo t  and these  co l um ns  are re fe r red  to  as the  " b u m p " .  
The  reason  for  this des ignat ion  b e c o m e s  clear  i f  we display the  ma t r ix  
in its rea r ranged  f o r m  as in fig. 3. 

O 
t~ 

Col. indices 

121 9 

1 X 
2 
3 X 
4 X 
5 X 
6 X 
7 X 
8 

10 X 
11 

1 2 3 4 5 6 7 8 10 11 

X X 
X X X 

X X X X 
X X X 

X X 
X X X 
X X 

X X X X 

X X (~) X X 
X X X X X (~) 

Fig. 3. 
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In general we can present any matrix at this stage (if it has not  been 
completely triangularized) as in fig. 4, 

B 

Fig. 4. 

where in sections A and E we have found pivots on the main diagonal 
and all other nonzero elements are below. Section B is all zero. The 
" b u m p "  section C has at least two elements in each row and column 
within the section. Section D contains the elements below section C. 

It has been found that the greatest amount  of  work and the buildup 
of  nonzero elements in ETA occur as a consequence of  the technique 
used in processing sections C and D. This can be understood immediate- 
ly when we see that sections A and E have zero multipliers as we proceed 
down the diagonal. Therefore the major problem at hand is how to cope 
with the nonzero buildup in sections C and D. 

A method of  reducing such nonzero buildup would be to break sec- 
tion C into two or more bumps, so that the nonzero buildup would be 
limited to these smaller bumps. Such bumps we call external bumps. 
Fig. 5 shows sections C and D broken up into three external bumps, 
sections G, H, and K. 
Section F, like section B, is all zero. We can treat sections L and M just  
like sections A and E. 

Remembering the success of  the zero multiplier technique in sec- 
tions A, L, M, and E, we would like to arrange the rows and columns 
of  each external bump (sections G, H, and K) so as to have as many 
columns as possible with only zeros above the main diagonal. In fig. 6, 
everything above the main diagonal is zero except where the vertical 
solid lines are shown. 
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G 

\ 

H 

\ 

b4 

[ 
Fig. 5. 

The columns of  the matrix which contain these vertical lines are called 
spikes. The external bumps G, H, and K have been indicated by the 
dotted lines. The right hand edge of  each external bump is always a 
spike with a nonzero in the upper position. This can always be achieved 
by a suitable arrangement of  rows and columns within an external 

I • 

I 

I . . . .  

Fig. 6. 
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bump. The other spikes (which are the right hand edges of  internal 
bumps) should be as short as possible so that they will be transformed 
with the smallest subset o f  ETA. 

The remainder of  this paper is devoted to the techniques we develop- 
ed to find the spikes and external bumps. 

At this time we know that no matter  which column we choose to 
pivot next, there will be at least one additional column that has an ele- 
ment  in the pivot row and thus will become a spike. Therefore, instead 
of  selecting the column to pivot we address ourselves to the problem of  
spike selection. It soon becomes evident that the best vector  to select 
as a spike is one which 

a) when its effect is removed from the row counts,  will create a 
maximum number  of  row counts of  unity (as vectors selected on 
the basis of  unity row counts need not  be updated),  and 

b) will be able to pivot as soon as possible ( thereby being updated 
by  the smallest subset of  ETA). 

It is not  always possible to achieve these goals with one spike, so to be 
realistic, we state our goal to be generally - select the spike in such a 
way as to make as many small, row counts as possible become even 
smaller. In order to do this  we will need a tally function defined as 
follows: 

tg(n) = the number of  nonzeros that column n has in rows 
whose row counts are less than or equal to  k. 

Thus: t2(6) = 3 means that column 6 has 3 elements in rows with a 
row of two or less. 

We can now give the rules for spike selection. We shall also consider 
that these rules are a continuation of  the technique already given for 
processing the forward and backward triangles of  the matrix (section 
A and E of  fig. 5). Therefore we continue at step 5 of  the procedure as 
follows: 

5. Test for completion or start of  bump: 
a) if v >/~, go to 14 (END) 
b) if v <_ g, then 

(i) set k = minimum nonzero row count  (J) 
(ii) define N as the set of  vectors not  found in C or S 

6. Compute  the tally functions tk(n) for all n ~ N 
7. Spike decisions: 

a) if maximum t k (n) > 1, then 
(i) if unique, label it ns, go to 8 



Reinversion with the preassigned pivot procedure 207 

(ii) if not  unique, select n s from the maximum tally columns 
as the co lumn with the greatest column count  or  if  these 
are equal make an arbitrary selection from among them 
and go to 8. 

b) if maximum t k (n )=  1, then 
(i) define N to be the set of  vectors for which t k ( n )  = 1 

(ii) redefine k = min. row count  greater than previous value 
of  k 

(iii) go to 6. 
8. Spike array entry: 

a) s e t L = L + l  
b) enter n s into S z 

c) reduce row counts of  J in all rows for which n s contains non- 
zeros. 

9. Scan row counts (Jr) for path decisions 
a) if  rain J > 1, go to 5.b.i. (another spike) 
b) if min J = 1 and is unique, or if L = 0, go to 4.b. 

Applying these rules to the bump of  our sample problem we have: 

C R S 

6 

L=I 

1 

1 X 
2 
3 
4 X 
5 
6 
7 
8 

2 3 4 5 6 7 8  J 

X 
X X X 

X X  X X  
X X 

X X 
X X X 
X X 

X X X X 

2 k = 2  
3 N- -  {1, 2, 3 ,4 ,  5, 6, 7, 8} 
4 t2(1) = 1 t2(5) = 0 
3 t2(1) = 0 t2(6) = 3 
2 t2(3) = 2 t2(7) = 0 
3 t2(4) = 0 t2(8) = 0 
2 ns=6 
4 

1 2 2 3 2 4 4 2 4  

Fig. 7. 

If  we now reduce the row counts in J according to the nonzeros of  
column 6 we have: 
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I 2 2 

1 2 3 4 5 7 8 6 

X X 1 
X X X 3 

X X X X 4 
X X X 3 

X X 1 
X X X 3 
X X 1 

X X X X 3 

2 2 3 4 4 

Fig. 8. 

We note that the minimum nonzero J = 1 but it is not  unique. This 
motivates us to think that if we can find a single vector which will re- 
duce two or more counts of J to zero then we would have an oppor- 
tunity to assign a pivot row to the spike. In order to find such a vector, 
it turns out that the tally fimction is the best tool to use. Therefore we 
may continue with the statement of the algorithm rules at step 9.c. in 
the following manner: 

9. c) if rain. J = 1 and is not unique, then 
(i) set k = 1 
(ii) define N as the set of  vectors not lis,te~l in C or S 

10. Compute the tally function tk(n)  for all n e N. 
11. Vector and pivot selection 

a) if maximum t k (n) > 1 then 
(i) if unique, label it np, go to 11.c. 
(ii) if not unique, select Up from the maximum tally columns 

as the column with the greatest column count, or if these 
are equal make an arbitrary selection from among them 
and go to 11.c. 

b) if maximum tk(n)  = 1, then 
(i) define N to be the set of vectors for which tk(n)  = 1. 
(ii) redefine k = minimum row count greater than previous 

value of  k. 
(iii) go to step 10. 

c) define q = t 1 (rip) 
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12. Make pivot  list en t ry .  

a) record  np in C v 
b) record  in R~ a row o f  np which  is n o n ze ro  and for  w h i c h J  = 1. 
c) mark np and its p ivot  row as no  longer  available 
d) reduce  the row counts  in J fo r  all rows tha t  have nonze ros  in np 
e) set v = v + 1 
f) if  v > / a ,  go to 14 

g) s e t q  = q  - 1 
h) i f  q = 0, go to  9; o therwise  go to  13 

13. E n t e r  spike in to  basis list. 

a) r ecord  the vec to r  o f  S L in C v 

b) record  in R~ a row tha t  was reduced  to zero  in J 

c) set L = L - 1 
d) go to  12.e. 

14. End.  

We can now finish the example  according to  the a lgor i thm in the fol- 

lowing manner :  

C R S 

6 

L = I  

1 2 3 4 5 7 8 6  J 

1 X 
2 X X X 
3 X X X X 
4 X X X  
5 X 
6 X X X 
7 X 
8 X X X 

1 2 2 3 2 4 2 4  

X 1 k = l  
3 N =  (1, 2, 3, 4, 5, 7, 8)  
4 t l (1 )  = 1 t l (5 )  = 0 
3 t l (2 )  = 0 t l (7 )  = 0 

X 1 t1(3) = 2 t l (8 )  = 0 
3 t l (4)  = 0 

X 1 
X 3 np= 3 q= 2 

Fig. 9. 

The r e f o r e  ve c to r  n u m b e r  3 is selected to  p ivot  in e i ther  row 5 or  row 7. 
We pivot  vec to r  3 on row 5 and this leaves row 7 available as a p ivot  row 
fo r  the  spike, vec to r  6. 



210 E. Hellerman and D. Rarick 

C R S 

3 5 
6 7 

L = 0  

3 6 1 2 4 5 7 8 

5®x  
7 x ®  

1 X 
2 
3 
4 
6 X 
8 X 

X 
X X X 

X X X  X 
X X X 

X X 
X X X 

I 2 2 2 4 2 4  

Fig. 10. 

Now we have a unique minimum count of  one in J,  so rule 9.b returns 
us to forward triangle (section 4.b). As a result we have: 

R S 2 4 5 7 8 J ~ = 2 
N =  (2 ,4 ,  5, 7, 8} 
t2(2) = 0 t2(7) = 1 

L = 0 t2(4) = 1 t2(8) = 1 
t2(5) = 1 

3 6 1  

s ~ x  
7 x ®  
1 x ®  

2 
3 
4 X 
6 X 
8 X 

X X X 
X X X X 

X X 
X X 

X X X 

3 k = 3  
4 ;v= (4, s,7, 8} 
2 t3(4) = 1 t3(7)  = 1 
2 t3(5) = 3 t3(8)  = 3 
3 

I 2 2 4 2 4  

Fig. 11. 

Here we have shown that the minimum row count in J is greater than 
unity so we must select a spike. The use of  the tally function with k = 2 
is not  adequate to select the spike, so we raise k to a value of  3 and 
work with the reduced set N and find that vectors 5 and 8 are equally 
good in tally and in column counts. If  we select vector 5 as the spik6 
we display our matrix and carry on as follows: 
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C R S 

3 5  5 
6 7  
1 1 L = I  

3 6 1  

2 
3 
4 X 
6 X 
8 X 

2 4 7 8 5  

X X X  
X X X X  

X X 
X X 

X X X  

I 2 2 2 4  

2 m i n J =  1 
3 (unique) 
1 
2 
2 

Fig. 12, 

We see that  the minimum J is one and is unique, so we can assign row 4 
as the pivot row for column 7, We show this and continue as follows: 

C R. S 

3 5  5 
6 7  
1 1  L = I  
7 4  

3 6 1 7 2 4 8 5  J 

5 ® x  
7 x @  
1 x ®  
4 x ®  
2 
3 X 
6 X 
8 X 

X 
X X X 

X X  X 
X X 

X X X 

k = 2  
N =  (2,4,  8) 
t2(2) = 2 
t2(4) = 2 
t2(8) = 4 

I 2 2 4  

Fig. 13. 

It is evident that column 8 is the best choice for the spike so it is enter- 
ed in the S array with L = 2. This leads to the following tableau: 

C R S 

3 5 5 
6 7 8 
1 1 
7 4 L = 2  

3 6 1 7 2 4 8 5  J 

5 ® x  
71 X ~ ) X ( ~  

4 x ®  

2 
3 X 
6 X 
8 X 

X 

X X X 1 
X X X 1 
X X 1 

X X X 1 

2 2  

k = l  
N =  (2, 4)  
t l (2)  = 2 
t l (4)  = 2 

Fig. 14. 
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The tableau shows that vectors 2 and 4 are equally good for the basis 
at this time. Furthermore,  either one will give q a value of two so the 
spike vector in position S 2 may follow either vector into the basis. This 
is illustrated by: 

C R S 

3 5 5 
6 7  
1 1  L = I  
7 4  
2 2  
8 8  

3 6 1 7 2 8 4 5  J 

5 ® x  
7 X x® 
1 
4 XI~)  
2 ® x  
8 X X(~)  

X X 
X X 

k = l  
X N={4}  
X t1(4) = 2 
X 

X X 
X 

I 2 

Fig. 15. 

Vector 4 will be pivoted next and this generates a pivot row for the 
final spike, vector 5. The complete pivot sequence is now displayed as: 

C R S 

3 5 
6 7 L = 0  
1 1 
7 4 
2 2 
8 8 
4 3 
5 6 

6 1 7 2 8 4  5 

(1 

Fig. 16. 

We have designated by a • the creation of  a nonzero element in that 
position. 

The complete structure is displayed as: 
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Col, indices 

12 9 3 6 1 7 2 8 4 5 10 11 
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O 

12 
9 
5 
7 
1 
4 
2 
8 
3 
6 

10 
11 

Ox ® 
x 
X 

X 
X 

X 
X 
X 

x x 0 x 

x 

® 

X 
X - - -  

X 

X 
® x x 
x ® x 

x ® x 
® 
x N 

Fig. 1% 

Notice that nonzeros are created only within spikes. However it is pos- 
sible to prevent the creation of  nonzeros outside the rows and columns 
of  an external bump by partitioning the r/ into the rows within the 
external bump and those outside. Thus: 

~ 1 2  Col. indices 
• @12 9 3 6 3 6 1 7 2 8 4 5 7 2 8 4 5 10 

9 I X ? ~ - - ~ ( D (  D 

I X -X @  
° x ®  x ~  4 X 

2 ®X X (~) 
8 -x x® x /  O 
3 x x x ® x /  0 
6 X -X X X C ) |  (~) 

11 

10 
11 

X - X - X - X - X - ~  
-x x -x x ® 

Fig. 18. 

In the figure we have two external bumps, one of  dimension 2 and one 
of  dimension 5. By partitioning as suggested by E.M.L. Beale, we actual- 
ly form two sets of  ~7 vectors, one for the rows in the bumps and one 
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for the full vector. However, we know that if the set o f  r / fo r  elements 
within the bump are applied to the full vector  we will have unity in 
each position for which there was a pivot and zero elsewhere within 
the external bump. Knowing this we can take advantage of  the situation 
and save the calculations by merely inserting the 1 where it is needed. 
The - X  represents the negatives of  the original elements of  those 
columns and rows and this is one of  the easiest kinds of  transformations 
to make. In the example shown there is no real savings to be realized by  
partitioning, for the number of  unity elements created exceeds the 
number  of  new elements that would be created otherwise. In the gener- 
al case, however, there are many more elements below the base line of  
the external bump, so the partition does prevent buildup of  nonzeros. 
The procedure as presented is concerned only with the construction of  
the column and row pivot sequence. Tests may be added in steps 3 and 
4 to detect  singularities. During the scan of  column counts (step 3), a 
column with a count  of  zero should be dropped from the basis. During 
the row count  scan (step 4), the appearance of  zero count  in an unas- 
signed row indicates a redundant  constraint. 

When the ETA are ultimately formed in the pivot list sequence, it is 
necessary to guard against pivoting on an element that is too small. 
However, if we assume that all matrix elements are pivotable (this can 
be arranged by column and row scaling), then it is~ obvious that all 
non-spike columns may pivot wi thout  difficulty. If  the updated pivot 
element of  a spike becomes too small to be used as a pivot, it becomes 
necessary to "swap"  spikes among the set of  spikes within the external 
bump. We assert that if a matrix is not  singular, there exists an arrange- 
ment  of  the set of  spikes within each external bump such that every 
spike within the bump may pivot upon an element of  suitable size * 
In' practice we have found that very few spike interchanges are made per 
inversion. 

5. Conclusions 

The preassigned pivot procedure, while heuristic in nature, tends to 
give very good results in terms of  speed and minimizing the nonzero 
buildup of  ETA. 

* A proof of this statement will be contained in a forthcoming paper. 
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This algorithm performs well for several reasons: 
a) Having the pivots preassigned before any r/is created, we know in 

what order the basis matrix will be needed, and so can sharply 
reduce basis matrix I/O. 

b) We have carried triangularization of the matrix much farther than 
the old schemes, not just at the front and back of the matrix, but 
between the bumps and even within the bumps themselves. For all 
of these non-spike vectors, the ~ can be created directly from the 
basis vectors themselves, thus saving a considerable amount of work. 

c) The few vectors that do need to be updated, i.e., the spikes, are 
usually updated only by a small subset of ETA, and so the updat- 
ing goes quite fast. 

Another feature of this algorithm is that the amount of arithmetic done 
is very small, and so the round-off error is smaller than with the older 
schemes. 
Finally we would like to point out that since the nonzero buildup in 
ETA is substantially less than with the older schemes, the iterating 
routines run noticeably faster. And since the invert routine is faster, 
we cas afford the overhead of an invert more often and hence keep the 
ETA small. As a result, most problems solve in 1/2 to 2/3 the time 
previously required. 
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Appendix 

Performance comparison between preassigned pivot procedure (MPS/III) and IBM (MPS/360) 
inversions 

PROBLEM NUMBER I 2 3 4 5 

NUMBER OF ROWS 589 782 838 903 977 
NUMBER OF BASIC STRUCTURALS 513 651 522 822 782 
NUMBER OF BASIS NON ZEROS 4946 7976 5942 3883 4343 

NUMBER OF ETA NON ZEROS MPS/III 5734 9485 5833 4176 4780 
MPS/360 6543 19879 6212 8651 7806 

DENSITY INCREASE MPS/III 0.16 0.19 -0 .02 0.08 0.10 
MPS/360 0.32 1.49 0.05 1.23 0.80 

TIME TAKEN MPS/III 0.14 0.38 0.22 0.21 0.28 
MPS/360 0.45 2.14 0.69 1.33 1.29 

FACTOR OF SPEED IMPROVEMENT 3.2 5.6 3.1 6.3 4.6 

NUMBER OF BUMPS MPS/III 3 19 16 15 22 

NUMBER OF SPIKES MPS/III 23 108 24 32 68 

Notes: 1) DENSITY INCREASE = (ETA NON 'ZEROS - BASIS NON ZEROS)/BASIS 
NON ZEROS 

2) BASIS NON ZEROS includes the slacks for all logicals in the basis. 
3) ETA NON ZEROS includes the slacks for only the logicals in the basis which are 

on greater than rows. 
4) The MPS/360 invert used is the fast invert (i.e., XINVERT = 0) as provided by 

IBM in their version 2, mod 9 MPS/360 system. 
5) For each problem, the MPS/III and the MPS/360 inverts were executed in the 

same job step of the same run so that the timing could be compared. A 360 
model 50 and region sizes of 150K and 200K were used. 


