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The present paper concentrates on several problems of network flows and discrete 
optimization. Progress has been made on some of the problems while little is known about 
others. Some of the problems discussed are shortest paths, multi-commodity flows, traveling 
salesman problems, m-center problem, telepak problems and binary trees. 

The present paper concentrates on several problems of  network flows 
and discrete optimization. Progress has been made on some of  the 
problems while little is known about  others. Books and survey papers 
on networks and graphs are listed for general references. These books 
and papers form the first category of  papers listed under [A1] to 
[A17] .  

The second category of  papers is listed under B. Minimum discon- 
necting set. In proving the MAX-FLOW MIN-CUT theorem, Ford and 
Fulkerson [A5] developed a labeling method for finding a minimum 
cut separating the source from the sink in a network. The constructive 
p roof  picks out  the minimum cut which is nearest to the source (i.e. the 
number  of  nodes connected to the source is a minimum when the arcs 
belonging to the minimum cut are deleted). If all the minimum cuts are 
needed, Plisch [BS] has a computer  code to generate all the minimum 
cuts. The minimum cuts mentioned above were cuts separating the 
source and the sink. If  we just  want to disconnect the network by  
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deleting the nodes and without  first specifying the source and the sink, 
we can use the algorithm proposed by Kleitman [B4] for deciding if 
the minimum node disconnecting set is r or less. In other words, 
whether  the deletion of r nodes can disconnect the network. 

When there is more than one source-sink pair, each pair being for one 
special kind of flow, then we have mult i -commodity flows in a 
network. A natural question is to ask for the minimum disconnecting 
set separating all the sources from their corresponding sinks in the 
network. The problem becomes a set-covering problem and has been 
treated by Bellmore and Ratliff [B 1 ] [B2]. 

The labeling method [A51 finds the maximum flow in the network 
and picks out the minimum cut at the same time. The finiteness proof  
of  the labeling method depends on the arc capacities being integers so 
that the flow value can be increased by at least one unit before the 
maximum flow value v is reached. Thus, an upper bound on the number  
of  labelings required would be v, which is unknown at the beginning. 
When the arc capacities are real, the finiteness of the labelings has been 
obtained, by supplementing with some antizigzag rule (see for example 
[A10] ), but  no polynomial upper bounds on the number  of  labelings 
were obtained. Recently, Edmonds and Karp [B3] (reported in [A10] ) 
proposed a slight modification of  the labeling method and showed that 
the upper bound is O(n 3) where n is the number of  nodes in the 
network. 

The third category of  papers is lister under C. Shortest paths and 
negative cycles. This is an area in which people keep writing papers. 
According to the list compiled by Murchland [C8], there are more than 
100 papers already, and the number  is increasing rapidly. If  the lengths 
of  all arcs are positive, and the problem is to find the shortest paths 
from one node to all the other nodes, Dijkstra's method [C 1] requires 
O(n 2) operations, or O(m) operations where n is the number of  nodes 
and m is the number  of  arcs in the network. I f  shortest paths between 
all pairs of  nodes are required (lengths can be negative as long as no 
negative cycle exists), the method based on Warshall [C9] and Floyd 
[C4] needs 2n 3 operations. The method assumes no special structure of 
the network and works ju s t  as well for a large number  of  arcs as for a 
small number. A decomposition algorithm for larger networks with 
relatively small numbers of  arcs was first proposed by Land and Stairs 
[C7]. The decomposition idea was successively modified by Hu [C51, 
Hu and Torres [C61, and Yen [C101. Most papers on shortest paths or 
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negative cycles assume that the network is given as an n x n matrix 
initially and calculations are done in an "array" manner. If the network 
is given initially in a "list structure" then different types of algorithms 
would be more efficient. 

Turning to the subject of multi-commodity flows (listed under D), 
we must first make the distinction between those problems which 
require "arc flows" to be integers and those problems which do not. 
Those problems without the integer requirement can be formulated as 
large linear programs. These large linear programs can be solved by 
"row generating" or "column generating" techniques similar to the 
decomposition principle of Dantzig and Wolfe. The first paper solving 
multi-commodity flows using a column generating technique is by Ford 
and Fulkerson [DI] .  (In fact, the paper precedes the paper on the 
decomposition principle.) In that paper, a column generating subprob- 
lem becomes a shortest path problem. A more complicated problem in 
communication networks was solved by Gomory and Hu [D2]. Chap- 
ter 11 of Hu [A10] is devoted to multi-commodity flows using column 
or row generating techniques. Recently a game approach has been 
proposed by Grinold [D31. 

When we require the arc flows to be integers, then intrinsically, these 
problems become integer programming problems. The unimodular 
property for single-commodity flows no longer holds. For two 2 
commodity flows, Hu [D51 and Rothschild and Whinston [D9] have 
some results for undirected networks but no general results have been 
obtained on k-commodity flows for, say, k > 4. 

The fifth category of papers is listed under Traveling salesman pro- 
blems. This problem is usually cited as the problem of making a 
tour of n cities such that the total distance traveled is a minimum. The 
most common approaches to this problem are dynamic programming 
and branch and bound methods; see [E21. Some of the algorithms are 
quite successful in solving 50-city problems. But even with computers 
of today's speed, no algorithm is currently able to solve a 200-city 
problem. The upper bound on the number of steps needed to solve an 
n-city problem is 2 n or some exponential function of n. 

There have been some studies on the average number of steps needed 
to solve an n-city problem by the dynamic programming, cutting 
planes, branch and bound. The indication [El ] is that the average 
number of steps needed is O(n 4). Although there is a very efficient 
computer code based on [E4], it is very unlikely that there will be an 
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algorithm with a polynomial  upper bound.  On the other hand, a 
traveling salesman's problem with special structure on the distance 
function may have a very efficient solution; see for example [E3].  
When the cities are clustered into several groups, a decomposit ion 
approach may be used [E5] .  

The sixth problem may be called the m-center problem. One 
example of  how this problem may occur is as follows. Assume that the 
populat ion distribution of  the State of  Wisconsin is known. It is 
decided to build m theaters throughout  the state such that the maximal 
number  of  people can enjoy the shows. A reasonable objective function 
would be to minimize the total distance travelled by  all the people to 
the m theaters. Another  objective function might be to minimize the' 
maximal distance travelled by any one person. The plant-location or 
warehouse problem also belongs to this class. More abstractly, we will 
have a network with n nodes, each having a positive weight, and m 
centers are to be located in the network so as to minimize the total 
weighted distances between the centers and their assigned nodes. 
Various other choices of  objective functions are possible, some choices 
making the problem more difficult than the others. The problem is 
usually trivial when m = 1. Many seemingly unrelated problems actually 
belong to this class. For  example, let a continuous function of  a single 
variable be defined on a closed interval. We may want to approximate 
this function by step functions. If  we are allowed to use only five 
rectangles, what should be the heights and widths of  each rectangle 
such that the maximum deviation between the function and the step 
functions is minimum? 

Another  variation of  the problem may be to approximate a given 
step function (say n rectangles) by m rectangles (m < n). Very little is 
known about  the m-center problem. 

The seventh problem might be called the telepak problem. Let the 
distances be tween all the cities of  U.S.A. be given, and suppose that the 
required numbers of  telephone lines between every pair of  cities are 
also known. To satisfy the requirement, we may build exactly the 
required number  of  telephone lines between the two cities, and do the 
same for all the requirements. However, the cost of  building is not  
linear but  concave. That is to say, a single telephone line costs one 
doller per mile, bu t  if we build one hundred lines between two cities, it 
costs 75 dollars per mile. If we build two hundred lines between two 
cities, it costs, say, 120 dollars per mile. Because the cost is concave, it 
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is cheaper to pack the lines into major routes than to build all 
telephone lines directly. To illustrate the idea of the problem, suppose 
that we have six cities A, B, C, D, E and F as shown in fig. 1. The 
numbers in fig. 1 are the mileages between the cities. Let there be 50 
telephone lines required between city A and city C, and also between 
city B and city D. The total cost of  building direct lines between A and 
C, B and D is 

2 × 20 × 1 × 50 = 2000 dollars. 

If we do not  build direct lines between A and C but build the 50 lines 
by way of city B and city D, the total number of  lines to be built 
between B and D is 100, and a cheaper rate is available. Thus the total 
cost is 

2 X 4 × 1 × 50 + 100 × 0.75 × 20 = 1900 dollars. 

If we do not build direct lines between A and C and between B and 
D, but  build 50 lines between A and E, B and E, C and F, D and F, and 
also 100 lines between E and F, then the total cost is 

4 ×  3 ×  1X 5 0 +  100× 0.75X 16 = 1800dollars. 

The natural question is "what  is the cheapest network configuration 
that will satisfy all the requirements??" This telepak problem has 
many practical applications and is also of  interest from the theoretical 
point of  view. Let the cost of  building be c dollars per mile for a 
channel capable of  handling any large number of telephone calls. 
Assume that we are not  allowed to build through an intermediate city 
(such as E and F in fig. 1) unless there is a telephone line requirement 
starting or terminating in that city. Then the telepak problem 

2 0  

16 

20 

Fig. 1 
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becomes the standard problem of constructing a minimum spanning 
tree, for which a known efficient algorithm exists (see Kruskal [G5], 
Prim [G6]). If we are allowed to build through intermediate cities or 
even to create new junction points of telephone lines anywhere, then 
the telepak problem becomes the standard problem of Steiner's tree 
where no efficient general algorithm exists (the original Steiner's pro- 
blem allows creation of junction points anywhere). The telepak pro- 
blem has the flavor of the fixed-charge transportation problem but 
usually has thousands of cities involved. A n  algorithm which always 
gives the global optimum solution would necessarily have to examine all 
the data. This would be a formidable task. Here, I think the deter- 
ministic type of optimization method, such as the simplex method, 
may not be appropriate. Some approximate method which only 
examines local data should be applied (similar to the Y-~ transforma- 
tions [G1] ). The challenge is to establish an upper bound on the gap 
between the optimum solution and the approximate solution. 

The eighth problem might be called erasing a graph. Everyone knows 
that the PERT technique has been successfully applied to allocate a 
fixed budget among jobs of a project. The jobs are partially ordered 
due to technical restrictions (washing before drying, putting socks on 
before putting shoes on, etc.). More money allocated to a job gets 
that job done faster. Since the total budget of the project is fixed, the 
objective is to distribute the money optimally among the jobs such that 
the completion date of the project is earliest. The good thing about 
money is that if you do not use it now, you can use it later (no in- 
flation, please!). 

Let us now consider the optimum distribution of labor among jobs 
of a project. The jobs are partially ordered just as before. Now m 
workers are hired where any worker can do any of the jobs, every job 
needs a single worker, and every job takes one day for one worker. 
Under these extremely simplified assumptions, we can consider the jobs 
as nodes of an acyclic graph where the directed arcs indicate the order 
restrictions. Given the project represented by an acyclic graph, we can 
erase m nodes (jobs) at a time provided that we do not erase a node 
(job) before all its preceding nodes (jobs) are erased. What is the 
quickest way of erasing the graph? 

The difference between labor and money can be seen in the 
following situation. At a certain stage of the project, there may be only 
s starting nodes in the graph (m > s). Then the unused labor (m-s) at 
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the time is essentially wasted (remember that a job can only take one 
man), while in the PERT model, an excess of money can always be 
applied to a single job or jobs to shorten their normal duration. There 
are some scattered results in this area (see [H1], [H2], [H3] ), but no 
generel results. 

The ninth problem should be called Binary trees. Basically, we 
have a graph which is a tree. In fig. 2, we show a binary tree (called 
extended binary tree by Knuth [A12]). It is well known that in 
handling data in a computer, two kinds of information structures occur 
very frequently, namely, arrays and trees (or their generalized versions 
lists). Since all computers are intrinsically binary (including B.C.D. 
computers), it is no surprise that binary trees play an important role in 
handling information. Although there are many papers about trees in 
combinatorial mathematics, these papers are mostly about counting the 
number of trees in a class, not in searching for the optimum tree in a 
class. Since these problems usually come from the handling of informa- 
tion by a computer, the model is a very good representation of the real 
world. In operations research, binary trees give a new kind of optimum 
search problem unrelated to the search theory developed by B.O. 
Koopman and others. 

For example, we may have information files about n people; these 
files are listed alphabetically according to the last names. What is the 
optimum way to search the files by the computer such that the average 
number of steps is a minimum? A particular search algorithm is 
equivalent to a binary tree where the circular node corresponds to a test 
and the square nodes correspond to the files. In general, we want an 
optimum binary tree under various definitions of optimality. 

Several other topics related to networks and graphs are machine-job 
scheduling [J3], electrical networks, (see [J4], [J9]), telephone con- 
necting networks (see [J2]), matching and related topics (see [ J l ] ,  
[J5] ), or the'construction of a graph with prescribed degrees of vertices 

rig. 2 
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(see [J6], [J7], [J8]). These are all listed under J and will not be 
reviewed here. 

In recent years, a new branch of combinatorial mathematics has 
grown very rapidly. This new branch may be called discrete optimiza- 
tion, of which network flows and integer programming are subsets. 
Unlike the classical combinatorial mathematics which is concerned 
mostly with the existence or the number of configurations, discrete 
optimization searches for the optimal configuration among a finite 
number of configurations satisfying given constraints. Although the 
current development of discrete optimization is mostly towards algo- 
rithms, many deep and general theorems undoubtedly remain to be 
discovered in the future. 
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