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1. Introduction 

In this paper, we prove the following conjecture stated by Bela 
Martos [6]:  

I f  the nonconvex quadratic function ~(x) ½ xTDx + cTx is 
quasi-convex on the nonnegative orthant, it is pseudo-convex 
on the nonnegative orthant  provided c ¢ 0. 

This is an extension of  the results given earlier in [2],  [4] and [5]. 
While our demonstrat ion uses only ideas given in the latter papers, 
another proof  can be extracted from the work of  Arrow and Enthoven 
[ 1 ] as we shall show. 

In section 2, we review briefly the general definitions of  quasi, 
convexity and pseudo-convexity. We also recall there the definitions of  
positive subdefiniteness and strict positive subdefiniteness introduced 
by Martos in [4]. The results on pseudo-convex quadratic functions are 
summarized in section 3. Martos' conjecture is restated and proved in 
section 4. A second proof  is given in section 5. 

2. Basic definitions 

A real-valued function 4~ defined on a convex set S is quasi-convex if 
and only if 
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(x  e Slq~(x) ~ ~) is convex for all ~ eE 1 . 

For differentiable functions, the following "gradient-type inequality" is 
equivalent. For all x, y e S 

q~(y) 6 ~b(x) implies 7,q~(x) (y - x) 6 0. (1) 

A real-valued differentiable function ~b is pseudo-convex on the set S 
if and only if for all x, y e S .  

V~(x) (y - x) ~ 0 implies ~b(y) N ~b(x). (2) 

Differentiable convex functions are pseudo-convex and pseudo- 
convex functions are quasi-convex [3].  In order to avoid treating 
convex functions as trivial special cases in what we are considering here, 
we speak of  "merely quasi-convex (pseudo-convex) functions." 

Another  convenient term is "proper quadratic funct ion"  meaning an 
1 X T Dx  + c T expression of the form 5 x in which c =# 0. 

Recall  that a nonzero, nonnegative vector x is called semipositive; 
we denote this by writing x /> 0 (rather than x N 0 which means x is 
nonnegative and possibly 0). Naturally, x is seminegative (x ~< 0) if and 
only if - x  ~> 0. The same kind of terminology applies to real matrices. 
For example, D ~< 0 means that D is nonpositive (entry-by-entry) but 
not  the zero matrix. 

In [4],  Martos has identified a class of real symmetric matrices D 
and corresponding quadratic forms qdx) = x ~ Dx  called positive sub- 
definite. Their defining property is 

xXDx  < 0 implies Dx >>- 0 or Dx ..< O. (3) 

Moreover, the quadratic form ~ is strictly positive subdefinite if and 
only if 

xTDx  < 0 implies Dx > 0 or Dx < O. (4) 

It is evident that positive semi-definite quadratic forms are strictly 
positive subdefinite, and strictly positive subdefinite quadratic forms 
are positive subdefinite. Thus, in order to exclude the positive semi- 
definite quadratic forms, Martos inserts the word "mere ly"  before 
"positive subdefinite". 
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3. Pseudo-convex quadratic functions 

This section is a summary of results on pseudo-convexity for qua- 
dratic functions. We shall omit all the proofs since they can be found 
in [2], [41, or [5]. We also refer the reader to [21 and [4] for a 
matrix-theoretic characterization of merely positive subdefinite and 
strictly merely positive subdefinite matrices. 

For the special case of  a quadratic form, Martos gives the following 
criterion: 

Theorem [4, Theorem 5]: The quadratic form $(x) = xTDx is 
pseudoconvex on the semipositive orthant, En\0, if and only if (5) 
it is strictly positive subdefinite. 

In a subsequent paper, Martos studies quadratic functions and proves 
the following 

Theorem [5, Theorem 31" If q~(x) = I xTDx  + cTx is merely 
quasi-convex on the nonnegative orthant, and if the matrix (6) 
[ D c7 has no row of zeros, it is merely pseudo-convex on the 

c I 0J 
semi-positive orthant. 

Finally, the following result was shown by the authors. 
Theorem [2, Theorem 61" Let ~b(x) = }xTDx + cTx be a quadra- 

tic function on E n such that ~DT ~ contains no row of zeros. (7) 

Then ¢ is pseudo-convex on En+\0 if and only if the quadratic 
form 

is pseudo-convex on E n+ l \0  ( o r  equivalently, strictly merely 
positive subdefinite). 

4. Proof of Martos' conjecture 

With this background, we can proceed to establish the truth of  Mar- 
tos' conjecture. First, we have to point  out the similarity between 
[5, Theorem 3] and the statement of  the conjecture. The condition 

of zeros in the bordered matrix IL_ ~ c~7 prohibiting T is replaced a r o w  
uA 
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by c v~ 0, and the pseudo-convexity is extended to the nonnegative 
(as opposed to the semipositive) orthant. 

The following property will be useful in proving the main result. 

L e m m a .  Let the real symmetric matrix ILcDT ~l be merely positive 

subdefinite where D is a nonzero matrix of order n and c is a nonzero 
column vector. For any vector v e E n , 

v T D v  < 0 implies c T o :¢: O. 

P r o o f .  Since D 4= 0, it can be expressed without loss of generality in 
the form 

where D is a symmetric matrix of order g ~< n having no row of  zeros. 
As a consequence of [2, Theorem 7],  we may write 

T 
T 

, ~ - :#  0 .  

By the inheritance property of positive subdefiniteness, the submatrix 

LI~ D vj~] is positive subdefinite. Since D has no row of zeros and 

4= 0, it follows that -I-rc D ~] is strictly merely positive subdefinite. 

Now, for contradiction, suppose there exists a vector v e E  n with the 
property v r D v  < 0 and c T v = 0. By definition of D and ~-, 

vT D v  = ~ T ~ -  < 0 and cT v = u ' r  ~ - = O, 

where b- is the appropriate subvector of v. Hence 

1 0 > -~ ~ -T~-  + ~-T V 
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Since I~ T gl is strictly merely positive subdefinite, it follows from 

(4) that ~-rv> 0 or g T v <  0. Either of  these contradicts the hypothesis 
that ?-T b-= 0, and the proof is complete. 

The main result will now follow by a slight modification of  Martos' 
proof  of  (6). 

Theorem 1.. If the proper quadratic function q~(x) = ~xTDx + c T x  is 
merely quasi-convex on the nonnegative orthant  then it is pseudo- 
convex on the nonnegative orthant. 

Proof. We must verify 

( x T D  + C T)  (y - X ) ~  0 

1 1 x T D x  + cT X implies -2 yT Dy + cT y >~ 2 
(8) 

for all x, y e E n . 
I f  ( x T D + c T ) ( , y - - x ) ~ O  a n d  (y -- x)T D(y  -- x)  ~ O, it follows 

directly that ~b(y)N ~b(x), as required. Hence we assume 
(y  - x ) T D ( y  -- x) < 0. Since 0 is quasi-convex on E l ,  it follows from 
[5, Theorem 1 ] that 

Cv - x ) > ~  0 or (y -x)~< 0. 

First, suppose Izc~ (y - x)/> O. Since x and y are both nonnegative, 

we have (x + y)T D(y  - x)  ~ O. Consequently, 

1 
~(y )  -- ~)(x) = ~ (x + y )T  D ( y  -- x )  + c T (y -- X) ~ O. 

We are left with the case (y - x ) T D ( y  -- x) < 0 and IcD~ (y -- x) ~< 0. 
Sinc~ the hypothesis of  the lemma are satisfied, it follows that 
c T ~ x) < 0. Because x eE  n, we now have xTD(y  -- x)  + c T (y -- x )  < 0 

which means that (8) is true by default. This completes the proof. 
Using Mangasarian's general result [3, Property 2] ,  for the converse 

of  the Theorem, we can state the 
Corollary. On E n, a proper quadratic function is pseudo-convex if 

and only if  it is quasi-convex. 
This result extends what we already know from [2] and [5] about 

characterizing pseudo-convex quadratic functions. From the standpoint 
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of quadratic programming, the significance of this Corollary is that 
there is a (finitely testable) class of  nonconvex objective functions for 
which Kuhn-Tucker stationary points yield global minima. 

5. Another proof  of  Martos' conjecture 

At a time before the property of pseudo-convexity had been 
explicitly identified, Arrow and Enthoven [ l ]  gave a set of  various 
conditions under which a quasi-convex function is pseudo-convex. 
Although the preceding observation may have a folkloric status, we are 
unaware of  its presence in the literature. 

Theorem 2. If f is a differentiable quasi-convex function on E n , then 
f is pseudo-convex at any x eE n where (i) Vf(x) 4= 0, and (ii) V2f(x) 
exists. 

Proof. Let x be a point in E n satisfying (i) and (ii). Define g(x) = 
V f ( x ) ( x -  x) and consider the mathematical  programming problem 

minimize f (x )  

subject to g(x) ~ 0 

x ~ O .  

The Kuhn-Tucker conditions for this linearly-constrained problem are 

Vf(x)  - XVg(x) ~ 0 

[ V f ( x )  - X v g ( x ) ]  x = 0 

g(x) ~ o 

X g ( x )  = o 

x ~ O  

X ~ O  

and in virtue of  the definition of  g, these are obviously satisfied by 
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(x, X) = (x-, 1), Hence condition (c) of  [1, Theorem 1] is fulfilled, 
and it follows that x is an optimal solution of (9). This means that for 
all x e E n 

V f (~ )  (x - ~)  ~ 0 implies f ( x )  ~ f (- f )  

as required for the pseudo-convexity o f f  at 2. 
Remark. The idea for writing down the program (9) can be found in 

the Arrow-Enthoven proof  of  [ 1, Theorem 5 ]. 
Now, for a quick alternate proof  of  Martos' conjecture, note that if 

f ( x )  = ½xXDx + cXx is a merely quasi-convex proper quadratic function 
on E n, we must have D ~< 0 and c ~< 0. Indeed, D ~ 0 and c ~ 0 follow 
directly from [5, Theorem 2] or [2, Theorem 5] ; t h e n D  ~< 0 and c ~< 0 
follow from the nonconvexity and the properness of  f,  respectively. 
Consequently, Vf (x )  = xXD + c x <~ 0 for all xeE n. Clearly, Theorem 2 
applies and f is pseudo-convex on E n + "  
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